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Introduction

The simplified spherical harmonics (SPn) method has been used as an
approximation to the transport equation in a number of situations.}23 Recently, the
SPx method has been formulated within the framework of the variational nodal
method (VNM). Implementation in the VARIANT* code indicated that for many two
and three dimensional problems, near Pnx accuracy can be obtained at a fraction of
the cost.5 Perturbation methods offer additional computational cost reduction for
reactor core calculations and are indispensable for performing a variety of
calculations including sensitivity studies and the breakdown by components of
reactivity worths. Here, we extend the perturbation method developed for the VNM
in the full Px approximation® to treat simplified spherical harmonics. The change
in reactivity predicted by both first order and exact perturbation theory using the

SPx approximation is demonstrated for a benchmark problem and compared to

diffusion and full Pn estimates.




Theory '
The even-parity form of the slab geometry Px equations may be written in terms

of even- and odd-parity vectors of the Legendre flux moments: § = ¢, , and
X = Pom_y- Since the forward and adjoint equations differ only in the source and by

a sign change in the odd-parity term, they may be expressed in the * paired form
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where E isa two-stripe coefficient matrix, E_ .= (2m-1)__+2mé_ .., andb =38 ..
d —
To obtain the SPn equations, we simply replace ax by V. The even-parity flux

and source become functions in three dimensions: &x)—&(T) and s*(x)— s*(T).

The odd-parity flux is a vector in three dimensions: y(x)— % (T ).
Expressing the resulting SPN equation in terms of variational functionals which

employ Lagrange multipliers to enforce nodal balance, we obtain
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Requiring the functional to be stationary with res‘pect to § yields the SPnN
generalization of Eq. (1) within the node and Eq. (2) on the interfaces. Requiring
the functional to be stationary with respect to y yields the continuity condition on §
across the interface.

In the VNM, the flux and source moments are approximated by known spatial -
trial functions with unknown coefficients, and the Ritz procedure is applied. The

reduced functionals have the form
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where the elements of the A (symmetric) and M matrices contain integrals of the
spatial trial functions. The forward and adjoint equations are obtained by

requiring stationarity with respect to  and yx:
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We form global multi-group equations by combining the vectors of fluxes and
sources from the corresponding nodal vectors for all groups. The matrices A and M

are now block diagonal combinations of the nodal matrices for all nodes and groups.

Expanding the source terms into fission and scattering, the unperturbed adjoint
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while the perturbed forward equations are
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where the F matrix consists of the fission spectrum and cross sections, C contains

equations become

the group-to-group scattering cross sections and A' = A + 3A, etc. Performing the
prescribed operations,® we obtain the exact change in reactivity:
1
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The corresponding first order approximation results from replacing {', ¢' and k'
by {,cand k
1
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Since M contains no material cross sections, 8M = 0 vanishes from the perturbation

expressions.




Results
Exact and first order SPN perturbation theory has been implemented as a post

processor to VARIANT. Results of perturbations applied to the Takeda Benchmark?
Models 1 and 4 are given in Figure 1. For the Takeda 1 problém, the standard rods-
in problem is used as the base state. The applied perturbations consist of increasing
the thermal capture cross section of the control rod material. For the Takeda 4
problem, the base state is the standard rods-out problem. Initially the control rod
channel contains sodium. The perturbations consist of sodium voiding of the
channel.

In both problems, the SP3 approximation produces improved eigenvalues
compared to diffusion theory. However, the corresponding improvement in the
change in reactivity estimated by the SP3 perturbation theory is highly problem
dependent. In the Takeda 1 problem, SP3 estimates of |3k/kk’| are nearly identical
to the P3 predictions. The base and perturbed cases can be accurately modeled
using the SP3 approximation. For the Takeda 4 problem, SP3 theory fails to greatly
improve the estimated change in reactivity because full PN expansions are required

to accurately model the flux distribution about the small, nearly-voided control rod

channel.
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Fig. 1b Takeda Benchmark Model 4 Perturbation




