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FORE W ORB 

Th i s repor? "Pressure Drop and ~ d i  d F r a c t i o n  Exper i men3s i n S i mu i ated 

Pafhf inder B o i l e r  Fuel Elementss' i s  one o f  a se r ies  o f  reporPs on research 

and, developmeo-rL i n  connecl-ion w i t h  t h e  design of Path f inder  Atomic Power 

P lan t .  

The Pathf inder Pian? w i l i  be located a t  a s i t e  near Sioux F a l l s ,  South 

Dakota, and i s  schedal-ed f o r  opsratic$n i n  1963. Owners and operators o f  
. .. 

t h e  p l a n t  w i l i  be t h e  Norl-hern SPa-tes Power Company of,Minneapoli-s, Minnesota. 
- 

A l  l is-Chalmers i s  performing t h e  research, development, and design as we1 1 

as being .responsi b l e  f o r  p l a n t  cons t ruc t  ion. 

I 

The U. S .  Atomic Energy Commission, through Cont rac t  No. A f ( l l - I ) -589 w i t h  

Northern Sta tes  Power Company, and Centra l  U t i l i t i e s  Atomic Power Associates 

(CUAPA) a r e  sponsors o f  t h e  research and development program. 
1 

- 
The p l a n t ' s  r e a c t o r  w i l l  be o f  t h e  Con t ro l l ed  R i c i r c u l a t i o n  B o i l i n g  Reactor 

t ype  w7i-h Nuclear Superheater. 
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I L.1 ST OF SYMBOLS' 

I ( I n. Cons i s t e n t  Wn i t s )  

De - equ iva len t  diameter 

I e  - Maper Ian base 

I f - F r i c t i o n  f a c t o r  

I g6 - G r a v i t a t i o n a l  constant  

G - : mass v e ~  oc'i t y  

h - Heat:&-ansf e r  coef f i c i en? 

k - Form pr,essure loss  c o e f f i c i e n t  
1 

i 

L - s e c t  id6 ~ e n ' ~ t h  . 
5- 

N - Rad ia t i on  i n t e n s i t y  (per u n i t  area) a t  de tec tor  

N* - - - Inc ident  r a d i a t i o n  i n t e n s i t y  (per u n i t  area) 

P - S t a t i c  pressure ( a  l so p i t c h  dn square l a t t i c e )  
. \ 

AP - SPat i c  pressure d i  f fere'nce 

1 Rg - V o i d f r a c t i o n  

T - >Temperature 
. 

v - S p e c i f i c  v9lurne 
I 

X - Q u a l i t y  (weight  f r a c t i o n  gas f l ow ing )  o r  r a d i a t i o n  pa th  length 

llZ - Change i n  B ~ e v a t i b n  

~r eek 



LEST OF SYMBOLS. (Cont i nusd)' 

I 

u - Area r a t i o  (always less than un i ty ;  ~e? '~acJe  9) 

Z - C o n s t r i c t i o n  area r a t i o  (always less ,ihan un i t y ,  see page 9) 
I 

d - Heat f lux 

'PLo - ho-phase f r i c t i d n a l  m u l t i p l  i e r  

Subscr ipts 

c - Dsnotps c o n s t r i c t i o n  parameter 

i s o  - Isothermal cond t t i on  ( a l l .  l i q u i d )  
I 1  

f ' - Saturated l i q u i d  f o r  p roper t ies ,  f r i c t i o n  f o r  pressure drop 

J&L - Jens & L o t t e s  

'L - L iqu id ,  

rec  - Recoverable - 4 

unrec - Unrecoverable 

I s a t  - Saturated 



A comprehensive heat t r a n s f e r  research and development program has been 

undertaken i n  support o f  t h e  Path f inder  b o i l i n g  water, i n t e g r a l  superheating 

reac to r .  To a considerable ex ten t  t h i s  e f f o r t  has been d i rec ted  toward 

understanding t h e  phenomenon of b o i l i n g  f l ow  i n  a p a r a l l e l  r o d  ar ray .  

Despi te t h e  r a t h e r  genera l app l  i c a t  ion of t h e  para l l e l rod  t ype  f u e l  element 
, . 

i n  nuclear reactors,  t h e  development o f  heat t r a n s f e r  and f l u i d  f l ow  t e ~ h n ~ o l o g y  

f o r  t h i s  geometry has n o t  received corresponding a t t e n t i o n .  Rather, t h e  
i 

t r e n d  has been t o  t r e a t  t h e  p a r a l l e l  rodlcase as simply as extension o f  t h e  

more thoroughly s tud ied geometries o f  round tube, p a r a l l e l  p l a t e  (and/or 

rectangular-channel) ,  and annulus, genera l ly  by means o f  t h e  equ iva lent  

diameter concept. I n  many cases experimental programs have been r e s t r i c t e d  

t o  those which can o n l y  con f i rm  t h i s  "extension" approach. However, t h e  

r e s u l t s  from these programs have genera l ly  been a f f i r m a t i v e .  

I n  t h e  present  program, a t t e n t i o n  was d i rec ted  t o  those f-eatures o f  t h e  

para1 l e l  r o d  f l ow  which e i t h e r  cannot be included i n  ' lother geometry" 

cons idera t ions  o r  t o  which extension o f  r e s u l t s  from other  geometries 

might be quest ionable. The most important o f  these, i n  t h e  case o f  t h e  

Path f inder  f u e l  element, i s  t h e  requir-ement f o r  spacing t h e  rods  (mechanical ly 

f i x i n g  t o  prevent bowing and/or v i b r a t i o n )  which was met by t h e  a p p l i c a t i o n  

o f  i n t e r m i t t e n t  g r i d  networks w i t h i n  t h e  rod  array.  

2.0 OBJECTIVE Q 

\ 

The experiments described I n  t h i s  r e p o r t  were performed t o  accomplish t h e  

fo l lowing:  

-I- 



I. Study t h e  e f f e c t s  of  tube-sheet t ype  spacers on t h e  a x i a l  pressure 

p r o f i l e  i n  a s imulated f u e l  element. 

2. Measure t h e  e f f e c t  o f  b o i l i n g  on t h e  f r i c t i o n a l  and spacer t y p e  

pressure losses i n  a 6 f t  long t e s t  sec t ion .  

3.  Measure t h e  v o i d  f r a c t i o n  i n  a t e s t  s e c t i 0 n . b ~  a - f i n e  gamma r a y  

t r a v e r s i n g  technique. 

4 .  Determine i f experimental data taken from a 4 x 4 a r ray  i s  a p p l i -  

cab le  t o  a l a rge r  a r ray .  

3.0 CONCLUSIONS 

I .  Wi th  ,. respect  t o  t h e  development o f  t h e  f low f i e l d  downstream-from 

a spacer, t h e  f low q u i c k l y  becomes es tab l ished except near t h e  

bundle entrance. It i s  des i rab le  t o  measure t h e  tinestab I ished, 

single-phase f r i c t i o n a l  losses i n  t h i s  region,  bu t  convent ional 

two-phase m u l t i p l i e r s  can be app l ied .  ( I n  P a t h f i n d e ~  b o i l i n g  

.never  occurs i n  t h i s  reg ion . )  

2. Wi th  respect  +o.'twephse pressure losses i n bo i  l i ng f low over a 

r o d  a r ray  w i t h  i n t e r m i t t e n t  spacers, e x i s t i n g  r e l a t i o n s  f o r  

s i n g l e  phase f r i c t i o n  (3) ,  f o r  two-phase f r i c t i o n a l  m u l t i p l i e r s  

(8 and 9 ) ,  f o r  two-phase form loss  m u l t i p l i e r s  ( lo ) ,  and f o r  vo ids  

i n  c a l c u l a t i n g  pressure drop components a re  app l i cab le  (except 

as noted above i n  I ) .  

3. With  respect  t o  t h e  v o i d  f r a c t i o n s  i n  b o i l i n g  f l ow  over a r o d  

array,  t h e  loca l  r a d i a l  v o i d  d i s t r i b u t i o n  i s  non-uniform w i t h  a 

un i fo rm r a d i a l  power d i s t r i b u t i o n  and t h e  ove r -a l l  i n teg ra ted  v o i d  

f r a c t i o n s  tend  t o  support  t h e  homogeneous.model. 

-2- 



4. There was nosapprec iab le  e f f e c t  o f  a r ray  s i z e  on single-phase 

and two-phase f r i c t i o n  and form t ype  pressure losses and ove r -a l l  

in tegra ted steam-water vo id  f r a c t i o n s  i n  going from a  4 x  4 ar ray  

t o  a  9 x  9 ar ray  o f  rods w i t h  t h e  same equ iva lent  diameter. 

4.0 GENERAL REVIEW 

4. I Pressure- ~ r o p s  

Single-phase f r i c f i o n a l  losses f o r  f low i n  a  p a r a l l e l  r o d  a r ray  

have been s tud ied exper imental ly  ( I )  and a n a l y t i c a l l y  (21, The 

r e s u l t s  o f  these e f f o r t s  i nd i ca te  t h a t  isothermal f r i c t i o n  f a c t o r s  

( t u r b u l e n t )  f o r  r o d  bundles w i l l  c l o s e l y  f o l l o w  t h e  Moody (3)  

round tube r e l a t i o n s h i p  us ing  t h e  equ iva lent  diameter concept .-..... 

( on l y  i f  t h e  p i t c h  t o  r o d  diameter r a t i o  i s  g reater  -khan 1.2 

f o r  a  square p i t c h  ar ray  according t o  (2). E x i t ,  entrance, and 

j o i n t  losses- for  var ious types o f  end f i t t i n g s  and spacing dsvices 

were repor ted  by Phe B e t t i s  Atomic Power Laboratory ( I  and 4) 

f o r  a  si,ngle-phase f l ow ,  

E a r l y  s tud ies  of two-phase pressure losses were used b y - M a r t i n e l l i  

and Nelson (5 )  t o  formulate an empi r ica l  c o r r e l a t i o n  f o r  two- 

phase steam water f lows i n  round tub& a t  pressures up t o  t h e  

c r i t i c a l  value. Recent experiments a t  t h e  U n i v e r s i t y  o f  Minnesota 

(6) i n  ho r i zon ta l  round tubes a t  pres.sures.from 25 t o  1415-psia 

have ind ica ted a  Reynolds number e f f e c t  d i f f e r e n t  f r o m t h a t  i n  



t h e  M a r t i n e l l i  c o r r e l a t i o n .  A new c o r r e l a t i o n  more accura te ly  

descr ib ing  t h e  Minnesota data has been presented (6). 

Data for b o i l i n g  f lows i n  v e r t i c a l  rec tangu lar  ducts a t  2000 p s i  

have been repor ted  i n  (7) and t h i s  data a l s o  ind ica tes-an e f f e c t  
I 

o f  f low r a t e  over and abov&-thatpredl'c-bd by Mar t i ne l  I i .  A 

f am i l y  of curves was presented which i n  a sense cou ld  be thought 

o f  as adding a mass v e l o c i t y  e f f e c t  t o  t h e  M a r t l n e l l i  c o r r e l a t i o n .  

I 
Th is  approach was extended (8 and 9) and compared w i t h  data f o r  

b o i l i n g  f l ow  i n  v e r t i c a l  rectangu1,ar channels a t  pressures from 

150 t o  600 p s i g  w i t h  reasonable agreement being observed ( p a r t i -  

<u lar ly  a t  600 psig) .  

Two-phase form t ype  losses have been o f  i n t e r e s t  t o  several i n -  

I ves t iga to rs  as entrance, e x i t  and o r i f i c e  f low phenomena. An 
. . .  

extens i v e  ser i es  of- a i r-water exper iments has been performed a t  

Argonne Nat ional  Laboratory, and a survey o f  a v a i l a b l &  rn6lhods 

f o r  t r e a t i n g  two-pha,se . . systems was presented by L o t t d s  (10). 

'\ 
Orre o f  t h e  e a r l i e s t  r e p o r t s  o f  b o i l i n g  pressuie drop i n  a p a r a l l e l  

r o d  a r ray  was presented by B e t t i s  Atomic Power Laboratory ( 1 1 ) .  

These-data which were f o r  2000 ps ia  were genera l ly  p r e d i c t a b l e  

by t h e  f a m i l y  o f  curves (7), and it was t e n t a t i v e l y  concluded 

t h a t  t h e  equ i va l e n t  d'i ameter concept wou 1 d permi t  boi l i ng pressure 

drop i n  r o d  ar rays  and i n  rec tangu lar  ducts t o  be t r e a t e d  by t h e  

same method a t  l eas t  f o r  ne t  steam b o i l i n g  (bu lk  b o i l i n g ) .  



Wore recent l y, add It l ona l da+@ have been reported fo r  ~WQ-pheW . 
. 

(unheated) p r s u r  losses l n ~ p a r a l l ~ l r o d a r r a y  including . ' 

spacer and e x l t  losses a t  1OOO.psia (12). The f r l c t k n  r e s u l t s  

are represented by simple empir ical  equations but  are repor ted .  .. 

as belng cons is tent  w i t h  t he  Mart i ne l l i -Ne l son corre  l a t  ion ' ( 5 )  

a t '  h lgh mass f l'ow ra tes.  The form type losses are compared w i t h  , . . 

. . . . 

. o pred lc t ion  by Tlppefs (12) using t h e v o l d  data o f  Larson(13),  . ' 

. .. 

and t h e  agreement 1s~not.good; p a r t l c u l a r l y a t  . . t h e  lower. mass 

. . 

The e f f i c t  o f  subcooled nuc leb te  boi I lng ( loca l  boiling) has been' . , . . 

wtens1ve.l stud led a t  2000 pela I n  rectangular channels and t o  

. . 
a I i s se r  ex ten t  a t  l w e r  p ressun  s  i n  t h e  same geometry. P red l c t  lve 

. . 

&hods were suggested ( 14). Later stud i.es i n  r ound  tubes a t  

from 50 t o  4QO ps ia  were reported ( 1  51, and an emplr l ca l  co r re l e t l on  

bassd upon boi i lng length was proposed. However, it woS con- . . .. 
. . . . 

ceded t h a t  roglons close t o  t h e  entrance bust  k d l  s t1  ngu.1 shed 
, 

. . 
. . frm t yg ians  , I n  f u l l y  establ lshed f low.  

' 

Locb I  boi I tng I n  round t u b e s  frgm I IOOto  1300' ~ s i a  h a s e l s o  . , .  

. . berm extens lye  l y stud l  ed a t  Mar t i  n  ( 161, and a des i gn equat i on . .. 
. .  . . . 

depend l ng upon t h e  heat t rans fe r  coef f l c l e n t  has b isn  recommended. 

, . ~ o l  nc l dent * i t h  t h e  stud l es o f  two-phase pressure losses, I nvest i  - 
gat 1 ons of  voi  d f  r a c t  ions ( v o l  umetr I c t r a c t  ion of duct occup'i ed by 

. . 

vapor) hove been performed. ObJectives o f  these studies have 



been t o  make a v a i l a b l e  t h e  v o i d  data f o r  use i n  i n t e r p r e t i n g  and 

ana lyz ing  two-phase pressure drop data, f o r  c a l c u l a t i n g  t h e  

d r i v i n g  head i n  na tu ra l  c i r c u l a t i n g  systems, as we l l  as f o r  use 

i n  computing moderator d e n s i t i e s  i n  nuclear reac to rs .  

I n  a d d i t i o n  t o  t h e  two-phase pressure losses, M a r t i  ne I  l i and 

Nelson formulated an empi r ica l  c o r r e l a t i o n  o f  v o i d  f r a c t i o n  as 

a  f u n c t i o n  o f  q u a l i t y  and pressure (5 ) .  Th i s  c o r r e l a t i o n  i n d i -  

cated t h a t  t h e  v o i d  f r a c t i o n  was no? t h e  same as t h a t  computed 

from t h e  w:ight f r a c t i o n  and t h e  assumption of  a  homogeneous 

m ix tu re  o f  l i q u i d  and vapor (homogeneous model, s l i p  r a t i o  o f  

u n i t y ) .  Subsequent experiments and analyses v e r i f i e d  t h e  f a i l u r e  

of  t h e  homogeneous model i n  many cases, which i n  t u r n  prompted 

more experiments and analyses. I, 

A l a t e r  rev iew o f  t h e  M a r t i n e l l i  c o r r e l a t i o n  i nd i ca ted  a s l i g h t  

inconsis tency w i t h  respect  t o  t h e  s l i p  r a t - i o  i n t e r p r e t a t i o n  o f  

v o i d  fract,ion, and t h e  c o r r q l a t i o n  was ad jus ted  t o  e l i m i n a t e  

t h i s  d i f f i c u l t y  (17).  

A survey o f  t h e  a v a i l a b l e  techniques f o r  measuri-ng v o i d  f r a c t i o n s  

has been publ ished ( l 8 ) ,  and a  d e t a i l e d  d iscussion o f  t h e  ex te rna l  

source, gamma r a y  a t t e n u a t i o n  method .was presented (19) and 

repo r ted  i n  ACNP-63004.  The r e s u l t s  from an e x t e n s i v e  exper i -  

mental eva lua t i on  o f  t h i s  technique were ,presented (20) f o r  

rec tangu lar  channel geometry. 



Experiments a t  t h e  U n i v e r s i t y  o f  Minnesota have y ie lded  v o i d  

f o r  unheated steam water f l ows  i n  ho r i zon ta l  tubes a t  400 t o  

1000 p s i  (13). Th is  valid data genera l l y  f a l l s  below t h e  

M a r t i n e l l  i curves a t  steam q u a l i t i e s  less  than 10 per cent  bu t  

appear h igher than t h e  curves a t  higher q u a l i t i e s .  

The r e s u l t s  from an extensive se r ies  o f  experiments performed a t  

Argonne Nat ional  Laboratory w i t h  b o i l i n g  water i n  v e r t i c a l  rec -  

tangu lar  channels have been summarized (9). These experiments 

i n d i c a t e  t h a t  t h e  vo id  f r a c t i o n  i s  dependent upon s u p e r f i c i a l  

l i q u i d  ve loc i t y ,  q u a l i t y ,  and pressure w i t h  appreciable i n t e r a c t i o n  

between e f f e c t s .  

5.0 MEORETlCAL CONSIDERATIONS 

. . 
. . .  . . .  . .  , , . .  

5.1 Pressure Drops 

The phenomenon of a s ing  l e-phase f low pressure drop i n  a para I' l e l  

r o d  ar ray  can be examined by conventional concepts. The f r i c t i o n a l  

losses kan be expressed by t h e  form: 
I 

9 

where De i s  t h e  conventional equ iva lent  diameter, 

Single-phase form losses a re  o f t e n  expressed i n  terms o f  t h e  

v e l o c i t y  head i n  t h e  constriction. 
A 



' (Where Gc i s  t h e  mass v e l o c i t y  based upon t h e  area o f  t h e  con- 

s t r i c t i o n ; )  

I f  t h e  c o n s t r i c t i o n  i s  accompanied by a net  change i n  area from 

t h e  upstream r e g i o n ' t o  t h e  downstream region, as f o r  an entrance 

and/or e x i t  tube sheet, t h e  recoverable p a r t  o f  t h e  form loss 
I' 

may be separated out;  f o r  example, an expansion would be g iven 

by : 

where G i s  based on t h e  area upstream from t h e  c o n s t r i c t i o n  and 

a i s  t h e  r a t i o  o f  upstream t o  downstream areas. 

Thus, AP = APrec + APunrec 

It i s  convenient t o  use t h e  same mass v e l o c i t y  i n  both t h e  r e -  

coverable and unrecoverable terms; d e f i n i n g  C as t h e  r a t i o  o f  

t h e  con ' s t r i c t i on  area t o  t h e  upstream area, 

'AP = 29, GL Pf ( 02- 1 +.:.T "i so) 

For b o i l i n g  f low ca lcu la t i ons ,  t h e  vapor weight f r a c t i o n  ( q u a l i t y )  

was ca l cu la ted  from t h e  f i r s t  law o f  thermodynamics assuming 

equ i l i b r i um.  



Thg approach t o  two-phase f r i c t i o n a l  pressure losses has genera l ly  

b,een t o  apply a  m u l t i p l y i n g  f a c t o r  t o  t h e  s i n g l e  phase pressure 

drop. M a r t i n e l l i  (5)  proposed t h a t  two,-phase f r i . c t i o n  losses 

could be ca l cu la ted  from single-phase losses by us ing  a  m u l t i p l i e r ,  

2 , i n  t h e  expression: 
. 

(The subsc r ip t  LO on t h e  m u l t i p l i e r  r e f e r s  t o  t h e  f a c t  t h a t  t h e  

dynamic head and f r i c t i o n  f a c t o r  a re  ca l cu la ted  as i f  a l l  t h e  f l u i d  

f l ow ing  i s  f l ow ing  as saturated l i q u i d . )  

Two-phase form losses a re  ca l cu la ted  i n  a  v a r i e t y  o f  ways. Most 

commonly, use i s  made o f  a  homogeneous f l u i d  dens i ty  (bP), to .  

represent  t h e  k i n e t i c  energy o f  t h e  f l u i d .  Th is  technique i s  

r e a l  l y  equ iva lent  t o - u s i n g  a  q u a l i t y  and pressure dependent m u l t i -  

p l i e r  s ince vTP i s  o n l y  a  func t i on  o f  these va r iab les .  The f i r s t  

two methods considered i n  t h i s  paper a re  r a m i f i c a t i o n s  o f  t h i s  

technique and can be expressed f o r  a  form loss  w i t h  expansion by 

t h e  f o l l o w i n g  r e l a t i o n s :  

and 



The f i r s t  r e l a t i o n  imp l ies  t h a t  both t h e  recoverable and unrecover- 

able-two-phase -- losses stem from phenomena d u p l i c a t i n g  single-phase 

e f f e c t s  bu t  w i t h  a r e d ~ ~ & - -  dens-ity. The. second equation ascr i bes 

a f r i c t i o n a l  mechanism t o  t h e  unrecoverable loss, bu t  handles t h e  

recoverable p a r t  t h e  same as i n  Equat ion 7. 

Another approach i s  t o  consider t h a t  f o r  small values o f  q u a l i t y  

a . l l  t h a  losses a re  associated w i t h ' t h e  l i q u i d  phase. To u t i l i z e  

t h i s  assumption it i s  necessary t o  know t h e  vdlume f r a c t i o n  " 

occupied by t h e  l i q u i d  phase. Using a method s i m i l a r  t o  t h a t  o f  

L o t t e s  ( l o ) ,  t h e  f o l l o w i n g  expression (again f o r  a ne t  expansion) 

can be w r i t t e n :  

G2 
'AP = 

29, Pf ( 1  - Rg) 

5.2 Void F r a c t i o n  

The t h e o r e t i c a l  bas is  f o r  t h e  gamma a t tenua t ion  v o i d  measuring 

technique has been t r e a t e d  i n  considerable d e t a i l  by P e t r i c k  (21) 

and by Hooker and Popper (19); and on ly  a b r i e f  review w i l l  be 

presented. The p r i n c i p a l  assumptions used a re  as fo l lows:  
' >  

I .  The gamma beam cons is t s  o f  p a r a l l e l  rays  and i s  -very 

t h i n .  

2.  The beam i s ' r n ~ n o e n e r ~ e t i c  ( t h e  soy-ce i n ' t h i s  case i s  

Ces i um '1 37) . 
3. The a t tenua t ion  i s  exponential  w i t h  d is tance and mate r ia l  

dens i t p ,  



The a t tenua t ion  o f  t h e  gamma beam i s  given by: 

where N/@ i s  t h e  f r a c t i o n  of i n c i d e n t  r a d i a t i o n  pene t ra t i ng  a  

d is tance X i n  t h e  a t tenua t ing  ma te r ia l .  The l i n e a r  a t tenua t ion  

c o e f f i c i e n t ,  8, i s  assumed t o  be dependent on ly  upon t h e  nature  

o f  t h e  mater ia l ,  density,  and. r a d i a t i o n  energy. 

I f  t h e  r a d i a t i o n  i n t e n s i t y  (per u n i t  area) i s  measured from a  

duct  con ta in ing  a  g iven permanent s t r u c t u r e  and completely f i l  led 

w i t h  vapor, Equation 10 becomes: 

A s i m i l a r  measurement obta ined a t  t h e  same p o s i t i o n  w i t h  t h e  duct 

f i l I ed w i t h f  I i qu i d  wou I d  be represented by: 

i 
I 

F i n a l l y ,  a measurement obta ined w i t h  t h e  duct f i l  led p a r t l y  w i t h  

l i q u i d  and p a r t l y  w i t h  vapor would be represented by: 

Thus, t h e  f r a c t i o n  o f  f l u i d  present  i n  t h e  t h i n  beam as l i q u i d  

becomes : 



and t h e  f r a c t i o n  o f  f l u i d  present  as  vapor becomes: 

i f  t h e  a t tenua t ion  c o e f f i c i e n t s  a r e  assumed To be t h e  same i n  t h e  

completely f i l l e d  and p a r t i a l l y  f i l l e d  cond i t i ons  (and t h e  decay 

of t h e  source i s  neglected). Note t h a t  w i t h  t h i s  assumption (and 

those preceding), it i s  poss ib le  t o  measure a  local  l i q u i d  f r a c t i o n  

(and/or v o i d  f r a c t i o n  s ince Xv/X = I  - x ~ / x )  by per forming t h r e e  

r a d i a t i s n  measurements a t  t h e  l oca t ion  o f  i n t e ~ e s t  w i thout  ever 

being committed t o  a  c e r t a i n  value o r  s e t  of values f o r  t h e  

a t tenua t ion  c o e f f i c i e n t s .  

Although t h e  development o f  t h e  theory  has u t i . l i z e d  a  r a d i a t i o n  

i n f  e n s i t y  measurement w iTh t h e  duct" f 6 l I  o f  vapor, it i s o f t e n  

permiss ib le  t o  s u b s t i t u t e  a  measurement w i t h  t h e  duct f u l l  of  a i r ,  

Th is  - i s  t h e  case i n  t h e  present experiments wherein t h e  t y p i c a l  

a t tenua t ion  c o e f f i c i e n t s  f o r  t h e  sa tura ted water were found t o  be 

about 0.166 in - '  . Assumi-ng t h a t  t h e  c o e f f i c i e n t  f o r  t h e  same 

mater ia l  i s  p ropor t i ona l  t o  Phe density,  corresponding c o e f f i c i e n t s  

f o r  sa tura ted steam a t  600 p s i  wou l d  be about 0.00432 i n-I o r  a  

f a c t o r  o f  38.3 lower. Thus, subst i - tu t ing an a i r  measurement f o r  

a  vapor measurement causes t h e  experimental v o i d  determinat ions 

t g  be low by about 2.6 per cent  ( r e l a t i v e ) ,  Th is  i s  considered 

t o  be we l l  w i t h i n  t h e  experimental accuracy of t h e  measuring 

system. 



With  respect  t o  Phe u l t i m a t e  a p p l i c a t i o n  o f  t h e  v o i d  data, it 

i s  des i rab le  t o  determine ?he mean v o i d  f r a c t i o n  i n  t h e  duct  

c ross  sec t ion .  Th is  can be accomplished by performing a  s e r i e s  

of loca l  measurements aP d i f f e r e n ?  p o s i t i o n s  and then i n t e g r a t i n g  

t h e  r e s u l t s .  

Perhaps t h e  mosP important assumption i n  t h e  foregoing d iscussion 

i s  t h a t  o f  a  very narrow beam. Th is  assumpTion was-,--i-rivestigated i n  

(22) us ing  a  d i g i t a l  computer program. Var ia t i ons  i n  t h e  thicknesses 

o f  a t tenua t ing  ma te r ia l s  across t h e  beam w id th  were found t o  produce 

s i g n i f i c a n t  e r r o r s  f o r  an aluminum-lucite model w i t h  a  PhuIium 

source. However, t h e  use o f  Cesium was found t o  v i r t u a l l y  e l i m i n a t e  

such e r r o r s  i n  a-sj-eel,  waPer sysPern due t o  Phe reduced a t tenua t ion  

i n  t h e  wafer, Based upon t h e  r e s u l t s  i n  (221, t h e  ove r -a l l  e r r o r  

o f  t h e  present v o i d  measuring system i s  about f 10 per cent  r e l a t i v e  

vo id  f r a c t i o n  f o r  voids o f  about 50 per cent.  

Dur ing t h e  present  experiments, a  d i sc r im ina to r  was u t i l i z e d ' t o  

e l i m i n a t e  t h e  nnoiseff .  Simple experiments us ing  Luc i te .b locks  

were used t o  esf-abl ish t he  d i sc r im ina to r  s e t t i n g s  which, maximized 

t h e  s ignal- to-noise r a t l o ,  and t h e  exponential  na ture  o f  t h e  a t -  

t enua t ion  was c l o s e l y  v e r i f i e d .  



6.0 AXIAL PRESSURE PROFILE DOWNSTREAM FROM A SPACER. SINGLE-PHASE FLOW 
EXPER l MENT 

6.1 Equ i pment 
-... 

A prototype o f  t h e  Path f inder  b o i l e r  f ue l  element was used t o  

examine The axi .a l  pressure p r o f i l e  occu r r i ng  i n  p a r a l l e l  r o d  f low 

w i t h  spacers. 

The element was 6 f t  long and consisted o f  a 9 x 9 ar ray  o f  rods 

on a 0.535 inch square p i t c h .  The rods comprising t h e  upper h a l f  

(3  ft) of t h e  element were 0.367 in .  diameter ( p i t c h  t o  diameter 

r a t i o  o f  1.46) and t h e  rods I n  t h e  lower h a l f  were 0.409 in .  d ia-  

meter ( p i t c h  t o  diameter r a t i o  o f  1.31). The redac t ion  i n  rod  

s i z e  i n  t h e  Tap h a l f  cornpensafes f o r  moderator vo id ing  dur ing  

power operat ion.  The rods were f i x e d  a t  both ends i n  small g r i d  

plates, and i n t e r m i t t e n t  lltube sheet" t ype  spacers were used a f  

18 i n .  i n t e r v a l s .  I n  order  t o  f a c i l i t a t e  f low v i s u a l i z a t i o n  studies, 

t h e  element containment box was f a b r i c a t e d  from Luc i te .  

The element was i n s t a l l e d  i n  a low pressure f l ow  loop and heav i l y  

instrumented w i t h  pressure taps  connected t o  a bank o f  manometers. 

A schematic o f  t h e  low pressure loop i s  shown i n  Fig.  I .  Pressure 

taps  were located every two inches downstream from t h e  f i r s t  t h r e e  

spacers t o  g i v e  an accurate desc r ip t i on  o f  t h e  a x i a l  pressure 

p r o f i l e .  F ig .  2 shows t h e  t e s t  i n s t a l l a t i o n .  

The experiments were run  a t  approximatoiy atmospheric pressure 

using room temperafure water. Flow r a t e s  were va r ied  from 134,000 
I 

-14- 
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Figure  I - Low Pressure Loop Schematic Diagram (43-024-826) 





t o  342,000 Ib/hr,  which corresponds t o  mass v e l o c i t i e s  (G) sf 

I -- ; 

1.3 x  1 o6 t o  3.4 x  lo6 I  b/hr- f t2 .  F l,x rates were determined 

by using a cat ibraPed o r i f  i c e  meter I n  Pke ' rec i r ca la+ ion  pi 'ping. 

:, Because t h e  fue l  'elemen? containmew8 box was mado o f  LtrciSe, t h e r e  

was some concern as -i-o t h e  amount 06 l a te ra l .  expansion which would 

occur a t  t h e  h igher f l ow  raPes and creaPe a pas!+-ive pressure 

i ns ide  t h e  box. However, by us ing  s tee l  supporfs i n  The Lucife 

1 wa 1 1 every s i x  i nches a l ocg t h e  a x i a l  l eng? h af ?he PssP secf ion, 
-- 

t h e  measured expansion was he ld  t o  lass fhan 0.010 i n .  

6.2 Ax ia l  Pressure P r o f i l e s  

Sample p l o t s  o f :p ress t l re  drop vs. lscigib a re  shown i n  F i g .  3. 

I t  can be seen ' tha t  AP/AL i s  no+ l i near ,  as i B  should be for 

estab l ished f r i c t i o n ,  i n  +he  f i r s t  few inches o f  quadran-? i .  I n  

t h i s  quadrant, ?her? i s  l i t t i e  ar no drop i r ~  sVt?ai-ic pressure f o r  

A about 10 equ iva lent  diarnefers. Then t he  pressure i s  sasn to f a i l  

- l i n e a r l y  bu t  a t  a  r a t e  much less than expecb-ed f o r  f r i c t i o n .  Th is  
-.. 

phenomenon i s  a t t r i b u f e d  t o  +he hyd rau l i c  e f f e c t s  o f  t h e  f u e l  support 

g r i d  ( i n l e t  g r i d )  being d i ss ipa ted  over %hs complete length o f  ?he 

quadrant. I t  i s  seen t h a t  t h e  pressure loss i n  P h i s  grTid i s  near ly  

an order  o f  magnitude la rger  than +he &her 4uba she@+ losses; 

f o l  lowing these downstream constr ic f - ions,  conventiomal f r i c t i o n  

losses a r e  q u i c k l y  establ ished,  

The data f o r  t h e  f i r s +  quadrant show %ha-? appl icaPion o f  f-he cemmon 

method of determining form losses fsr end ftk-Pings by sub t rac f i ng  



DISTANCE FROM BASE TAP - I NCH E'S 

Figure 3 - ~ o i  1 er Prototype E 1 ernent Sarnp l e Over-a l 1 P G s s u r e  Drop 



ca l cu l ated f r i c t i o n  from measurements o f  over-a l l bressure .drop - 
would y i e l d  u n r e a l i s t i c  r e s u l t s .  

.. 

6.3 F r i c t i o n  Factors  

~ r i c t i o n  f a c t o r s  over t h e  81 r o d  a r ray  were .ca lcu la ted f o r  t h e  
. . 

qua'dranlts which had taps  +hat were spaced every '2 i n .  T h i s  was 
. . 

- .  
,accomp l i shed by p l o t t  i ng t h e  f r i c t i o n a l  pressure drop versus 

l e n g t h  and f i n d i n g  t h e  s lope A P ~ / A L .  Then t h e  f r i c t i o n  fac to r '  

( f )  was ca l cu la ted  from t h e  equation: 

The data from quadrant 4 were no t  reduced t o  f r i c t i o n  f a c t o r s  

because t h a t  quadrant was n o t  heav i l y  instrumented. 

. . . I n  ca l ' cu la t i ng  f, &/AL was taken as t h e  sl'ope which best  f i t  t h e  

I downstream p o i n t s  i n  t h e  quadrant. Equ iva lent  f r i c t i o n  f a c t o r s  

were s iml  l a r l y  ca l cu la ted  f o r  t h e  l inear p o r t i o n  o f  t h e  f i r s t '  

.- 
quadrant. The f r ' i c t i o n  f a c t o r s  a re  shown g r a p h i c a l l y  i n , F i g .  4 ' 

i n  comparison w i t h  t h e  smooth Moody curve (3). The agreement 
. . .  

i s  good except f o r  t h e  data from quadrant I which range from 1 5 t o  . 

50 per cen t  below the"Moody curve due t o . t h e  d i s t o r t e d  p r o f i l e  

which occurred downstream from t h e  f i r s t  suppor t ing  gr ' i  d. 

6.4 Form Loss ~ o e f f  i c i e n t s  

. 
The entrance, e x i t ,  and tube sheet pressure drops were converfed 

.. . 

t o  unrecoverable form loss  c o e f f i c i e n t s  by t h e  .Equal- i on 4. Mass 
- 
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F i gu re  4 - B o i l e r  Pro to type Element Isothermal ' F r i c t i o n  Fac tors  (43-024-828) 



v e l o c i t y  (G ) was based on t h e  area o f  t h e  consOr ic t ion  f o r  t h e  
C 

tube sheets, and t h e  f low area among t h e  tubes f o r  t h e  i n l e t  and 

e x i t  losses. The form loss P was a r r i v e d  a t  by exfending t h e  

f r i c t i o n  pressure drop l i n e  back t o  t h e  tube .shee t  (Fig. 3 ) .  By 

us ing t h i s  procedure, t h e  dis+ort.ed p r o f i l e  immediately behind 

c? t h e  g r i d s  and tube sheets was neglected, It is ,no ted t h a t  these 

backward ex t rapo la t i ons  were based upon t h e  experimental pressure 

p r o f i l e  data and n o t  on a ca l cu la ted  f r i c t i o n a l  g rad ient .  The 

entrance, exit,; and Pube sheet unrecoverable loss  c o e f f i c i e n t s  fo r  

- t h e  f i n a l  design con f igu ra t i ons  a r e  p l o t t e d  versus Reymolds number 

i n  F igures 5 and-6. , The entrance and exiP loss c o e f f i c i e n t s  
* 

(Fig. 5) cannot be r e a d i l y  compared w i t h  +he BePt is  data (4) s ince 

t h e i r  entrance and e x i t  losses were combined i n t o  ove r -a l l  values. 

However, t h e  tube sheet c o e f f i c i e n t s  (F ig.  6) a re  i n  reasonable 

agreement w i t h  t h e  j o i n t  loss c o e f f i c i e n t s  repor ted  fo r  t h e  "egg 

cra te"  t ype  connect ion which i s  s i m i l a r  t o  t h a t  employed i n  t h e  

present  study. 

6.5 Conclusions 

I .  The a x i a l  pressure p r o f i l e  was found Po be very near ly  

l i n e a r  immediately downstream ( I  or  2 equ iva lent  diameters) 

from a l l  t h e  spacers except a t  t h e  i n l e t .  

2. Examination o f  t h e  reg ion  downsPream from t h e  i n l e t  g r i d  

showed t h a t  t h e .  f l ow  i s  no t  f w  1l.y esPabl lshed over t h e  

ent i re,quadrant  length (40 equ iva lenf  diameters). 
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REYNOLDS NUMBER X 10 

Figure 5 - Entrance and E x i t  Form Loss Coef f i c ien ts  (43-024-830) 



Figure 6 - Tube Sheet Form Loss Coeff icients (43-024-83 1 ) 
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. , 
3 .  The f u  l l y  es tab l  ished <r i c t i o n  f a c t o r s  a r e  i n  good agree- 

ment w i t h  t h e  Moody curve (31, and t h e  tube sheet loss 

c o e f f i c i e n t s  a r e  i n  reasonable agreement w i t h  s i m i l a r  data 

presented i n  ( 4 ) .  

PRESSURE PROFILE DOWNSTREAM OF A SPACER I M  TWO-PHASE FLOW EXPERIMENT 

7.1 Equipment 
i '  

The equipment used t o  perform t h i s  study inc luded t h e  same low 
, . 

pressure loop w i t h  t h e  pro to type Path f inder  b o i l e r  -element described 

e a r l i e r  w i t h  t h e  a d d i t i o n  o f  an a i r  supply. An a i r  l i n e  from a 

r o t a r y  t ype  compressor supp l ied  a i r  t o  t h e  loop p i p i n g  3 f e e t  ahead 

o f  t h e  t e s t  secfi ions lower f lange ( F i g .  2 ) .  A i r  f l ow  r a t e s  were 
! 

defermined by us ing  a Laminar f l ow  meter ing device. 

7.2 Test   condition,^ 

Mass f low r a t e s  were v a r i e d  from 1.37 x 10' t o  2.32 x lo6 I b / h r - f t 2  

w i t h  an a i r -water  m ix tu re  a t  room temperature. The mass f r a c t i o n  

of  a i r  f l ow ing  ( q u a l i t y )  was v a r i e d  from 0.142 per cent  t o  0.263 

p e r ' c e n t  (corresponding t o  v o i d  f r a c t i o n s  from 0.37 t o  0.69 by 

t h e  homogeneous model). 

7.3 Pressure P r o f i l e s  

F igures 7 and 8 show two sample a x i a l  pressure p r o f i l e s  f o r  a i r -  

water mix tures  f l o w i n g  i n  the elemen?. As i n  t h e  case o f  a l l  water 

f low, t h e  p r o f i l e  downstream o f  t h e  lower g r i d  shows some e f f e c t s  

o f  t h e  g r i d  f o r  10 - 12 equivalentdi:ameT:ers- downstream. However, 



DISTANCE FROM BASE TAP, INCHES 

F igu re  7 - Sample Pressure P r o f i l e  f o r  Air-Water M ix tu re  Flowing i n  an 

81 P i n  Prototype Element (43-024-983) 



F i g u r e  8 - Sample Pressure P r o f i l e  f o r  Air-Water M i x t u r e  F low ing  i n  an 
. . 

81 P i n  P ro to t ype  Element (43-024-925) 



t h e  a i r -water  data a l s o  shows t h i s  t y p e . o f  e f f e c t  behind tube 
.. 

sheets I  and 2.  his e f f e c t  may be due t o  two-phase e f f e c t s  o r  

merely t h e  r e s u l t  o f  having a  la rger  pressure loss through t h e  

tube sheets. I n  o the r  words, t h e  two-phase f l ow  f i e l d  may take  

longer t o  become f u l l y  es tab l ished than f o r  single-phase f low a l -  
l 

though t h e  d i f f e r e n c e  i s  no t  g reat .  Also t h e  higher pressure losses 

encountered w i t h  t h e  two-phase case impl ies  t h e  ex is tence of a  

greater  d is turbance and t h  i s. may i a  l I  y  exp I a  i n  t h e  downstream 

e f f e c t s .  

7.4 Loss Coef f i c  i e n t s  I 

As expected-, t h e  loss c o e f f i c i e n t s  f o r  t h e  two-phase case were greater  

than i n  t h e  single-phase case. The r a t i o  o f  two-phase t o  s ing le -  

phase loss c o e f f i c i e n t s  measured i n  these experiments was c o r r e l a t e d  

by us ing  t h e  r a t i o  o f  single-phase t o  average two-phase dens i ty  

( p  /F ), and t h e  r e s u l t s  a re  shown g r a p h i c a l l y  i n  F igu res .9  and 10. 
f TP 

The 45 degree l i n e s  on these graphs represent  Equation 7 so t h e  

agreement o f  t h e  dafa w i t h  t h e  l i n e s  i s  an eva lua t ion  o f  t h e  a p p l i -  

c a b i l i t y  o f  Equation 7. 

7.5 F r i c t i o n  Factors 

A f t e r  reducing t h e  pressure drops t o  f r i c t i o n  only, by sub t rac t i ng  

, o u t  t h e  e l e v a t i o n  and acce le ra t i on  po r t i ons  (us ing  f h e  homogeneous . 

model), f r i c t i o n  f a c t o r s  were ca l cu la ted  fo r  t h e  lengths between 

spacers as i n  t h e  single-phase PesPs by Paking t h e  s lope of t h e  

pressure drop versus length curve. These f r i c t i o n  f a c t o r s  were 



DENSITY RATIO. (&) 
Figure  9 - Two-Phase E f f e c t  on Entrance and E x i t  Losses 



Figure 10 - Two-Phase E f f e c t  on Tube Sheet Losses (43-024-980) 



then converted t o  two-phase m u l l - i p l i e r s  by r a t i o i n g  them t o  

t h e  experimental ~ i n ~ l e - ~ h ~ s s  f r i c t i o n  fac to rs .  These n u l t i p l  i e r s  _ + -  

(7 
are  shown i n  F igu re  I I  i n  compprison w i - t R  f h e  Lockhar t -Mar t i ne l l i  

c o r r e l a t i o n  (23). The m u l t i p l i e r s  being repor ted  are  general l y  

considerably lower thaa the Mari-inel l i  values. While no quant i -  

t a t i v e  e f f e c t  o f  f low can be deduced from F igu re  1 1 ,  t h e r e  does seem 

t o  be a  t r e n d  f o r  increasing f low ?o correspond t o  a  reduc t ion  i n  

 LO f o r  t h e  same q u a l i t y .  Without f u r t h e r  exp lo r ing  t h e  possi -  

b i l i t y  o f  t h i s  f low dependency, i-t i s  d i f f i c u l ' i  t o  assess t h e  

apparent l tscat tern exh ib i ted  on F igure  I I .  

7.6 Conclusions 

I .  The a x i a l  pressure p r o f i l e  downsfream from t h e  spacers 
I 

was found t o  be s i m i l a r  t o  t h e  single-phase r e s u l t s ,  bu t  

t h e  pressure ~ r a d i e n t s  d i d  no t  seem I-Q become we1 l 

es tab l i shed  q u i t e  as r a p i d l y .  

2. The two-phase m u l t i p l i e r s  i n  f h e  f i r s t  quadrant, wherein 

t h e  f low was found t o  be unestabl ished over t h e  f u l l  

length, a re  i n  agrsemeni w i t h  Phe m u l t i p l i e r s  f o r  t h e  

downstream quadrants, wherein t h e  f low q u i c k l y  became 

, . 
es tab l ished.  

3. The two-phase m u i t i p l i e r s  a re  not  i n  good agreement 
. . 

w i f -h t h e  Lockhart-!Jartinel l i  c o r r e l a t i o n  (231, but  t h e  

two-phase form losses a re  f a i r i y  wsl-I described by 



8.0 BOILING PRESSURE DROPS AND VOID FRACTIONS IN A 4 X 4 ARRAY FXPERIMENT 

8.1 Equipment 

8.1. 1 Meat ~ r a n s f e s  Loop 

The Heat Transfer LOOP. located a t  the Greendale Lab was 

des i gned f ok 1 nvest i g A t  i on o f  heat  t rans fe r  and pressure 

drop prob lems i n  nuc lear reactors.  The loop i s  a lso 

instrumented t o  enable invest igat ion of burnout and vo id  

f rac t ion .  Mu I t  i p le va lve arrangements provide f o r  forced 

' o r  natura l  c i r c u  l a t i o n  f lpw. The use o f  a steam separator 
I 

above the b o i l i n g  t e s t  sect ion provides saturated steam f o r  

superheat studies. Nuc lear heat ing i s  simu la te@ by e l e c t r  i ca  I 

resistance heat ing w i th  d-c power ava i lab le  up t o  2.25 mw. 

The loop i s  ra ted  a t  1500 psi ,  1060 F. The r e c i r c u l a t i o n  

f low capaci ty o f  the  loop i s  600 gpm. A schematic diagram 
I ,  . 

o f  the loop i s  shown i n  Figure 12. 
. - 

8. 1.2 Test Section 
. . 

The 16 p i n  t e s t  sect ion was designed t o  simulate a Pathf inder 

bo i l e r  f ue l e lement. The Pest sect  ion was 6 f t  long and 

consisted o f  a 4 x 4 ar ray o f  s t a i n  less stee l heater tubes 
. * 

arranged on a 0.570 in.  p i t ch .  The tube dimensions were 
. ,- .- - 

0.416 in. 0.d. ( p i t c h  t o  diameter r a t i o  o f  1.37) w i th  a 

0.027 in.  wa I l i n  the l ~ w e r  ha I f  o f  the bund le  and 0.367 in.  

0.d. ( p i t ch  t o  diameter r a t i o  o f  1.55) w i t h  a 0.065 in. wa l l  

i n  the upper h a l f .  Th is  feature corresponds t o  the Pathf inder 

design wherein add i t i ona l  f low area i s  provided i n  the upper 



F igu re  I I  - Two Phase M u l t i p l i e r s  f o r  Air-Water Flow i n  a Rod Bundle (43-024-981) : 
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h a l f  o f  t h e  core  t o  o f f s e t  vo id  e f f e c t s .  The power produced 

i n  t h e  upper h a l f  i s  approximately 35 per cent  o f  t h e  t o t a l .  

The tube a r ray  was enclosed i n  a square pressure housing 

c o n s i s t i n g  o f  a 16 gauge s t a i n l e s s  s tee l  l i n e r  ins ide  a 

5/8 i n .  t h i c k  carbon s tee l  box. The f low channel dimension 

was .2,399 i n .  square. F igure  13 i s  a schematic assembly 

o f  t h e  t e s t  sec t ion .  F igure  14 i s  a c ross  sec t ion  view o f  t h e  

bundle ar ray  showing t h e  spacer and pressure t a p  assembly. 

Spacing o f  t h e  heated rods was accomplished by using sho r t  

p ieces o f  0.148 in.  0.d. s t a i n l e s s  s tee l  tube w i t h  smaller 

diameter rod  inser ted  down t h e  center  t o  t h e  tube and through 

holes d r i l l e d  i n  t h e  heated rods. F igure  I 5  shows t h e  as- 

sembly. The end connections were simply square g r i d s  made 

o f  copper bars which were soldered t o  t h e  s t a i n l e s s  rods, 

and served t o  center  t h e  bundle i n  t h e  box a t  each end. 

These copper bars were 1/8 i n .  t h i c k  x 1/2 i n .  deep and 

-extended t h e  length  o f  a row o r  rods. The bundle\was a l s o  

centered i n  t h e  box a t  t h e  a x i a l  mid-point by four  small, 

e l e c t r i c a l l y  iso lated,  s tee l  rods  penet ra t ing  t h e  box enclosure 

and gu id ing  t h e  p i n  rows adjacent t o  t h e  bundle center .  

Fourteen pressure taps  were used t o  measure t h e  f r i c t , i o n a l  

and spacer pressure drops along t h e  length o f  t h e  t e s t  
J' 

sect ions.  F igu re  13 shows t h e  a x i a l  spacing o f  t h e  fkessure 

taps  i n  r e l a t i o n  t o  t h e  rod  bundle. 
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Figure 13 - Sixteen P i n  Test  Secti.on Assembly (43-024-776) 
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Figure 14 - Cross Section of 16 Pin Test Section 
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Bu lk  coo lan t  temperatures were measured w l t h  bare-wl-re 

chromel-alumed thermocouples loca ted befere  and a f t e r  t h e  

t e s t  sec t  I on, 

S lo t s ,  1-l1 x 2114 x 5/16" deep, were m l l l e d  I n  t h e  s ides  o f  

t h e  box a t  t h r e e  a x l a l  loca t lons ,  -Vhts was done i n  o rder  t o  

reduce t h e  requ t red  I n t e n s l t y  o f  t h e  soufce used f o r  t h e  

v o i d  measurements. 
'. .. 

8.1.3 Loop fns t rumenta t ion  

8 . t .3 .1  Flow Measurement 

Flow r a t e  through t h e  t e s t  sec t l on  was determlned by 

measuring t h e  pressure drop through a 4 I n .  G e n t i l e  

f low tube, A 50 in .  - 2000 p s i  we l l - type manometer 

was used t o  measure +he pressure drop, f ie I n d l c a t l n g  

f t u l d  was mercury, 

8,1.3.2 System Pressure 

The system pressure was measured wlPh a Heise, 

. Bourdon i-*be t y p e  gage. Vhe gage had 1 p s i  I n -  

crefments from 0 - 1500 ps i ,  and was ca! i b r a t e d  w i t h  

a dead-wei.ght . t e s t e r  b e f o r e  and af-t'er . the  t e s t .  

8.1.3.3 D t f f e r m t l a 4  Pressure, Drops 

D i f f e r e n t i a 4  pressure drops were measured w i t h  a bank 

o f  12, 60 in . ,  2000 p s i  mancmB.T-erS. The i n d l c a t l n g  

f a l u i d  was Meriam #3 w i t h  a specific g r a v i t y  o f  2.95, 



8.1.3.4 Bu lk  Temperature Measurements 

Temperatures were measured w i t h  a Wheelco, 16 po in t ,  

r eco rd ing  potent iometer  c a l i b r a t e d  i n  m i l l i v o l t s ,  

The recorder  had a 10 i n .  c h a r t  w i t h  a range of 

0 - 50 mv d-c i n  2.5 mv steps. An ice-water m i x t u r e  

was used f o r  t h e  re ference j unc t i ons .  

8.1.3.5 Tes t  Sec t ion  Power 

The vo l tage  drop across t h e  t e s t  sec t i on  was measured 

w i t h  a Wheelco record ing  vo l tmeter .  The instrument 

had a range o f  0 - 75 mv d-c i n  25 Colt stbpp. A 

Wheelco reco rd ing  potent iometer  w i t h  a range of  

0 - 75 mv d-c i n  0 - 25 mv steps, and a c a l i b r a t e d  

50 mv shunt were used t o  determine t h e  c u r r e n t .  

8.1.4 Void F r a c t i o n  Equipment 

The encapsulated Cesium 137 source o f  2.5 c u r i e s  was housed 

I n  a lead p i g  w i t h  a 0.25 i n .  b.d. aperture, 4 i n .  long 

f a c i n g  t h e  t e s t  sec t ion .  The p i g  was 8 i n .  o.d., 8 i n .  

long and weighed about 180 I b  and prov ided acceptab le  

r a d i a t i o n  l e v e l s  a t  contac t  w i t h  t h e  surface. The Cesium 

bas a h a l f - l i f e  o f  30 y r  which e l im ina ted-concern  over 

source decay. 

A block diagram o f  t h e  I v o i d  measuring system layout  i s  shown 

i n  F igu re  16. C o l l i m a t i o n  of  t h e  gamma beam was e f f e c t e d  
1 

by us ing  a 2.5 i n .  long lead c y l i n d e r  w i t h  a 0.035" x 0.625" 



F igu re  1 6 -  Gamma At tenuat ion  Equipment Block Diagram (43-024-985) 



s l o t  located on t h e  de tec tor  s i d e  of  t h e  t e s t  sec t ion .  - 
The p h o t o m u l t i p l i e r  tube :de'tecfor- had a 1.25 i n .  diameter 

Sodium Iod ide  c r y s t a l  which i s  located .against t h e  c o l -  

l ima to r  s l o t .  

The count r a t e  measured by t h i s  system was assumed t o  be 

d i r e c t l y  p r o p o r t i o n a l - t o  t h e  i nc iden t  r a d i a t i o n  i n t e n s i t y  

reaching t h e  de tec tor .  Thus, t h e  e f f i c i e n c y  and c a l i b r a t i o n  

o f  t h e .  i nstrumentat i on a r e  unimportant so long as o i l  y  
.. - .. 

r a t i o s  o f  count r a t e s  a re  used. The -assumption o f  I ' inear  

p r o p o r t i o n a l i t y  i s  acceptable so long as t h e  count r a t e  

does not  exceed t h e  " l inear11 capac i ty  o f  t h e  equipment. 

Ana lys is  here and elsewhere ind ica ted  a s e n s i t i v i t y  of  vo id  

measurements bo th  t o  small changes i n  h igh  vo l tage  app l i ed  

t o  t h e  var ious  stages o f  t h e  p h o t o m u l t i p l i e r  tube and a l s o  

t o  changes i n  temperature. These e f f e c t s  became very 

important t o  t h e  Greendale program s ince a s i n g l e  t r a v e r s e  

of  a t e s t  sec t i on  requ i red  two hours. 

Before and a f t e r  each t raverse,  a re ference count r a t e - t h r o u g h  

a 5/8 i n .  s tee l  p l a t e  was obta ined.  Because of  t h e  inherent  

tendency o f  t h e  e l e c t r o n i c  equipment t o  d r i f t ,  t h i s  re fe rence 

count va r i ed  s l i g h t l y  (about 4 per cent  i n  2 .hr) over a 

pe r iod  o f  t ime.  I t  was exper imenta l l y  determined t h a t  t h e  

assumption o f  l i n e a r  d r i f t  was v a l i d .  Thus a l l  o f  t h e  data 



were ad jus ted  t o  a  common re ference before  t h e  v o i d  f r a c t i o n s  

'.%.-: 
were computed. 

The e n t i r e  de tec tor  was-surrounded by copper c o o l i n g  c o i l s .  

The water supply and exhaust temperatures were exper imenta l l y  

found t o  be e s s e n t i a l l y  constant .  The manufacturer 's  

s p e c i f i c a t i o n s  i nd i ca ted  r e l a t i v e  i n s e n s i t i v i t y  t o  changes 

i n  incoming l i n e  vo l tage  and a  s . 0 5  per cent  long te rm 

s t a b i l i t y .  The incoming l i n e  vo l tage  was v a r i e d  between 

100 and 125 v o l t s  us ing  a  va r iac  and no s i g n i f i c a n t  e f f e c t  

on count ing  r a t e  was observed. 

The complexi ty  of  t h e  t e s t  sec t ions  used and the-manner of  

o b t a i n i n g  data made exac t ing  demands on p rec i se  and repro-  

duc ib le  p o s i t i o n i n g  o f  t h e  source and detec tor .  Thus, a  

spec ia l  rack was designed and b u i l t .  T h i s  rack prov ides 

12 f t  o f  v e r t i c a l  t r a v e l  and 8  i n .  o f  ho r i zon ta l  t r a v e l .  

Ho r i zon ta l  p o s i t i o n  cou ld  be determined and reproduced t o  

w i t h i n  0.005 i n .  Tes t  sec t ions  up t o  10 i n .  wide can be 

accommodated between t h e  source and t h e  de tec tor  p la t fo rm.  

when i n  use, t h e  rack  i s  jacked up o f f  t h e  f l o o r  on f o u r  
,- 

screws t o  main ta in  i t s  p o s i t i o n .  

8.2 Void Measuring Procedure 

The vo id  data were taken a t  two loca t ions :  2 i n .  downstream from t h e  

s e t  o f  spacers located 18 i n .  from t h e  t e s t  sec t i on  i n l e t ,  and 2  i n .  

upstream from t h e  s e t  o f  spacers located 54 i n .  from t h e  t e s t  sec t i on  



i n l e t .  The beam path length a v a i l a b l e  f o r  f l ow  va r ied  from 0.736 

in .  through t h e  p i n  rows t o  2.4 in .  betlteen rows o f  p ins.  The 

corresponding r a t i o s  o f  I1empty" t o  " f u l l "  count r a t e  readings 

va r ied  from about 1.13 t o  1.49. 

A vo id  measurement was obta ined by c o l l e c t i n g  a s e r i e s  o f  empty, 

ho t  (saturated)  water, and two-phase count r a t e s  a t  each f i x e d  

p o s i t i o n  on t h e  t e s t  sect ion.  A ho t  water re ference and an empty 

reference consisted o f  t a k i n g  a se r ies  o f  count r a t e s  a t  physical  

locat ions  0.020 t o  0.040 in.  apart .  E igh ty  separate count r a t e  

readings were recorded f o r  each t raverse.  I n  order $0 determine 

whether t h e  magnetic f 4 i e l d  caused by t h e  cu r ren t  f low I n  t h e  

t e s t  sec t l on  had any e f f e c t  on t h e  r a d i a t i o n  measuring system . . 

o r  caused any unusual,movement among t h e  rods, a specia l  s e r i e s  

o f  ho t  water @Iwl th  powerv riieasurements were obtained. For these 

measurements, t h e  water temperature was maintained a t  s a t u r a t i o n  

f o r  600 psia, t h e  power planned f o r  t h e  two-phase run  was app l ied  

t o  t h e  t e s t  sect ion, and t h e  system was over pressur ized t o  700 

p s i a  t o  prevent any b o i l i n g .  (The ho t  water "no powerw runs were 

. performed i n a s i m i l a r f a s h i o n ,  bu t  n o p o w e r w a s a p p l i e d t o t h e  

t e s t  sect ion.) Once t h e  empty and t h e  ho t  water references were 

establ ished,  t h e  count r a t e  readings f o r  steam-water mix tures  

were taken a t  t h e  same physical  locat ions  as were the. references 

f o r  t h e  empty and hot  water data. 



I n  order  t o  t ake  . . i n t o  . . .  account . . .  t h e  change i n  t e s t  se,ction p o s i t i o n  . .  . 

due t o  therma 1 expans . . .  ion, a I l t h e  . . .  data were p l o t t e d  .on l a rge  gra6h 
. . . . . . . .  . . . . 

paper and each . . . . .  t raverse 'was a l i gned  .so t h a t  t h e  p i n  center  p o s i t i o n s  
. . . . . . .  

corresponded t o  those o f  t h e  empty ran .  

8.3 Resu l ts  

8.3.1 Isothermal Pressure Drops 

Before beginning t h e  b o i l i n g  pressure. drop measurements, 

, t h e  t e s t  sec t i on  was operated a t  isothermal cond i t i ons  ( a l l  

l i q u i d  w i t h  no power). These data were taken over t h e  same 
, . 

range o f  mass f l ow  r a t e s  as were planned f o r  t h e  two-phase 

6 6 2 
t e s t s  (G = 1.0 x 10 t o  2.5 x 10 I b / h r - f t  ) .  The data 

were reduced t o  isothermal f r i c t i o n  f a c t o r s  ( f iso)  f o r  t h e  

f low over t h e  rods  and form loss c o e f f i c i e n t s  (Kiso) f o r  t h e  

f l ow  through t h e  spacers. 

When p l o t t e d  versus Reynolds number, t h e  isothermal f r i c t i o n  
., . 

f ac to rs  e x h i b i t e d  cons iderab le  s c a t t e r  ( 5 0  per cen t ) .  The 

general magnitude, however, was i n  agreement w i t h  t h e  Moody 
! 

curve (-3). Inspect ion  o f  t h e  data showed t h a t  t h e  .data 

s c a t t e r  was much smal ler  ( S O  per cent )  when each o f  t h e  

9 i n .  lengths were considered separate ly .  It i s  be l ieved 

t h a t  t h e  va ry ing  magnitudes o f  f iSo among t h e  9 i n .  lengths 

r e s u l t e d  because o f  t h e  s e n s i t i v i t y  t o  t a p  l o c a t i o n  when t h e  

t a p  i s  near a spacer. I t  i s  noted t h a t  t h e  pressure drops 
. . 

from which t h e  f r i c t i o n  f a c t o r s  were c a l c u l a t e d  were r e -  
, .  , 

liat'fve-1.9 ,srna.l [,: .. va ry ing  from 0.1 ps'i t o  0.3 p s i  . 



The pr  imary purpose o f  t h e  isothermal data was t o  serve a s  
. , . , , . . 

a  re fe rence i n  c a l c u l a t i n g  two-phase m u l t i p l i e r s .  Since 

each l ength showed a d i f @ren t  l eve I ,  a  separate i'sotherma 1 

re fe rence was used f o r  each 9 i n .  length  i n  reducing t h e  

boi.1 i ng  data. 

8.3.2 Bulk B o i l i n g  F r i c t i o n a l  Pressure Drops 

A f t e r  t h e  isothermal f r i c f i o n  f a c t o r s  were we1 1 establ ished,  - - 

power was app l i ed  t o  t h e  rods, and b o i l i n g  pressure drop data 

were taken. Wi th i n l e t  subcool ing he ld  a t  approximately 

0 - 15 Btu / lb ,  it was poss ib le  t o  achieve e x i t  q u a l i t i e s  

from 0 - 5 per cent  by va ry ing  t h e  amounts o f  t e s t  sec t i on  

power and mass f low r a t e .  A l l  t e s t s  weqe conducted w i t h  

t h e  t e s t  s e c t i o n ' e x i t  pressure he ld  a t  600 ps ig .  

I n  these t e s t s  mass v e l o c i t y  (G) was v a r i e d  frqm 1.0 x 10 6 

2 t o  2.5 x  lo6 Ib /h? - f t  ( i n  t h e  lower h a l f )  and up t o  360 kw 

were app l i ed  t o  t h e  t e s t  sec t i on  by t h e  M-G se t .  These 

cond i t i ons  resu  I t e d  i n  heat f l u x e s  id) as h igh  as 150.000 

2 B t u / h r - f t 2  i n  t h e  lower h a l f  and 90.000 B t u / h r - f t  i n  t h e  

upper h a l f .  

,-n reducing t h e  data it was necessary t o  remove t h e  e f f e c t s  

of  e l e v a t i o n  and acce le ra t i on  i n  order  t o  i s o l a t e  on l y  t h e  

f r i c t i o n a l  losses. 



. . 

These two items were c a l c u l a t e d  us ing  t h e  f o l l o w i n g  

r e  t a t  ionsh i ps: 

where pTp = R p + ( I  - Rg)  PL 
9 9 

The magnitude o f  these c a l c u l a t e d  q u a n t i t i e s  ranged from 

25 t o  50 per cent  o f  t h e  measured pressure drops. Values 

o f  R used i n  these c a l c u l a t i o n s  were taken from t h e  homo- 
9 

geneous model'. The same c a l c u l a t i o n s  - were . . . . -. . - made us ing  

~ a r i i  ne 1 ' 1  i vo ids (5) ,  bnd comparison shaved t h a t  t h e  

d i f f  erences i n t h e  ca I  cu I  a ted  c o r r e c t  ions were less than 

5 per cent  f o r  t h e  low q u a l i t y  range s tud ied .  The 

2 Mar t i ne l  l i  vo ids  y i e l d e d  s l  i g h t l y  l a rge r  values f o r . q O  . 
Hence t h e  values o f  R from t h e  homogeneous model were 

9 

chosen because o f  s i m p l i c i t y  o f  calcu1,ation. 

As noted above, t h e  e l e v a t i o n  and acce le ra t i on  cor rec t ' ions  

were o f  t h e  same order  o f  magnitude as t h e  measured values. 

Whi le t h i s  was undes i rab le  from t h e  standpoint  o f  s tudy ing  
. . 

f r i c t i o n  e f fec ts ,  it was necessar i l y  inc luded i n  s imu la t i ng  



t h e  P.athfinder opera t ion .  I t  i s  encouraging t o  note t h a t  
... . 

even w i t h  t h e  use o f  t h e  simple homogeneous model f o r  these 

ca l cu la t i ons ,  t h e  f r i c t i o n  data from t h e  lower and upper - - - 
I. . 

h a l f  o f  t h e  te,st  sec t i on  a re  i n  good agreement even though 

t h e  r e l a t i v e  c o n t r i b u t i o n  o f  e l e v a t i o n  and acce le ra t i on  

e f f e c t s  was s i g n i f i c a n t l y  d i f f e ~ e n t  i n  these two reg ions .  

A 1  l f r i c t i o n a l  pressure drops were t j l t i m a t e l y  red4ced t o '  . . 

two-phase mu I  t i p  l i e r s  (cpLo2) . The data are  presented i n  

F igu re  17 as a  f u n c t i o n  o f  mass v e l o c i t y  and steam q u a l i t y  
8 

( taken a t  t h e  center  o f  each length  increment). Mass v e l o c i t i e s  

shown on t h e  p l o t  a r e  t h e  mass v e l o c i t i e s  i n  t h e  lower h a l f  

o f  t h e  t e s t  sec t ion .  The upper h a l f  mass v e l o c i t i e s  a re  

13.6 per cent  less than i n  t h e  lower h a l f .  The,data 

represent  t h e  t o p  6  length  increments as bulk  b o i l i n g  was 

no t  encountered i n  t h e  lower 2. 

F igu re  17 a l s o  . shdws . t h e  p r e d i c t  ion o f  cp,i2 based upon 
, . 

t h e  Mart i ne l I  i -Ne I  son c o r r e  1 a t  ion  modi f ied. by a  f low e f f e c t  

( 8  and 9) .  The agreement of t h e  data w i t h  t h e  p r e d i c t i o n  

i s  genera l l y  w i t h i n  6.25 per cent .  The o r i g i n a l  M a r t i n e l l i -  

Nelson c o r r e l a t i o n  (5) al lowed f o r  no f low e f f e c t s ,  and it 
I ,  

would approx irnatel y correspond t o  t h e  G = 1.25 x lo6 l ine. 

'The agreement o f  t h e  data w i t h  t h i s  l i n e  i s  no t  p e r c e p t i b l y  

worse than +25 per cent;  howeverJnsorne e f f e c t  o f  f low i s  

ev ident .  For t h e  p a r t i c u l a r  s e t  o f  c o n d i t i o n s  studied, t h e  



Figure  1 7  -  oil ing  F r i c t i o n  Losses a s ' a  Funct ion o f  . ~ u a l  i t y  and Mass V e l o c i t y  

(43-024-774) 



.i, 
, . - .  . . -  

l s b i n  c o r r e l a t i o n  (6 )  i s  i n  cl.ose agreement w i t h  t h e  mod i f ied  . - .  ,. - .  . . 

Ma r t i ne l  l i  r e l a t i o n s h i p  ( 8  and 9) .  The i s b i n  tpLO2 vs. q u a l i t y  

l i nes, a t  cons tan t .  f low, have a  s m  l l e r  s  lope, than the .  

curves shown i n  F i g u r e  17, and do no t  appear t o  be cu rv ing  

upward as f a s t  as t h e  data a t  t h e  h igher  q u a l i t i e s .  

I t  was concluded t h a t  t h e  mod i f ied  M a r t i n e l l i  ( 8  and 9), 

t h e  Mar f ine l l i -Ne lson (5) ,  and t h e  l s b i n  (6 )  c o r r e l a t i o n s  

a l l  descr ibe t h e  data w i t h i n  about i 2 5  per cen t  f o r  t h e  

range of  cond i t i bns  s tud ied .  Whi le t h e  data do e x h i b i t  some 

f l ow  dependency, it i s  impossible t o  de f i ne  t h e  ex ten t  and 

nature  o f  t h i s  dependency from t h e  present  experiments. 

. 8.3.3 Bulk B o i l i n g  Form Pressure Drops 

Form loss c o e f f i c i e n t s  (k )  were c a l c u l a t e d  f o r  each spacer 

and a l s o  f o r  t h e  i n l e t  and e x i t  losses. Since:T,here was 

no s i g n i f i c a n t  b o i l i n g  occu r r i ng  a t  t h e  i n l e t  o r  spacer I  

(numbering from t h e  bottom up) t h e  d iscussion o f  b o i l i n g  

e f f e c t s  on form losses w i l l  be conf ined t o  spacers 2.and 3  

and t h e  e x i t .  

Spacer 3 represented a  s imple form loss, and t h e  two-phase 

loss c o e f f i c i e n t  was i n i t i a l l y  reduced from t h e  data by 

t h e  fequat ion  : 



Spacer 2 and t h e  e x i t  sec t i on  inc luded net  f-low area 
...,. 

expansions so t h a t  t h e  c a l c u l a t i o n  o f  tl,oss c o e f f i c i e n t s  

i n  these reg ions  was more complicated. The general 

equ'at ion used was: 

Eva lua t i ng  t h e  recoverable pressure drop (APrec) t o  use 

i n  t h i s  equat ion i s  d i f f i c u l t .  Two d i f f e r e n t  approaches 

were taken t o  c a l c u l a t e  t h i s  q u a n t i t y .  

The f i r s t  assumes t h a t  t h e  f l u i d  can be considered t o  

behave as i f  it were homogeneous w i t h  a dens i t y  equal t o  

t h e  average dens i ty  of t h e  two phases. Then, 

where U i s  t h e  area r a t i o  o f  t h e  expansion ,(as i n  Eq.: 7 

and 8).  

I 

Using t h i s  procedure and Equat ion 20, t h e  unrecoverable 

loss coe f f i cben ts  ( k l )  were ca l cu la ted .  These loss c o e f f i c i e n t s  

were then cdmpared w i t h  t h e  :i.sothermal.. loss c o e f f i c i e n t s  and 

t h e  r e s u l t s  a r e  p l o t t e d  i n  F igu re  18. The procedure o f  

us ing  FTP t o  account f o r  t h e  two-phase e f f e c t s  i n  t h e  
5 .  

unrecoverable component was examined (Eq. 7 ) .  



This would be v a l i d  ( i .e .  -'Eq. 7 would be accurate) i f  

P f ,Lkl-. 
lk i so  Fp 

, . 
However, the  agreement shown i n  Figure 18 i s  not  good, and 

the  po in ts  are general ly  higher than the  pf/pTp l i ne .  For 

spacer 2  and ex i t ,  t he  po in ts  are  c loser  t o  t he  9 2 
LO 

cor re la t ion .  See Equation 8. 

The second approach used was t o  assume, as Lot tes  d i d  ( lo ) ,  

t h a t  a11 the  pressure recovery i s  due t o  t he  l i q u i d  phase 

expansion (Eq. 9). This r e s u l t s  i n  an expression o f  t he  

form: 

m 

Using these r e s u l t s  and Equation 20, t he  ca lcu la ted k ' s  

are higher $han 9 i t h  Equation 21 f o r  spacer 2 and t he  e x i t .  

These po in ts  are p l o t t e d  i n  Figure 19 and compared t o  a  

2  l i ne which represents Equation 9, k/kisO = I /( I - Rg) . 
The agreement i s  good f o r  spacer 2  and t he  e x i t  but  not 

. . 
f o r  spacer 3. 

A t h i r d  alternative fo r  handling t he  form losses w i t h  net  

area changes 1.3 t o  use Equation 19 and ca lcu la te  a  combined 

k .  Fol lowing t h i s  procedure t o  ca lcu la te  the  k ' s  f o r  a l l  

th ree s ta t ions  gives t he  r e s u l t s  shown I n  Figure 20. The 
1 

4 
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Figure 18 - B o i l i n g  E f f e c t  on Form Loss C o e f f i c i e n t  ( 43-024-77 1 ). 



STEAM , QUALITY ( x )  

~ ' i g u r e  19 - Boi  l i ng E f f e c t  on Form Loss C o e f f i c i e n t  . (43-024-772) 



.F igure 20 - B o i l i n g  E f f e c t  on Form Loss Coe f f i c i en t  (43-024-773) 



r a t i o s  o f  two-phase t o  single-phase loss c o e f f i c i e n t s  a re  

again compared w i t h  t h e  L o t t e s  model w i t h  f a i r  agreement. 

I t  i s  noted t h a t  t h e  comparisons shown i n  ~ i ~ u r e ;  '19 arid 

20 a re  r e a l l y  showing pressure recovery i n  d i f f e r e n t  ways. 

The accuracy o f  t h e  L o t t e s  t ype  model i s  b e t t e r  assessed 

from F igure  20. 

The data from spacer 3 a r e  d i s t u r b i n g  i n  t h a t  t h e  two- 

phase losses appear lower than t h e  single-phase losses 

a t  low steam q u a l i t i e s .  It i s  suspected t h a t  t h e  o r i g i n a l  

determinat ion o f  t h e  single-phase c o e f f i c i e n t  was f a u l t y  

a l though an unfor tunate  t e s t  sec t ion  f a i l u r e  prevented 

checking t h i s  p o s s i b i l i t y .  The suspic ion prevents formu- 

l a t  ion of f i r m  .cone l us ions concern i ng t h e  pressure losses 

I n  t h i s  region.  

It was concluded t h a t  t h e  two-phase form losses a r e  

f a i r l y  we l l  p red ic ted  by t h e  L o t t e s  t y p e  model (10).  . 

I n s u f f i c i e n t  data were obfained t o  permi t  fo rmula t ing  

any new r e l a t i o n s h i p s .  

8.3.4 Local B o i l i n g  Pressure Drops 

When f r i c t i o n  data from t h e  b o i l i n g  runs were compared w i t h  

t h e  isothermal data, it was noted t h a t  t h e  losses were 

s i g n i f i c a n t l y  h igher than t h e  Isothermal case j u s t  upstream 

from t h e  loca t ion  o f  zero  q u a l i t y  (as ca l cu la ted  from t h e  



f i r s t  low). It i s  be l i eved  t h a t  t h i s  i s  due t o  subcooled 
I 

nucleate b o i l i n g  phenomena. I n  c a l c u l a t i n g  t h e  e l e v a t i o n  

and acce le ra t i on  pressure drops, account was taken o f  t h e  

voids i n  t h e  bulk b o i l i n g  reg ion  but  n o t  i n  t h e  loca l  

b o i l i n g  region.  

An at tempt t o  c o r r e l a t e  t h e  data was made by us ing  an 
.*-/ 

equat ion o f  t h e  form: 

where T I  Tsat +:ATJ sL - d/h 

The loca l  b o i l i n g  temperature (Tlb) i s  t h e  lowest bulk 

temperature a t  which loca l  b o i l i n g  w i l l  begin according 

t o  t h e  Jens 8 L o t t e s  c o r r e l a t i o n  (24). The Jens b L o t t e s  

c o r r e l a t i o n  I s  g iven by: 

where d i s  t h e  heat f l u x  i n  ~ t u / h r - f t 2  and P i s  pressure 

i n  p s i .  , .  ! 

1 

To deterrni ne t h e  f a c t o r  F i n  Eqwat ion  !23, +he d&+a were 

/f sOfI--]! as an o rd  i nbte versus 

zbulk - and t h i s  p l o t  i s  shown i n  F igu re  21. The 
T ~ a t  -  TI^ 

s c a t t e r  was found t o  be q u i t e  l a rge  (950 per cent) .  However, 
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F i g u r e  21 - E f f e c t  o f  Local  B o i l i n g  on F r i c t i o n  Fac to r s  -. (43-024-775) 



a t r e n d  was present  and a l i n e  w i t h  a s lope o f  1.7 (i.e., 

F . =  1.7) w . i l l  y i e l d  con-servatlve pressure drop . resu l t s .  
. ~, 

8.3.5 Over-a-l'l Pressure Drops 

TO t e s t  t h e  m u l t i p l i e r  method o f  p r e d i c t i n g  t h e  b o i l i n g  

pressure drops, c a l c u l a t i o n s  were made t o  p r e d i c t  t h e  over- 

a l l  pressure drop (exc lud ing t h e  entrance and e x i t )  from 

t h e  a v a i l a b l e  c o r r e l a t i o n s .  The f r i c t i o n a l  losses were 

ca l cu la ted  from t h e  Moody f r i c t i o n  fac tor ,  t h e  modi f ied 

2 
M a r t i n e l l i  c o r r e l a t i o n  f o r  q0 , and Equation 23 f o r  loca l  

b o i l l n g .  Form losses were determined from t h e  measured 

isothermal values and Equation 9.' 

The f o l l o w i n g  t a b l e  g ives t y p i c a l  comparisons o f  ca l cu la ted  

and measured values a long w i t h  t h e  t e s t  cond i t ions .  

OVER-ALL PRESSURE DROP COMPARISONS 

P P Per Cent E x l t  
Ca lcu la ted Measured Dev ia t i on  G Qua! i t y  

5.13 p s i  5.16 p s i  -0.6 2.18 x lo6 1 b /h r - f t 2  1.748 
5.50 4.87 9.12.9 2.08 2.43 
6.04 5.4 1 0.1 1.6 2.08 2.92' 

The tabu la ted  comparisons r e f l e c t  +he improved a b i l i t y  t o  

p r e d i c t  r e s u l t s  w i t h  respect  t o  over -a l l  pressure drop as 

compared t o  t h e  separate f r i c t i o n  and form t ype  compdnents. 



8.3.6 Void F r a c t i o n  

Fo l lowing complet ion of t h e  pressure drop experiments, t h e  

v o i d  f r a c t i o n  t e s t s  were begun. Because these t e s t s  were 

so t ime consuming and ted ious  t o  perform, on ly  f i v e  d i f f e r e n t  

complete runs ( se ts  o f  t raverses)  were completed. Two 

se ts  o f  t raverses  were c a r r i e d  o u t  a t  t h e  lower measuring 

p o s i t i o n  (see Procedure Sect ion) w i t h  mass v e l o c i t i e s  o f  

2.18 x lo6 and 1.23 x  lo6 lb/hr- f t2 ;  and q u a l i t i e s  o f  

0.0053 and 0,0082 respec t i ve l y .  Three se ts  o f  t raverses  

were c a r r i e d  o u t  a t  t h e  upper measuring p o s i t i o n  w i t h  mass 

v e l o c i t i e s  o f  1.92 x lo6, 1.06 x  lob, and 1.08 x lo6 lb/hr- f t2 ,  

and q u a l i t i e s  of 0.0163, 0.0208, and 0.0354 respec t i ve l y .  

As described e a r l i e r ,  each s e t  o f  t raverses  inc luded a 

s e r i e s  of measurements w i t h  t h e  t e s t  sec t i on  empty, f u l l  

o f  saturated water w i t h  no power, f u l l  o f  sa tura ted.water  

a t  t h e  t e s t  power, and con ta in ing  t h e  two-phase m ix tu re  

o f  i n t e r e s t .  The measured count r a t e s  comprising each 

t rave rse  were p l o t t e d  versus ho r i zon ta l  pos i t ion ,  and t h e  

curves were s h i f t e d  s l i g h t l y  h o r i z o n t a l l y  t o  c o r r e c t  #o r  

minor mis-alignment ( t h e  l a rges t  s h i f t  was 0.060 in.). 

Th is  s h i f t i n g  was no0 due t o  t h e  i n a b i l i t y  t o  r e p o s i t i o n  

t h e  rack, bu t  r a t h e r  because o f  uncont ro l led  movement o f  

t h e  loop pih~g. 



The count r a t e s  f o r  t h e  hot  water l lwith powerv1 case were - 

s l i g h t l y  d i f f e r e n t  from t h e  ho t  water l1no powerff case and 
.- , . - 

t h i s  was a t t r i b u t e d  t o  a  minor e f f e c t  o f  t h e  magnetic f i e l d  

penet ra t ing  t h e  photo tube sh ie ld ing .  It was assumed t h a t  

t h e  f i e l d  would a f f e c t  t h e  two-phase r e s u l t s  i n  t h e  same 

manner, so t h e  values f o r  NL i n  t h e  numerator o f  

Equation 14a were taken from t h e  "w i th  powerf1 t raverses  

and t h e  values f o r  NL i n  t h e  denominator were taken from 

t h e  "no powerff t raverses .  I n  many cases t h e  l f w  i t h  powerff 

and l fno powerIf water count r a t e s  d i f f e r e d  impercept ib ly  w h i l e  

i n  no case d i d  t h e  d i f f e r e n c e  exceed 3...per cent .  

Fo l lowing t h i s  f i n a l  al ignment and adjustment o f  t h e  data, 

loca l  v o i d  f r a c t i o n s  were computed from Equat ion 14a f o r  

each horizontal p o s i t i o n  a t  which count r a t e s  were measured, 

These loca l  v o i d  f r a c t i o n s  were p l o t t e d  as a  func t i on  of 
1 

hor i zon ta l  displacement from t h e  c e n t e r l i n e  o f  t h e  nearest 

row o f  p ins .  When viewed i n  t h i s  fashion, t h e  data e x h i b i t e d  
.* 

an appreciable amount o f  scaWer; some of which was bel ieved 

t o  be nhonestqf scaf-ter, buP some o f  which was be l ieved t o  

r e f l e c t  r e a l  d i f f e rences  among t h e  d i f f e r e n t  reg ions  i n  t h e  
i 

rod  ar ray .  This method o f  i l l u s t r a t i n g  t h e  data i s  shown 
< 

f o r  ,a t y p i c a  fun i n  F i  gwr-es 22, 23 and 24. Data represent ing  

t h e  c e n t r a l  r e g i o n  o f  t h e  bundle, i nc lud ing  reg ions  adjacent 

t o  t h e  c e n t e r l i n e s  o f  t h e  two conter-most p i n  rows, a re  shown 

i n  F igu re  22. The s o l i d  l i n e  represents a  mean curve through 
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F i g u r e  23 - Loca l  Vo id  F r a c t i o n  Data Outermost P i n  Row C e n t e r l i n e  t o  P o s i t i o n  

E q u i d i s t a n t  Between P i n  ROWS - Data Super imposed 16 P i n  Tes t s  

(43-025-028) 
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F i g u r e  24 - Local  Vo id  F r a c t i o n  Data C e n t e r l i n e  o f  Outermost P i n  Row t o  

Box Wal l  - Data Superimposed ( T y p i c a l )  (43-025-029 



t he .da ta .  F igu re  23 shows t h e  data represent ing  t h e  reg ion  - - , . . -  . 

j u s t  i n s i d e  t h e  outer-most p i n  rows, and these data appear - 
I 

t o  be d i s t i n c t l y  d l d f e r e n t  from those shown i n  F igu re  22, 

F i  nal l y  F igu re  24 shows t h e  data represent ing  t h e  r e g i o n  - - 

adjacent  t o  t h e  inner w a l l s  o f  t h e  box enclosure, and these - 

data appear t o  be d i f f e r e n t  from t h e  data shown i n  e i t h e r  

F i  gwre 22 o r  23. Whi i e  no ai?-empt was made t o  d l  s t i  ngu i sR 

among t h e  four  center-most reg ions  shown i n  F igure  22, t h e  

complete t r a v e r s e  shown i n  F igu re  28 ind i ca tes  a  s l i g h t  

tendency o f s t h e  voids t o  be h ighest  a t  t h e  center  of t h e  

bundle. 

Curves corresponding t o  t h e  s o l i d  l i n e s  i n  F igures  22, 23 and 

24 a r e  shown i n  Figures 25, 26 and 27 fo r  a l l  f i v e  runs. 

F igu re  25 shows t h e  data f o r  t h e  c e n t r a l  r e g i o n  o f  t h e  bundle. 

The lowest q u a l i t y  s tud ied gave no measurable v o i d  f r a c t i o n  

i n  t h e  small gaps between p i n s  and a  monotonic increase i n  

v o i d  as t h e  spaces b ~ t w e e n  p i n  rows a r e  approached. The d i p  

i n  t h e  v o i d  f r a c t i o n  curve f o r  t h e  data shown  in F igu re  22 

i s  seen t o  occur a t  about ha l f t h e  p i n  rad ius  whereas t h e  

t h e  d i p  f o r  t h e  measearernents'in t h e  upper h a l f  o f  t h e  ,bundle 

occurs j u s t  ou ts ide  t h e  p i n  rad ius ,  T h i s  may be due t o  t h e  

f a c t  t h a t  t h s  data f o r  t h e  lower h a l f  were obtained j u s t  

downstream frm a spacer w h i l e  The da?a f o r  t h e  upper ha l f  
I 

were obta ined j u s t  upsPrsam from a spacer. Thus, t h e  upper 

h a l f  data may be more rep resen ta t i ve  o f  a  b e t t e r  es tab l ished 
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F i gure 25 - Loca l Voi d F r a c t  i on D i s t r  i b u t  i on  (Mean Curves f r o i  Superpos it i on 

Averaging) P i n  Row C e n t e r l i n e  t o  P o s i t i o n  16 P i n  Tes t  (43'-025-025) 
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F i g u r e  2 6  - Local Void F r a c t i o n  D i s t r i b u t i o n  ( ~ i a n  Curves from Supeyposit ion 

, . Averag i ng) Outermost P i n  Row Center  l i ne t o  Pos i t i  on E q u i d i s t a n t  

between P i n  Rows 16 P i n , T e s t s  (43-025-024) 



. F i g u r e  27 - Local  Voi  d ,  F,ract  i o n  D i s t r  i b u t  i o n  (Mean Curves from Superpos it i on 

Averaging) Center1 i n e  o f  Outermost P i n  Row t o  Box Wal l  16 P i n  Tes ts  

(43-025-026) 



f l ow  pat te rn ,  I t  i s  a l s o  i n t e r e s t i n g  t o  note t h a t  w h i l e  - *. . - 

t h e  llspacefl v o i d  f r a c t i o n  increased from 0.58 t o  0.71 as . .- . . .. . . . . . 

t h e  q u a l i t y  increased from 0.0208 t o  0.0354, t h e  v o i d  
- . -. 

f rac, t ion i n  t h e  small gaps between p i n s  d i d  no t  increase 

. appreciably ( t h e  f low'was " e a r l y  t h e  same). T h i s  may 

imply a  tendency f o r  t h e  v o i d - f r a c t i o n  t o  reach a I 1 l i m i t i n g n  . . 

va lue i n  t h e  small gaps w i t h  f u r t h e r  increases tend ing  t o  

come a t  t h e  expense of t h e  space between p ins .  

Data fo r  #he reg ion  j u s t  i n s i d e  t h e  outer-most row o f  p i n s  

a r e  shown i n  F igure  26. I n  t h i s  region, t h e  curves f o r  t h e  

lower h a l f  runs i n d i c a t e  no appreciable d i p  i n  v o i d  f r a c t i o n ,  

whereas'the upper h a l f  data shows a  d i p  j u s t  beyond h a l f  a  

p i n  r a d i u s  from t h e  p i n  cen te r l i ne .  

F i n a l l y  t h e  data f o r  t h e  reg ion  near t h e  inner wa l l  a r e  shown 

i n  F igu re  27. I n  a l l  cases, t h e  vo id  f r a c t i o n  goes t o  

zero  . a t  t h e  wa-I! w i t h  t h e  data from t h e  lower h a l f  o f  t h e  

bundle e x h i b i t i n g  a  peak ou ts ide  t h e  p i n  radius,  w i t h  ,no 

such peaking appearing i n  t h e  daPa from t h e  upper h a l f .  

T h i s  map be a  man i fes ta t i on  of t h e  tendency o f  t h e  spacers 

t o  fo rce  t h e  vapor t o  Phe ou ts ide  o f  t h e  bundle;.al though 

t h e r e  i s  no such e f f e c t  apparent from t h e  spacer geometry, 

Nevertheless, t h e  e f f e c t  may be produced by t h e  spacer r e -  

s is tance t o  f l ow  evening o u t  t h e  vapor d i s t r ' i bu t i ' on  and 

a c t i n g  as a  d i f f u s e r .  



The data shown i n  F igu re  28 a re  t y p i c a l  o f  t h e  o ther  four  

runs  w i t h  respect  t o  t h e  general shape o f  t h e  v o i d  d i s t r i . -  
. . 

bu t ion .  The data c l e a r l y  i n d i c a t e  t h a t  t h e  v o i d  f r a c t i o n  

goes t o  'zero a t  t h e  inner unheated wa1I.s o f  t h e  enclosure, 

and t h i s  i s  no t  su rp r i s ing .  The data a l s o  i n d i c a t e  a s t r o n g .  . . 

tendency f o r  t h e  vapor t o  c o l l e c t  i n  t h e  reg ions  between 

pins, and t h i s  i s  . i n  agreement w i t h  t h e  r e s u l t s  r .eported 

' i n  (22) f o r  an unheated, a i r -water  system. The v o i d  d i s -  

t r i b u t i o n  i n  t h e  small gaps between p i n s  appears t o  be 

d i  f f e r e n t  i n  t h e  center  o f  t h g  a r ray  than it i s  i n  t h e  ou te r  

p i n  rows. I t  i s  noted t h a t  t h e  v o i d  d i s t r i b u t i o n  shown . in  

F igu re  28 i s  no t  t r u l y  two-dimensional s ince  each p o i n t  

. represents a mean value a long t h e  measurement path. A more 

l u c i d  exp lanat ion  o f  t h e  phys ica l  s i g n i f i c a n c e  o f  t h e  shape 

o f  t h i s  d i s t r i b u t i o n  must awai t  t h e  complet ion o f  a p a r a l l e l  

a n a l y t i c a l  s tudy i n  which var ious  two-dimensional d i s t r i b u t i o n s  

w i l i  be pos tu la ted a t tempt ing  t o  f i n d  one which would .look . 
. 

l i k e  t h e  curve i n  F igu re  28 when viewed i n  one dimension. 

. . 
I t  i s  a l s o  apparent from' F igu re  28 t h a t  t h e  assumption o f  a. 

un i form vo i  d d i s t r  i b u t  ion  i n t h e  r e a c t o r  neutron d i  f f us i on  

and/or c e l l  c a l c u l a t i o n s  may be u n r e a l i s t i c  (and even non- 

conservat ive  when t h e . a r r a y  i s  bordered by a c o n t r o l  r o d  

water channel). Furthermore, it i,s l i k e l y  t h a t  t h e  descr - ip t ion  

o f  t h e  v o i d  d i s t r i b u t i o n  i n  a r o d  bundle w i t h  a non-uniform 



Figure 28 - Local Void Fraction Distribution Vertical Upflow 600 PSI 16 Pin Tests 
(45-025-021) 



. . - .  

r a d i a l  power d i s t r i b u t i o n  may be apprec iab ly  more . . .  compl' icated . . . .. - - 

than p rev ious l y  expected s ince t h e  d i s t r i b u t i o n  i n  a  bundle 
. . - .- 

w i t h  a  un i fo rm r a d i a l  power d i s t r i b u t i o n  i s  a l ready q u i t e  

i n t r i c a t e .  

The gross r a d i a l  vo id  d i s t r i b u t i o n  f o r  t h e  f i v e  runs  i s  

shown i n  F igu re  29. I n  t h i s  representat ion,  each p o i n t  - - 

represents a  mean value o f  t h e  v o i d  f r a c t i o n  over a  reg ion  - " , - -  
bounded by t h e  c e n t e r l i n e  o f  a  row o f  p i n s  and t h e  box wa l l  .. - 

o r  t h e  plane e q u i d i s t a n t  between p i n  rows, The tendency of 

t h e  v o i d  f r a c t i o n  t o  reach a  maximum a t  t h e  center  o f  t h e  

bundle, as seen i n  F igu re  28, i s  n o t  i ncons is ten t  w i t h  t h e  

general shape o f  t h e  curves i n  F igu re  29 (which were fo rced 

t o  be f l a t  i n  t h e  center  by t h e  data redac t ion  technique). 

Again t h e  tendency of  t h e  gross v o i d  d i s t r i b u t i o n  t o  be more 

un i fo rm j u s t  downstream from a spacer than e x i s t s  j u s t  up- 

stream from a spacer i s  apparent. 

The ove r -a l l  i n teg ra ted  v o i d  f r a c t i o n s  f o r  t h e  f i v e  runs 

a r e  shown i n  F igu re  30 and compared t o  e x i s t i n g  models and 

co r re la t i ons .  The data appears t o  i n d i c a t e  appreciable 

scat te r ;  however, i n  l i g h t  o f  t h e  complicated nature  of t h e  

d i s t r i b u t i o n s  w i t h i n  t h e  bundle, t h i s  i s  d i f f i c u l t  t o  assess. 

I t  is, noted t h a t  t h e  uncer ta in ty  i n  t h e  q u a l i t y  c a l c u l a t i o n  

i s  no t  negl ig ib le--an e r r o r  i n  i n l e t  temperature o f  I F  would 

cause an e r r o r  i n  q u a l i t y  o f  0.0016. It I s  f e l t  t h a t  t h e  
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Figure  29 - Gross Region - Wise Void D i s t r i b u t i o n s  V e r t i c a l  Upflow 600 PSI 
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16 P i n  Tests (45-025-022) 
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F i gure 30 - Over-a l l ~ e a n  Steam-Water Voi d F r a c t  ion (Rg) 600 PS l A 



. data tend t o  support t h e  homogeneous model more s t r o n g l y  

than any o f  t h e  other  t h r e e  r e l a t i o n s  i l l u s t r a t e d .  

.- . 
8.4 Conclusions 

. -. . -. 

I. The two-phase m u l t i p l i e r s  f o r  b o i l i n g  a t  600 p s i  .are described 

by t h e  Mod i f i ed  M a r t i n e l l i  r e l a t i o n s h i p  (8  and 9) t o  w i t h i n  

+25 per cent,  - , .- ". .~ . , . 

2, The two-phase steam-water form loss m u l t i p l i e r s  a r e  described 

by t h e  L o t t e s  model (10) t o  w i t h i n  about 3 0  per cent  (no t  

cons ider ing  t h e  data f o r  spacer 3 ) .  . . .  

3 The v o i d  d i s t r i b u t i o n  w i t h i n  t h e  r o d  bundle i s  non-uniform w i t h  

vapor c o l l e c t i n g  i n  t h e  spaces between p i n s  and l i q u i d  ~ o l -  

l e c t i n g  i n  t h e  spaces between p i n s  and l i q u i d  c o l l e c t i n g  ad- 

jacent  t o  t h e  unheated enclosure wal Is .  

4. Accurate p r e d i c t i o n s  o f  t h e  v o i d  and power d i s t r i b u t i o n  w i t h i n  

a  p a r a l l e l  r o d  t ype  b o i l i n g  nuclear f u e l  element cannot be 

achieved u n t i l  t h e  v o i d  d i s t r i b u t i o n  f o r  a  un i fo rm ( r a d i a l )  

power d  i s t r  i bu t  i on i s  . fu r ther  i nwest i gated. 

5 ,  The ove r -a l l  i n teg ra ted  v o i d  f r a c t i o n  i n  t h e  bundle c ross  

sec t i on  was found t o  be reasonably cons is ten t  w i t h  t h e  homo- 

geneous model. 

9.0 EFFECTS OF ARRAY SIZE ON 00 l L  !NG PHENOMENON 

' 

9. 1. Descr i p t  i on o f  Test  Sect i on 
. .  . 

To check t h e  e f f e c t  o f  a r ray  s i z e  on t h e  pressure drop and v o i d  

f r a c t i o n  d i s t r i b u t i o n s  measured i n  Phe 4 x 4 a r ray  t e s t  sect ion, 



a 9 x 9 ar ray  t e s t  sec t i on  was const ruc ted and t e s t e d  i n  t h e  heat - -  - .- - " 

t r a n s f e r  loop. Th is  t e s t  sec t i on  was 6 f t  long, and had t h e  same - . - . - -  

r o d  sizes, spacing devices, and-.end connect ions as were used i n  - - 
t h e  4 x 4 t e s t  sect ion,  The containment box was 5 in .  square i n  

i ns ide  dimension. 

The o n l y  notab le  d i f f e r e n c e  between t h e  two t e s t  sect ions, o ther  

than &ray  size, was t h a t  t h e  p i t c h  was 0.570 in. on t h e  4 x '4 - 

and 0,535 on t h e  9 x 9. Th is  was done p r i m a r i l y  t o  ho ld  t h e  - - - 

equ ivg lent  diameters near ly  t h e  same on both t e s t  sect ions. The 

ac tua l  equ iva lent  diameter o f  t h e  9 x 9 t e s t  sec t i on  was 0.456 in .  

compared t o  0.470 in. f o r  t h e  4 x 4 t e s t  sec t i on  ( ca l cu la ted  fo r  

t h e  bottom h a l f  o f  each). 

The experiments were performed i n  t h e  same system as t h e  16 p i n  

sec t ion  us ing  s i m i l a r  experimental techniques. The 81 p i n  sec t i on  

was instrumented f o r  pressure drop a t  t h e  same a x i a l  p o s i t i o n s  as 

i n  t h e  smaller sect ion,  However, v o i d  measurements were obta ined 

o n l y  a t  t h e  upper pos i t ion ,  i .e.  -, just upstream from t h e  upper 

spacer. 

i 
The la rge r  t e s t  sec t ion  was powered by t h e  Al l is-Chalmers un ipo la r  - .- 

generator having a capac i ty  of 60,000 amp a t  30 v. Power leve l  s 

'. 
as h igh  as 1.7 mw were uPi I l i e d ,  , 



, 9.2 Resu I t s  and Conc l us ions 

Although t h e  t e s t  program on t h e  9 x  9 ar ray  was no t  so extensive 
. .- 

as t h e  4 x 4 t e s t  program, enoug'h data were obta ined t o  demonsfrate 

t h a t  t h e  la rge increase i n  ar ray  s i z e  d i d  not  appreciably a f f e c t  . - 

t h e  pressure drop o r  vo id  d i s t r i b u t i o n  ( i . e .  - t h e  same equ iva lent  

diameter concept used t o  analyze t h e  4 x  4 t e s t  sec t i on  was used 

f o r  t h e  9 x  9 a r ray ) .  

The pressure drop comparison i s  best  i l l u s t r a t e d  by looking a t  

t h e  two-phase f r i c t i o n  m u l t i p l i e r s  (dLO2) f o r  t h e  9 x  9 ar ray  as 

shown i n  F igure  31. As i n  t h e  case o f  t h e  4 x  4 a r ray  t h e  data 

are  c o r r e l a t e d  by t h e  modi f ied  M a r t i n e l l i  r e l a t i o n s h i p s  ( 8  and 9). 

It i s  apparent t h a t  t h e r e  i s  more s c a t t e r  present  i n  these data 

(due t o  some s l i g h t  pressure t a p  burrs) ,  bu t  t h e  mean values a re  

s t i l l  we l l  described by t h e  modi f ied  M a r t i n e l l i  l i nes .  

The vo id  measurements i n  t h e  81 p i n  t e s t  sec t i on  were c a r r i e d  o u t  

i n  a  manner i d e n t i c a l  t o  t h a t  described f o r  t h e  16 pi'n sec t ion .  

One of t h e  ob jec t i ves  o f  these t e s t s  was t o  determine whether 

the re  were any d i f fe rences between . the v o i d  d i s t r i b u t i o n s  i n  t h e  

two ar ray  s izes.  I n t e r e s t  i n  t h i s  area i s  f u r t h e r  s t imulated.by 

t h e  curves i n  F igures  28 and, 29 and t h e  quest ion as t o  t h e  e f f e c t  

o f  t h e  la rger  ar ray .  Unfor tunate ly ,  t h e  81 p i n  t e s t s  were a c t u a l l y  

performed before t h e  16 p i n  tes ts ,  and before t h e  experimental 

technique had been thoroughly re f i ned .  The two over -a l l  average 

vo id  p o i n t s  are  included i n  F igure  30, but  it has not been poss ib le  
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,F igure  31 - Two-Phase F r i c t i o n a l  F r i c t i o n a l  Pressure Drop M u l t i p l i e r s  a t  600 P S l A  
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t o  i n t e r p r e t  t h e  l oca l  v o i d  f r a c t i o n s  i n  a manner equ iva len t  t o  
. a .  

t h a t  f o r  t h e  16 p i n  r e s u l t s .  The ove r -a l l  i n teg ra ted  v o i d  f r a c t i o n s  

appear t o  be i n  reasonable agreement w i t h  t h e  16 p i n  data. 

10.0 RECOMMENDATIONS FOR FUTURE STUDIES 

I .  I t  i s  suggested..that f u t u r e  research and development programs 

concerned w i t h  pressure losses under s i m i l a r  circumstances u t i l i z e  

low pressure;- c o l d  water experiments w i t h  p ro to type geometry and 

h igh 'pressure b o i l i n g  experiments w i t h  scaled-down geometry. 

2.  The vapor d i s t r i b u t i o n  i n  a b o i l i n g  r o d  a r ray  o f f e r s  some 
r .- _ .  . 

i n t e r e s t i n g  chal lenges, p a r t i c u l a r l y  w i t h  respect  t o  nuclear 

reac to r  app l i ca t i ons ,  which can be s a t i s f a c t o r i l y  met o n l y  by 

cont inued research *and development. 

11.0 APPLICATION OF RESULTS TO PATHFINDER 

I n  general t h e  r e s u l t s  from t h e  t e s t  program repo r ted  here in  have conf irmed 

t h e  c a l c u l a t i o n a l  techniques se lec ted  e a r l i e r ,  and thus  have n o t  necess i ta ted  

any ana lys i s  r e v i s i o n s .  

The hyd rau l i c  ana lys i s  of  t h e  b o i l e r  core  was f i r s t  presented i n  (25) .  A 

rev i sed  analys is ,  based upon l a t e s t  design parameters and i n c l u d i n g  t h e  r e s u l t s  

from t h e  t e s t  program has been completed. The r e s u l t s  o f  t h e  l a t e r  ana lys i s  

a r e  summarized i n  F igure  32. The re ference nominal r e c i r c u l a t i o n  flow i s  

now 66,100 gpm instead of  t h e  64,300 gpm repor ted  i n  (25). 

The complete thermal and hyd rau l i c  design and performance analyses ( i ,nclwding ...-. 

f low d ' i s t r  i bu t  ion, burnout margi n, el-c .,) based on t h e  t e s t  program resu l t s  i s  

repo r ted  i n  (26) . 
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