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Abstract

A general geometrical framework for image process-
ing is presented. We consider intensity tmages as sur-
faces in the (x,I) space. The image is thereby a two di-
mensional surface in three dimensional space for gray
level images. The new formulation unifies many clas-
sical schemes, algorithms, and measures via choices of
parameters in a “master” geometrical measure. More
tmportant, it is a simple and efficient {ool for the de-
sign of natural schemes for image enhancement, seg-
mentation, and scale space. Here we give the basic
motivation and apply the scheme to enhance images.
We present the concept of an tmage as a surface in di-
mensions higher than the three dimensional intuitive
space. This will help us handle movies, color, and vol-
umetric medical tmages.

1 Introduction

Motivated by [1, 21], we consider low level vision
as an input to output process. For example, the most
common input is a gray level image; namely a map
from a two dimensional surface to a three dimensional
space (IR®). We have at each point of the zy coordi-
nate plane an intensity I(z,y). The IR? space-feature
has Cartesian coordinates (z,y, I} where z and y are
the spatial coordinates and I is the feature coordinate.

*This work is supported in part by the Applied Mathemat-
ics Subprogram of the Office of Energy Research under DE-
AC03-76SFO0098, ONR grant under NOOO014-96-1-0381, and
in part by the National Science Foundation under grant PHY-
90-21139.

The output of the low level process in most models
consists of 1). A smoothed image from which reliable
features can be extracted by local, and therefore differ-
ential operators. 2). A segmentation, that is, either a
decomposition of the image domain into homogeneous
regions with boundaries, or a set of boundary points
- an “edge map”.

The research on the low level vision process in the
retina and the brain indicate the existence of layers
serving as operators such that the information is pro-
cessed locally in the layers and forwarded to the next
layer with no interaction between distance layers. This
means that the low level vision process can be de-
scribed by a local differential operator. This process
is called scale space where t is the scale (layer) param-
eter.

There are many definitions for scale spaces of im-
ages alming to arrive at a coherent framework that
unifies many assumptions. One such assumption is
that “only isophotes matter”. We argue that this as-
sumption, though leading to many interesting results
in many cases, seems to fail in many other natural
cases. Let us demonstrate it with a simple example:
In Fig. 1 we see two images of a bright square on a
darker background.

In fact, we notice that (see Fig. 2) in the second
image the lower left corner of the ‘bright square’ is
much darker than the upper right corner of the ‘dark’
background. Furthermore, even the upper right corner
of the ‘bright’ square is darker than the upper right




Figure 1: Two images of a bright square on dark back-
ground

corner of the ‘dark’ background. The boundary of the
inner square in the left image 1s closely related to one
of the isophotes of the gray level image in that image,
as shown in the upper row of Fig. 2. In the second
case, we added a smooth function - a tilted plane -
to the first intensity function. This additional smooth
function might be the result of non-uniform lighting
conditions. It is obvious that in the second intensity
image (the right image) the isophotes play only a mi-
nor role in the perception process of the image.
_ The importance of edges in scale space construc-
tion is obvious. OQur view is consistent with the rest. of
the vision community in that boundaries between ob-
jects should survive as long as possible along the scale
space, while homogeneous regions should be simplified
and flattened in a more rapid way. On the other hand,
we still want to preserve the geometry and mathemati-
cal integrity that results in some interesting non-linear
‘scale spaces’. Another important question, for which
there are only partial answers, is how to treat multi
valued images. A color image is a good example since
one actually talks about 3 images (Red, Green, Blue)
that are composed into one. Should one treat such
images as multi valued functions as proposed in {13]7
We attempt to answer some of the above questions
by viewing images as embedding maps, that flow to-
wards minimal surfaces. We consider two dimensions
higher than most of the classical schemes, and instead
of dealing with isophotes as planar curves we deal with
the whole image as a surface. For example, a gray level
image is no longer considered as a function but as a
two dimensional surface in three dimensional space.
In another example, we will show how to treat color
images as a 2D surfaces in 5D: e.g. (x,y,R,G,B) space.
The remainder of this paper is organized as follows:
In Section 2 we comment on the notions of metric
and length needed for the definition of measure and
the flow. We present in Sec. 3 our measure and a
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Figure 2: The two images from Fig. 1, their isophotes
and the image as a surface in the (z,y, I) space.

choice of minimization that gives a generalized version
of the mean curvature flow. Then, in Section 4 we
introduce the flow itself that we have chosen to name
Beltrami flow, and present a geometric interpretation
in the simplest 3D case. Next, Section 5 presents the
metric and the resulting flow for color images. The
analysis of movies and volumetric medical images is
presented in Sec. 7. We refer the interested reader to
[28] for further details and examples including a new
segmentation procedure motivated by [29].

2 The Metric

1£¢2=gﬁ¢{6"¢{o'f= dod +dy +dI°

Figure 3: Length element of a surface curve ds.

The basic concept of Riemannian differential ge-
ometry is distance. Let us start with the impor-
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tant example X : ¥ — IR®. We denote the lo-
cal coordinates on the two dimensional manifold E
by (¢!,0?). The map X is explicitly given by
(X(a,6%), X?(c1, 0?), X3(c!,0?)). Since the local
coordinates ¢ are curvilinear, and not orthogonal in
general, the distance square between two close points
n %, p = (¢!,0%) and p + (do!,de?) is not ds® =
do? 4+ do2. In fact, the squared distance is given by
a positive definite symmetric bilinear form g;;(¢?, o)
called the metric
ds? guvdo¥do”

911(do™)? + 2g12do? do? + gao(da?)?, (1)

1]l

where we used Einstein summation convention in the
second equality; identical indices that appear one up
and one down are summed over. We will denote the
inverse of the metric by ¢g#”, so that ¢*"g,, = 6%,
where 6,‘7‘ is the Kronecker delta.

2.1 Induced metric

Let X : ¥ — M be an embedding of ¥ in M, where
M is a Riemannian manifold with a metric (g:;)m
We can use the knowledge of the metric on M and the
map X to construct the metric on . This procedure,
is called the pullback and is given explicitly as follow:

(9u0)x(0r, 0 = (g:5)m (X (c*,09)0, X8, X7, (2)

.,dimM are being summed over, and

where 2,7 = 1, .. 2
X‘a o2

in short we use 8, X° =
We will use the following 51mple and useful exam-

ple that is often used in computer vision: Consider

embedding of a surface described as a graph in R3,

X : (o', 0%) — (¢, 02, I(c*, 0%)). (3)

Using Eq. (2) we get
1+12 L]
(9) = ( LI 1+ 53) “)

where we used the identification X! = ¢! and X2 =
o? in the map X.

Actually we can understand this result in an intu-
itive way: Eq. (2) means that the distance measured
on the surface by the local coordinates is equal to the
distance measured in the embedding coordinates, see
Fig. 3. Under the above identification, we can write

ds® dz? + dy? + dI?
dz? + dy* + (I.dz + I,dy)?

(1+ I2)dz® + 2L I, dedy + (1 + I2)dy”.

3 Polyakov Action and Harmonic
Maps

In this section, we present a general framework for
non-linear diffusion in computer vision. The equa-
tions will be derived by a minimization problem from
an action functional. The functional in question de-
pends on both the image manifold and the embedding
space. Denote by (X, g) the image manifold and its
metric and by (M, h) the space-feature manifold and
its metric, then the map X : ¥ — M has the following
weight

SIX, g, his] = / I o\ /30" 8, X0, X7 hiy (X),
(5)

where m is the dimension of X, g is the determinant
of the image metric, g#” is the inverse of the image
metric, the range of indices is g, v = 1,...,dim¥, and
i,7 =1,...,dimM, and h;; is the metric of the em-
bedding space. This functional, for m = 2, was first
proposed by Polyakov [25] in the context of high en-
ergy physics, and the theory known as string theory.

Given the above functional, we have to choose the
minimization. We may choose for example to min-
imize with respect to the embedding alone. In this
case the metric g, is treated as a parameter and may
be fixed by hand. Another choice is to vary only with
respect to the feature coordinates of the embedding
space, or we may choose to vary the image metric
as well. In [28] we show how different choices yield
different flows. Some flows are recognized as exist-
ing methods like the heat flow, with passive coordi-
nate transformation [16], the Perona-Malik flow [24],
the geodesic active contours [5, 6, 17], the color flow
[27, 8, 4], the mean-curvature flow [20] and its variants
[14], and even a new invariant flow of images painted
on surfaces [18]. Other choices are new and will be
described below.

To gain some intuition about this functional, let
us take the example of a surface embedded in IR® and
treat both the metric {g,,) and the spatial coordinates
of the embedding space as free parameters, and fix
them to

10
g=<0 1) , z=o , y=o. (6

From now on, we also fix the embedding space to
Euclidean (IR® in the example at hand) with Carte-
sian coordinates (i.e. hyj = 6;;). We refer the reader
again to [28] for the general case. Then, up to a non-
important constant, we get

S, guy = by, hij = 655] = /dzalvn?. (7)




If we now minimize with respect to I, we will get the
usual heat operator acting on I.

Using standard methods in variation calculus (see
[28]), the Euler-Lagrange equations with respect to
the embedding are:

1 il_éi — L By 1

Few remarks are in order. First notice that we used
our freedom to multiply the Euler-Lagrange equations
by a strictly positive function. Since (g,,) is positive
definite, g = det(g,,) > 0 for all o#. This factor is
the simplest one that doesn’t change the minimization
solution while giving a reparametrization invariant ex-
pression. The operator that is acting on X* is the nat-
ural generalization of the Laplacian from flat spaces
to manifolds and is called the second order differen-
tial parameter of Beltrami [19], or for short Belirami
operator, and we will denote it by A,.

For a surface X, embedded in 3 dimensional Eu-
clidean space, we get a minimal surface as the solution
to the minimization problem. In order to see that and
to connect to the usual representation of the minimal
surface equation, we notice that the solution of the
minimization problem with respect to the metric is

9u = 0,X'8, X (9)

On inspection, this equation is simply the induced
metric on . For the case of a surface embedded in
R? we calculated it explicitly in (see Eq. (4)). Plug-
ging this induced metric in the first Euler-Lagrange,
Eq. (8) we get the steepest decent flow

X, = HN, (10)
where H is the mean curvature, N is the normal to
the surface: !

(1 + Ig)Iyy - QIrInyy + (1 + Ig)lm
g3 ’
(_Iya—Iml)Ts (11)

H =
- 1
N -
V9
and g = 1+ IZ + IZ. We see that this choice gives us
the mean curvature flow! This should not be a sur-

prise, since the action functional for the above choice
of metric g, 1s

S= / Lo /G = / 2o+ [det(3, X8, X3),

1Note also that some definitions of the mean curvature in-
clude a factor of 2 that we omit in our definition.

which is the Euler functional that describes the area
of the surface (also known in high energy physics as
the Nambu action).

In general for any manifold ¥ and M, the map
X : ¥ — M that minimizes the action S with re-
spect to the embedding is called a harmonic map.
The harmonic map is the natural generalization of
the geodesic curve and the minimal surface to higher
dimensional manifolds and for different embedding
spaces.

The generalization to any manifold embedded with
arbitrary co-dimension is given by using Eq. 8 for
all the embedding coordinates and using the induced
metric Eq. 9.

4 The Beltrami flow

In this section, we present a new and natural flow.
The image is regarded as an embedding map X : ¥ —
IR3, where T is a two dimensional manifold, and the
flow is natural in the sense that it minimizes the ac-
tion functional with respect to 7 and (g;;), while being
reparametrization invariant. The coordinates X! and
X? are parameters from this view point and are iden-
tified as above with ¢! and ¢ respectively. The result
of the minimization is the Beltrami operator acting on
I

1 —
L=Ad= %au(\@gwayz) =HN;  (12)

where the metric is the induced one given in Eq. 2,
and [ is the unit vector in the I direction.

The geometrical meaning is obvious. Each point on
the image surface moves with a velocity that depends
on the mean curvature and the I component of the
normal to the surface at that point. Since along the
edges the normal to the surface lie almost entirely in
the z-y plane, I hardly changes along the edges while
the flow drives other regions of the image towards a
minimal surface at a more rapid rate. Let us further
explore the geometry of the flow in 3D:

4.1 Geometric Flows Towards Minimal
Surfaces

A minimal surface is the surface with the least area
that satisfies given boundary conditions. It has nice
geometrical properties, and is often used as a natu-
ral model of various physical phenomena, e.g. soap
bubbles “Plateau’s problem”, in computer aided de-
sign, in architecture (structural design), and recently
even for medical imaging [7]. Numerical schemes for
the mean curvature flow, and the construction of min-
imal surfaces under constraints, has beén the subject
of considerable research [12, 10, 11, 9].




For constructing the mean curvature flow of a gray
level image as a surface, we follow three steps:

(1). Given the surface S that evolves according to
= F, where F is an arbitrary
e geometric deformation of S
(F,N)N, where
N is the unit normal of the surface at each point,
and (F, N} is the inner product (the projection of F
on N). The tangential component affects only the
Internal parameterization of the evolving surface and
does not influence its geometric shape.

(2). The mean curvature flow is given by: %j =

the geometric flow
smooth flow field.

may be equivalently written as %‘ti =

HN , where H is the mean curvature of § at every

point. Let us now use the relation given in Step 1:
(3). Considering the image function I(z,y), as a

parameterized surface § = (z,y,I{(z,y)). We may

write the mean curvature flow as: %— = " Z)Z

for any smooth vector field Z defined on the surface.
Especxa.lly, we may choose Z as the I direction, i.e.
=(0,0,1). In this case
1 7 — 2 2, —
7 Z) Z =1+ 124+ I2-(0,0,1) = /g(0,0,1).
(13)
Fixing the (z,y) parameterization along the flow (i.e.
using the fixed z, y plane as the natural parameteriza-
tion), we have &; = (m y, I(z,y) = (0,0, Is(z, v)).
Thus, for trackmg the evolving surface, it is enough
H, /1412 + I2, where the mean

curvature H is given as a function of the image I, see
Fig. 4, and Eq. (11).

to evolve I via —3? =

. ?-[ZT/<Z.,9E>

Figure 4: Left: Mean curvature flow. Right: Beltrami
flow.

Substituting for H (see {10] for another derivation
of H), we end up with the following evolution equation
(1+ Iyz)l'm — 2L L L, + (1 + Ig)Iyy

1412412 T

(14)

t =

with the image itself as initial condition I(z,y,0) =
I{z,y). Using Beltrami second order operator A, and
the metric g, Eq. (14) may be read as I, = gA,l.
On the other hand, the Beltrami flow (selective mean
curvature flow) I, = A, I is given explicitly for the
simple 2D case as

1+ Iyz)IM — 2L LIy + (1 + I2)],, 15
- (1+ 12+ 12)? . (19)
see Fig. 4.

As an example, Fig. 5 compares the results of
the Beltrami flow and the mean curvature flow both
applied to a digital subtraction angiogram (DSA). It
demonstrates the edge preserving property of the Bel-
trami flow relative to the mean curvature flow.

Figure 5: Left: Original medical image. Middle: Re-
sult of the mean curvature ﬂow Right: Result of the
Beltrami flow.

We note again that some properties for the mean
curvature flows that are relevant to some of our cases
are studied by the PDE community, e.g. [2]. One im-
portant result, at least for the level set framework [23],
in which the mapping is from R™ to R™*! (embed-
ding with codimension 1) is that embedding of evolv-
ing surfaces is preserved [15]. Roughly speaking, it
means that surfaces can not cross as they evolve if
they do not cross to begin with.

In [28] we show that large ratio between the gray
level axis and one of the coordinate axis leads to po-
tential surfaces via the heat equation {3, 22], while at
small ratio we have the TV (total variation or Li)
[26]. We have thereby linked together many classical
schemes via a selection of one parameter, that is, the
image gray level scale with respect to its zy coordi-
nates. This scale is determined arbitrarily anyhow in
most of the current schemes.

5 Color

We generalize the Beltrami flow to the 5 dimen-
sional space-feature needed in color images. The em-
bedding space-feature space is taken to be Euclidean
with Cartesian coordinate system. The image, thus,




is the map f : & — IR® where £ is a two dimensional
manifold. Explicitly the map is

f=(X(',62),Y(c},0%), I" (¢}, 07%), I (o?, 0%), I’(at, o).

We note that there are obvious better selections to
color space definition rather than the RGB flat space.
Nevertheless, we get impressive results even from this
oversimplified assumption. .

We minimize our action (5) with respect to the met-
ric and with respect to (I”, I9, I*). For convenience we
denote below (r,g,b) in general notation by 7. Mini-
mizing the metric gives, as usual, the induced metric
which is given in this case as follows:

g = 1+ () + TP+ (12,
g2 = LI+EI+LIL,

g2 = 14 (D)2 + I+ (1),
g = det(gs;) = g11922 — 9%

Note that this metric differs from the Di Zenzo metric
[13] by the addition of 1 to g1; and ga2. The source of
the difference is the map used to describe the image.
Di5 Zenzo used X : IR? — IR® while we use X : & —
R°.

The action functional under this choice of the met-
ric is the Euler functional S = [ d%¢./g. It is simply
the area of the image surface. Minimization with re-
spect to I* gives the Beltrami flow

T _1___ ny )
t = \/gau(\/gg 0,1 )’ (16)

which is a flow towards a minimal surface that pre-
serves edges.

For simple implementation of the Beltrami flow let
us first compute the 6 matrices: IZ, I;, and the follow-
ing 6 matrices:
P o= g7 (gl ~ g1oI),
¢ = g7V (guly - gral). (17)

Then the evolution is given by

I=g~Y2 (pi + q;) ) (18) Figure 6: Color results

In [28] we show that we can avoid the square root
computations for this flow.

6 Beltrami Flow in Color Space

We now present some results of denoising color im-
ages using our model. Spatial derivatives are approx-
imated using central differences and an explicit Euler
step is employed to reach the solution. We represent




the image in the RGB space; however, other represen-
tations and different numerical schemes (as in [9]) are
possible.

The results are presented in Fig. 6 as follows: In the
first row of Fig. 6 the Beltrami flow is demonstrated to
form an edge preserving scale space in color. Three im-
ages that correspond to different scales are presented
left to right. Observe the way the fine geometric de-
tails disappear first, while sharp edges are preserved
along the evolution.

The second row shows a color image corrupted with
Gaussian noise. The reconstruction result by apply-
ing Beltrami flow is also shown on the right. Itera-
tion has been manually stopped to produce the result.
Constraints similar to [4] can be added; see [28] for
details.

Finally, third and fourth rows of the figure present
the result of applying present the result of applying the
Beltrami flow to reconstruct a color image with noise
artifacts introduced first by wavelet lossy compression
and then by JPEG lossy compression. The left pair
depicts the corrupted image and the right pair is the
result of reconstructing it with the Beltrami flow.

7 Movies and Volumetric Medical Im-
ages

Traditionally, MRI volumetric data is referred to
as 3D medical image. Following our framework, a
-more appropriate definition is of a 3D surface in 4D
(z,y,2,I). In a very similar manner we will consider
gray level movies as a 3D surfaces in 4D, where all
we need to do is the mental exercise of replacing z of
the volumetric medical images by the sequence (time)
axis. In Fig. 7, the first row shows images at different
z locations and the second row shows the correspond-
ing denoised images, the third image in both sequences
is magnified showing the selective smoothing effect in
this case. This is a relatively simple case, since now
we have co-dimension equal to one.

The induced metric in this case is given by

: 1+12 LI, LI
(@)=| LL 1+ LL |, (19
LL LI 1+I?

and the Beltrami flow 1s now:
L =g ( L(+LE+I)+L,(1+Z+1)

+Ix:c(1 + I;Z + 1-22) - QIfInyy
—2IyIzIyz - 2IZI.Z‘IZ$) (20)

where g = 1+ 12+ I2 + I2.

8 Concluding Remarks

Inventing a perceptually good segmentation pro-
cess, and formulating a meaningful scale space for im-
ages is not an easy task, and is actually what low level
vision research is about. Here we tried to address these
questions and to come up with a new framework that
unifies many previous results and introduces new pro-
cedures. There are still many open questions to be
asked, like what is the right aspect ratio between the
intensity and the image plane? Or in a more general
sense, what is the ‘right’ embedding space h;;?

The question of what is the ‘right norm’ when deal-
ing with images is indeed not trivial, and the right an-
swer probably depends on the application. For exam-
ple, the answer for the ‘right’ color metric h;; is the
consequence of empirical results, experimental data,
and the application. Here we covered some of the gaps
between the two classical norms (L;-TV and the Lj)
in a geometrical way and proposed a new approach to
deal with multi dimensional images. We used recent
results from high energy physics that yield promising
algorithms for enhancement, segmentation and scale
space.
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