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Level-Treewidth Property, Exact Algorithms and
Approximation Schemes

MADHAV V. MARATHE 3 HARRY B. HUNT III !  RICHARD E. STEARNS !

Abstract

Informally, a class of graphs G is said to have the level-treewidth property (LT-property) if
for every G € G there is a layout (breadth first ordering) L4 such that the subgraph induced
by the vertices in k-consecutive levels in the layout have treewidth O(f(k)), for some function
f. We show that several important and well known classes of graphs including planar and
bounded genus graphs, (r, s)-civilized graphs, etc, satisfy the LT-property.

Building on the recent work of Hunt et al. [HM+94], Khanna and Motwani [KM96] and
Eppstein [Ep95], we present two general types of results for the class of graphs obeying the

LT-property.

1. All problems in the classes MPSAT, TMAX and TMIN (first considered in [KM96]) have
polynomial time approximation schemes. '

2. The problems considered in Eppstein [Ep95] (such as subgraph isomorphisim, shortest
path queries, etc,) have efficient polynomial time algorithms.

These results can be extended to obtain polynomial time approximation algorithms and
approximation schemes for a number of PSPACE-hard combinatorial problems specified using
different kinds of succinct specifications studied in {MH+95, Or82a, LW87a]. Many of the
results can also be extended to é-near genus and d-near civilized graphs, for any fixed 4.

Our results significantly extend the work in [KM96, MH4-95, DTS93, Ep95] and affirma-
tively answer recent open questions in [KM96, Ep95].
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1 Introduction and Motivation

Extensive work has been done on the design of efficient sequential and parallel exact and
approximation algorithms for problems restricted to planar instances (See [Ba83, KM96,
HM+94, CK95, NC88, LT80], etc,).> In particular a substantial progress has been made
in the direction of developing a theory of approximability based on the syntactic character-
ization of optimization problems. (See Papadimitriou and Yannakakis [PY91], Kolaitis and
Thakur [KT94], Khanna et al. [KM+95] and Crescenzi and Kann [CK95], Panconesi and
Ranjan [PR93}, etc.)

In this paper, we further investigate the question of finding general graph theoretic restric-
tions that can be placed on input instances so as to obtain efficient exact and approximate
algorithms for general classes of problems. In [HM+94], we studied the problems MAX SAT(S)
and their generalizations when the underlying bipartite graph is planar. The results obtained
in [HM+94] directly imply PTAS for most of the natural MAX SNP problems restricted to
planar instances. Khanna and Motwani [KM96] generalized this work by presenting PTAS for
a large class of problems including those belonging to MAX SNP, MAX NP, RMAX(2), etc
when restricted to instances in which the underlying variable predicate interaction graph was
planar. In a different direction, Eppstein [Ep95] presented efficient (often linear or quadratic)
time algorithms for solving a number of problems such as variants of the subgraph isomor-
phism problem, shortest path queries, h-clustering, etc, when restricted to planar graphs. He
also extended his results to apply to a subclass of all minor closed graphs. All the above
papers were based on extending the powerful ideas first presented in Baker [Ba83].

It can be verified that planarity plays a central role in the work of [KM96] and minor
closed property plays a central role in the work of [KM96]. Thus in [KM96], Khanna and
Motwani remark that “QOur work provides evidence towards this claim raising the possibility
that this input restriction may well be a notion related to planarity”. In [Ep95], Eppstein
proved a certain key decomposition lemma (Lemma 5.2 in [Ep95]) about planar graphs and
remarks “The proof of Lemma 5.2 relies on the diameter trecwidth property, and on another
key property of planar graphs: any minor of a planar graph is also planar.” We show that
both these comments are only partially true. In particular, we present a simple and natural
graph theoretic property underlying the results in [KM96, Ep95, Ba83, DTS93, HM+94}:
namely the level treewidth property. It can be easily seen that planarity (and its property of
being minor closed) is one possible restriction that implies the existence of this property.

2 Summary of Results and Implications

As mentioned earlier, the results presented here build on the earlier work of [Ba83, KM96,
HM+94, Ep95, HM85]. We first define the notion of level-treewidth property for a graph class
G. A level numbering of a graph G is the numbering of the vertices of the graph obtained
by selecting an arbitrary vertex vy in the graph and assigning the level number of each vertex
to be the shortest distance from vp (i.e., the number of vertices in a shortest path from vg,

*Pollowing earlier work (see [CK95, KM96], we define the class PTAS to consist of all NP-optimization
problems that have polynomial time approximation schemes.



including the two endpoints). Define a graph class G to have the level-treewidth property
(LT-property) if for every G € G, for all k > 1 the treewidth of the subgraph induced by &
consecutive levels is O(f(k)). We show that:

1. Several important and well known classes of graphs including planar and bounded genus
graphs and (r, s)-civilized graphs satisfy the LT-property.

2. Let G be a class of graphs that obey the LT-property. Then every problem in the class
MPSAT, TMAX and TMIN has a polynomial time approximation scheme when restricted
to instances in G.

3. Each of the problems considered in [Ep95] have efficient algorithms (with running
times essentially identical to those in [Ep95]) when restricted to graphs obeying the
LT-property.

4. A large subclass of problems in MPSAT, TMAX and TMIN have PTAS when restricted
to graphs that are d-near genus or é-near (r, s)-civilized.

5. Most of the results in (2), (3) and (4) can be extended to obtain
NC-algorithms/approximation schemes.

6. Most of the results in (2), (3) and (4) can be extended to apply to PSPACE-hard opti-
mization problems for succinctly specified instances as in [Or82a, MH+95, HLW92).

These results generalize and extend the previous work in [KM96, HM+94, HM+94a, Ep95]
in the following ways

1. In [KM96], Khanna and Motwani pose the following question: “An interesting direction
for future research is: Are there more general classes of graphs to which our results can
be extended ¢ ? One corollary of results stated in (2) above is that all problems in
the classes MPSAT, TMAX and TMIN restricted to graphs of bounded genus and (r, s)-
civilized graphs have polynomial time approximation schemes. Thus the results in this
paper affirmatively answer the question posed by [KM96] and significantly generalize
their results.

2. In [HM+94a], we raised the question of designing PTAS for natural NP-hard problems
considered in [Ba83, HM+94a] when restricted to a class of graphs that contain both
planar graphs and unit disk graphs. Our approximation schemes for graphs obeying
LT-property are a first step towards answering this question since the class of graphs
satisfying the LT-property contain both planar and A-precision unit disk graphs.

3. In [Ep95], Eppstein poses the following question: ~ “Are there natural families of graphs
that are not minor closed and that have the diameter-treewidth property 7 We affir-
matively answer this question by presenting large families of graphs that are not minor
closed but have the diameter-treewidth property. We illustrate this with two natural
classes of graphs (See Section 4). Both these classes obey the LT-property and thus obey
the DT-property. However, we can show that both the classes of graphs are not minor
closed. ‘
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4. The results here provide a large class of PSPACE-hard problems for succinctly specfied
instances having PTAS, thus significantly extending our results in [MH+95]. The ap-
proximability of PSPACE-hard optimization problems has been a subject of extensive
research in the recent past. The results also attempt to provide a syntactic class repre-
sentation for PSPACE-hard optimization problems for succinct specifications that have
a PTAS. Our work is motivated by the question raised in [CF+94] to find general syn-
tactic classes for PSPACE-hard optimization problems for which (non)approximability
results can be proven in a uniform fashion.

The rest of the paper consists of basic definitions and discussion of selected results. Details
will be given in the complete version of the paper.

3 Basic Definitions

Recall that an approximation algorithm for an optimization problem II provides a perfor-
mance guarantee of p if, for every instance I of II, the solution value returned by the
approximation algorithm is within a factor p of the optimal value for I. A polynomial time
approximation scheme (PTAS) for problem II is a family of algorithms such that, given an
instance I of IT and an € > 0, there is a polynomial time algorithm in the family that returns
a solution which is within a factor (1 + €) of the optimal value for 1.

A graph is said to be planar if it can be laid out in the plane in such a way that there are
no crossovers of edges. A graph is said to have genus g if it can be laid out on a sphere with
¢ handles [WiT9].

Informally, for a fixed § > 0, a d-near-planar graph is a graph with vertex set V together
with a planar layout with < § - |V| crossovers of edges. The class of -near-planar graphs is a
generalization of planar graphs. This definition can be easily extended to define §-near genus
graphs for any fixed genus g.

For each pair of reals r > 0 and s > 0, a graph G can be drawn in R? in an (r, s)-civilized
manner if its vertices can be mapped to points in R? so that

1. the length of each edge is < r, and
2. the distance between any two points is > s.

A civilized layout of a graph that can be drawn in a civilized manner in R? consists of the
coordinates of the vertices in R? and the set of edges in the graph. We assume throughout
this paper that the dimension (d) of the Euclidean space considered is at least 2. Define a
planar (r,s) civilized graph to be an (r, s) civilized graph whose vertices can be embedded in
the Euclidean plane (i.e., R?). We discuss our algorithms for planar (r,s) civilized graphs.
However, all the algorithms presented here extend directly to civilized graphs drawn in higher
dimensions, albeit with slightly worse performance guarantee versus time trade-offs. For the
remainder of this section, we use (r, s) civilized graphs to mean planar (r,s) civilized graphs.

We now recall some additional definitions from [KM96]. A minterm is any conjunction
of literals. A minterm is positive if it has only positive literals and is negative if it has



only negative terms. In the definitions of the syntactic classes considered next, we will have
weighted first order formulas (FOF) and variables. The class MPSAT consists of all NP-
optimization (NPO) problems that are expressible as: Given a collection C of FOFs over n
variables such that each formula ¢ € C is a disjunction of O(n°")) minterms, find a truth
assignment T" of weight at most W, maximizing the total weight of the FOFs in C that are
satisfied. The class TMAX consists of NPO problems expressible as: Given a collection C of
FOFs over n variables such that each formula ¢ € C is a disjunction of O(n°()) negative
minterms, find a maximum weighted truth assignment T that satisfies all the FOFs in C. The
class TMAX consists of NPO problems expressible as: Given a collection C of FOFs over n
variables such that each formula ¢ € C is a disjunction of O(n°(1)) positive minterms, find
a minimum weighted truth assignment 7' that satisfies all the FOFs in C. Given a set C of
FOFs and the associated variables we define the standard bipartite graph I(C,V) as follows:
We have one vertex for each variable and each FOF. We join an FOF vertex with a variable
vertex if the variable appears in that FOF.

4 Sketch of the idea for the class MPSAT

The basic idea for devising a PTAS for a problem in MPSAT when restricted class of graphs
having DT-property is essentially as in [Ba83, HM+94, KM96]. We need one additional result
from [KM96].

Theorem 4.1 The problems in the classes MPSAT, TMAX and TMIN have pseudo polynomial
time algorithms when restricted to instances in which the bipartite graph is bounded treewidth.

Given an instance F € G, and a problem IT € MPSAT, ALGORITHM HEU-MPSAT outlines
the basic idea. _

We now sketch the proof of correctness of ALGORITHM HEU-MPSAT. Given that G
belongs to a family G satisfying the LT-property, the bipartite graph corresponding to each
subformula in Step 2a has bounded treewidth. We can now apply the dynamic programming
procedure given in [SH95, KM96] to find a table of optimal assignments: one each for weight
bound 0 < w; < W. If the weights on variables are in unary the above procedure runs in
polynomial time. If not we can use standard scaling and rounding procedures to compute
this. The correctness of the algorithm follows by a standard averaging argument yielding the
result. The proof of correctness and the performance guarantee of the algorithm follow from
the above arguments and the following additional properties.

1. The ability to decompose the given graph into vertex (edge) disjoint subsets such that
an (near) optimal solution to the subgraph induced by each subset can be obtained in
polynomial time.

2. The ability to obtain a near-optimal solution for the whole graph by merging the optimal
solution obtained for each subset.



Theorem 4.2 Let G be a class of graphs that obey the LT-property. Then every problem in the
class MPSAT, TMAX and TMIN has a polynomial time approzimation scheme when restricted
to instances in G.

ALGORITHM HEU-MPSAT:

e Input: An instance G € G satisfying the LT-property of a problem II € MPSAT. G
is represented as a bipartite graph BG(f).

e 1. Using NC-BFS, perform a breadth-first-search (BFS) on the planar graph BG(f)
starting at any node v in BG(f). The level number of each node w is the length
of the path (i.e., the number of nodes in the path including the end points) from
v to w in the BFS tree.

2. For each 7 (0 <7 < k), obtain an assignment to the variables of f as follows:

(a) Partition BG(f) into subgraphs Gi,Gys,...,Gy,, each of diameter at most 2%,
by deleting clause nodes at levels at levels whose index is congruent to & =
(3¢ +1) mod (34 +1). Remark: Each G; (1 < j <), is the bipartite graph of
a subformula f; of f. The variable set V; for f; is the set of vertices of G; and a
clause c is included in f; if and only if each variable appearing in ¢ is also in V.

(b) Using Lemma 4.1, obtain a table of assignment for each value of weight bound
w;, 0 < w; < W to the variables of the subformula f; such that the number of
satisfied clauses in f; is a maximum.
Remark: The graph of f; has treewidth O(k), which is a constant for a fixed k.

(c) The assignment to the variables of f is the union of the assignments to the
variables of each subformula f; such that the sum of true clauses is no more
than W. This is done by nonserial dynamic programming algorithm in a standard
fashion.

e Output: The required solution is the assignment which satisfies the maximum num-
ber of clauses among the assignments obtained for the different values of ¢ considered
in Step 2.

Theorem 4.2 implies the existence of PTAS for problems in the classes MPSAT, TMAX
and TMIN when restricted to several well known classes of graphs. To prove this we only
need to show that these graph classes obey the LT-property. Following [Ep95] define an apex
graph G to be a graph such that for some vertex v (the apex) G/{v} is planar. We will use
the following important theorem proved Eppstein [Ep95].

Theorem 4.3 (Eppstein [Ep95])

1. Let D denote the diameter of a genus g graph G with n vertices, g > 0. Then the
treewidth of G is O(f(gD)), where the function® f is independent of n.

2. Let G be a family of minor-closed graphs. The G has the DT-property if and only if G
does not contain all apex graphs. ’

‘Epstein [Ep95a] has observed that for graphs of constant genus, the function f is linear.



Proposition 4.4 Given an n-node graph G that is minor closed and and does not contain
all apezx graphs. Then G obeys the LT-property.

Proof: We prove the theorem for the class of genus bounded graphs. The proof for the
general case is similar and is omitted. Specifically, we show that given an n-node graph G of
genus g > 0, the subgraph of G induced by the vertices in any k consecutive levels of a BFS
layout has treewidth O(k).

Consider any k consecutive levels of G. Let these levels be numbered from i to s + k — 1.
Collapse the subgraph of G induced on the vertices at levels lower than i into a single vertex.
This results in there being only one vertex representing levels 1 to ¢ — 1, and this vertex is
connected to all the vertices at level ¢. Delete all vertices at levels ¢ + k or greater. We
now have the subgraph induced by & consecutive levels with one additional node which is
connected to all vertices at level i. Let us denote this graph by G’. Further, let us denote the
subgraph induced by the nodes in levels ¢ through i+ & —1 by G”. Since G is genus g-bounded
and G’ is obtained from G by a sequence of edge contractions, G’ is genus g-bounded. Since
the shortest distance from any vertex in G’ to any other vertex in G’ is no more than 2k, the
diameter of G’ is no more than 2k. Hence, by assumptions of the theorem, the treewidth of
G' is O(k). Since G” is a subgraph of G’, the treewidth of G” is also O(k). Thus, the graph
induced by any k levels of a genus g graph has treewidth O(k). O

Next we prove a theorem that relates the DT-property and the LT-property.

Theorem 4.5 1. If a graph G satisfies the LT-property then it satisﬁeé the DT-property.

2. In contrast, graphs satisfying the DT-property do not necessarily satisfy the LT-property.
This holds even for graphs for which each subgraph satisfies the DT-property.

Proof: We omit the proof of the first part.

For the converse, we give two examples. They are depicted in Figure 1. The graph in
Figures 1(a) is an example in which the graph has diameter Q(n) and also has treewidth
O(n). But the level treewidth property does not hold. In particular the vertices in the clique
all belong to the same level if we do a BFS search from the other end and have treewidth
O(n). Figure 1 (b) shows that even if a graph and all its subgraphs satisfy the DT-property,
the graph might not satisfy the LT-property. Consider the family of graphs F with n vertices
defined as follows. We have srzn=; vertices at level ¢ of the BF ordering of the vertices of
G. Thus level 0 has 1 vertex and level » = [logn] has O(n) vertices. The vertices at each
level i themselves form a grid. The edges are added as follows. The grid at level ¢ consists
of 4 subgrids each of which has the size equal to the grid at level (i — 1). We now attach
edges in a on-one fashion from each subgrid to the grid at level (i — 1). Now vertices at
k consecutive levels do not necessarily have treewidth f(k). In fact the last k levels have
treewidth O(y/n). But if you look at a subgraph of G that has a diameter D then clearly its
treewidth is O(f(D)). This is clear by noting that the graph constructed is of bounded degree
and hence the number of vertices in a diameter D subgraph are no more than O(dZ ). Here
dmaz denotes the maximum degree in the network.O

Next, we consider (r, s)-civilized graphs.
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Figure 1: Figures illustrating 6-near-planarity and bounded genus properties. (a) The Lollipop
graph. The graph consists of a clique of size O(n) and a chain of O(n) vertices attached to one
of the vertices in the clique. (b) A graph that has grids of size sz=; at level 0 <7 < logn.
The subgrids at level (¢ + 1) to level i.

Theorem 4.6 Let G be a n-node (r,s)-civilized graph. The subgraph of G induced by the
vertices in any k consecutive levels has treewidth O(k). Thus the set of (r, s)-civilized graphs
satisfy the DT-property.

Proof: The vertices in k consecutive levels of a (r, s) civilized graph lie in a rectangular slice of
side height O(rk) and width O(n). Since G is an (r, s) civilized graph, the maximum number
of vertices in a rectangular region of dimensions O(rk) x O(s) is at most krs. Furthermore,
removal of the vertices in this square breaks the graph into disjoint pieces. By recursively
applying the above idea on each smaller piece, we can construct a tree decomposition of the
graph G with treewidth krs = O(k) since r and s are fixed. O

5 Subgraph Isomorphism and Shortest path Queries

We briefly discuss how to extend the idea in [Ep95] to graphs satisfying the LT-property. For
this we prove the following decomposition theorem that is analogous to Lemma 5.2 in [Ep95].

Lemma 5.1 Let G be a graph that satisfies the LT-property and Lg be the corresponding
layout. Then in time O(n) we can find a collection O(n) of subgraphs G; with the following
properties:




1. For every vertex v € G the subgraph G’ induced by the vertices in G that are at a distance
w of v is a subgraph of one of the graphs G;.

2. Each vertez is included in at most 3 different subgraphs G;.
3. Each G; has treewidth O(w).

Proof: Given the layout L of G let G; be the subgraph induced by the vertices in levels sw
up until (4 + 3)w — 1. Each G; contains the w-neighborhood of vertices in levels i + 1)w to
(¢ 4+ 2)w — 1. Thus all the neighborhoods are covered. Each vertex belongs to three graphs
G, namely a vertex at level j belongs to the subgraphs Gjjw)+k » —2 < k < 0. By the fact
that G satisfies the LT-property, we get that each G; has treewidth O(w).O

The proof of the following theorem follows on the lines of the proof of an analogous result
for planar graphs in [Ep95].

Theorem 5.2 Let ! be o fized. Given a graph G obeying the LT-property, we can construct a
data structure DT in time O(I?n), such that size of DT 1is O(In), we can in time O(I2logn)
(per query) tell if distance between any two nodes u and v is no more than l.

6 NLC-produced near planar graphs

The results in the previous sections motivate looking at other general families of graphs that
have the LT-property. Towards this, we define the notion of two level graphs. We will use
the terminology in Ehrenfeucht et al. and Wanke [EE+96, Wa94] in the sequel. In two level
graphs, we are given a skeleton graph . Each node of the skeleton graph is then replaced by
a subgraph drawn from a family of fixed subgraphs F. The edges between two subgraphs H
and F are given as an explicit relation. If H and F replace two vertices in the skeleton graph
that have an edge between them then we add edges between vertices in A and F according
to the given relation. The following theorem is an easy but useful consequence of the above
definitions and results on graphs satisfying the LT-property.

In the literature extensive amount of work has been done on graphs that are defined using
NLC-graph grammars [Wa94, EE+96]. Our graphs are precisely a subclass of such graphs, in
which the derivation tree is only of depth 2 and the underlying skeleton graph has a special
structure.

Theorem 6.1 Let F be a family of graphs satisfying the LT-property and S be a fized collec-
tion of subgraphs, and R a finite set of edge relation between subgraphs of §. Let G € G be
an arbitrary instance. The graph GS obtained by replacing the nodes of G by subgraphs from
S and adding edges as discussed above yields a graph that obeys the LT-property.

Proof Idea: The proof of Theorem 6.1 follows ideas similar to the ones given in Section 4.
We first decompose the skeleton graph into disjoint subgraphs by using the layout satisfying
the LT-property. Observe that due to the way the vertices are replaced the treewidth of
the subgraph induced by k consecutive levels is still some function of & (independent of n).
Moreover the decomposition of the graph performed on the basis of the skeleton is a valid
decomposition for the substituted graph. The rest of the proof is similar and is omitted.O




7 Extension to Succinct Specifications

Next, we discuss the extension to succinct specifications. We recall briefly the periodic specifi-
cations. The definition of hierarchical specification can be found in [MH+95, LW87a, HLW92]
and is also given in Appendix for completeness. The definition of one dimensional periodic
specifications is due to Orlin and Lenguaer et al.[Or82a, HLW92]. Henceforth N and Z denotes
the set of non-negative integers and integers respectively.

Definition 7.1 Let G(V, E) (referred to as a static graph) be a finite undirected graph such
that each edge (u,v) has an associated non-negative integral weight t, . The one way infinite
graph G®(V' E') is defined as follows:

1. VI={v(p) |veV and peN}

2. B = {(u(p),v(p + tuw)) | (u,v) € E , ty, is the weight associated with the edge (u,v)
and p € N}

A 1-dimensional periodic specification T (referred to as 1-P-specification) is given by I' =
(G(V, E)) and specifies the graph G®(V', E') (referred to as 1-P-specified graph).

A 1-P-specification T is said to be narrow or 1-level restricted if V(u,v) € E, t,, € {0,1}.
This implies that V(u(p),v(q)) € E', |p —q| < 1. Similarly, a 1-P-specification is k-narrow or
k-level restricted if V(u,v) € E, ty, € {0,1,.. . k}.

It is sometimes useful to imagine a narrow periodically specified graph G*° as being
obtained by placing a copy of the vertex set V at each integral point (also referred to as
lattice point) on the X-axis (or the time line) and joining vertices placed on neighboring
lattice points in the manner specified by the edges in E.

G™ is the subgraph of the infinite periodic graph G*° induced by the vertices associated
with nonnegative lattice points less than or equal to m. A 1-dimensional finite periodic
specification I" (referred to as 1-FPN-specification) is given by I' = (G(V, E), m) and specifies
the graph G™ (referred to as 1-FPN-specified graph).

7.1 Overall idea

The basic idea is simple. We illustrate our ideas by describing our approximation algorithm
for the maximum independent set. Given a 1-FPN-specification I' = (G(V, E), m) of a planar
graph G™ and an ¢ > 0, we find the corresponding integer ! that satisfies the inequality
(lTil-T)2 > (1—¢). For 0 < i <!, we remove the vertices placed at the lattice points j such that
J =1 mod(l + 1). This partitions the graph G™ into a number of smaller disjoint subgraphs,
each induced by { consecutive lattice points.

Specifically, for a given 4, let l;, =max{0,(p—1)({ +1) + (¢ + 1)} and r;; = min{m, p(l +
1)+ (i — 1)}, where 0 < p < t;. Here t; = [mT_ZE:IL)Q] Let the subgraph induced by vertices
v(jp), where l;, < Jp gr;, be denoted by H(l;,,rz’;). For a given € > 0, the graphs H(l;,rzi,)
are linear in the size of I'. Next, we solve the MIS problem near optimally on each of the

subgraphs. This can be done by using the linear time algorithm developed in thej previous



sections. The union of these solutions is a solution for the iteration . The heuristic simply
picks up the best solution obtained over all [ + 1 iterations.

8 Conclusions

We presented simple graph theoretic property that helped unify and extend earlier results on
the existence of PTAS and efficient algorithms for a large collection of problems studied in
the literature. We conclude by mentioning other related remarks and directions for future
research.

1. In a recent related work we have been able to extend the ideas presented here to cer-
tain optimization problems for quantified formulas and domino games [MHS96]; thus
significantly extending the class of problems amenable to such a solution strategy.

2. In Teng’s thesis [Te91] and papers following this work, Teng et al. [GMT94, MTV91,
ST96] have considered intersection graphs of k-ply neighborhood systems. These graphs
are a strict generalization of (r,s)-civilized graphs as well as planar graphs. Teng et
al [Te91, GMT94, MTV91, ST96] show that intersection graphs of k-ply neighborhood
system have a “good” seperator; thus implying that most of the problems considered
here have PTAS in an asymptotic sense when restricted to such graphs (approximation
schemes similar to those obtained in [LT80]). An interesting question is investigate if
the techniques presented here and in [Ep95, KM96, HM+94] can be extended to obtain
PTAS for intersection graphs of k-ply neighborhood systems ?

3. Another interesting direction for future work is to extend the class of problems studied so
far. As mentioned in [KM96], problems such as TSP for planar and geometric instances
( Recently [GKP95, Ar96] show that these problems have PTAS .) cannot be directly
formulated in terms of the predicates considered here. A similar class of problems is
bicriteria network design problems considered in [MR+95] when restricted to treewidth
bounded graphs. Again these problems have PTAS but cannot be captured directly by
the predicates considered here. Defining predicates that capture such problems would
significantly extend these results.

Acknowledgments: It is a pleasure to acknowledge helpful conversations with S.S. Ravi
and V. Radhakrishnan on subjects related to this paper. In particular, we thank them for
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Figure 2: Figures illustrating the orthogonality of §-near-planarity and bounded genus prop-
erties. (a) The Lollipop graph. The graph consists of a clique of size nl/4 and a chain of
n — nl/4 vertices attached to one of the vertices in the clique. (b) A graph which has large
number of crossovers but whose genus is 1.

9 Appendix

10 Extension to near-genus and near civilzed graphs

Next,. we discuss the extension of results in previous Sections to instances restricted to -
near-genus g graphs. Let 0 be a fixed positive number. A §-near-genus g graph is a graph
with vertex set V together with a genus g layout with < ¢ - |V| crossover nodes. We note
that the classes of é-near-planar graphs and bounded genus graphs are in a sense orthogonal.
Specifically, there are classes of graphs which are J-near-planar for small § but whose genus
is not bounded by any constant. For examp}e, consider a family of graphs that for eaclsh
positive integer n > 0, consist of a clique on n% nodes and a simple chain of length (n — n%)
attached to one of the nodes in the clique (Figure 2(a)). These graphs have genus @(n%) since
the genus of an r-clique is ©(r?) [Wi79]. However, the graphs are l-near-planar, since the
number of crossovers is at most n. Similarly, there are graphs of bounded genus that are not
d-near-planar for any fixed §. To illustrate this point, consider another family of graphs, that
for each positive integer n > 0 consist of a \/n x /n torus as laid out in Figure 2(b). In this
layout, the number of crossovers is ©(n?). Thus the graphs with the given layouts are not
d-near-planar graphs for any constant . On the other hand, it can be seen that the graphs
have genus at most 1; i.e., they can be laid out with non-crossing edges on a sphere with 1
handle. A é-near (r, s)-civilized graph consists of a (r, s)-civilized graph with some edges of
lenth more than s such that the total length of these edges is O(n).
We show following theorem for graphs with bounded genus.
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Theorem 10.1 For all fired g and § > 0, there are NC-approzimation schemes for the follow-
ing problems restricted to §-near-genus g graphs and d-near (r,s)-civilized graphs: bounded
degree mazximum independent set, bounded degree minimum dominating set, mazimum k-
colorable subgraph, MAX SAT(S) for every fized set S the problems MPSAT and MAX CUT.

Proof Sketchx: The proof of the theorem consists of giving an L-reduction to an appro-
priately chosen satisifiability problem. To illustrate our ideas we specifiy a reduction for the
BOUNDED DEGREE MINIMUM DOMINATING SET problem for §-near-planar graphs.

Given an instance I(V, E) with V = {v1,...v,} and |E| = m of the BOUNDED DEGREE
MINIMUM DOMINATING SET problem for §-near-planar graphs, we construct an instance
I'(U, C) of MAX §-near-PI-SAT(S), where S will be defined subsequently. Let B be the bound
on the degree of a vertex. The variables in I’ are in one-to-one correspondence with the vertices
in I. A variable will be true if its corresponding vertex is in the dominating set. For each vertex
v in I with neighbors v;,, vi,, ... v;, where I < B, we create a clause (uV u;, Vug, V... Vu;).
When [ is less than B, we can repeat one of the variables so that each clause is of size
exactly B + 1. We also add the clauses, ; for each vertex v;. Formally, U = {u1,...,upn}
and C = C; Uy where C1 = {(u; Vui, V... Vuy) | (0i,v5), (03,05), ... (vi,v5,) € E} and
Cy = {@; | v; € V}. Observe that [Ci| = |C2| = n. Here also, the set S contains only
two relations, one of arity B + 1 and the other of arity 1. Further, is easy to see that I’
can be laid out in such a way that §(I') < B2 + §(I). The clauses in Cy do not contribute
any crossovers. Since each vertex can dominate at most B + 1 vertices (including itself),
|OPT(I)| > #4;. The resulting instance of MAX SAT(S) has at most 2n clauses and so
|OPT(I')| < 2n < 2(B + 1)]JOPT(I)]. Since B is a constant, this verifies the first condition
of an L-reduction. We now verify the second condition in the definition of an L-reduction.
Consider a solution A(I') for I'. For each unsatisfied clause in C1, set the value of one of the
variables in the clause to true to obtain another solution which satisfies the same number of
clauses as the original solution and also satisfies all the clauses in C}. The above modification
yields another solution which satisfies at least A(I') clauses of I’ and also satisfies all the
clauses in C;. Now, the approximate dominating set consists of vertices v; such that the
corresponding variable u; is set to true. Note that the total number of variables set to false
in A(I') is |JA(I")| — |C1]. Hence, the size of the approximate solution for I is given by
|A(I)| = n —|A(I")| + |C1]. We now have

|OPT(I")| = |C1| + n — |OPT(I)|
and
|A(D)| = |OPT(I)| = n — [A(I')| +|C1| = n — |C1| + |OPT(I')| = |OPT(I')| - A(I).

Thus the second condition for an L-reduction is satisfied with g = 1.0

In contrast, we can show that For any fixed § > 0, the following hold: Unless NP =
QP?, there is no polynomial time approximation algorithm that guarantees a solution with
a performance guarantee better than logn for the minimum dominating set problem when
restricted to d-near-planar graphs. Similar results hold for other problems for bounded degree
d-near-planar graphs.

®Quasi-polynomial time
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