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ABSTRACT 

Graphite crystal  expansions were derived as  a function of 

temperature using the theoretical relationships of ~i ley(' ); the resul tant  
1 

equations provide reasonable f i t s  t o  the measured l a t t i c e  expansion 
.I 

data over the temperature range 300' t o  3000°K. 
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INTRODUCTION ! 

. In 1924, Gruneisen and ~ o e n s ( ~ )  derived a  theory on t h P  relationships 

between thermal expansion, e l a s t i c  moduli and heat capaci t ies  of hexagonal 
?> 

crys ta l s  . a t  low temperatures; in 1945, ~i  ley( '  ) extended t h i s  theory t o  higher 

temperatures and with specif ic  application to  graphite.  A significant. amount 

of additional data ,  especially in regard to  thermal expansion a t  hig$er tempera- 

tures ,  has become available since publication of Riley's r e su l t s ;  t h i s  paper 

presents the resu l t s  of an analysis of currently avai lable .data ,  undertaken 

to  obtain improved estimates of the l a t t i c e  thermal expansion coeff ic ients  

of graphite. 

THEORY 
.... 

--I 
C Riley has shown") tha t  the heat capacity a t  constant volume., C v ,  fo r  a  

' 

graphite crystal  can be considered as .composed of two components: 

The components, C and Cv re fer  to  vibrations parallel  and perpendicular to  
a c 

ihe basal planes, respeci;ively, and are express i bl e by the Debye f~lnct ions 

where e, and ec  are  the character is t lc  Le~i~peratures associated with the l a t t i c e  

vibrat ions, .  T i s  the absolutetemperature of measurement and R i s  the ideal gas 

constant. 

The hcst capacity a t  constant pressure,C can be written in terms of 
p ' . . 

the well-known relationship 

where av i s  the volumetric coeff ic ient  of thermal expansion, V i s  the molar 

volume, a n d  K i s  the volume t r i c  comprcssi b i 1 i t y .  Since the temperature 'variations 



of a,, and K are of the same order of niagni tude, Riley assunied'that the r a t i o  of 

u ' /K could be approximated by a constant, G, and t h e  two cpmponents of the v 

heat capacity then written as 

C = C + GaVT; C = C + GcVT 
Pa a PC "'c 

where the constants Ga and Gc are  defined by the relat ionship 

The crystal  l a t t i c e  coeff ic ients  of thermal expansion, aa and ctc parallel  

and perpendicular to  thz basal planes were shown t o  be expressible in convenient 
. . 

form as:  

. .. ': t 

6' 

. where 

2 Ya A ' 5  if- 

1 yc B = -  - s 
3 V 13 

4 ya 

1 yc 
M = 5  if- s33 

'11' '12' '13 and s33 are  crystal  e l a s t i c  moduli and A ,  B, C, L, M and # are 

treated as constants. 

Integrations of equations 6a and 6b yields the equations 



where a  and c  a r e  t h e  c r y s t a l  l a t t i c e  - a- and - c-  spacings a t  temperature,  T, 

a, and co  a r e  t h e  l a t t i c e  spacings a t  T  = O°K, 

U  = 3  RT ~ ( ~ a ) ,  - Uc = 3  RT ~ ( ' c ) ,  - and a. T  T  
8  F(=i) a r e  t h e  Debye f u n c t i o n s ,  which have been numer ica l  l y  eva l  ua ted  and 

( 3 )  t a b u l a t e d  by B e a t t i e .  

The Debye Temperatures f o r  Graph i te  

R i l e y  used t h e  Debye Temperatures d e r i v e d  by ~ a g n u s ' ~ )  f r om s p e c i f i c  

hea t  measurements made over  t h e  temperature range 44 t o  1  100°K. 

A cons ide rab le  amount o f  s p e c i f i c  hea t  da ta  has been accumulated s i n c e  

t h a t  t i m e  and v a r i o u s  analyses have been made t o  d e r i v e  Debye temperatures f r om 

t h e  data;  however, t h e  p r ima ry  emphasis has been on e x p l a i n i n g  t h e  c h a r a c t e r i s t i c  

i !  f e a t u r e s  of t h e  s p e c i f i c  heat' cu rve  a t  1  ow temperatures ( 5 3 6 ) .  Because o f  t h i s  

d i f f e r e n c e  i n  emphasis and t h e  l a c k  o f  agreement on Debye temperatures,  i t  was 

deemed p r e f e r a b l e  t o  d e r i v e  t h e  Debye temperatures u s i n g r  t h e  b e s t  ava i  l a d l e  

s p e c i f i c  hea t  da ta  over  t h e  temperature range o f  i n t e r e s t  i n  t h i s  s tudy .  

~ c ~ o n a  l c ~ ( ~ )  has r e c e n t l y  made p r e c i s i o n  measurements o f  hea t  con ten t  

and d e r i v e d  t h e  s p e c i f i c  hea ts  o f  g r a p h i t e  over  t h e  temperature range 300 t o  1800°K; 

these  da ta  match w e l l  w i t h  t h e  da ta  o f  D e ~ o r b o  and ~ y l , e r ( ~ )  taken  below 300°K. 

Moreover, excep t  f o r  d i f f e r e n c e s  u f  2-3% near  room temprlrst.~lre, these  two s e t s  

o f  da ta  a r e  i n  e x c e l l e n t  agreement w i t h  WBS  evaluation^(^'^^) o f  p rev ious  s p e c i f i c  

hea t  da ta  . 

The combined da ta  o f  DeSorbo and ~ y l e r ( ~ )  and ~ c ~ o n a l d ( ~ )  were reduced t o  
- .  

s p e c i f i c  hea t  a t  cons tan t  volume u s i n g  t h e  approx imat ion :  

C, = C, (1 - 6 C #  T ) ,  
P  

C p  = Cp - y T, and 

6 = Clv v , eva lua ted  a t  room temperatur'e. 
.- 



The c o e f f i c i e n t  o f  v o l u m e t r i c  thermal  expansion, = 22.9 x  ' 1 0 ' ~  was 

ob ta ined  f rqm ~ i l e y ' s ( '  ) t h e o r e t i c a l  a n a l y s i s ;  t h e  mo la r  volume, V ,  was taken  as 

3  5.31 cm /mole; t h e  va lue  used f o r  t h e  i so the rma l  c o m p r e s s i b i l i t y , ,  K  = 29.6 x 

2 (12)  cm /dyne i s  t h a t  recomput .~d by ~ s c h n e i d n e r  ( l  ) f r om t h e  measurements o f  Bridgman ; 

t h e  e l e c t r o n i c  h e a t ' c o n s t a n t ,  y = 3.3 x l o e 6  ca l /mole,  i s  f rom t h e  n~easurements 

4 (13) o f  Kessom and Van de r  Hoeven . 
Ana l ys i s  o f  t h e  data,  u s i n g  t h e  numer ica l  e v a l u a t i o n s  o f  t h e  Debye 

f u n c t i o n s ,  D t a b u l a t e d  by  eatt tie'^), r e s u l t e d  i n  a  b e s t  f i t  w i t h  Debye 

temperatures o f  ec = 800°K and ea = 2300°K. It should be no ted  t h a t  i n  o rde r  t o  

v e r i f y  t h e  s i g n i f i c a n c e  o f  these  Debye temperatures, t h e  au tho r  performed a  

lqas t -squares  r e g r e s s i o n  a n a l y s i s  f o r  each o f  t h e  o t h e r  e i g h t  permuta t ions  o f  

t h e  s e t  ec = 800 - + 10°K, ea = 2300 - + 1 0 " ~ .  The va r i ance  between c a l c u l a t e d  and 
... 
E measured s p e c i f i c  heats  was s i g n i f i c a n t l y  inc reased  i n  a l l  cases; thus, t h e  

> 

au tho r  b e l i e v e s  t h a t  one m i g h t  s e n s i b l y  a t t a c h  an u n c e r t a i n t y  o f  o n l y  - + 5°K t o  

these  Debye temperatures.  The s p e c i f i c  hea ts  c a l c u l a t e d  f o r  temperatures below 

about  400°K a r e  e s p e c i a l l y  dependent on t h e  Debye temperatures and i t  was im- 

~ o s s i b l e  t o  s imu l t aneous l y  o b t a i n  a  good f i t  t o  da ta  below 100°K and da ta  taken  

above about  200°K. . . 

I n  Table I, t h e  c a l c u l a t e d  s p e c i f i c  hea ts  a r e  compared w i t h  measured and 

eva lua ted  t a b u l a t i o n s ;  t h e  l a r g e s t  d i f f e r e n c e s  be ing  l e s s  than  4% a t  150°K. 

However, t h e  d i f f e r e n c e s  i nc rease  below 150°K; t h e  c a l c u l a t e d  s p e c i f i c  hea t  be ing  
\ 

abou t  10% below t i l e  measured va lues  a t  125°K and 25% low a t  100°K. These d i f -  

fe rences  e v i d e n t l y  c h r o n i c l e  t h e  beg inn ing  o f  t h e  t r a n s i t i o n  o f  t h e  s p e c i f i c  hea t  

3 2 f r om t h e  Debye T  dependence t o  t h e  w e l l  known T  dependence, which i s  observed' 

( 8 )  f r om approx imate ly  15" t o  50°K . 



TABLE I 

Specif ic  Heat of Graphite 
( i n  un i t s  of ca lo r ies /moF)  

Previous 
Calculated Specif ic  Heat Measured C Compl i a t i ons  

Temperature Cv Cv Cv P NBS#1 NBS#2 
O K .  a c. (a > ( b  > ( C  1 (d  > 

. .- , . 700 
'G' 

800 

a )  DeSorbo & Tyler,  Ref. - 8 

b )  McDonald, Ref. - 7 

c )  Brickwedde, e t  a l . ,  Ref. - 9 , 
' d )  Wagman, e t  a l e ,  Rcf. - 10 



L a t t i c e  Spacing and Thermal Expansion 

Because t h e  exper imenta l  da ta  were n o t  s u f f i c i e n t  t o  p rov ide  a r e l i a b l e  

p l o t  o f  ' t h e  a -d i  r e c t i o n  thermal  expansion c o e f f i c i e n t ,  aa, versus temperature,  

R i l e y  was unable t o  use equa t i on  6a. R i l e y ' s  r e s u l t s  were d e r i v e d  u s i n g  equa t i on  

8a, w i t h  t h e  f u r t h e r  assumption t h a t  t h e  cons tan t  C cou ld  be neg lec ted .  

Kel  l e e  and Richards 4, have r e p o r t e d  measurements o f  a-spac i  ng over  t he  

temperature range 290 t o  3300°1(. 'The au tho r  a ~ a l y z e d  t h e  combined da ta  o f  K e l l e t t  

and R ichards  and Nelson 8 Rileyi15) b; two methods: ( 1  ) t h e  da ta  were analyzed d i r e c t l y  

by use o f  equa t i on  8a, and ( 2 )  t h e  a-spac ing versus temperature da ta  were reduced . 

t o  mean cia va lues  by t h e  approx imat ion  

. .- where a1  and a2 a re  t h e  a-spac ings measured a t  temperatures TI and T2, and t h e  
K., . 

<. 

mean temperature,  T, eqdals  (T2 + TI ) / 2 .  

Due t o  t h e  u n c e r t a i n t i e s  assoc ia ted  w i t h  t h e  measured a-spacings, a d d i t i o n a l  

smoothing o f  t h e  mean aa va lues  was necessary t o  avo id  l a r g e  randoin v a r i a t i o n s  

and t o  a i d  i n  t h e  leas t -squares  a n a l y s i s ,  u s i n g  equa t i on  6a. 
0 

The ' l e a s t  squares a n a l y s i s  o f  t h e  a-spac ing a r ~ d  lilralr ua da ta ,  by us? n f  

equa t ions  8a and 6a, y i e l d e d  s l i g h t l y  d i f f e r e n t  va lues  f o r  t h e  c o e f f i c i e n t s  A, B  

and C; because o f  t.he u n c e r t a i n t i e s  assoc ia ted  w i t h  t h e  da ta ,  t h i s  smal l .  d i f f e r e n c e  

was n o t  unexpected. By v a r i a t i o n  of t h e  c o e f f i c i e n t s ,  w i t h i n  t he  bonds ' es tab l  i shed 

f rom t h e  two methods, t h e  b e s t  s imul taneous f i t  t o  b o t h  equa t ions  was found t o  

r e s u l t  f r om t h e  va lues :  



Figure 1  shows the  f i t  of equation 8a t o  the  measured a-spacing data  and Figure 2 
I 

compares the smoothed a, data  with the  r e s u l t s  ca lcula ted by use of equation Ga 

and the  coe f f i c i en t s  l i s t e d  above. Figure 2 a l so  includes d i r e c t  aa m2asurenents 

(16) recen t ly ' r epor ted  by Bailey and Yates . 
The theore t i ca l  a, curve departs  from the  data of Bailey and Yates in a  

r a t he r  marked way below about 250°K; a1 though t h i s  departure occurs a t  a  temperature 

about 100°K higher than t h a t  a t  which the  s p e c i f i c  heat t r a n s i t i o n  becomes not ice-  

ab l e ,  perhaps both phenomena stem from the  same cause. R i l ey ' s  r e s u l t s  p red ic t  

s l i g h t l y  more negative values f o r  aa a t  temperatures below about 250°C and 

s l i g h t l y  more pos i t ive  values above 250°K; however, the  di f ferences  a r e  so small 

a s  t o  make R i l ey ' s  curves p r ac t i c a l l y  indis t inguishable  from the present  r e s u l t s  , 

below about 1000°K. A t  higher temperatures, R i ley ' s  curves of a, and a-spacing 

- -  increase more rap id ly  than do the  present  r e s u l t s  and tend t o  p red ic t  values T, . 
C 

which l i e  above Kellettand Richards da ta .  . I t  must be admitted t h a t  the  d i f fe rences  

a r e  not l a rge ,  f o r  example, R i l ey ' s  r e s u l t s  y ie ld  an increase of 0.235% in  

a-spacing between 300" and 3000"K,'whfle. the  resu.lts. reported herein [and, of course 

a the  mea%~rremen.ts of Kellett & ~ i c h a r d s )  yiel'd an increase _of 0.215%. 
e 

Kel 1  e t t  and Richards reported 4, t h a t  they fo l  1  owed Ri 1  ey '  s  procedure 

t o  f i t  the  theore t i ca l  equations t o  t h e i r  da ta ;  however, i t  Cs obvious t h a t  

the coe f f i c i en t s  which they repor t  do not f i t .  the i r  data  and do not correspond 

t o  the curves shown in  t h e i r  a r t i c l e .  

A s imi la r  procedure was used t o  analyze the c-,spac.ing data of Nelson 8 

~ i l e ~ ( ' ~ ) ,   an^('^), Kel l e t t ,  e t .  a1 . ( I 8 ) ,  and Baskin and I4eyer(l9). The best  

simultaneous f i t  t o  the c-spacing and mean ac data was obtained with the co- 

. . L = -3.320 x mol es/cal  . 

- M = 6.51 2 x moles/cal . 



Figure 3 shows the f i t  of the c-spacings, calculated from equation 8b, to  

the measured values and Figure 4 compares the smoothed ac data with the r e su l t s  

calculated by use of equation 6b and the coeff ic ients  1 isted above. The recent 

d i r ec t  measurements of a,, reported by Bailey a n d  yates(16) ,  are  included on 

Figure 4. Two points are especially worth noting in regard to  Figure 4: ( 1 )  a l -  

. -though the "best. curve" intersects  the measurements of Bailey and Yates a t  about 

300°K, i t  f a l l s  below the i r  data a t  a l l  lower temperatures; and ( 2 )  whereas Lke. . 

data of Nel son' and Ri 1 ey show a pl atem in the curve of ac versus temperature, the 

present r e su l t s  indicate an actual reduction in a, over the temperature range 

500" to  800°K. The length change data reported by ~ n t w i s l e ( ~ ~ )  tend to  support 
.,- ', 
t- t h i s .  behavior; however, the variation of ac in th i s  temperat.vre range needs 

additional investigation. 

Riley's theoretical curve of a, versus temperature l i e s  s l igh t ly  lower 

than the present r e su l t s  u p  to  1200° and, of course,.follows the data of Nelson 

dnd Riley more close'ly than du L l ~ e s e  r e su l t s ;  a t  temperatures above 1200°K, 

however, i t  increases m x h  too rapidly,  reaching a  value o f  48 x deg-l a t  

Elastic Modul i  and Compressi bil i t i e s  

Riley has shown tha t  the l a t t i c e  e l a s t i c  moduli can be calculated by 

combining equations 7 with the equations fo r  the volumetric ( K )  and l inear  

. 
, compressibil i t ies (Ka and K c ) ,  parallel  and transverse to  L l ~ e  crystal  basal 

planes: . 
. . 

Ka = '11 + '12 "13 (11a> 

-. K c = 2sI3 -k S33 (11 b )  

K = 2Ka+ K c =  2(s11 + s12)  + 4s13 + ( 1 1 ~ )  



I t  i s  then eas i ly  shown tha t  t he . e l a s i t i c  moduli can be;obtained fro111 the 

relationships: 

where X = ML/4B 

In Table 2 ,  the calculated e l a s t i c  moduli and compres'si bil  i ties.. are conlpared 

with the "best values" obtained by Spence (21 ) from a review of previous data ,  

and by  eld din'^^) from a review of recent measurements on s t resannealed  'pyrolyt ic  

DISCUSSION AND CONCLUSIONS 

The very close agreement of the derived values for  ( s l l  + s I 2 ) ,  s13 and Ka, 

' with the values given by Spence i s  somewhat for tui tous,  since the derived moduli 

are  dependent on the value assumed for  K .  

This i s  more clear ly shown in Table 3, where the ra t ios  of the e l a s t i c  

moduli t o  the volumetric compressihil i t ies a re  l i s t e d .  The agreement with the 

previous evaluations i s  considered excellent and lends strong .support t o  the 

va l id i ty  of using Riley's theoretical equations to  analyze available l a t t i c e  

. expansion data and to  describe the crystal  expansion as a function of temperature, 

as i s  reported herein. 

Using a d i f fe rcnt  approach, ,Kel ly and ~ a l  ker(24) have recent1 y extended 

the theory of Komatsu and ' s o  as to  derive a model of the thermal 

expansion of a graphite c rys ta l ,  and have obtained an excellent f i t  of t he i r  

theoretical equations to  the a, data of Bailey and Yates. A t  higher temperatures, 
' 

however, t h e i r  theoretical equations predict  too small an increase of a, with 

temperature . 



TABLE 2  
I 

E l a s t i c  Modul i and Compressi b i  1 i t i e s  of a  G raph i t e  S i n g l e  C r y s t a l  
2  ( i n  u n i t s  o f  crn /dyne) 

Other 

-.- 
a )  Us ing K = 29.6 x cm2/dyne 

(23)  
, b )  Measured by Kabal k i n a  and Vereshchagin 

c )  Recomputed by Gsc l lne idner ( l l  ) f rom t h e  measurements o f  Bridgman. ( 12 )  

TABLE 3  

Ra t i os  o f  E l a s t i c  Modul i  t o  Vo lume t r i c  C o m p r e s s i b i l i t y  

. . 
Q u a n t i t y  

. . . . . . Th i s  . . . . . Paper Spence (22)  ) S e l d i n  

s11+s12 1 0.036 I 0.049 I o .o i 9  



I t  should be noted t h a t  a  b e s t - f i t  of equation 6b t o  only the data of 

Bailey ardYates would y ie ld  a curve of ac versus temperature qu i te  s imi la r  t o  the  

"probable bes t  curve" shown as  Figure 7 of Reference 24; i t  i s  apparent ,  however, 

t h a t  such l a rge  values of a, could not be reconciled with the  measured increase 

of c-spa'cing with temperature. 

Kelly and Walker ( 2 4 )  have a l s o  noted t h a t  t h e i r  r e s u l t s  would support a  

r a t i o  of s13/s33 = -0.066 a s  compared t o  the r a t i o  - 0.075 obtained froni the  

review by Spence ("I o r  -0.012 from the review by  eld din'^^); the  r e s u l t s  

reported herein y ie ld  a r a t i o  s , 3 / ~ 3 3  = B/N = -.0.0666. 

The equations describing the  l a t t i c e  expansions and thermal expansion 

coe f f i c i en t s ,  reported here in ,  a r e  believed t o  be reasonable representa t ions  

of the behavior of c r y s t a l l i t e s  in  nuclear grade graphi tes  over the  temperature 

Li, 
H range 300" t o  3000°K. 
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