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INTRODUCTION 

Th i s  r epor t  is the f i r s t  of a new s e r i e s  to be i ssued  by the recent ly  

organized C e r a m i c s  Resea rch  and Development Operation, Reac tor  and 

F u e l s  Laboratory,  Hanford Labora tor ies .  The  C e r a m i c s  Resea rch  and 

Development Component (E. A. Evans,  Manager)  compr i se s  the following 

group s : 

C e r a m i c s  Resea rch  D. R. deHalas,  Manager 

Advance Fuel  Development K. Drumheller ,  Manager 

Fabricat ion Development R .  D. Widrig,  Manager  

F u e l s  Test ing and Analysis  W. E. Roake, Manager 

Special P r o j e c t s  L. E. Mills,  Manager 

The  work repor ted  in  th i s  and subsequent r e p o r t s  is a continuation 

* of r e a c t o r  fuels  s tudies  previously discussed in r e p o r t s  i s sued  by the 1- 

F u e l s  Development and the Plutonium Metallurgy Operations.  

r e p o r t s  in those s e r i e s  are: 
Previous  

F u e l s  Development Plutonium Metallurgy Date 

HW-74378 (Secre t )  HW-74718 (Secret)  July-September,  1962 

HW-74377 (Secre t )  HW-74162 (Secre t )  April-June, 1962 

HW-72343 (Secre t )  HW-73318 (Unclassified) January-March,  1962 

HW-72346 (Secret)  HW-72161 (Secre t )  October-December,  1961 
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SUMMARY OF CONTENTS 

Page  

CERAMICS RE SEARCH 

Plutonium Sulfides - Y. B, Katayama . . . . . . . . . . . 2. 1 

Pu2S3 melted congruently a t  1725 f 10 C under vacuum 
o r  a rgon  and w a s  s table  to  2300 C in  argon. Pu2S3 was  
not attacked by boiling, demineral ized water .  

Plutonium Mononitride - D, F. Carroll . . . . . . . . . . 2. 1 

P U N  melted congruently a t  2750 f 7 5  C under nitrogen 
(1 a tm) ,  but dissociated at  2600 degrees  under a rgon  o r  
helium. 

PuOg-Carbon Reaction - R. E. Skavdahl . . . . . . . . . . 2. 2 

Plutonium carb ides  and oxides of var ious  compositions 
w e r e  formed by ine r t  gas s inter ing of p re s sed  mix tu res  
of P u 0 2  and graphi te  powder. 

Spontaneous la t t ice  expansion of PuC at  about 0. 02’7’0 p e r  
month occur red  over  per iods  extending to  15  months,  
with no apparent  saturat ion.  

Plutonium Carbide - J. B. Burnham and R. E. Skavdahl . . . 2. 3 

P u 0 2 - M g 0  Phase  Studies - D. F. Carro l l  . . . . . . . , . 2 . 4  

PuO2 and MgO are immisc ib le  in  all proport ions and 
f o r m  no compounds s table  at room tempera ture .  

U02-ThO2 P h a s e  Studies - J. A. Chr is tensen .  . . . . . . . 2. 5 

T h o 2  was  soluble in  UO2 in  a l l  proport ions,  although the 
solution was not ideal  as shown by minima in  both melt ing 
point ve r sus  composition and lattice parameter  v e r s u s  
composition curves .  

H. M..Mattys . . . . . . . . . . . . . . . . . . . . 2 . 6  
Small  additions of P u 0 2  enhance the s interabi l i ty  of Th02.  
Melting points of (Th, Pu902 solid solutions are constant 
below 25 wt% ThO2. 
solution obey Vegard’s  Law. 

P r o p e r t i e s  of Sintered ThO2-PuO2 - M. D. F r e s h l e y  and 

Lat t ice  p a r a m e t e r s  of the solid 
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U 0 2  C e r m e t s  - D. W. B r i t e  and K. R. Sump . . . . . . .  2.10 

A s e r i e s  of tungsten-U02 c e r m e t s  was  fabr ica ted  by 
high-energy-rate  impaction. The tungsten ma t r ix  was 
uniform and continuous at  U 0 2  concentrations as g rea t  
as 50 wt%. 

UN-Tungsten Cerme t  - D. W. Br i t e  and K. R. S u m p .  . . .  2.10 
A 50 wt% uranium mononitride-tungsten c e r m e t  was  
fabr ica ted  by impaction. The impacted density,  16 .  3 
g / c c ,  was 99. 0% of the theoret ical  density. 

J. L. Ba te s  . . . . . . . . . . . . . . . . . . . .  2.15 

Uranium monosulfide impacted to  99% TD showed 
improvements  in physical  p roper t ies  over  s in te red  US. 

J. L. Daniel . . . . . . . . . . . . . . . . . . . .  2.15 

A UO2-50 wt% c e r m e t  was examined at  t empera tu res  
t o  1500 C by reflection e lec t ron  microscopy.  

Mic ros t ruc tu re  of Sintered, Impacted U 0 2  - D. W. B r i t e  
and K. R. Sump . . . . . . . . . . . . . . . . . .  2.15 

The effects  of var ia t ions  in  s inter ing r a t e ,  t ime,  and 
t e m p e r a t u r e  on the  mic ros t ruc tu re  of the s in te red  U 0 2  
are  i l lus t ra ted  in  a s e r i e s  of photomicrographs.  

Uranium Monosulfide - D. W. Br i te ,  K. R. Sump, and 

Elec t ron  Microscopy of U 0 2  -Tungsten Cerme t  - 

T h e r m a l  Expansion of U 0 2  - J. A. Chr is tensen  . . . . . .  2. 20 

An equation re la t ing  the specific volume of U 0 2  to  
t e m p e r a t u r e s  between z e r o  and 3100 C was  derived. 

Molten U 0 2  - J. A. Chr is tensen  . . . . . . . . . . . . .  2. 21  

U 0 2  heated t o  3100 C in closed tungsten capsules  
re ta ined an O / U  ra t io  of 2. 00 and r eac t ed  l i t t le  with 
the tungsten. 

P repa ra t ion  of Samples fo r  In-Reactor  U 0 2  Melting Studies - 
J. A. Chr is tensen  and L. A. P e m b e r  . . . . . . . . .  2.23 

Random distribution of 1 v0170 tungsten shot (-loot-200 
mesh)  in  s in te red  U 0 2  was  achieved. 

Hardness  of a (100)  c r y s t a l  f a c e  of U 0 2  showed four -  
fold rotat ional  symmetry .  
as the only act ive s l ip  plane a t  room tempera ture .  

Hardness  of U 0 2  - J. L. B a t e s  . . . . . . . . . . . . .  2. 23 

The (1 00) plane was  identified 
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Release  of Sorbed Gases  by Ionizing Radiation - 
H, J. Anderson . . . . . . . . . . . . . . . . . . .  2. 27 

Gas desorption equivalent to  900 C vacuum annealing was  
obtained by vacuum i r rad ia t ion  of U 0 2  a t  room t e m -  
pe ra tu re  in  a Co60 gamma field of 8. 9 x 105 R / h r .  

Evaluation of U 0 2  Analyses - H. J. Anderson . . . . . . . .  2. 28 

The rel iabi l i ty  of analytical  techniques f o r  commerc ia l ly  
fused U 0 2  was  evaluated by checking the vendor 's  r e s u l t s  
fo r  density,  stoichiometry,  and carbon and nitrogen content. 

Determination of P o r e  Size Distribution in U 0 2  - 
H. J. A n d e r s o n .  . . . . . . . . . . . . . . . . . . .  2. 28 

Development of a m o r e  p rec i se  measurement  of the 
contact angle between m e r c u r y  and U 0 2  yielded a 
30 percent  cor rec t ion  in pore s i ze  determination. 

U 0 2  Specimens f o r  Bas i c  Resea rch  - H. J. Anderson. . . . .  2. 28 

U 0 2  single c r y s t a l s  of var ious  shapes were p repa red  
fo r  s i t e s  in Germany, F rance ,  and the United States.  

High Tempera tu re  Electron Microscopy - J. 0. McPartland. . 
Specimens examined by reflection e lec t ron  microscopy 
w e r e  heated t o  t empera tu res  g r e a t e r  than 1400 C with 
an  auxi l iary electron gun. 

2. 29 

FUELS DEVELOPMENT 

Impaction of UO2-PuO2 - D. W. Br i t e ,  K. R. Sump, 
W. T. Ross ,  and L. G. Merke r  . . . . . . . . . . . .  3 .1  

Urania - 2. 5 wt% plutonia powder w a s  densified by 
impact, using a hooded Dynapak machine, to  provide 
a c e r a m i c  m a t e r i a l  suitable f o r  fuel in vibrationally 
compacted fuel e lements .  

Fue l  Element  Rejuvenat im - R. C. Smith . . . . . . . . . .  3 . 4  

A one-foot-long fuel e lement  designed to tes t  the feasi- 
bil i ty of fuel rejuvenation was  fabricated and sent to 
NRTS for i r radiat ion.  

Hot Isostat ic  P r e s s i n g  - J. J. Hauth . . . . . . . . . . . .  3. 6 

U02  r o d s  c l a d i n  thin s ta in less  s t ee l  w e r e  fabr ica ted  
by swaging and hot i sos ta t ic  press ing ,  in cooperation 
with BMI. 

Vibrational Compaction Studies - J. J. Hauth . . . . . . . .  3. 11 

T r a n s v e r s e  excitation applied to the top of ver t ical ly  
suspended cladding s implif ies  coupling of vibrational 
energy  to thin-wall cladding tubes.  
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Hot Vibrational Compaction - J. J. Hauth and 
D. R. Burroughs  . . . . . . . . . . . . . . . . . . .  3.11 

Higher densi t ies  achievable by vibrational compaction 
at  elevated t empera tu res  are  direct ly  re la ted  to the 
t h e r m a l  expansion cha rac t e r i s t i c s  of the cladding and 
c o r e  ma te r i a l s .  

PRTR Fuel  Fabr ica t ion  - C. H Bloomster  . . . . . . . . .  3.13 

Fabr ica t ion  of WO2-PuO2 fuel e lements  fo r  a full PRTR 
c o r e  loading proceeded on schedule. 
have been produced, and successful  operation has  been 
demonstrated to a maximum exposure of 600 Mwd/ton 
at tube powers  up to  1150 kw. 

Forty- two elements  

Plutonium Distribution in Incrementally Loaded PRTR Fuel  

To minimize plutonium segregation in mixed-oxide fuel 
rods ,  the number of i nc remen t s  loaded in a rod  was 
doubled. A p r o c e s s  for  continuous fuel loading is being 
developed. P re l imina ry  investigation of nondestructive 
t e s t s  for  determining segregation revealed two promising 
methods.  

Rods - R. E. Bards l ey  and C. H. Bloomster  . . . . . . .  3.13  

EBWR Plutonium Fuel  Loading - R. E. Sharp . . . . . . . .  3.16 

A cooperative HL-ANL program was  init iated to i r r a d i a t e  
plutonium fuel e lements  in the Experimental  Boiling 
Water  Reac tor .  Fue l  c r i t e r i a  were  establ ished and 
m a t e r i a l  p rocurement  initiated. 
vibrational compaction of the ma te r i a l  is in p rogres s .  

Design of a facil i ty fo r  

Extended Surface Plutonium F u e l s  - @. H. Bloomster  . . . .  3. 1 7  

A rs l l -c ladding p r o c e s s  developed f o r  Ziscalsy-clad,  
P u - Z r  fuel e lements  e l iminates  ex terna l  contamination. 

L. C. Lemon, and W. T. R o s s .  . . . . . . . . . . . .  3.18 

Special fuel fabr icat ion act ivi t ies  included (1 1 comple - 
t ion of 219 A1-Pu sods and 40 flux monitor foi ls  fo r  
physics  t e s t s ,  62) 33 percent  completion of 1000 Pu-A1 
rods  f o r  physics  t e s t s ,  (3)  development of a p rocess  to  
make  depleted UO -0 .  90 wt% P u 0 2  pel le ts  of 91-94 

(4)  cast ing and par t ia l  extrusion of 14 A1 - 8 wt% P u  - 
2 wt% N i  b i l le t s  f o r  cor ros ion  tes t  fuel e lements ,  and 
(5 )  fabr icat ion of 7 1  Al-clad,  csextruded, thin-walled 
tubular fuel e lements  containing A1-Pu and A 1 - ~ 2 3 5  
alloy c o r e s .  

Special Fue l  Element Fabr ica t ion  - @. H. B l soms te r ,  

percent  theoret ica  ? density for  physics  experiments ,  

W 

. 
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Fue l  P repa ra t ion  Fac i l i t i es  - L. P. Murphy . . . . . . . .  3. 21 

Labora tory  faci l i t ies  fo r  UO2 powder preparat ion were  
modified. 

Fac i l i ty  Hazards  Analysis  - W. J. Bailey,  J. B. Burnham, 
and L. G. Merke r  . . . . . . . . . . . . . . . . . .  3. 21 

The final draft  of a haza rds  ana lys i s  f o r  the Plutonium 
Fabr ica t ion  Pilot Plant is being assembled  for publication. 

FUELS TESTING AND ANALYSIS 

I r rad ia t ion  of a La rge  Diameter  Fuel  Rod - G. R.  Horn, 

Pos t i r rad ia t ion  examination of a failed 2. 33 -inch 
d iameter  fue l  rod revealed evidence of a s e v e r e  t r a n s -  
v e r s e  flux gradient ,  reduction of coolant flow, and 
bowing of the rod. 

Ce rme t  - G. R. Horn, W. J. Flaherty,and D. W. B r i t e  . . 4 . 4  

Short - t e r m  i r rad ia t ion  of h igh-energy-ra te  impact  
fo rmed  50 wt% UO2-W ce rme t  produced no reaction 
between the components. U 0 2  sublimed only f r o m  
exposed sur faces .  

M. K. Millhollen, and W. J. F lahe r ty .  . . . . . . . . .  4. 1 

High Tempera tu re  I r radiat ion Test ing of U 0 2  -Tungsten 

Irradiat ion of U 0 2  Single Crys t a l  Pe l l e t s  - G. R. H o r n .  . . .  4. 9 

Relatively g r e a t e r  t he rma l  conductivity of l a r g e  g ra in  
U 0 2  was  demonstrated by lack of s t ruc tu re  change in 
1 / 2-inch d iameter  single,  b i -  and t r i - c r y s t a l  pel le ts  
i r r ad ia t ed  to genera te  approximately 760, 000 B tu / (h r ) ( f t2 ) .  

Low Tempera tu re  I r radiat ion Sintering of Swaged U 0 2  - 
W. J. F lahe r ty  . . . . . . . . . . . . . . . . . . . .  4 . 1 0  

Ceramographic  examination of i r rad ia ted ,  cold- swaged 
U 0 2  revealed s in te r ing  between point contact a t  bulk 
fuel t empera tu re  of only 300-400 C. 

B u r s t  Tests of Cold-Swaged PRTR Fue l  Rods - W. J. F laher ty ,  
and L. E. Mil ls  . . . . . . . . . . . . . . . . . . .  4 .10  

Cold-swaged, Zi rca loy-c lad  U 0 2  PRTR fuel r o d s  bu r s t  
a t  p r e s s u r e s  (7820 and 7880 psi ,  a t  550 F) t h r e e  t i m e s  
g r e a t e r  than those expected in  PRTR r o d s  a f t e r  1 0 , 0 0 0  
Mwd/tonU exposure.  

A l -Pu  alloy s ec imens  containing 6. 3 3 ,  16. 3 3  and 27. 1 7  
percent  
react ivi ty  change. 

Phoenix Fue l  Experiment  - M. D. F r e s h l e y  . . . . . . . . .  4 . 1 2  

w e r e  i r rad ia ted  fo r  investigation of 
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I r radiat ion of Prototypic U 0 2  - P u 0 2  Fue l  Ele-ments, 
M. D. F resh ley  . . . . . . . . . . . . . . . . . . .  4.13  

Comparative i r rad ia t ion  t e s t s  of uniformly and var iably 
enriched fuel r o d s  revealed evidence of dissolution of 
impuri ty  nitrogen by the Zi rca loy  cladding of the higher 
heat flux rods .  
rods.  

Fue l  performance was comparable  in all 

I r radiat ion Pe r fo rmance  of MgO-PuO and Z r 0 2 - P u 0 2  Fue l s  - 
M. D. F r e s h l e y  and-,D. F. Carrol?  . . . . . . . . . . .  4.15 

No redis t r ibut ion of P u 0 2  par t ic les  in  MgO occurred  
during i r rad ia t ion  of immisc ib le  mix tu res  of MgO-Pu02 
pel le ts ,  even in columnar gra in  growth regions.  Unusual 
m i c r o s t r u c t u r e s  were  developed during i r rad ia t ion  of 
ZrOZ - P u 0 2  pel le ts .  

P u 0 2  Segregation in  Incremental ly  Loaded PRTR Fuel  Rods - 
M. D. F r e s h l e y  . . . . . . . . . . . . . . . . . . .  4 . 2 0  
Approximately the same degree of i n - r eac to r  s inter ing 
was  found in  i r rad ia ted ,  swaged U02-PuO2 PRTR fue l  
r o d s  containing 80  o r  1 6 0  U 0 2  and P u 0 2  increments .  
The  equiaxed gra in  growth that occur red  is typical of 
0. 565-inch d iameter  fuel r o d s  i r rad ia ted  to  genera te  
300, 000 to 400, 000 Btu / (hr ) ( f t2) .  

W. J. F laher ty ,  M. I). Freshley ,  M. K. Millhollen, and 
R. E .  Sharp . . . . . . . . . . . . . . . . . . . . .  4 .23  

Encouraging alleviation of fuel e lement  p rocess  tube wea r  
and fret t ing co r ros ion  was achieved by additions of extended 
sur face ,  clip-on fuel e lement  w e a r  pads.  

Element  - M. D. F r e s h l e y  . . . . . . . . . . . . . . .  4. 25 

Pos t i r rad ia t ion  examination of a failed,  swaged MgO-PuO2 
PRTR fuel e lement  revealed regions of anomalously high 
P u 0 2  content, one of which probably coincided with the point 
of fa i lure .  
or iginal  b r i t t l e  fa i lure  assoc ia ted  with a n  external  l aye r  
of m a s s i v e  zirconium hydride and s e v e r e  internal  cor ros ion .  

W. J. F laher ty ,  and M. D. F r e s h l e y  . . . . . . . . . .  4. 28 

F o u r  PRTR fuel e lements  were  removed f r o m  se rv ice  
because  of mechanical  damage found during postdecontam- 
ination inspection. 

Extended Surface PRTR Fuel  Element Wear  P a d s  - 

Post i r rad ia t ion  Examination of a MgO-Pu02 PRTR Fuel  

A ductile spli t  propagated f r o m  the point of 

Inspection of PRTR Fue l  Elements  - M. K. Millhollen, 

. 
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I r radiat ion of Uranium -Plutonium Oxide - W. J. Bai ley 
and T. D. Chikalla . . . . . . . . . . . . . . . . . .  4.29  

P u 0 2  content has  a marked  effect  on s t ruc tu re  changes 
during i r rad ia t ion  of low density UO2-PuO2 fuel, but 
l i t t le  effect i n  high densi ty  pellets.  
incorporat ing mixed c rys t a l  (U,  P u ) 0 2  developed m o r e  
extensive g ra in  growth and r e l eased  m o r e  f iss ion gas than 
did pe l le t s  made  from mix tu res  of U 0 2  and Pu02 .  Fuel  
capsules  per formed adequately to 10 ,  000 Mwd/ton U02 - 

High density pe l le t s  

Pu02 .  

W. J. Bai ley  and T. D. Chikalla . . . . . . . . . . . .  4.44  
Short Duration I r rad ia t ions  of U 0 2  and UO2-PuO2 - 

F o u r  spec imens  i r r ad ia t ed  in  the MTR will  be  des t ruc -  
t ively examined f o r  additional information on i n - r e a c t o r  
s in te r ing  and the effect of plutonium content on the 
s tabi l i ty  of U 0 2 .  

F i s s ion  F ragmen t  Migration in UO - J. L. Bates ,  
J. A. Chr is tensen ,  and W. E. &oake . . . . . . . . . .  4.45  

Dri l l ings taken along the d iameter  of an  i r r ad ia t ed  U 0 2  
fue l  core confirmed earlier findings of g r o s s  f iss ion 
f r agmen t  re locat ion during i r rad ia t ions ,  but revea led  
no plutonium migrat ion.  

In-Reactor  Tes t ing  Devices - W. J. Bailey and S. H. Woodcock 4 .45  

T h r e e  t e s t  devices  f o r  i n - r eac to r  f u e l  evaluation a re  
de scr ibed .  
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Plutonium Sulfides - Y .  B, Katayama . . . . . . . . . . .  2. 1 

Pu2S3 melted congruently a t  1725 f 1 0  C under vacuum 
o r  a rgon  and was s table  to  2300 C in  argon. Pu2S3 was  
not attacked by boiling, demineral ized water .  

Plutonium Mononitride - D. F. C a r r o l l  . . . . . . . . . .  2. 1 

P U N  mel ted  congruently a t  2750 f 75 C under nitrogen 
(1 a tm) ,  but dissociated at  2600 degrees  under a rgon  or  
helium. 

PuO2-Carbon Reaction . R. E. Skavdahl . . . . . . . . . .  2. 2 

Plutonium carb ides  and cxides  of var ious  compositions 
w e r e  formed by ine r t  gas  s inter ing of p r e s s e d  mix tu res  
of PuO2 and graphi te  powder. 

Spontaneous la t t ice  expansion of PuC at  about 0. 02'36 p e r  
month occur red  over  per iods extending to  15  months,  
with no apparent  saturat ion.  

Plutonium Carbide - J. B. Burnham and R. E. Skavdahl . . .  2. 3 

Pu02-MgO Phase  Studies - D. F. Carrol l  . . . . . . . . .  2.4 

UO2-ThO2 Phase  Studies - J. A. Chr is tensen .  . . . . . . .  2. 5 

P u 0 2  and MgO are immisc ib le  in  all proport ions and 
form no compounds s table  at room tempera ture .  

T h o 2  was  soluble in  UOz in a l l  proport ions,  although the 
solution was not ideal  as shown by minima in  both melting 
point versus composition and lattice parameter  versus 
composition curves .  

P r o p e r t i e s  of Sintered T h 0 2 - P u 0 2  - M. D. F r e s h l e y  and 
H. M. Mattys . . . . . . . . . . . . . . . . . . . .  2 . 6  

Small  additions of P u 0 2  enhance the s interabi l i ty  of Th02.  
Melting points of (Th, Pup02 solid solutions w e  constant 
below 25 wt% Th02.  
solution obey Vegard ' s '  Law. 

Lat t ice  p a r a m e t e r s  of the  solid 
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U 0 2  C e r m e t s  - D. W. B r i t e  and K. R. Sump . . . . . . .  2.10 

A series of tungsten-U02 c e r m e t s  was fabricated by 
h igh-energy-ra te  impaction. The tungsten ma t r ix  w a s  
uniform and continuous at  U 0 2  concentrat ions as g rea t  
a s  50 wt%. 

UN-Tungsten Cerme t  - D. W. Br i t e  and K. R. S u m p .  . . .  2.10 

A 50 wt% uranium mononitride-tungsten c e r m e t  w a s  
fabr ica ted  by impaction. The impacted density,  16. 3 
g / c c ,  was 99. 0% of the theore t ica l  density. 

J. L. Ba te s  . . . . . . . . . . . . . . . . . . . .  2.15 

Uranium monosulfide impacted to  99% TD showed 
improvements  in physical  p rope r t i e s  over  s in te red  US, 

J. L. Daniel . . . . . . . . . . . . . . . . . . . .  2 . 1 5  

A UO2-50 wt% c e r m e t  was examined at  t e m p e r a t u r e s  
to  1500 C by ref lect ion electron microscopy.  

Mic ros t ruc tu re  of Sintered, Impacted U 0 2  - D. W. B r i t e  

The effects  of var ia t ions  in  s in te r ing  ra te ,  t ime ,  and 
t e m p e r a t u r e  on the mic ros t ruc tu re  of the s in te red  U 0 2  
are  i l lus t ra ted  in a s e r i e s  of photomicrographs.  

Uranium Monosulfide - D. W. Br i t e ,  K. R. Sump, and 

Elec t ron  Microscopy of U 0 2  -Tungsten Cerme t  - 

and K. R. Sump . . . . . . . . . . . . . . . . . .  2.15  

T h e r m a l  Expansion of U 0 2  - J. A. Chr is tensen  . . . . . .  2. 20 

An equation re la t ing  the specific volume of U 0 2  to  
t e m p e r a t u r e s  between z e r o  and 3100 C was derived. 

Molten U 0 2  - J. A. Chr is tensen  . . . . . . . . . . . . .  2. 21  

U 0 2  heated to  3100 C in closed tungsten capsules  
re ta ined an O / U  rat io  of 2. 00 and r eac t ed  l i t t le  with 
the tungsten. 

P repa ra t ion  of Samples f o r  In-Reactor  U 0 2  Melting Studies - 
J. A. Chr is tensen  and L. A. P e m b e r  . . . . . . . . .  2.23 

Random distribution of 1 vol0/0 tungsten shot (-100+200 
mesh)  in s in te red  U 0 2  was  achieved. 

Hardness  of a (100) c r y s t a l  f ace  of U 0 2  showed fou r -  
fold rotat ional  symmetry .  
as the  only act ive s l ip  plane a t  room tempera ture .  

Hardness  of U 0 2  - J. L. B a t e s  . . . . . . . . . . . . .  2. 23 

The (1 00) plane was  identified 
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Release  of Sorbed Gases  by Ionizing Radiation - 
H. J. Anderson . . .  ; . . . . . . . . . . . . . . .  2. 27 

Gas desorption equivalent to 900 C vacuum annealing was  
obtained by vacuum i r rad ia t ion  of U 0 2  a t  room t e m -  
perature in a Co60 gamma field of 8 . 9  x l o 5  R / h r .  

Evaluation of U 0 2  Analyses  - H. J. Anderson . . . . . . . .  2. 28 

The reliabil i ty of analytical  techniques fo r  commerc ia l ly  
fused U 0 2  w a s  evaluated by checking the vendor 's  r e s u l t s  
fo r  density, s toichiometry,  and carbon and nitrogen content. 

H. J. A n d e r s o n .  . . . . . . . . . . . . . . . . . . .  2.28 

Development of a m o r e  p rec i se  measurement  of the 
contact angle between m e r c u r y  and U 0 2  yielded a 
30 percent  cor rec t ion  in pore s ize  determination. 

Determination of P o r e  Size Distribution in U 0 2  - 

U 0 2  Specimens fo r  Bas i c  Resea rch  - H. J. Anderson. . . . .  2. 28 

U 0 2  single c r y s t a l s  of var ious  shapes were p repa red  
for  s i t e s  in Germany, F rance ,  and the United States.  

High Tempera tu re  Elec t ron  Microscopy - J. 0. McPartland. . 2. 29 

Specimens examined by reflection electron microscopy 
w e r e  heated to  t empera tu res  g r e a t e r  than 1400 C with 
an  auxi l iary electron gun. 

FUELS DEVELOPMENT 

Impaction o f ' U 0 2 - P u 0 2  - D. W. Br i t e ,  K. R. Sump, 
W. T .  Ross ,  and L. G. Merke r  . . . . . . . . . . . .  3.1  

Urania - 2. 5 wt% plutonia powder w a s  densified by 
impact, using a hooded Dynapak machine, to  provide 
a c e r a m i c  m a t e r i a l  suitable fo r  fuel in vibrationally 
compacted fuel e lements .  

Fue l  Element  Rejuvenation - R. C. Smith . . . . . . . . . .  3.4 

A one-foot-long fuel e lement  designed to  tes t  the feasi- 
bility of fuel rejuvenation w a s  fabr icated and sent to  
NRTS for i r rad ia t ion .  

Hot Isostat ic  P r e s s i n g  - J. J . '  Hauth . . . . . . . . . . . .  3. 6 

U 0 3  r o d s  clad in thin s t a in l e s s  s tee l  w e r e  fabr icated 
by :waging and hot isostat ic  press ing ,  in cooperation 
with BMI. 

Vibrational Compaction Studies - J. J. Hauth . . . . . . . .  3.11 

T r a n s v e r s e  excitation applied to the top of ver t ical ly  
suspended cladding s implif ies  coupling of vibrational 
energy to  thin-wall cladding tubes.  
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Hot Vibrational Compaction - J. J. Hauth and 
D. R. Burroughs . . . . . . . . . . . . . . . . . . .  3.11 

Higher densi t ies  achievable by vibrational compaction 
at  elevated t empera tu res  a r e  direct ly  re la ted  to the 
the rma l  expansion cha rac t e r i s t i c s  of the cladding and 
c o r e  mater ia l s .  

PRTR Fuel  Fabricat ion - C. H Bloomster  . . . . . . . . .  3.13 

Fabricat ion of UO2-PuO2 fuel e lements  for  a full PRTR 
c o r e  loading proceeded on schedule. 
have been produced, and successful  operation has  been 
demonstrated to a maximum exposure of 600 Mwd/ton 
at  tube powers up to 1150 kw. 

Forty- two elements  

Plutonium Distribution in Incrementally Loaded PRTR Fue l  

To minimize plutonium segregation in mixed-oxide fuel 
rods ,  the number of increments  loaded in a rod was 
doubled. A p rocess  for  continuous fuel loading is being 
developed. P re l imina ry  investigation of nondestructive 
t e s t s  f o r  determining segregation revealed two promising 
methods.  

Rods - R. E. Bards ley  and C. H. B looms te r .  . . . . . .  3.13  

EBWR Plutonium Fuel  Loading - R. E. Sharp . . . . . . . .  3 .16  
A cooperative HL-ANL program was initiated to i r r a d i a t e  
plutonium fuel  e lements  in the Experimental  Boiling 
Water Reac tor .  Fuel  c r i t e r i a  were  established and 
ma te r i a l  procurement  initiated. 
vibrational compaction of the mater ia l  is in p rogres s .  

Design of a facil i ty fo r  

Extended Surface Plutonium F u e l s  - C. H. Bloomster  . . . .  3. 17 

A roll-cladding p r o c e s s  developed fo r  Zircaloy-clad,  
Pu-Z,r  fuel e lements  e l iminates  external  contamination. 

L. C. Lemon, a n d W .  T. R o s s .  . . . . . . . . . . . .  3.18 

Special fuel fabrication act ivi t ies  included (1) comple- 
tion of 219 A1-Pu r o d s  and 40 flux monitor foils fo r  
physics t e s t s ,  ( 2 )  33 percent completion of 1000 Pu-A1 
rods  fo r  physics t e s t s ,  (3) development of a p rocess  to  
make depleted UO -0. 90 wt% P u 0 2  pel le ts  of 91-94 

(4) cast ing and par t ia l  extrusion of 1 4  A1 - 8 wt% P u  - 
2 wt'% N i  bi l le ts  fo r  cor ros ion  test  fuel e lements ,  and 
(5 )  fabr icat ion of 71 Al-clad,  coextruded, thin-walled 
tubular fuel e lements  containing A1-Pu and Al-U235 
alloy co res .  

Special Fue l  Element Fabricat ion - C. H. Bloomster ,  

percent theoret ica  ? density for  physics experiments ,  



1 . 7  Hw-76300 

Fue l  P repa ra t ion  Fac i l i t i es  . L. P. Murphy . . . . . . . .  3. 21  

Laboratory faci l i t ies  fo r  U 0 2  powder preparat ion were  
modified. 

Fac i l i ty  Hazards  Analysis - W. J. Bailey,  J. B. Burnham, 
and L.  G. Merke r  . . . . . . . . . . . . . . . . . .  3. 21 
The final draft  of a haza rds  ana lys i s  for the Plutonium 
Fabr ica t ion  Pilot  Plant is being assembled  f o r  publication. 

FUELS TESTING AND ANALYSIS 

Irradiat ion of a Large  Diameter  Fuel  Rod - G. R. Horn, 
M. K. Millhollen, and W. J. F lahe r ty .  . . . . . . . . .  4. 1 

Pos t i r rad ia t ion  examination of a failed 2. 33 -inch 
d i ame te r  fuel rod revealed evidence of a s e v e r e  t r a n s -  
v e r s e  flux gradient ,  reduction of coolant flow, and 
bowing of the rod. 

Ce rme t  - G. R. Horn, W. J. Flaherty,and D. W. B r i t e  . . 4.4 

Short - t e r m  i r rad ia t ion  of h igh-energy-ra te  impact 
f o r m e d  50 wt% UO2-W ce rme t  produced no react ion 
between the components. U 0 2  sublimed only f rom 
exposed sur faces .  

High Tempera tu re  I r radiat ion Test ing of U 0 2  -Tungsten 

Irradiat ion of U 0 2  Single Crys ta l  Pe l l e t s  - G. R. Horn . . . .  4. 9 

Relatively g r e a t e r  t he rma l  conductivity of l a r g e  g ra in  
U 0 2  was  demonstrated by lack of s t ruc tu re  change in  
1 / 2-inch d iameter  single,  b i -  and t r i - c r y s t a l  pel le ts  
i r rad ia ted  to genera te  approximately 760, 000 Btu / (hr ) ( f t2) .  

Low Tempera tu re  I r radiat ion Sintering of Swaged U 0 2  - 
W. J. Flaher ty  . . . . . . . . . . . . . . . . . . . .  4 .10  

Ceramographic  examination of i r r ad ia t ed ,  cold -swaged 
U 0 2  . revealed s in te r ing  between point contact a t  bulk 
fuel t empera tu re  of only 300-400 C. 

and L. E. Mil ls  . . . . . . . . . . . . . . . . . . .  4.10  

Cold-swaged, Zi rca loy-c lad  U 0 2  PRTR fue l  r o d s  bu r s t  
a t  p r e s s u r e s  (7820 and 7880 psi ,  a t  550 F) t h r e e  t i m e s  
g r e a t e r  than those expected in  PRTR r o d s  a f t e r  10, 000 
Mwd/tonU exposure.  

B u r s t  Tests of Cold-Swaged PRTR Fuel  Rods - W. J. F laher ty ,  

Phoenix F u e l  Experiment  - M. D. F r e s h l e y  . . . . . . . . .  4.12 

Al -Pu  alloy. s ec imens  containing 6. 33, 16. 33 and 27. 17 
percent  
react ivi ty  change. 

w e r e  i r r ad ia t ed  fo r  investigation of 
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I r radiat ion of Prototypic U 0 2 - P u 0 2  Fue l  Elements ,  
M. D. F r e s h l e y  . . . . . . . . . . . . . . . . . . .  4.13  

Comparative i r rad ia t ion  t e s t s  of uniformly and var iably 
enriched fuel r o d s  revealed evidence of dissolution of 
impuri ty  nitrogen by the Zi rca loy  cladding of the higher  
heat flux rods .  
rods .  

Fue l  performance was comparable  in  all 

I r radiat ion Pe r fo rmance  of MgO-PuO and Z r 0 2 - P u 0 2  Fue l s  - 
M. D. F r e s h l e y  and:D. F. Carrol?  . . . . . . . . . . .  4.15 

No  redis t r ibut ion of P u 0 2  par t ic les  in MgO occurred  
during i r rad ia t ion  of immisc ib le  mixtures  of MgO-Pu02 
pel le ts ,  even in columnar gra in  growth regions.  Unusual 
m i c r o s t r u c t u r e s  w e r e  developed during i r rad ia t ion  of 
Z r 0 2 - P u 0 2  pellets.  

P u 0 2  Segregation in Incrementally Loaded PRTR Fuel  Rods - 

Approximately the same  degree of i n - r eac to r  s inter ing 
was  found in  i r rad ia ted ,  swaged UO2-PuO2 P R T R  fue l  
r o d s  containing 80 o r  160  U 0 2  and P u 0 2  increments .  
The  equiaxed g ra in  growth that occur red  is typical of 
0 .  565-inch d iameter  fuel r o d s  i r rad ia ted  to  genera te  
300, 000 to  400, 000 B tu / (h r ) ( f t2 ) .  

W. J. F laher ty ,  M. D. Fresh ley ,  M. K. Millhollen, and 

Encouraging alleviation of fuel element p r o c e s s  tube wea r  
and fret t ing co r ros ion  was achieved by additions of extended 
sur face ,  clip-on fue l  e lement  wea r  pads.  

Element  - M. D. F r e s h l e y  . . . . . . . . . . . . . . .  4. 25 

Pos t i r rad ia t ion  examination of a failed,  swaged MgO - P u 0 2  
PRTR fuel e lement  revea led  regions of anomalously high 
P u 0 2  content, one of which probably coincided with the point 
of fa i lure .  
o r ig ina l  b r i t t l e  fa i lure  assoc ia ted  with a n  ex terna l  l aye r  
of m a s s i v e  zirconium hydride and s e v e r e  internal  cor ros ion .  

W. J. F laher ty ,  and M. D. F r e s h l e y  . . . . . . . . . .  4. 28 

F o u r  PRTR fuel  e lements  were  removed f r o m  se rv ice  
because  of mechanical  damage found during postdecontam- 
ination inspection. 

M. D. F r e s h l e y  . . . . . . . . . . . . . . . . . . .  4.20 

Extended Surface PRTR Fuel  Element Wear  P a d s  - 

R. E .  Sharp . . . . . . . . . . . . . . . . . . . . .  4 .23  

Pos t i r rad ia t ion  Examination of a MgO-Pu02 PRTR Fuel  

A ductile split propagated f r o m  the point of 

Inspection of PRTR Fue l  Elements  - M. K. Millhollen, 
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I r radiat ion of Uranium-Plutonium Oxide - W. J. Bailey 
and T. D. Chikalla . . . . . . . . . . . . . . . . . .  4.29 

P u 0 2  content has  a marked  effect on s t ruc tu re  changes 
during i r rad ia t ion  of low density UO2-PuO2 fuel, but 
l i t t le  effect in high density pel le ts .  
incorporat ing mixed c rys t a l  ( U ,  Pu)O2 developed m o r e  
extensive gra in  growth and re leased  m o r e  f i ss ion  gas  than 
did pe l le t s  made  f r o m  mix tu res  of U 0 2  and Pu02.  Fuel  
capsules  per formed adequately to 10, 000 Mwd/ton U 0 2 -  

High density pel le ts  

Pu02 .  

W. J. Bailey and T. D, Chikalla . . . . . . . . . . . .  4 . 4 4  
Short Duration I r rad ia t ions  of U 0 2  and UO2-PuO2 - 

F o u r  spec imens  i r rad ia ted  in the MTR will be des t ruc -  
t ively examined fo r  additional information on in - r eac to r  
s in te r ing  and the effect of plutonium content on the 
s tabi l i ty  of U 0 2 .  

F iss ion  Fragment  Migration in UO - J. L. Bates ,  
J. A. Chris tensen,  and W. E. S o a k e  . . . . . . . . . .  4 . 4 5  

- 
Dril l ings taken along the d iameter  of an i r r ad ia t ed  U 0 2  
fuel c o r e  confirmed e a r l i e r  findings of g r o s s  f iss ion 
f ragment  re locat ion during i r rad ia t ions ,  but revealed 
no plutonium migration. 

In-Reactor  Tes t ing  Devices - W. J. Bailey and S. H. Woodcock 4 . 4 5  

T h r e e  t e s t  devices fo r  i n - r eac to r  fuel evaluation are  
descr ibed .  
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Fue l  Rod 

4 . 3  

4 . 4  

4.5 

4.  6 

4 . 7  

4 . 8  

4 . 9  

4 . 1 0  

4 . 1 1  

4 . 1 2  

4 .  13 

4. 14 

4. 15a 

4.  15b 

4.  16  

4.  17 

Micros t ruc ture  of Impacted Uo2-50 wt% 
Tungsten C e r m e t  Before I r radiat ion 

Components of Tungsten-Clad, U 0 2  -Tungsten 
C e r m e t  I r radiat ion Capsule  

U02-Tungsten C e r m e t  T e s t  Capsule  After 
I r radiat ion 

C r o s s  Section of I r radiated,  Tungsten-Clad, 
U02-Tungs ten C e r m e t  

Micros t ruc ture  of uo2-50 wt% Tungsten 
C e r m e t  

I r radiated High Density U 0 2  Pellets 

Low Tempera tu re ,  In - Reac  tor  Sintering 

PRTR F u e l  Rod Burs t  T e s t  Specimens 

Gas Re lease  from Irradiated Swage- 
Compacted U 0 2 - F u 0 2  

Irradiated MgO-13. 5 wt% P u 0 2  Sintered 
Pe l le t  Showing Uniform Distribution of P u 0 2  

Irradiated MgO-13. 5 wt% P u 0 2  Sintered 
Pellet Showing Uniform Distribution of P u 0 2  

I r rad ia ted  iVIg-0-13. 5 wt% P u 0 2  Sintered 
Pel le t  Showing Uniform Distribution of P u 0 2  
in  the Columnar  Gra in  Growth Region 
of the MgO Matr ix  

I r radiated ZrO2-10.4 wt% P u 0 2  High Density 
(91 70 TD) Sintered Pellets 

I r rad ia ted  ZrO2-10. 4 wt% P u 0 2  High Density 
(9170 TD) Sintered Pellets 

Autoradiographs of Segments  of I r radiated,  
Incr  e m  entally Loaded, and Swage -Compacted 
U 0 2 - P u 0 2  PRTR F u e l  Rods 

Longitudinal Sections of I r radiated,  Swage- 
Compacted U 0 2 - P u 0 2  F u e l  Rods 

of UO2 
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I r rad ia ted  U02-4 .  13 mole 70 P u 0 2  
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U 0 2 ;  Comparison of Sc ra t ch  Sampling with 
Dr i l l  Sampling 

Proposed Equipment to Operate  F u e l  E lemen t s  
at High Specific Power  and Discharge Them 
During Reac tor  Operation Without Reducing 
Coolant Flow ( l ' Icarus"  Exper iment )  

Proposed Equipment for  Measurement  
of High Tempera tu res  in a n  Operat ing F u e l  
Element  ("Helios'l Exper iment )  

Proposed  Equipment for  Visual Observation 
and Recording of High Tempera tu re  F u e l  
Region of an  Operating F u e l  Element  ( ' 'Argus" 
Exper iment )  
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CERAMICS RE SEARCH 

Plutonium Sulfides - Y. B. Katayama 

Pu2S3 m e l t s  congruently a t  1725 f 10 C under a t o r r  p r e s s u r e .  

X - r a y  diffraction ana lys i s  of a sample a f t e r  melting and resolidification 

showed only the Pu2S3 l ines ,  but on heating to  2000 C in th i s  vacuum, some  

Pu202S  was  formed.  

maximum tempera tu re  attained. 

ribbon furnace with a cal ibrated br ightness  pyrometer .  

In argon, however, Pu2S3 was  s table  to 2300 C, the 

Tempera tu res  were  measu red  in a tungsten 

Corros ion  samples  of Pu2S3 exposed to  boiling demineral ized water  

showed no sign of chemical  instability. 

The react ion of plutonium chips with sulfur  a t  300 C for 20 hour s  

yielded PUS with t r a c e s  of P u 2 0 2 S  and some  unreacted elemental  plutonium. 

Plutonium Mononitride - D. F. Carro l l  

Plutonium ni t r ide appeared to dissociate  and volatize rapidly a t  

2600 f 75 C under one a tmosphere  of e i ther  argon o r  helium. 

melt ing point was  observed.  

No distinct 

Under one a tmosphere  of nitrogen, congruent melting occur red  at  

2750 f 75 C. 
gen show them to be stoichiometric PUN. 

with zirconium chips a t  650 C. 
ribbon furnace  with a cal ibrated br ightness  pyrometer .  

X - r a y  diffraction ana lyses  of the spec imens  mel ted  in  n i t ro-  
Atmospheres were gettered 

Tempera tu res  were  measu red  in  a tungsten 

Solubility measu remen t s  w e r e  made  of P U N  in concentrated HC1, 

HF, HN03, H3P04,  and H2S04 a t  32 C. 
w e r e  completely dissolved in  less than 3 minutes ,  resul t ing in  a c l e a r  

g reen  and a c l e a r  blue solution indicative of Pu'~. In HF, HN03 and 

H2S04, dissolution was  not complete a f t e r  24 hours ,  although some react ion 

had occurred .  

In HC1 and H3P04,  P U N  samples  
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PuOZ-Carbon Reactions - R. E. Skavdahl 

Plutonium carb ides  and oxides of var ious  compositions were  formed 

by carbon reduction of Pu02.  
powder with the amount of powdered carbon calculated to yield the des i r ed  

product.  

lo t s  a t  about 1300 to  1400 C for 6 hours  in  flowing helium. 

summar ized  in Table 2. 1. 

Samples  were  p repa red  by mixing P u 0 2  

The mixed samples  were  p re s sed  into pel le ts  and s intered in two 

Resul ts  a r e  

TABLE 2 . 1  

Pu02-CARBON REACTION PRODUCTS 

Sample 
1 

2 

3 

4 

5 

6 

7 

Initial wt 70 Carbon 
1 . 9 1  

1. 66 

1. 31 

1 . 2 2  
11.20 

13 .40  

15 .10  

Des i red  Product  

puol. 56 

puol. 62 

puol. 70 

puol. 72  
PuC (46 a t . %  C) 

pu2c3 
PUC2 

wt % Carbon 

1.1 

1 . 0  

0. 60 

0. 80 

6. 0 

8. 6 

10. 2 

In Reaction Product  

Samples 1 through 4 w e r e  processed  together ;  res idua l  carbon 

contents all cor respond to  a range  of 40-45 percent  completion of the 

reduction reaction. 

Samples 5 through 7 w e r e  t rea ted  in  a second run  and had res idua l  

carbon contents corresponding to 7 5-8 5 percent  completion of react ion,  

X - r a y  analysis  showed that Sample 5 contained a l a r g e  quantity of Pu2C3, 

intermediate  quantit ies of both a - P u  0 

amount of PuO o r  PuC. 

and 8-Pu203,  and no detectable 2 3  

The p resence  of P u 2 0 3  combined with the absence of PuO in 

2 Sample 5 suggests  that  the formation of PuC by carbon reduction of PuO 

may  proceed by the following route:  

Pu02+ +C a - P u 2 0 3  ---+ tc P-Pu2O3 A +C P u  C +P-Pu203,  put. 
2 3  
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Plutonium Carbides  - J.  B. Burnham and R. E. Skavdahl 

Plutonium carb ides  of varying carbon content exhibited spontaneous 

expansion with t ime.  Latt ice pa rame te r  ve r sus  t ime  f o r  s amples  sealed 

in double glass capi l lar ies  (F igu re  2 .  1 )  indicates that the r a t e  of damage 

may  inc rease  with t ime.  

I I I 

4 .8 iX  

- 4 .874  
4 - 
L oi 

w 
c 

5 
2 
a, U 
.3 c 

4 .970  

Latt ice P a r a m e t e r  Change in PuC as  a Function of Time 

The  dilation is not caused by atmospheric  contamination s ince a 

5 day exposure of the samples  to  nitrogen contaminated with 1 / 2 percent  

oxygen caused no change in latt ice pa rame te r .  

mechanism is the creat ion of F renke l  defects") a n d / o r  res idua l  helium 

The  mos t  probable damage  

(1) Kinchin, G. H. and R .  S .  Pease .  "The Displacement of A toms  in 
Solids by Radiation", The  Physical  Society Repor ts  on Progress in  
Phys ics ,  Vol.  18:2-51. 1955. 
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a toms by alpha decay of plutonium. 

is 3 x 

to explain all of the growth. 

The calculated density of helium a toms 

helium a toms /PuC molecule, which is probably not g rea t  enough 

The  cumulative expansion data a r e  shown in Table  2. 2. 

TABLE 2 .2  

LATTICE EXPANSION OF PLUTONIUM CARBIDES WITH TIME 

Atom Percen t  Carbon Aa/ao Total  Time(days)  Aa/a/100 days 

2 9 . 1  I .  92  10-3  426 0 .46  10-3 

33. 0 1 . 1 3  279 0 .41 10-3 

35 .4  2 . 2 7  10-3  426 0 .53  10-3  

48. 2 1 . 3 3  10-3 27 6 0.49 10-3 

48. 2 1 .51 10-3 273 0 .55  10-3 

No cor re la t ion  between growth r a t e  and carbon content was  apparent.  

Theoretically,  the highly defected, carbon-poor PuC (35. 4 at .  '$0 C)  should 

expand a t  a lower r a t e  than the ca rbsn - r i ch  var ie ty  (48. 2 a t .  '$0 C). The 

fact  that  it does  not impl ies  that ,he mobility of vacancies  is v e r y  low a t  

room tempera ture .  

Pu02-MgO Phase  Studies - D. F. Car ro l l  
~ 

P u 0 2  and MgO are  immisc ib le  in a l l  proport ions and f o r m  no 

compounds that a r e  s table  a t  room tempera ture ,  as shown by X - r a y  ciiffrac- 

tion ana lyses  of samples  represent ing  1 7  different  P u 0 2  -MgO compositions.  

The  samples  w e r e  mechanically mixed, pressed ,  and s intered in  helium 

at  1600 C fo r  20 hours .  

The  s interabi l i ty  of 

g reen  density. Some P u 0 2  

a - P u  0 ref lect ions in the 2 3  

P u 0 2 - M g 0  was  independent of composition and 

reduction was  indicated by the presence  of 

diffraction pa t te rns  f o r  P u 0 2  - r i ch  compositions,  
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U 0 2 - T h 0 2  Phase  Studies - J. A.  Chris tensen - -  

A continuous s e r i e s  of U 0 2 - T h o 2  solid solutions is formed a t  

T h o 2  concentrations between 2 and 9 5  wt 70, as  evidenced by the absence 

of extraneous X - r a y  diffraction l ines in th i s  compositional range and the 

apparent ly  continuous na ture  of the liquidus. 

Significant depar ture  f rom ideal solid solubility does occur ,  however,  

as shown by the minimum and the depar ture  from Vegard ' s  Law apparent  

in a plot of la t t ice  pa rame te r  ve r sus  composition (F igu re  

Melt ing Point - 

jS50CK I , , , , 
5 .470  

2 0  40  60 80 Tho2 uo2 
Weight Percent ThOZ 

FIGURE 2 . 2  

Phase  Relationships for  the UO 2 - T h o 2  System 
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I I I 

Latt ice  p a r a m e t e r s  were  measu red  by extrapolation of the Nelson- 

Riley function and a re  p rec i se  to * 0. 001A. 

2 and 4 wt 70 Tho2,  the  same composition range in which a minimum in the 

liquidus was  previously observed.  

The  minimum occur red  between 

(1) 

I I 

P r o p e r t i e s  of Sintered T h 0 2 - P u 0 2  - M. D. F r e s h l e y  and H. M. Mattys 
I The sinterabil i ty,  melting points, and la t t ice  p a r a m e t e r s  of T h o 2  - 

mix tu res  were  investigated in preparat ion for  i n - r eac to r  evaluation. PuO 
Such a fuel would be  useful in a r eac to r  complex based on c rossed  uranium-  

thorium fuel cycles .  

will be  i r rad ia ted ,  in the f o r m  of high-density s in te red  pellets,  a t  different 

c o r e  t empera tu res  to different exposures .  

2 

T h o 2  enriched with 2, 5, 10,  15, and 20 wt 70 P u 0 2  

Sintering studies showed that achievable sintered densities of 

(Th, Pu)O 
and 50 a t .  70 P u 0 2  (F igu re  2. 3). 

50 wt 70 P u 0 2 ,  the apparent density is lower because of cracking.  

compacts  i nc rease  with increas ing  PuO, content between 2 wt 70 
At PuO concentrations g r e a t e r  than 2 

9.2 

9.0 i 

c 
/ 

/ 
" /  :/ 

/ O  

/ 
/ *  

0 
0 
0 

W e r g h r  I ' rrrent P"OZ 

FIGURE 2.3 
Density of T h 0 2 - P u 0 2  Mixtures  Sintered in  Helium 1650 C for 6 Hours  

_ _ - _ - - - - - - - - - - -  
(1) Cadwell, J. J. F u e l s  Development Operation Quar te r ly  P r o g r e s s  Report ,  

July, August, September,  1962, HW-74378. October,  1962. (SECRET) 
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Small  additions of P u 0 2  enhance the sinterabil i ty of T h o Z  in the 

same way as  do smal l  additions of CaO. 

88% TD with 220 ppm added CaO, and 9570 TD with approximately 0.170 

CaO. 2 
less of CaO content. 

Sintered densi t ies  of T h o 2  were  

S imi la r  T h o  containing 8 w t %  PuO 2 w a s  s intered to 9470 TD r e g a r d -  

The s inter ing t e s t s  were performed a t  1650 C fo r  6 hour s  in helium. 

T h o  -PuO 

and plutonium oxalate, followed by calcination fo r  2 hours  in a i r  at  500 C 

to  convert  the plutonium oxalate to  PuO 

double p r e s s e d  without binder  to 60% TD before sintering. 

mix tu res  were  prepared  by blending and wet bal l  mill ing T h o 2  2 2 

The mixed powders were  2 '  

The  melting points of P u 0 2  and of (Th,  P u ) 0 2  solid solutions were  

measu red  in helium on a tungsten ribbon fi lament.  

spec imens  containing l e s s  than approximately 2 5  wt% T h o 2  i s  constant, 

as shown in F igu re  2 . 4 .  

The melting point of 

Similar  behavior in U02-Th0 ,  <d s y s t e m s  was 

1 3100 

/ 
/ 

/ - 

/ 
/ 

/ 

2100 , 10 30 5 0  i o  go 

\Veigh; Perrent ThoZ 

FIGURE 2.4 

Melting Point of (Tn,  P u ) 0 2  Solid Solution 
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e a r l i e r  reported.  ( ' )  An apparent melting point of 2260 C was  obtained for 

pure  P u 0 2 ,  in agreement  with Chikalla, et al. ( 2 )  Extrapolation of the cu rve  

indicates a melting point g r e a t e r  than 3200 C f o r  pu re  T h o  2 '  
The la t t ice  p a r a m e t e r s  of (Th, P u ) 0 2  solid solutions were  de te rmined  

The la t t ice  pa rame te r  changes l inear ly  f r o m  5. 6010A by X - r a y  diffraction. 

( T h o 2 )  to 5.3960A ( P u 0 2 )  in  accordance with Vegard ' s  Law, as shown in 

F igu re  2. 5. 

helium revealed t r a c e s  of Q -Pu203.  A low-intensity peak corresponding 
to B - P u  0 was  a l so  recorded .  

2 3  2 3  
and the PuO, - r ich  phase indicates  a nonequilibrium condition. 

X - r a y  diffract ion pa t te rns  of P u 0 2 - r i c h  pel le ts  s intered in 

The  unexpected coexistence of P - P u  0 

20  40  G O  80 1( 

Weight Percent  PuOz 

FIGURE 2. 5 

1 

Latt ice  P a r a m e t e r  of (Th, P u ) 0 2  Solid Solution 
_ _ _ _ _ _ - _ _ _ _ - - - -  
(1) Lambertson,  W. A . ,  M. H. Mueller,  and F. H. Gunzell, J r . ,  

Uranium Oxide Equilibrium Systems: IV, U02-ThO2 ' I ,  Journa l  of the 11 

Amer ican  Ceramic  Society, Vol. 36, No. 11:397. November 1, 1953. 

( 2 )  Chikalla, T. D . ,  C. E. McNeilly, and R. E. Skavdahl. The  Plutonium 
Oxygen System, HW-74802. September,  1962. 
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- U02 C e r m e t s  - D. W. B r i t e  and K. R. Sump 

In an impacted, Uo2-50 wt% tungsten ce rme t ,  a uniform and 

continuous tungsten ma t r ix  was produced. 

apparent  a t  U 0 2  concentrations g r e a t e r  than 50 wt%, inc reases  with i n c r e a s -  

ing U 0 2  concentration, as shown in F igu re  2 . 7  

The  c e r m e t s  were  f o r m e d  by impaction, a t  1200 C and 280,000 psi ,  

Contact between U 0 2  pa r t i c l e s  , 

of mix tu res  of tungsten powder 4< 1 0 ~  d iameter  par t ic les )  and fused U 0 2  

(-65+200 mesh) .  Machinable d i sc s  (F igure  2.8) containing 50, 60, 70,80,  

90, and 95 wt% U 0 2  were  produced, with densi t ies  which var ied  f r o m  96. 0 
percent  TD (50  wt% U 0 2 )  t o  98.4 percent  TD (95 wt% U02) .  

A UO2-5O wt% tungsten c e r m e t  having a density of 13.48 g / c m 3  

(96. 3 percent  TD) was f o r m e d  f r o m  a mixture  of similar tungsten powder 
and micronized U 0 2  (F igu re  2.9). 
and 400, 000 psi ,  using a modified Bridgman anvil technique. 

The mixture  was  impacted at 1200 C 

UN-Tungsten C e r m e t  - D. W. B r i t e  and K. R. Sump 

Under impaction conditions of 1200 C and 400, 000 psi ,  a UN-50 wty0 

tungsten c e r m e t  having a density of 16. 28 g / c m 3  (99. 0 percent  TD) was  

fo rmed  (F igu re  2.10). 

A series of U 0 2  c e r m e t s ,  compris ing 35 vol70 metal l ic  constituent 

and -65 +200 m e s h  fused U02, was fo rmed  by impaction a t  1200 C and 

250, 000 ps i ,  

the  following table. 

The compositions and densi t ies  of the c e r m e t s  are shown in  

Metall ic Constituent Cermet  Density - 
Mol yb de num 10.44 g / c c  (97.  6% TD) 
18-8 Stainless  Steel 

Nickel -20 Chromium 
9. 69 g/Cc (97.970 TD) 
9. 65 g/CC (95.870 TL)) 

Mic ros t ruc tu res  of the c e r m e t s  a r e  shown in F igu re  2. 11 
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95 wt yo u 0 2  90  wt yo u 0 2  

80 wt yo UO2 

60 wt 70 U 0 2  

7 0  wt yo UO2 

50 wt 70 UO2 

As-Polished, 100 X 

F I G U R E  2 . 7  

M i c r o s t r u c t u r e  of U 0 2 - W  Cermets 

LEC.GL I I I C H L A U D .  W A S H  
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Polished, 1 OOX 

F I G U R E  2 . 9  

Micros t ruc ture  of Micronized U 0 2  -W Cermet  

Impacted, 1. 5 X  Polished, 100 X 

FIGURE 2 .10  

UN-W C e r m e t  
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35 vol70 Molybdenum 

35 ~ 0 1 %  Stainless  Steel (18-8) 

35 v0170 N i C r  (80-20)  

Polished lOOX 
FIGURE 2 . 1 1  

M i c r o s t r u c t u r e s  of UO C e r m e t s  2 
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Uranium Monosulfide::: - D. W. Br i t e ,  K .  R. Sump, and J. L. Ba te s  

Uranium monosulfide powder was impacted to 1 0 . 8 1  g/cm3 (99. 5 

percent  TD).  

methods is repor ted  to be  approximately 90 percent  TD. 

( -65  m e s h )  was heated under vacuum in a s t a in l e s s  s t ee l  capsule  at  1200  C 
for  20 minutes  before  impaction at  400, 000 psi ,  using Br idgman anvils.  

The  impacted US (Figure  2.12)  has  a metal l ic  appearance and i s  less 

suscept ible  to spall ing and crumbling than lower density samples  of s in te red  

us. 

The highest density previously obtained by conventional 

The  US powder 

Elec t ron  Microscopy of U02-Tungsten Cerme t  - J. L. Daniel 

Reflection e lec t ron  microscopy was used to  study impacted 

UO -50 wt '% tungsten c e r m e t s  a t  elevated t empera tu res ,  

U 0 2  in a nonsintered compact developed a continuous su r face  covering of 

small c r y s t a l s  while the tungsten remained unchanged (F igu re  2. 13) .  At  
the  same t empera tu re ,  a specimen previously s in te red  in  H2 a t  1750  C f o r  

1 2  hour s  developed a dense growth of l a r g e r  c rys ta l l i t es  on the tungsten 

phase  only. At 1500  C, both s in te red  and nonsintered spec imens  displayed 

distinctive c rys t a l  growth on both the U 0 2  and the tungsten. 

Mic ros t ruc tu re  of Sintered, Impacted U 0 2  - D. W. Br i t e  and K. R.  Sump 

At 900 C, the  2 

The gra in  s i ze  of impacted and s in te red  U 0 2  can be controlled 
o v e r  a wide range by varying the heating r a t e ,  t empera tu re  and soaking 

t i m e  during postim;3action sintering. 

these  var iab les  on the mic ros t ruc tu re  of U02  impacted to  9 2 .  770 T D  

before s inter ing.  F i g u r e  2. 15 ,  reproduced f r o m  a previous r epor t ,  

shows the effects  of s inter ing conditions on the density of the same 
ma te r i a l .  

F igu re  2. 14  shows the effects of 

(1) 

_ - _ _ _ _ _ _ _ _ _ _ _ _ -  
:k 

(1) Cadwell, J. J. F u e l s  Development Operation Quar te r ly  Progress 

The uranium monosulfide used in  these  s tudies  was  obtained f r o m  the 
C e r a m i c s  Resea rch  group a t  Argonne National Laboratory.  

Report ,  July,  August, September ,  1962, HW-74378.  October ,  1962. 
( SE CRE T 1 
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Sintered 250X 

-- . 
a 
.h 

Impacted US 250 X 

FIGURE 2.12 

Micros t ruc tures  of Sintered and Impacted US 

A f C . C I  R I C H L A N D .  WASH. 
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Before 
Heating 

: g o o  c 

Approx. 
1500 C 

Nonsint e r ed  (1500 X) Sintered in Hydrogen 

FIGURE 2 . 1 3  
- 

at  1750  C 

U 0 2  - 50 wt 7'0 Tungsten Cermet  (Reflection Elec t ron  Microscopy) 



Before  Sintering - 92. 7 %  TD 
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1400 C, 4 h r ,  7 5 C / h r ,  97.170 TD 

1400 C, 1 hr, 7 5 C / h r ,  96. 2% TD 

1400 C, 1 2  h r ,  7 5 C / h r ,  97,770 TD 

1600 C, 1 hr ,  75 C / h r ,  98.2%TD 1600C, 4 h r ,  7 5 C / h r ,  98.3'70 TD 

Polished, Etched, 250X 

FIGURE 2.14 
Mic ros t ruc tu res  of Impacted and Sintered U02 

A E C - G I  I ICHLAND.  WASH 



1600 C, 1 2  h r ,  7 5 C / h r ,  98.77'0TD 

1750 C, 1 h r ,  7 5 C / h r ,  98.97'0 T D  

2.19 HW - 7  6300 

1750C,  4 h r ,  2 2 5 C / h r ,  98.4 T D  

1750C,  4 h r ,  1 5 0 C / h r ,  99.1% T D  

1750C,  4 h r ,  7 5 C / h r ,  99.37'0 T D  1750C,  1 2 h r ,  7 5 C / h r ,  99.270 T D  

Pol ished,  Etched, 250X 

FIGURE 2.14 (contd) 

Mic ros t ruc tu res  of Impacted and Sintered U 0 2  
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@ 
Initial Material - Micronized U 9  
"As Compacted" Density - 10.17 glcc 

Particle Size lor Sintering VI 1750 C Temperature .- 

-6 + 20 Mesh 

I 
75 150 225 
Heating Rate ICIHr) 

10.75 

Theoretical Density d U Q  - 10.97 glcc 

1750 C 

998 TD 
0 

0 

l 4 l  ' 1 I 1 ' 6 I ; J h 
Soaking Time (Hours) 

FIGURE 2.15  

Effect of Sintering Conditions on Density of Impacted and Sintered U 0 2  

T h e r m a l  Expansion of UO - J. A. Chr is tensen  2 

The  specific volume of single c rys t a l  U 0 2 .  oo between 0 C and the  
melting point (2800 C) is descr ibed  by: 

= V (1 + 9 x 1 0 - 6 T +  6 x lo - '  T2  + 3 x 10  T3)  vT 0 

where  
T = t empera tu re  ("  C )  

vT = specific volume (g ern-') at t empera tu re  T 

V = specific volume at  0 C. 
0 

This  equation and the data f r o m  w h c h  it was der ived a re  shown in F igu re  2. 16. 

These  data were  obtained by high t empera tu re  radiography of U 0 2  at  t e m -  

p e r a t u r e s  to  3100 C. (1) 

(1 ) Cadwell, J. J. Fue l s  Development Operation Quar te r ly  P r o g r e s s  
Report ,  Apri l ,  May, June, 1 9 6 2 ,  HW-74377. July,  1962. (SECRET) 
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FIGURE 2.16 

T h e r m a l  Expansion of U 0 2  

Molten U 0 2  - J. A.  Chr is tensen  

.10 

LT 

LO 

- 

.05 

Single crystal  UO heated to 3100 C in closed tungsten capsules, 2 
i n  vacuum o r  under argon,  re ta ined a n  O / U  ratio of 2. 00 and reac ted  only 

sl ightly with the tungsten. Reaction was  r e s t r i c t ed  to  a l imited portion of 

the UO -W interface and was  less extensive than is typical of W - U 0 2  

couples heated to  only 2800 C in  an open sys tem.  The most  s e r ious  U 0 2 - W  

interact ion which occur red  is' shown in F igu re  17 a. 

inclusions (F igu re  1 7  b )  randomly sca t t e red  throughout the resolidified U 0 2  

may  b e  e i ther  e lemental  uranium o r  impur i t ies  (e. g. , UC o r  UN). 

2 

Metallic appearing 

The  i l lustrated specimen was  heated in  a n  evacuated capsule  a t  

2700, 2800, 2900, and 3000 C with about 8 minute a r r e s t s  a t  each t e m -  

pera ture .  

the U 0 2  to  below 500 C in  less than twenty seconds.  

A normalizing quench from 3000 degrees  in flowing argon cooled 

The U 0 2  la t t ice  
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p a r a m e t e r  was  changed less than 0. 001 A by the heating t rea tment  indicat-  

in.g no change in  s toichiometry.  

similar heating cycles  a r e  being examined. 

Four  additional spec imens  subjected to  

Each of the five capsules  was radiographed at  t e m p e r a t u r e s  above 

and below the melt ing point to de te rmine  the volume change during melting. 

Typical rad iographs  of a capsule  (F igu re  2. 18) show the  si lhouette of the 

UO 
during solidification. 

solidification pipe and the c r a c k s  formed during rapid cooling of the solid. 

The specific volume of the U 0 2  in th i s  capsule  increased  9. 5% during 

melting. 

liquid men i scus  a t  3000 C, and the deep shr inkage cavity which formed 

The macrograph  on the right m o r e  c l ea r ly  shows the 
2 

Prepa ra t ion  of Samples f o r  In-Reactor  U 0 2  Melting Studies - J. A. Chr is tensen  

and L. A. P e m b e r  

Tungsten sphe res  distributed in  U 0 2  will s e r v e  as in - r eac to r  t e m -  

p e r a t u r e  m a r k e r s  f o r  additional determinat ions of rad i i  of init ial  molten 

reg ions  in i r r ad ia t ed  U02. (2) A random distribution of 1 ~ 0 1 %  tungsten 

(-100 +200 m e s h  sphe res )  in  s in te red  U 0 2  was  obtained by wet mulling the 

mix tu re ,  p re s s ing  and s inter ing in 1700 C hydrogen fo r  twelve hour s  

(F igu re  2. 19). A uranium dioxide density of 10. 5 g /c rn3  was attained. 

Hardness  of UO, - J. L. B a t e s  

The  ha rdness  of a (100)  c rys t a l  f ace  of U 0 2  showed a symmet r i ca l ,  
four-fold var ia t ion with Knoop indentor orientation (F igu re  2.  20), with an  

ave rage  var ia t ion between maxima and minima of approximately 7.  5%. 
Previous  measu remen t s  revealed a two-fold symmetry  on the (1 10)  and 

(213) planes.  

the Knoop indentor and the c rys t a l  planes examined. 

2, Both r e s u l t s  a re  compatible with the symmet ry  of 

(1) Cadwell, J. J. F u e l s  Development Operation Quar te r ly  P r o g r e s s  
Report ,  July,  August, September ,  1962, HW-74378.  October ,  1962. 
(SECRET) 

( 2 )  Cadwell, J .  J. F u e l s  Development Operation Quar te r ly  P r o g r e s s  
Report ,  July,  August, September,  1962, HW-74377.  July,  1962. 
(SE CRET ) 
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HW - 7 63 00 

Macrogr  aph 

3x 3x 3x 
3000 C Room Tempera tu re  Longitudinal Section 

(After Heating) (After Heating) 

FIGURE 2.18 
Uranium Dioxide Heated to  3000 C in a Closed Tungsten Vessel .  

(Radiograph a t  left  w a s  made with U 0 2  at  3000 C to m e a s u r e  density 
of U02(&).  ) 
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800 

HW-76300 

Avg. Max. 7 6 1  
Avg. Min.  707 

(100) 

- 

I I 

I :It \-€- 

I I 

/ / A- 
/ 

\ 
\ 
\ ‘-$ I I +, \ / 

I 
\ J ‘ I ’  \ /  

I 
/ 
1 ,.1 

Degrees Rotation 

FIGURE 2. 20 

Hardness  of U02 (100) Plane as  a Function 
of Knoop Indentor Orientation 

The maxima occur red  when the long dimension of the Knoop indentor 

The minima were  observed was paral le l  to  the intersect ion of (100) planes. 

when the long dimension was paral le l  to intersect ions of (100) with (111) 

planes. 

shown the (1 00) plane to  be ha rde r  than the (1 11) plane. 

This  is consistent with other  hardness  mleasurements which have 

Active room tempera ture  s l ip  sys t ems  were  deduced f r o m  the d i r ec -  

tions of s l ip  l ines  and the distributions of etch pits formed adjacent t o  

hardness  impress ions  (F igu re  2. 21). 

sl ip  plane observed.  

The (100) plane w a s  the only active 
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250X Etched 250X 

. .  

. ' \ ,  

. . I  

Une t che d 250X Etched 250X 

FIGURE 2. 2 1  

Slip Lines  and Etch P i t s  F o r m e d  N e a r  Microhardness  Indentor Marks  
on U 0 2  Single Crys ta l .  Crys ta l  Surfaces  are  (111) Planes .  

Re lease  of Sorbed Gases  f r o m  U 0 2  by Ionizing Radiation - H. J. Anderson 

Extensive gas  desorption f rom.  fused uranium dioxide resul ted f r o m  
6 0  

i r rad ia t ion  a t  room t empera tu re  with ionizing radiation f r o m  a Co 
Specimens w e r e  sealed in pyrex capsules  under vacuum, or in  helium at 
p r e s s u r e s  of approximately 0.3 a tmospheres ,  and i r rad ia ted  in a n  

8 . 9  x 10 

source .  

5 R / h r  field for per iods  up to  200 hours .  

Exposures  of 100 to  200 hours  caused a release of sorbed g a s e s  

comparable  to  that which normally occur s  during vacuum annealing a t  

ALC-CE I)ICHLAND. W A S H  



8 0  c to  1 0  
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Q 
0 C. The r e l eased  gases were  principal,/ H 2  with N2, C 0 2 ,  

and H20 a l so  present .  

in  fuel e lements  may  be  increased  by r eac to r  radiation. 

These  data indicate that release of sorbed gases  

Accelerat ion of g a s  release r a t e s  was  a l so  achieved by applying a 
Desorption a t  high frequency (400 kc)  induction field to the U 0 2  sample.  

slightly above room tempera tu re  was equivalent to  25% of the gas  r e l eased  

by vacuum extract ion at  1000 C. 

Evaluation of U 0 2  Analyses  - H. J. Anderson 

The rel iabi l i ty  of puri ty  values  repor ted  fo r  commerc ia l ly  fused 

UO 
density, stoichiometry,  and carbon and nitrogen content were  checked 

w a s  evaluated in a study of analytical  techniques. Determination of 2 

against  the vendor ' s  values  on 15 samples  represent ing  1500 pounds of 
recent ly  purchased fused  U02. Density, s toichiometry and carbon values 

were  in  good agreement ,  but nitrogen values disagreed by as much as a 

fac tor  of two. 

devised will be  evaluated a l so  by the vendor. 

A new dissolution technique f o r  Kjeldahl ana lys i s  that was  

Determination of P o r e  Size Distribution in  U 0 2  - H. J. Anderson 

A contact angle of 11 1 degrees  between m e r c u r y  and U 0 2  (single 

c rys t a l )  was determined by capi l lary depression techniques. In the de t e r  - 
mination of pore  s i ze  distribution by m e r c u r y  poros imet ry ,  this  angle has  

been general ly  a s sumed  to  be 135 degrees  ( the same as that between m e r c u r y  

and g lass ) .  

U 0 2  Specimens f o r  Bas i c  Resea rch  - H. J .  Anderson - 

Standardized uranium dioxide specimens were  prepared  f o r  dis t r ibu-  

tion a s  indicated in  the following table. 
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TABLE 2 . 3  

STANDARD U02 SPECIMENS 

R e ci pi ent Specimen 
Cornel1 University Two precharac te r ized  single 

National Bureau  of Standards 

Hahn-Meitner Institute (Ber l in)  

Commissar ia t  a 1 'Energie  
Atomique 

c r y  s t  a l s  

Ten 1 -g ram single c rys t a l  sphe res  

Fifty single c rys t a l  spheres ,  
1-5 m m  diameter  

Fifty single c rys t a l  sphe res  

The samples  being sent to Europe (through Eura tom)  wil l  be  used for  

f iss ion gas  diffusion measurements .  

High-Temperature  Elec t ron  Microscopy - J. 0. McPart land 

Reflection electron microscopy specimens were  heated to  t empera -  

t u r e s  g r e a t e r  than 1400 C with an auxi l iary electron gun. A 5 kv, low- 

modification and energy electron gun w a s  used to minimize microscope 

in te r fe rence  with routine microscopy operations.  

Modifications being made in the gun focus wi l l  

p e r a t u r e s  through selected a r e a  heating. 

ead to higher t e m -  
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Impaction of U 0 2 - P u 0 2  - D. W .  Br i te ,  K .  R .  Sump, W .  T .  Ross ,  and 

L .  G .  Merker  

Mixed UO2-2.5 w t %  P u 0 2  was impacted at  1200 C and 145,000 psi  

t o  demonstrate  the feasibil i ty of preparing plutonium-bearing fuels by this  

method. 

and impaction was achieved by using a double-canning technique. 

over  the impact machine (F igu re  3 . 1 )  provided secondary protection. 

F igure  3.  2 shows the capsule  assembly  components, the impacted U 0 2 -  
P u 0 2  capsule ,  and a macrosect ion through a s imi l a r ly  impacted U 0 2  

capsule .  

Complete containment of the fuel within the capsule during heating 

A hood 

The  U 0 2 - P u 0 2  fuel was a mechanically blended mixture  of P u 0 2  
( f rom calcined plutonium oxalate) and U 0 2  powder (specif ic  su r face  a r e a ,  

1 . 2  m2 /g )  produced by ball-mill ing s c r a p  s in te red  and crushed  U 0 2 .  The  

mixture  w a s  p re s sed  a t  6000 psi  into the inner  can and closed with porous 

s ta in less  s t ee l  d i sc .  
i n  vacuum at  1200 C immediately before impaction. 

The  capsule was enclosed in a second can and heated 

A f t e r  impaction, no plutonium was detectable on the capsule  o r  in 

the impact machine.  

Planned experiments  involve impaction of UO - P u O  mixtures  at 2 2 
p r e s s u r e s  400, 000 psi  to  p repa re  high-density fuel ma te r i a l s  for  f u e l  

fabrication. 

A 
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FIGURE 3 .2  31 
8 
I 
4 
Q) 
w 

Capsule Assembly and Impacted Can 
Containing PuO2-UO2 (Left) a n d  

Axial C r o s s  Section of Impacted C a n  (Right) 00 
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Fuel  Element  Rejuvenation - R .  C .  Smith 

A fuel  element,  F igure  3. 3, designed t o  tes t  the feasibility of fue l  

rejuvenation w a s  fabricated and sent to the NRTS (National Reac tor  Tes t ing  
Station) f o r  i r radiat ion.  (') "Fuel  rejuvenation'' is defined as re-enrichment  

of the fuel without total reprocess ing .  

FIGURE 3 . 3  

Fuel  Rejuvenation Tes t  Element 
0622293 

(1) Horn, G. R .  and R .  C .  Smith.  I r radiat ion Proposa l  - -  A Fuel  Element  
Rejuvenation Experiment:  GEH-4-81, HW-75783 RD. December  7,  1962. 
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Afte r  i r radiat ion the element  will be re-enriched by opening each  

rod  and inser t ing  PuO o r  enriched U O  into a concentric,  1/8-inch ID 
Z r 0 2  tube (F igu re  3 . 4 ) .  

MTR (Mater ia l s  Tes t ing  Reactor)  for a second i r radiat ion.  

re - i r rad ia t ions  may  be possible.  

2 2 
T h e  fuel element will then be re turned  t o  the 

A s e r i e s  of 

FIGURE 3 . 4  

Rejuvenation F u e l  Rod 
0630076 
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The  relat ively high expense of cladding and fabrication fo r  a f u e l  
e lement  and the high cost  of reprocess ing  f o r  f u e l  recyc le  provides an 

incentive fo r  rejuvenating f u e l  e lements  fo r  re-enrichment .  

sufficient enr ichment  ma te r i a l  t o  overcome f iss ion product poisons left 

in par t ia l ly  burned-out f u e l  e lements ,  added to  that necessa ry  t o  re -enr ich  

the  f u e l  back to  t ime  z e r o  reactivity,  may be considerably less than fue l  

r ep rocess ing  and refabricat ing cos t s .  

The  cost  of 

The  i r rad ia t ion  and  remote handling experience to  be derived from 
this init ial  experiment  w i l l  be  applicable to  a series of rejuvenation tech- 

niques.  

Hot Isostat ic  P r e s s i n g  - J. J. Hauth 

U 0 2  rods  clad in thin-wall s ta in less  steel w e r e  fabr icated by swaging 
and hot isostat ic  p re s s ing  as par t  of a joint p rog ram with Bat te l le  Memor ia l  

Insti tute (BMI). (') Mixtures compr is ing  70 wt% fused  U 0 2  and 30 wtyo 

micronized U 0 2  w e r e  par t ia l ly  predensified by swaging to  80-8570 TD in 

AIS1 304L SS cladding (0.010-inch w a l l  thickness),  then hot isostat ical ly  

p r e s s e d  (1000 C ,  10,000 psi)  a t  BMI. 

shown in Table  3 . 1  and in F igu res  3 .5A to  3.5D.  

The  r e su l t s  f o r  typical mix tures  a re  

TABLE 3 . 1  

Fused  U 0 2  Fabricat ion Swaged Fina l  Average o / u  
Mesh Size Method Density, 70 TD Density, 70 TD (average)  

hot swaging 
(800C) -100 +200 83 

- 65 +lo0 hot swaging 85 

- 35 + 65 cold swaging 81 

- 20 hot swaging 83 

94 .2  2.011 
9 3 . 7  2.010 

93. 6 2 .004  

96. 3 2 .009  

Hot isostat ical ly  p r e s s e d  fue l  e lements  having high density c o r e  

material and thin cladding of high integrity appea r  to  be feasible .  

c ipal  problem is the agglomeration of the active,  micronized U 0 2  (F igu res  

26B and 26C). One possible solution i s  t o  u s e  micronized powder which 

has  been compacted at room t empera tu re  by high-energy-rate impaction 

The  pr in-  

(1) Cadwell, J. J. Fuels Development Operation Quar te r ly  P r o g r e s s  Report ,  
January,  Februa ry ,  March, 1962, HW-72347. April ,  1 9 6 2 .  SECRET 
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, lOOX 
'FIGURE 3.5A 

Hot Isostat ical ly  P r e s s e d  U02: 
70 wt% Fused  (-100 +200 mesh) ,  30 wt% Micronized 

5K91C; 5K91B 
A f C . G E  R I C H L A N D .  W A S H  
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lOOX 
FIGURE 3 . 5 B  

Hot Isostat ical ly  Pressed U 0 2 :  
70 wt% Fused  ( -65  + l o 0  mesh), 30 wt% Micronized 

?EKKaio K 8 7 C  
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lOOX 
FIGURE 3.5C 

Hot Isostat ical ly  P r e s s e d  UO2: 
70 wt% Fused  (-35 +65 mesh) ,  30 wt% Micronized 

5K88C; 5K88B 
AEC.GE R i c n L I M D  W ~ S H  
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1oox 
FIGURE 3.5D 

Hot Isostat ical ly  P r e s s e d  'U02: 
70  wty' Fused  (-20 mesh), 30 wt% Micronized 

5K86D; 5K86C 
I L C  G E  R I C H L A N O  W A S H  
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and then pulverized. 

o r  high-energy- r a t e  impacted, 99% dense par t ic les  a r e  being fabricated.  

Rods compris ing mixtures  of this ma te r i a l  with fused 

Vibrational Compaction Studies - J. J. Hauth 

A new method of vibrational compaction, involving t r a n s v e r s e  

excitation of cladding suspended vertically f rom a horizontal  ba r ,  w a s  inves- 

tigated for  u s e  in fabricating fuel e lements  compris ing plutonium-bearing 

or  other  fuels clad in aluminum alloys o r  thin-wall s ta in less  s t ee l .  

pound force  v ibra tor  w a s  modified fo r  horizontal  operation. 

w a s  coupled t o  the vibrator  through a horizontal  s t ee l  b a r  (F igu re  3.  6 ) .  

A 5000 

The  fuel cladding 

T r a n s v e r s e  excitation simplifies the t ransmiss ion  of vibrational 

energy through the w a l l  of a shielded facility. 

point of coupling a r e  minimized, so  that s imple r  coupling devices can be 

used than those required fo r  ver t ical  excitation. 
rods clad in  S A P  (0 .  551-inch OD, 0.022-inch w a l l  thickness) o r  s ta in less  

s t ee l  (0 .56-inch OD, 0.010-inch w a l l  thickness) withstood prolonged t r ans -  

v e r s e  vibration a t  accelerat ions g r e a t e r  than 50 gravi t ies ,  at  f requencies  

that w e r e  var ied continuously between 180 and 2500 cps .  

efficiencies of 91% w e r e  achieved in eight-foot-long fuel rods  containing fused 

S t r e s s e s  in  the cladding a t  the 

Thus,  eight-foot-long U 0 2  

Compaction 

u o 2 .  

Hot Vibrational Compaction - J. J. Hauth and D. R .  Burroughs 

Hot vibrational compaction of fuels clad in aluminum al loys o r  s ta in-  
An 

A 

l e s s  s t ee l  may inc rease  bulk f u e l  densit ies and reduce fabrication t ime.  

undetermined amount of s in te r ing  would a l s o  inc rease  fuel conductivity. 

rapid density inc rease  of 2.570 TD w a s  obtained by res i s tance  heating a p re -  

viously compacted, SAP-clad U 0 2  rod t o  -150 C during t r a n s v e r s e  vibra- 

tion (F igu re  3 .6 ) .  No  distortion of the cladding w a s  apparent .  

Resis tance heating Zircaloy-clad rods  t o  850-900 C during t r ansve r se  

vibration caused only a minor  inc rease  in density.  Loading and compaction 

of fused U 0 2  in thin-wall (0.010 inch) s ta in less  s t ee l  and in Inconel tubes a t  

800-900 C resul ted in a very slight, uniform distortion of the cladding as it 
cooled and contracted around the c o a r s e  ( 6  mesh)  U 0 2  gra ins .  The  abil i ty 

t o  achieve higher  density is direct ly  re la ted to the the rma l  expansion 

cha rac t e r i s t i c s  of the cladding and c o r e  ma te r i a l s .  
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FIGURE 3 . 6  

Hot Vibrational Compaction by T r a n s v e r s e  Excitation 

* E C  G E  W I C H L A W D  w i s n  
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PRTR Fuel  Fabricat ion - C .  H.  Bloomster  

Conversion of the Plutonium Recycle Tes t  Reactor  (PRTR) fuel 

loading to uniformly enriched, mixed-oxide fuel e lements  i s  approximately 

40% complete.  

( 2 6  swaged and 1 6  vibrationally compacted) have been fabricated.  These 

a r e  being charged at the r a t e  of about s ix  pe r  month. 

e lements  have been operated successfully to  a maximum exposure of 600 

Mwd/ton and at a maximum fuel element power of 1150 k w .  Fabricat ion 

of the remaining elements  i s  ahead of schedule.  

Forty-two U 0 2 - P u 0 2  19-rod c lus t e r  fuel e lements  

The mixed-oxide 

Plutonium Distribution in Incrementally Loaded PRTR Fuel Rods - 
R.  E .  Bards l eyandC.  H.  Bloomster  

The uniformity of plutonium distribution in incremental ly  loaded, 

U 0 2 - P u 0 2  PRTR Fuel  rods was improved by addition of the plutonium- 

containing fuel in 150 increments  r a the r  than 80, a s  shown by autoradio- 

graphs reproduced in F igure  3 .  7 .  

T o  supplement loading s tudies ,  p re l iminary  investigation was made 

of nondestructive t e s t s  for  determining plutonium concentration var ia t ions 

i n  a fuel rod. 

to chemical analyses ,  the technique inherently has  neither the sensi t ivi ty  

nor capacity for  routine testing of l a rge  numbers of fuel rods .  
on eddy cur ren t ,  gamma attenuation, neutron activation, and neutron 

attenuation'principles appea r  more  promising. 

Although autoradiography r e su l t s  can be related empir ical ly  

T e s t s  based 

Areas  of plutonium segregation in a rod were  well defined by eddy 

cur ren t  t e s t s  (F igu re  3 . 8 ) .  
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Left: 

FIGURE 3 .7  

C omp arat ive Auto r a d  io graphs  
150-Increment Rod Vibrated Continuously During Loading 
Right: 80-Increment Rod Loaded Without Vibration 

0630094- 2 
A E C - G E  R I C H L I M O .  W A S H  



FIGURE 3.8 

Autoradiographs and Eddy Cur ren t  T e s t  Resul ts  
for  Incrementally Loaded P u 0 2 - U 0 2  Fue l  Rods 

0630094-3; 0630094- 1 
A E C  G E  R I C H L A N D  W A S H  
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EBWR Plutonium Fuel  Loading - R .  E .  Sharp 

HW-76300 

a 
A joint Hanford Labora tor ies  - Argonne National Labora tory  p rogram 

f o r  i r rad ia t ion  of plutonium fuel e lements  in the Experimental  Boiling Water  

Reac tor  (EBWR) is in  p r o g r e s s .  

Basic  c r i t e r i a  for  the f i r s t  fuel loading were  established a s  shown 

in Table  3.  2 .  

vibrational compaction. 

Rods for  the 42 f u e l  assembl ies  w i l l  be fabricated by 

TABLE 3 . 2  

Reac tor  Loading 

Cen t ra l  C o r e  Region - Plutonium F u e l  - 36 Fuel  Assemblies  in 6 x 6 a r r a y  
Outer  C o r e  Region - U 0 2  Fuel - 148 Fuel Assembl ies  

Total  No.  of Plutonium Assembl ies  - 42 ( 6  spa res )  
No.  of Rods pe r  Assembly - 36 ( 6  x 6 geometry) 

235) 
C o r e  Compos it ion - u o 2 - 2 . 5  PUO . 

UO -Deplete$iO. 270 U 
P u d 2 -  High Exposure  (870 P u ~ ~ O )  

C o r e  Length - 48.5 inches 

C o r e  Weight - 830 g r a m s  

Core  Density - 86-8970 Theoret ical  Density 
Cladding - Zircaloy-2 tubing 

0 .  372-inch ID 
0 .  025-inch w a l l  thickness 

Procurement  of cladding mater ia l ,  design of a vibrational compaction 

facility, and modification of loading and compaction equipment are  in 

p rogres s .  Sixty ki lograms of unclassified plutonium was procured,  and 

specifications fo r  fusion of depleted UO w e r e  prepared .  2 
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Extended Surface Plutonium Fuels - C .  H .  Bloomster  

A p rocess  was developed to produce Zircaloy-clad, P u - Z r  c o r e  

These  f u e l  e lements  f u e l  element plates by roll-cladding (F igure  3 .  9 ) .  

have potential application (1) in low cost spike elements ,  (2)  a s  a means of 
keeping added plutonium enrichment separa te  f rom generated plutonium, - 

and (3) rejuvenating par t ia l ly  spent fuel e lements .  

Previously repor ted  difficulties with ex terna l  contamination on the 

finished plate were  eliminated by modifying the design of the Zi rca loy  

sandwich. 

w a s  placed on top of the c o r e .  

The  co re  was placed in a r eces sed  slot  and a c lose  fitting cover  

_ -  - ~ ~ - - -  I----- - -- - -  - , 
Roll-Clad Plate 
840 C 12:l Reduction Rat io  
Zircaloy-Clad P u - Z r  Alloy Metallurgically 
Bonded and Autoclaved 

FIGURE 3 . 9  

Roll-Clad, Zircaloy-Clad, Z r - P u  Fuel P la t e  

0630063-7 
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Special F u e l  Element  Fabrication - C .  H.  Bloomster ,  L.  C .  Lemon, and 

W. T .  Ross  

Fabrication of 219 high exposure Pu-A1 f u e l  r ods  of var ious  shapes 

and s i z e s  (F igu re  3 .10)  and 40 flux monitor foils (F igu re  3 .11)  w a s  com- 

pleted.  These  elements  w i l l  be used in physics r e s e a r c h  act ivi t ies  at the 

Physical  Constants T e s t  Reac tor  (PCTR) .  

Fabrication w a s  approximately 33% completed of 1000 high exposure 

Pu-A1 f u e l  e lements ,  shown in F igu re  3 .  12, fo r  physics experiments  in the 

Plutonium Recycle P r o g r a m  Cr i t i ca l  Faci l i ty  (PRP-CF) .  

the 3-foot extruded and clad elements  ( 0 .  5-inch d iameter )  were  shipped and 

another 200 a re  scheduled t o  be shipped e a r l y  in January,  1963.  

Two hundred of 

A p r o c e s s  w a s  developed t o  produce U02-Pu02  pellet f u e l  e lements  
f o r  physics experiments  in the PCTR.  

(1/2-inch d iameter ,  1/2-inch long) containing 0.  90 wt% P u 0 2  in depleted 

UO are  requi red .  

required a high green  density of 6 .  6 t o  7 .  2 g / c c  t o  obtain a s in t e red  density 

of 91 t o  94'7'0 of theore t ica l .  

furnace  with a capaci ty  of 700 pe l le t s /3  days w a s  act ivated.  Init ial  problems 

in maintaining uniform furnace  tempera tures  w e r e  eliminated by redesign of 

the control  c i rcu i t .  

Approximately 16, 000 pel le ts  

L o w  su r face  area (1 .99  rn2/g) of the depleted U 0 2  2 

A new hydrogen atmosphere,  batch s in te r ing  

A coextrusion p r o c e s s  w a s  developed to produce 40 Pu-A1 f u e l  

e lements  (1-inch d iameter ,  5-inches long) for  aluminum cor ros ion  t e s t  pur-  

poses  ( F i g u r e  3 .  13).  

bi l le ts  w a s  completed, and t h r e e  w e r e  extruded. Development of machining 

decontamination, and c losu re  techniqu es  r ema ins  t o  be done t o  complete 

fabr icat  ion 

Cast ing of the required 14  A1-8 wt% Pu-2 wt% Ni 
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Separable 
Element  

FIGURE 3 . 1 0  

High Exposure  Aluminum-Plutonium Elements  (0.563-Inch OD) for PCTR 

C o r e  

Lid 

FIGURE' 3 . 1 1  

Can 

Flux Monitor Foil for PCTR 
0630063-1; 17813-1 

A E C  G E  wicnt*t+o W A S H  
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FIGURE 3 . 1 2  

Aluminum-Plutonium Fuel Elements  
for Light-Water Experiments  in  the P R P - C F  

Aluminum 

Components 
/Alloy 

Cas t  A1-Pu 
Alloy Billet 

Segmented 
C oext ruded 
Rod and End 

Caps 

Finished 
Element 

FIGURE 3 . 1 3  

Plutonium Fuel Elements  for Aluminum Alloy Corrosion T e s t s  
O S 3 0 0 5 3  -8; 0 6 3 0 0 6 3  - 4  
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Seventy-one aluminum-clad, coextruded, thin-walled tubular e lements  

were completed. For ty  contain A1-Pu and ~ 1 - ~ 2 3 5  alloy c o r e s  of var ious 

concentrations,  and the remainder  contain A1-U233-Li, A1-U235-Li, and 

Al-Pu-Li alloy c o r e s  of various concentrations.  

nominal 0 .  80-inch OD and a r e  four inches l o n g . ( l )  

These  elements  have a 

No difficulties were encountered during the final phase of the fabri -  

cation except for  two bond t e s t  re jec ts .  

type to  occur  since the process  techniques were developed. 

attr ibuted to incomplete outgassing of the coextursion bil let .  

there  were  no significant differences in the extrusion flow cha rac t e r i s t i c s  

of aluminum alloyed with U233, U235 o r  plutonium of approximately the 

s a m e  concentrations within the l imits  of 3 to  13 wt% uranium o r  plutonium. 

These  were  the f i r s t  re jec ts  of this  

They were  

A s  anticipated, 

Fuel  Prepara t ion  Faci l i t ies  - L. P. Murphy 

UO powder preparat ion capacity was increased by install ing a new 2 
disc  pulver izer  and two s c r e e n e r s  (F igu re  3 .14) .  

oped utilizing the new equipment to c rush  and sc reen  des i red  quantities of 

any des i red  s i z e s  of mater ia l  between 4 and 325 mesh.  

Procedures  were  devel- 

Facil i ty Hazards  Analysis - W .  J. Bailey, J. B.  Burnham, and L .  G.  Merker  

A rough draft of the Facil i ty Hazards  Analysis for  the Plutonium 

Fabricat ion Pilot  Plant (308 Building) was completed and i ssued .  
draft  is being assembled for  reproduction. 

The  final 

(1) Wick, 0. J. Quar te r ly  P r o g r e s s  Report, Plutonium Metallurgy 
Operation, July, August, September,  1962. HW-74718.  October 15, 1962. 
(SECRET) 
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FUELS TESTING AND ANALYSIS 

I r rad ia t ion  of a La rge  Diameter  F u e l  Rod - G .  R .  Horn ,  M .  K .  Millhollen, 

and W .  J .  F lahe r ty  

A l a rge  d i ame te r  ( 2 .  33-inch OD) UO2 fuel  rod ,  i r rad ia ted  in the E T R  

to study the effect  of var ia t ions in  s t a r tup  r a t e  on fuel  s t r u c t u r e  changes,  
ruptured a t  low r e a c t o r  power during init ial  s ta r tup .  A s  previously r epor t ed ,  ( 1) 

pre l imina ry  examination revealed a bulge and spl i t  in  the cladding, and 
c i r cumfe ren t i a l  r idges o r  r ipples  (maximum height, 0 . 0 0 3  inch) over  the 
en t i re  rod .  

Examination of the fue l  revealed a n  eccent r ic  heat affected zone 
approximately 17 inches long. T h e  shape and position of this zone (F igu re  

4.  1) suggest  that  a s e v e r e  t r a n s v e r s e  neutron flux gradient  caused the rod 

to bow. 

sequent fa i lure  of the cladding. 

The  resul t ing coolant blockage would cause overheating and sub-  

T h e  r ipples  in the cladding, which possibly ref lect  sl ight var ia t ions 
in  the fuel bulk density,  may have been caused by the rma l  expansion of the 

U 0 2 .  
p r e s s u r e  cyc les  during its p re - s t a r tup  res idence ,  i n - r eac to r  and out-of- 

r eac to r  t e s t s  with a s i m i l a r  non-irradiated element  showed that the p r e s s u r e  

cycling probably had no adve r se  effect . .  on the cladding. 

Although the element  w a s  subjected to a s e r i e s  of excessively s e v e r e  

The  top of the end of the t e s t  e lement  included a 6-inch-long plenum 
to accommodate  gases  re leased  during i r rad ia t ion .  

excluded f r o m  the plenum by perforated tungsten and MgO plates .  

Uranium dioxide w a s  
Pos t -  

i r rad ia t ion  examination revealed no evidence of migrat ion of vaporized UO 2 
into the plenum. 

not break  up) during o r  a f t e r  i r radiat ion.  

T h i s  a p p e a r s  to be a rel iable  method fo r  providing a large plenum in 

ce ramic  f u e l  e lements .  

As shown in F igu re  4 .  2,  the MgO plate c racked  (but did 

The  tungsten plate remained intact .  

( 1) Cadwell ,  J .  J .  Fue l s  Development Operat ion Quar te r ly  P r o p r e s s  Report ,  
Ju ly ,  August,  September ,  1 9 6 2 .  HW-74378, p. 5 .  47 .  (SECRET) 
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MgO Pla te  

MgO Pla t e  

Tungs ten Plate 

C r o s s  Section Through Tungsten and MgO Pla t e s  

B-3592, B-3524 

FIGURE 4 . 2  

Separa tor  P la t e s  Between G a s  Plenum and F u e l  
in I r rad ia ted  2 .  33-lnch-Diameter F u e l  Rod 

AEC.CE I I ICHLAYD.  W A S H  
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High Tempera tu re  I r rad ia t ion  Tes t ing  of UO -Tungsten C e r m e t  - G .  R .  Horn,  2 
W .  J .  F lahe r ty ,  and D .  W .  Br i t e  

Impaction of me ta l - ce ramic  mixtures  produces a solid body with a 

la rge  ce ramic -me ta l  interface area suitable fo r  studying high t empera tu re  

solid s ta te  react ions that occur  during i r rad ia t ion .  Initial t e s t s  w e r e  begun. 

A scheduled two-hour i r radiat ion of a 50 wt’% U02-tungsten c e r m e t  

w a s  completed in the MTR VH-4 (Rabbit) Fac i l i ty .  

by 3-inch-long tungsten clad fue l  w a s  contained in  a n  evacuated tes t  assembly  

designed to allow a cladding su r face  tempera ture  of -2400 C .  

i l lus t ra tes  the mic ros t ruc tu re  of the fuel before i r rad ia t ion .  

shows the detai ls  of the tes t  a s sembly .  

i r rad ia t ion  is shown in F i g u r e  4 . 5 .  

The 0.  2-inch-diameter 

F igu re  4. 3 

F i g u r e  4 . 4  

The  appearance  of the capsule  after 

A second,  similar c e r m e t  capsule w a s  successfully i r rad ia ted  one hour 

in a Hanford r e a c t o r  under  conditions which allowed a su r face  t empera tu re  

g r e a t e r  than 2100 C (confirmed by post- i r radiat ion examination).  A photo- 

mosa ic  of the fuel c r o s s  sect ion is shown in F igu re  4 . 6 .  

unprotected by the tungsten ma t r ix ,  sublimed at the high operat ing t e m p e r -  

a tu re  and re-deposi ted on the inner  su r face  of the cladding. 

pre t rea tment  of fuel pel le ts  probably would prevent such  relocat ion.  

micrographs  of the c e r m e t  before and a f t e r  i r rad ia t ion  a re  shown in F i g u r e  4 .  7 ,  

with a compar ison  mic rograph  of a non-irradiated sample  heated to  2100 C .  

Surface U 0 2 ,  

High t empera tu re  

Photo- 

The c e r m e t  fuel  in  both capsules  w a s  fabr icated by impaction of a mix-  

tu re  of -325 m e s h  tungsten powder and -60 +200 m e s h  fused UO 

to 96% TD.  

pa r t i c l e s ,  2 
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15X 

500X lOOX 

0621983 
FIGURE 4 . 3  

Micros t ruc ture  of Impacted U 0 2  - 50 wt% 
Tungsten C e r m e t  Before I r radiat ion 

I F C - G L  I I C H L I N D .  W A S H  
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FIGURE 4 . 4  

Components of Tungsten Clad,  UO2-Tungsten 
C e r m e  t I r radiat ion Capsule 062 1974 

View of Capsule Through Slot 
Milled in Outer  Aluminum Sheath 

Capsule a f t e r  Removal f rom Outer  Aluminum Sheath 

FIGURE 4 . 5  

U 0 2  -Tungsten C e r m e t  T e s t  Capsule 
a f t e r  I r radiat ion 

B-3747, B-3753 
A E C . C E  R I C H L A N D .  W A S H  
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I -0.200 inch 

0 6 2 2 1 4 7  
FIGURE 4 . 6  

C r o s s  Section of I r rad ia ted ,  Tungsten Clad 
U 0 2 -  Tungsten C e r m e t  
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Irradiat ion of U 0 2  Single C r y s t a l  Pe l l e t s  - G .  R .  Horn 

P re l imina ry  post i r radiat ion examination of a single c r y s t a l  U 0 2  

pellet showed that no g r o s s  s t r u c t u r a l  changes,  o ther  than cracking,  resu l ted  
2 f rom i r rad ia t ion  a t  a cladding su r face  heat flux of 640,000 Btu / (hr ) ( f t  ) .  

The  lack of s t ruc tu re  a l terat ion indicates high the rma l  conductivity of l a rge  

gra ins  of U 0 2 .  

ited evidence of init ial  cen ter  mel t ing under  similar i r rad ia t ion  conditions. 

Smal l  c r y s t a l  U 0 2 ,  as in  s in te red  pel le ts ,  would have exhib- 

The  t e s t  capsule  contained one 0 .  500-inch-diameter ,  3/4-inch-long 

single c r y s t a l  pellet  plus s e v e r a l  0 .500-inch-diameter  bi- and t r i - c r y s t a l  

pel le ts .  C r o s s  sect ions through two of these pellets a re  shown in F i g u r e  4 . 8 .  

Previous  investigations' ') demonstrated that c r a c k s  in fused U 0 2  a re  s o u r c e s  

of voids that produce columnar  g ra ins .  

in these c r o s s  sec t ions ,  probably because t empera tu res  w e r e  not sufficiently 

high to cause  extensive void migrat ion.  

Th i s  effect  w a s  not observed i n  

T r i - C r y  s t a  1 
B-3904 

FIGURE 4 . 8  

Single C r y s t a l  
B-3902 

I r rad ia ted  High Density U 0 2  Pe l l e t s  

_ _ - - - - _ _ - - - - - - -  
(1) Roake, W.  E .  I r radiat ion Alterat ion of Uranium Dioxide, HW-73072. 

March ,  1 9 6 2 .  
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Low Tempera tu re  I r rad ia t ion  Sintering of Swaged U02 - W .  J. Flaher ty  

Ceramographic  examination of cold swaged U02 revealed that s in t e r  - 

2 ing, F i g u r e  4 . 9 ,  occu r red  during i r rad ia t ion  a t  remarkably  low bulk UO 
t empera tu res  (300-400 C). 
s t r e s s e d  point contacts between fue l  par t ic les  were  bonded as a r e su l t  of 

localized t rans ien t  high t empera tu res  in  the regions of individual f ission 

events .  

noted during i r rad ia t ion  of a thermocoupled, swaged U02 fuel e lement  in the 

PRTR.  

In earlier r epor t s  i t  w a s  hypothesized that 

Tha t  phenomenon would contribute to  the rma l  conductivity inc reases  

Because much of the volume of fuel in a n  element  opera tes  at r e l a -  

tively low t empera tu res ,  th i s  discovery has  important  implications with 

respec t  to e ros ion  r e s i s t ance  in  the event of cladding fa i lure .  

In a n  effort  to  s epa ra t e  thermal  effects f r o m  irradiat ion effects ,  a 

s e r i e s  of out-of-reactor  heat-and-hold t e s t s  is being conducted. 

in-  and out-of-reactor  t e s t s  a r e  planned, using vibrationally compacted UO 
to de te rmine  the effect of compaction method on in - r eac to r  s in te r ing .  

S imi l a r  

2 

B u r s t  T e s t s  of Cold-Swaged PRTR F u e l  Rods - W .  J .  F laher ty  and 

L .  E .  Mills 

Pressures of 7820 and 7880 psi  w e r e  requi red  to  b u r s t  one-foot-long 

sect ions of cold-swaged PRTR f u e l  rods a t  550 F .  

than three  t imes  the maximum internal  p r e s s u r e  ( -  2500 p s i )  calculated to 

exis t  in a P R T R  f u e l  rod i r rad ia ted  to 1 0 , 0 0 0  Mwd/ton. 

shown in F igu re  4 .  10 .  

These  p r e s s u r e s  a r e  m o r e  

B u r s t  rods  a r e  

These  t e s t s ,  a t  s imulated PRTR fuel e lement  cladding t empera tu res ,  

indicated that the l imiting stress conditions that might be caused by internal  

gas  p r e s s u r e  o r  waterlogging should be calculated f rom the tensi le  s t rength 

r a t h e r  than f rom the yield s t rength .  

tudinal s t r e s s  a t  the rod ends as evidenced by the complete removal  of one 

end cap .  

the internal  cladding su r face  during swaging. 

Fa i lu re  w a s  caused by excessive longi- 

T h e r e  w a s  no indication that f a i l u r e  w a s  induced by roughening of 
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The tes t  procedure included a 16-hour hold period a t  450 F and 

1450 psi  and a subsequent 1/2-hour  hold period a t  450 F and 4000 ps i  to 
a s s u r e  equalization of hydraulic p r e s s u r e  throughout the rods .  One rod  

failed at the hydraulic connection end and the o ther  a t  the opposite end. 

Heat affected zones adjacent to  the welds bulged before fa i lure  conditions 

were  reached .  

. -  J . ..... . 
- '. ..>'. ' 'S.9'' . . :  .. . . . .. . . .  . .  . - 

FIGURE 4 .10  

PRTR F u e l  Rod Burs t  T e s t  Specimens 

Phoenix F u e l  Experiment  - M .  D .  F resh ley  

A plutonium burn-up experiment:k designed to show the effect of 
( 1) exposure on the react ivi ty  of plutonium w a s  previously repor ted .  

Aluminum-plutonium alloy specimens were  i r rad ia ted  in the MTR and the 

result ing react ivi ty  changes w e r e  measured  in the Advanced Reactivity 

Measurement  Fac i l i ty  (ARMF) . Reactivity effects now being computed 

w i l l  be reported l a t e r .  

T h r e e  A1-Pu specimens containing plutonium of differing isotopic 

compositions were  i r rad ia ted  a t  a power generation of 40 kw/f t  and a n  

associated sur face  heat flux of approximately 1 , 0 0 0 , 0 0 0  Btu / (hr ) ( f t  ) .  

One Al-Pu specimen,  made f rom plutonium that initially contained 16. 337'0 

* in cooperation with L .  C .  Schmid, Phys ics  Labora tor ies  

2 

- - - - - - - _ - - - _ _ _ _  

(1) 0. J .  Wick. Quar te r ly  P r o g r e s s  Report ,  Plutonium Metallurgy 
Operat ion,  July,  August, September ,  1962.  HW-74718. October  15, 
1962.  (SECRET) 
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P U ~ ~ ' ,  is being i r rad ia ted  fo r  i t s  7 th  (last) cycle in the MTR. 

complete  the i r rad ia t ion  phase of this experiment .  (The  o the r  2 spec imens  

of the s e r i e s  containing 6 .  33 and. 2 7 .  17% P7..i240 were  a l so  i r rad ia ted  Seven 

cyc les ) .  

made  in the ARMF. 

and isotope anaj-yses. 

Th i s  will 

Af te r  a suitable decay period, react ivi ty  measu remen t s  will be 

The  samples  will be re turned  to Hanford for  burnup 

I r rad ia t ions  of Prototypic UO - P u 0 2  F u e l  Elements  - M .  D ,  Fresh ley  2- 

Heat generation r a t e  ordinar i iy  is not uniform along a nuclear  

reac tor  fuel. e lement  because of axial  var ia t ions of the neutron flux to which 

it is exposed. Hence, the maximum point heat t r a n s f e r  rate of the element  

and the maximum exposure of the fuel s r e  significantly g r e a t e r  than the 

ave rage .  

often l imiting) quantit ies is to vary  the fission2,ble isotope enrichment  

inversely to  the expected ax ia l  neutron flux pat tern.  Th i s  method is p a r -  

t i cu la r ly  adaptable to  incremental ly  loaded, swaged o r  vibrationally com-  

pacted fuel e l emen t s .  Two swage compacted U 0 2 - P u 0 2 ,  7-rOd c lus t e r  

t e s t  e lements  w e r e  i r rad ia ted  in a p res su r i zed  water  loop in th.e ETR to 

compare  the two methods of enr ichment ,  

One method of ra i s ing  the average  c lose r  to the maximum (and 

Zi rca loy  c k d  e lements  were  fabricated by incremental ly  loading 

The  rz!tio of PuOz and arc- fused  50 
UO 

and w a s  va r i ed  axial ly ,  in a cosine pat tern,  in the o ther  e lement  (GEH-11-81 
to achieve a constant a.xial heat generat ion r a t e  in the nonuniform neutron 

flux. 
coolant conditions. 

and calcined PLlog into the tlibes. 2 
was held constant along the 42-inch length of one e lement  (GEH-11-7) 2 

T h e  e lements  were  i r rad ia ted  approximately 25 days  ucder  PRTR 

More  xenon was collected f rom tke rods of the cosine-enriched fuel 

element than f r o m  the uniformly enriched element ,  because m o r e  f iss ion 

events  occur red  in the f o r m e r .  

rods  which reached higher  exposures  and fuel t empera tu res  a.s a r e su l t  of 

being c l o s e r  to the center  of the r e a c t o r ,  

position of each  rod in  F igu re  4 .  11, Rods 1 and 6 w e r e  c l o s e r  to the cen te r  

of the r e a c t o r ,  whereas  3 and 4 were  f u r t h e r  from the r e a c t o r  cen te r  during 

i r rad ia t ion .  

Also,  m o r e  xenon was collected f rom those 

These  data zre re la ted  to  the 

Ga.s r e l e a s e  data  f r o m  the cen te r  rods a r e  not included. 
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FIGURE 4 . 1 1  

Gas  Release  f r o m  Irradiated Swage -Compacted UO2-PuO2 
A E C - G E  R I C H L A N O  W A S H  
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The test r e su l t s  can  be in te rpre ted  to show that nitrogen re leased  

f r o m  the fuel during i r rad ia t ion  w a s  dissolved in the Zi rca loy  cladding. 

The  total  gas  cu rves  (F igu re  4 .  11) a r e  inversely related to the total  xenon 

cu rves .  

higher ave rage  fuel tempera tures)  yielded l e s s  total  gas  than did the rods  

f r o m  the uniformly enriched element and, within each element ,  l e s s  total  

gas  was collected f rom the rods  that had operated a t  higher t empera tu res .  

The  out-gassing t rea tment  of the U 0 2  (heating a t  1000 C in vacuum f o r  two 

h r s )  c a r r i e d  out during fabrication of some of the rods of the uniformly 

enriched element  had no apparent  effect on the total  gas  col lected.  

the gas  collected f r o m  the rods  w a s  helium introduced during welding. 

e v e r ,  s o m e  of the gas  samples  contained a s  much a s  25% nitrogen, presumably 

f r o m  ni t r ide impur i t ies  in the U 0 2 .  
the to ta l  gas  collected,  the remaining gas cu rves  closely approach a s t ra ight  

l ine.  

hotter fuel r o d s .  

m o r e  nitrogen w a s  dissolved by the Zi rca loy  cladding in  the cosine enriched 

e lement  which had higher  average  cladding and fuel t empera tu res .  

nitrogen content of the Zi rca loy  cladding w i l l  be de te rmined .  

The fuel  rods  f rom the cosine enriched element (which had the 

Most of 

How- 

If the nitrogen content is subtracted f r o m  

The  nitrogen possibly w a s  dissolved in the Zi rca loy  cladding on the 

If the backfill gas  in a l l  the rods  w a s  initially the s a m e ,  

The 

With the nitrogen content subt rac ted ,  l e s s  total  gas  was collected 

f r o m  those fuel rods  which operated at the higher t empera tu res .  
ent  anomaly could be caused by entrapment  of gas in the g r e a t e r  number of 

c losed po res  formed in the hot ter  rods .  

Th i s  appa r -  

I r radiat ion P e r f o r m a n c e  of MgO-PuO and Z r O  -PuO Fue l s  - 2 .  2-2- 
M. D .  F resh ley  and D .  F .  C a r r o l l  

Eight Zircaloy-clad capsules  (1 /2- inch  d i ame te r  by 4-inches long) 

containing MgO-Pu02 high density pellets and eight capsules  containing 

Z r 0 2 - P u 0 2  pel le ts  w e r e  i r rad ia ted  in the ETR to evaluate fuel materials 

of i n t e re s t  for  c e r a m i c ,  plutonium spike fuel e lement  applications.  Magnesium 

oxide and P u 0 2  a r e  completely immisc ib le .  

being studied ex is t  in a two-phase region, monoclinic Z r 0 2  and a cubic 

Z r 0 2 - P u 0 2  solid solution. Smal l  PuO additions dimensionally s tabi l ize  2 
Z rO  by eliminating the s e v e r e  te t ragonal-  to - monoc linic t ransformat ion .  

T h e  Z r 0 2 - P u O g  compositions 

2 



4.16  

Maximum Heat  Flux 
[ Btu / (hr ) ( f t2) ]  

Maximum C o r e  
Tempera tu re  ( C )  

HW -76300 

665,000 and 1, 150 ,000  

1700 and 2200 

The  requested i r radiat ion conditions fo r  the capsules  a r e  summar ized  

in Table  4. 1. 

f o r  inclusion in this r epor t .  

ductivity than Z r 0 2 - P u 0 2 ,  the f o r m e r  capsules  w e r e  i r radiated a t  higher heat 

ra t ings to obtain comparable  fuel t empera tu res .  

Actual operat ing conditions have not been sufficiently defined 

Because MgO-Pu02 has  a g r e a t e r  t he rma l  con- 

Requested Exposure  

TABLE 4 . 1  

0 .  5 x lo2' and 
1 .0  x 1020 

REQUESTED IRRADIATION CONDITIONS 

FOR MgO-Pu02 AND Z r 0 2 - P u 0 2  F U E L  CAPSULES 

F u e l  
Mg0-3 .05  wtyo P u 0 2  

and ( 1  MgO-13.52 W t T o  P u 0 2  
I I  

4 of each  composition /I Number of Capsules  

Power  Generation 
(kw /ft)  

29 & 50 ( j k d e  = 77 and 
130 watts / cm)  

Z r 0 2 - 2 .  2 w t %  P u 0 2  

Z r 0 2  10 .4  w t %  P u 0 2  
and 

4 of each  composition 

1 7  & 22 (/kdB = 45 and 
58 watts / cm)  

4 0 0 , 0 0 0  and 5 0 0 , 0 0 0  

1700 and 2800 

0 . 5  x lo2'  and 
1 . 0  x 102O 

Post i r radiat ion examination of the MgO-Pu02 specimens revealed 

genera l  cracking of the fuel in those samples  which operated a t  the lower heat 

ra t ings and in which no recrystal l izat ion o r  gra in  growth took place.  

voids and columnar  gra ins  w e r e  observed in  the spec imens  which had operated 

a t  the higher heat ra t ings.  

Cen te r  
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The genera l  appearance of spec imens  which operated under compar -  

able conditions is about the s a m e .  

and reduced t h e r m a l  grad ien ts ,  MgO-PuO 

UO during i r rad ia t ion .  The  P u 0 2  second phase is randomly distributed 

throughout the MgO mat r ix  in  the equiaxed gra in  growth  regions as w e l l  as  

in  regions of extensive recrystal l izat ion and columnar  gra in  growth. 

dis t r ibut ion of P u 0 2  w a s  not affected by g r o s s  s t ruc tu ra l  changes in  the s u r -  

rounding MgO mat r ix ,  as  shown in F igu res  4 .  1 2 ,  4 .  13 and 4 .  14.  

the ave rage  PuO part ic le  s i z e  increased  slightly in the co lumnar  g ra in  

growth region, indicating that t e m p e r a t u r e s  w e r e  sufficiently high to cause  

agglomerat ion o r  s in te r ing  of smaller P u 0 2  par t ic les .  

distribution of the P u 0 2  par t ic les  w a s  unaffected by columnar  gra in  growth 

in the surrounding MgO mat r ix ,  suggests  that  the columnar  g ra ins  w e r e  

formed in the solid s ta te  o r  by deposition f r o m  the vapor  phase .  

Because of i ts  be t t e r  t h e r m a l  conductivity, 

does not c r ack  as  extensively as 2 

2 

The  

However,  

2 

T h e  fact  that the 

RM-B2032 

FIGURE 4 .  12  

(250 X) 

I r rad ia ted  MgO- 1 3 . 5  wt% P u 0 2  Sintered Pe l le t  
Showing Uniform Distribution of P u 0 2  (white 

par t ic les)  in Unrecrystal l ized Region N e a r  the 
Surface of the Sample 
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RM - B2 0 32 (250 X )  
FIGURE 4 .13  

I r rad ia ted  MgO- 1 3 .  5 wt% P u 0 2  Sintered Pe l le t  
Showing Uniform Distribution of P u 0 2  (white par t ic les )  

in the Eauiaxed-to-Columnar Grain Transi t ion Region 

RM-B2040 (250 X) 

FIGURE 4 . 1 4  

I r radiated MgO-13. 5 wt% P u 0 2  Sintered Pel le t  
Showing Uniform Distribution of P u 0 2  (white par t ic les )  

in the Columnar Grain Growth Region of the MgO Matr ix  

A E C - G E  R I C H L A N D .  W A S H  
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Micros t ruc tura l  fea tures  different from those normally observed in 

many dther  i r rad ia ted  ce ramic  fuels w e r e  s een  in the i r rad ia ted  Z r O  2 
10 .4  wt yo PuO (solid-solution s intered pel le ts) .  F i v e  distinct m i c r o -  

s t ruc tu ra l  zones were  observed (F igu re  4 .  15a). 

cladding appeared  white. 

increasing exposure a n d / o r  tempera ture .  

cases, the next t o  innermost)  zone w a s  essent ia l ly  free of voids and had no 

apparent  gra in  s t ruc tu re .  

s amples  (F igu re  4. 15b). 

- 

2 
The  second zone f r o m  the 

The  width of the white band increased  with 

The innermost  ( o r ,  in  some 

This  zone w a s  not present  in the higher exposure 

1558 (8 X) 
2800 C Calculated C o r e  T e m p e r a t u r e ;  

Approximate Exposure ,  0 .  5 x 1020 f iss ions / c m 3  (GEH- 14-3441) 

FIGURE 4.  15a 

I r rad ia ted  Z r O  - 10. 4 wt% P u 0 2  High Density 
( 5  18 TU) Sintered .Pellets 



4 .20  

15 

HW-76300 

5; 2800 C Calculated C o r e  Tempera tu r  
Approximate Exposure ,  1 . 0  x 1020 f i s s ions / cm (GEH-  14-345) 

FIGURE 4 .  15b 
- 1 0 . 4  wt% P u 0 2  High Density 

( 9  18 TD) Sintered Pe l le t s  
I r rad ia ted  ZrO 

-2 PuO Segregation in  Incremental ly  Loaded PRTR Fue l  Rods - M .  D .  F r e s h l e y  

Two i r rad ia ted  fuel rods  f r o m  an  incremental ly  loaded, swage com-  

pacted U 0 2 -  PuO 

de termine  the effects of P u 0 2  segregat ion on heat t r ans fe r  as revealed by 

fue l  s t ruc tu re .  

(old process)  and the other  contained 160 one-half-inch-long increments  

(p re sen t  p r o c e s s ) .  

by autoradiographs,  F igure  4.  1 6 .  
r e a c t o r  s in te r ing  w a s  observed in each rod;  i .  e . ,  equiaxed gra in  growth w a s  

observed only in the P u 0 2 - r i c h  regions,  as shown in F igu re  4 .  17a and 4 .  17b. 
Simi la r  fuel s t r u c t u r e s  (F igu re  4 .  17c) w e r e  observed earlier in U 0 2 - P u 0 2  

fuel e lement  (#5096) w e r e  destruct ively examined to  2 

One rod  contained 80 one-inch-long increments  of UO2-PuO2 

Segregation of the P u 0 2  within each  increment  i s  revealed 

Approximately the same amount of in- 
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,. .",- , . . .  . .  ,__.,,-. - ---.. .,?.. . f .  , . I  

RM - B389 3 a .  80-Increment Rod (PRTR) ( 4 . 5  X) 

. . .  
c . . . I  r A& *L  ,.'7 ' 

RM-B3656 b .  160-Increment Rod (PRTR) ( 4 . 5  X )  

, *. 
L - 2  . . 

062855-1 c .  1 / 2-Inch-Increment Rod (ETR) 
(Autoradiograph of polished sur face  shows areas of high fission 

product concentration due to  P u 0 2  segregation. ) 

FIGURE 4.17 

Longitudinal Sections of I r rad ia ted ,  
Swage-Compacted UO2-PuO2 F u e l  Rods 
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test e lements  which had been i r rad ia ted  in the E T R  under approximate PRTR 

conditions. 

face heat f luxes in the range of 300,000 to 400 ,000  Btu / (hr ) ( f t  ) ,  a n  e m p i r -  

ica l  observation that a g r e e s  w e l l  with the heat t r a n s f e r  ana lyses  made by 

T h e r m a l  Hydraulics Operat ion.  

inch thick) of unknown composition w a s  s een  on the inner  su r face  of the clad-  

ding of the 160 increment  rod only. 

cladding of e i the r  rod.  

The  fuel  s t ruc tu re  i s  typically developed during operation a t  s u r -  
2 

A limited react ion layer  (less than 0.0005- 

N o  zirconium hydride w a s  found in the 

Extended Sur face ,  PRTR F u e l  E lement  W e a r  P a d s  - W .  J .  F lahe r ty ,  

M .  D .  F r e s h l e y ,  M .  K .  Millhollen, and R .  E .  Sha rp  

Seve ra l  instances  of acce lera ted  w e a r  o r  f re t t ing co r ros ion  have 

been observed where 1 / 16-inch-wide f u e l  e lement  end f ixture  pads contact 

PRTR p r o c e s s  tubes.  Th i s  can be reduced by increas ing  the contact a rea .  

Extended su r face ,  clip-on wear pads (F igu re  4 .  18) f o r  i r rad ia ted ,  19-rod 

c lus t e r  fuel e lements  a r e  being tes ted under PRTR conditions (550  F wa te r  

flowing a t  80 gpm) in  the out-of-reactor  TF-7 loop. 

operat ion of a t e s t  e lement  utilizing the new pads,  contact areas on the w e a r  
pads and on a s imulated PRTR process  tube w e r e  worn only sl ightly (less 

than 0 . 0 0  1 inch).  The  t e s t  sect ion w a s  mechanically vibrated during this  

exper iment  ( 1 . 8  mils deflection a t  85 cps)  to acce le ra t e  w e a r  and fret t ing 

co r ros ion .  

1 / 4  x 1 / 2  inch.  

After  four weeks '  

, 

Each  of the th ree  pads on each  end bracket  has a w e a r  sur face  

P a d s  w e r e  remote ly  attached to th ree  i r rad ia ted  U 0 2 - P u 0  e lements  

Inspection 
2 

which previously had caused excess ive  PRTR process  tube wear .  
of these e lements  and the p rocess  tubes a f t e r  s e v e r a l  weeks '  additional 

operat ion revealed no measurable  w e a r  o r  f re t t ing co r ros ion .  

will  be remote ly  installed on nine additional i r rad ia ted  U 0 2 - P u 0  
Clip-on pads 

e l emen t s .  2 
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Pos t i r rad ia t ion  Examination of a MgO-Pu02 PRTR F u e l  Element  - 

M. D .  F r e s h l e y  

A ful l -s ize ,  Z i rca loy-2  clad,  swage compacted MgO-Pu02 19-rod 

c lus t e r  e lement  w a s  i r rad ia ted  in the P R T R .  The  P u 0 2  (calcined,  -325 

mesh)  and a rc - fused  MgO ( -6  mesh)  w e r e  incremental ly  loaded into low 

nickel Zi rca loy-2  tubes (0 .565- inch  OD,  0 .030-inch w a l l  th ickness) .  A 

900 C maximum f u e l  t empera tu re  w a s  anticipated.  

coolant activity r e c o r d s  suggest  that the fuel e lement  failed approximately 
three  hours  a f t e r  the PRTR achieved 60 Mw operat ion.  The  t e s t  w a s  con- 

tinued f o r  approximately 8 Mwd (about eight days  operat ion) ,  a t  which t ime  

it w a s  discharged because of excessive coolant activity observed following 

a r e a c t o r  shutdown. 

spl i t  (1-1/2- inches long and 1/4- inch wide) in the cladding of one rod,  and 

washout of approximately 9 inches of fuel  m a t e r i a l .  

d iscolorat ion of the cladding that would indicate overheat ing.  

Individual p rocess  tube 

Pos t i r rad ia t ion  examination revealed a longitudinal 

T h e r e  i s  no nonuniform 

Plutonium segregat ion,  with a periodicity of about 1 /2 inch, occu r -  

red as a r e su l t  of the mechanics  of the incrementa l  loading technique. How-  

e v e r ,  post i r radiat ion autoradiographs revealed additional unexplained higher 

concentrations of f iss ion products approximately every  s ix  inches in the 

failed rod .  

centrat ion coincided with the point of fa i lure .  
of anomalously high PuOz content were .  sufficient to cause  co lumnar  g ra in  

growth and center  void formation (F.igure 4 .  19a). 

uniformly distributed thoughout the co lumnar  gra in  region except in a layer  

of P u 0 2  ( 0 . 0 0 2  to 0 . 0 0 3  inch .thick) on the fuel,  s.urface defining the cen te r  

void (F igu re  4 .  19b). M g 6  has  ;a higher vapor .  p r e s s u r e  than P u 0 2  in  the 

a s sumed  t empera tu re  range ,  and the MgO a p p e a r s  to  have preferent ia l ly  

re located outward by vaporization and deposition. 

T h e r e  is evidence that one such  region of high plutonium con-  

F u e l  t empera tu res  in regions 

The  PuO second phase is 2 

The cladding spl i t  began as a br i t t l e  fa i lure ,  associated with a mas- 

s ive hydride deposit  ( F i g u r e s  4 .  19a, 4.20) and propagated in a ductile 

manner .  

w e r e  presumably initiated by c i rcumferent ia l  s t r e s s e s  caused by fuel swelling 

Radial  c r a c k s  (0 .010- inch  maximum length) in the hydride l aye r  
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RM -B 2632 (250 X) 

on the Outer  Surface of the Cladding 
a .  Radial  Crack  Through Zirconium Hydride Laye r  

RM-B2631 (250  X) 
b .  Severely Corroded Inner  Suface of the 

Zircaloy Cladding in the Rupture A r e a  

A L C - G E  R I C H L A R D .  W A S ”  

FIGURE 4 .  19 

C r o s s  Sections of Cladding f rom MgO-Pu02 
PRTR Fue l  Element  



6 

RM-B2433 (75 X) 

FIGURE 4 .20  

Polished Cross  Section of Zi rca loy  Cladding from MgO-PuO2 

at the Point of F a i l u r e .  Radial  C r a c k s  Pene t r a t e  the Hydride 
F u e l  Element .  Hydride Layer  on the Outer  Surface is Thickest  

Laye r .  Severe Loca l  Corros ion  is Evident on the Inner Surface.  

2 
I 
4 
Q, 
w 
0 
0 
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Q in the fai lure  region. Although preirradiat ion autoclave t e s t s  of deliberately 

defected fuel rods containing the s a m e  fuel mixture  did not cause  fuel swelling, 

l a t e r  t e s t s  showed a s t rong  dependence on defect shape.  

with s l i t  defects but not with round holes through the cladding! 

Swelling occurred  

The inner  sur face  of the cladding was severe ly  and locally corroded 

par t icular ly  a t  the point of fa i lure  (F igu re  4 .  19b) .  

hydriding were  observed in  other  regions of high PuO 

Corros ion  and sur face  

concentration. 2 

If res idual  fluoride ions f rom the etching process  remained trapped 

in  internal  cladding defects,  a tentative fai lure  mechanism could be hypoth- 

es ized,  involving the 0 .  2 wt% water  found in the fused MgO. 

the water ,  Zircaloy and fluoride ions would produce the observed cor ros ion  

and hydride layers ,  leading to initial, b r i t t l e  fa i lure .  Waterlogging and/ o r  

a slow volume inc rease  of the fuel a s  a r e s u l t  of the hydration of MgO would 
induce ductile propagation of the original sp l i t .  Continued i r rad ia t ion  of the 

element and attendant thermal  and p r e s s u r e  cycling would cause  washout of 

the nonsintered fuel until o ther  localized a r e a s  of s intered,  high P u 0 2  con- 

cent ration were  encountered. 

Reaction between 

Inspection of PRTR Fuel  Elements  - M. K.  Millhollen, W .  J .  F laher ty  and 

M. D. F resh ley  

A l l  PRTR f u e l  e lements  were ultrasonically decontaminated'' i n  a 

detergent solution a f t e r  Contamination by MgO-Pu02 fuel that w a s  re leased  

into the coolant s t r e a m  by a fuel  element fa i lure .  ( l )  After  decontamination, 

a l l  fue l  e lements  were  visually examined before being recharged  into the 

r eac to r .  

A1-Pu fuel bundle were  loose o r  missing.  

removed f rom se rv ice .  

f rom se rv ice .  Two UO 

f o r  fur ther  inspection when the PRTR F u e l  Element  Examination Faci l i ty  

(FEEF) is available.  

these  were  replaced.  

T h r e e  U 0 2  elements  had broken space r  wi res ,  and bands on one 

These  four  fuel e lements  were  

Two U 0 2  fuel e lements  were  temporar i ly  removed 

f u e l  e lements  were  temporar i ly  removed f rom se rv ice  2 

Hanger  pins of some of the elements  had been bent and 

- -  
.I. -0- 

(1) 

_ - _ _ - - _ - - - - - _  
By PRTR Operation personnel .  - 
Cadwell, J. J. Fue l s  Development Operation, Quar te r ly  P r o g r e s s  Report ,  @) 
July, August, September ,  1 9 6 2 .  HW-74378. October 15, 1962 .  (SECRET) 
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Irradiation of Uranium-Plutonium Oxide - W .  J ,  Bailey and T ,  D ,  Chikalla 

A series of t e s t  capsules  w a s  i r rad ia ted  with the objectives of (a) 

determining the effect of P u 0 2  content on the i r rad ia t ion  s tabi l i ty  of the 

fuel, (b) compar ing  the in - r eac to r  per formance  of fuel pel le ts  prepared  

f r o m  mix tu res  of U 0 2  and P u 0 2  and f r o m  mix tu res  of U 0 2  and ( U ,  P u ) 0 2  

( f rom calcination of Pu(OH)4 and (NH4) 2 U 2 0 7  coprecipi ta ted f r o m  hot 

ammonium hydroxide),  and (c) investigating the in - r eac to r  s in te r ing  of low 

density (63  - 6570 TD) uranium-plutonium oxide pel le ts .  S t ruc tu re  changes 

and f iss ion gas  release appeared m o r e  extensive in low density spec imens ,  

par t icu lar ly  those containing lower concentrations of plutonium added as 
mixed c r y s t a l  oxide.  

capsules  (Table  4 .  2),  w e r e  i r rad ia ted  in the MTR. 

Six p a i r s ,  each  of high densi ty  and low densi ty  fuel 

The  high densi ty  oxide capsules  w e r e  designed to  genera te  19 kw/f t  

One capsule  of each  pa i r  2 with a s u r f a c e  heat flux of 440 ,000  Btu / (hr ) ( f t  ) .  

was  i r r ad ia t ed  to approximately 30 x 1OI8 f i s s i o n s / c m  and one to approxi-  3 

mate ly  150 x 10l8  f i s s i o n s / c m 3 .  One exception, a capsule  fueled with 2. 57  
mole  70 P u 0 2 ,  w a s  i r rad ia ted  to 296 x f i s s i o n s / c m 3  o r  1 0 , 0 0 0  Mwd/ton 

of U 0 2 - P u 0 2 .  

The  low density oxide capsules  w e r e  designed to genera te  1 2  kw/f t  

T h e  capsule  2 with an  assoc ia ted  su r face  heat flux of 275,000 B tu / (h r ) ( f t  ) .  

pairs  were irradiated to the same exposure levels as the high density ones.  

Burnup ana lyses  of the i r rad ia ted  f u e l  a re  being per formed by mass 

spec t romet ry .  

power for compar ison  with va lues  es t imated  f r o m  flux-monitoring w i r e  

da ta .  

T h e s e  ana lyses  wi l l  allow computation of capsule  rod 

F i g u r e  4.  2 1  shows the fuel s t ruc tu re  developed in a low densi ty ,  

0 . 0 2 5 9  mole 70 P u 0 2  spec imen.  

row columnar  g ra ins  and c e n t r a l  voids .  Af t e r  i r rad ia t ion  the l o w e r  expo- 

s u r e  spec imen w a s  about 0 . 0 3 0  inch smaller in d i ame te r  than the cladding 

ID ~ 

both capsu le s .  

Both capsules  in this  s e t  exhibit long, n a r -  

T h e  ex te rna l  appearance  and longitudinal sec t ions  were  similar for  
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TABLE 4 . 1  
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uo - 
Capsule Data 

- PUO 2- 2 CAPSULE IRRADIATION TESTS 

U 0 2 - P u 0 2  Pe l le t s  
D iame t ra l  Gap 
Cladding 
Atmosphere 
Size 

1 / 2  inch d i ame te r  
0 .001  - 0 .003  inch 
Zircaloy-2,  0 . 0 3 1  inch thick 
Helium 
9 / 1 6  inchOD x 2 - 1 / 2  inch long 

High Density Pel le t  Capsules  ( 6  pa i r s )  

Identity Number 
P u 0 2  Content 
P u 0 2  Type':' 
Sinter ing Conditions 
Density 

GEH-14-19, -20, -85 through -91 
0.0259 to 5 .  6 7  mole 70 
4 M C 0 ,  8 M M  
1600 C in H2, to 11 hours  
90 - 9370 TD 

Low Density Pe l le t  Capsules  ( 6  pa i r s )  

Identity Number 
P u 0 2  Content 
P u 0 2  Type" 
Heating Conditions 
Density 

GEH-14-21, - 2 2 ,  -65 through -74 
0 .  0259 to 7 .45  mole 70 
2 MCO, 10 MM 
1000 C in H2 
63 - 65% TD 

':: MCO -mixed  c r y s t a l  oxide, UO2/PuO2 = 5 / 1  
MM - mechanical  mix ture  UO~(na tu ra1 )  and P u 0 2  

A low density oxide spec imen with 0 .  187 mole 70 P u 0 2  (F igu re  4. 22) 

shows evidence of cen t r a l  mel t ing.  

l a rge  high density columnar  g ra ins ,  the rough inner  sur face ,  and  the porous 

spongy m a s s  in the cen t r a l  region.  

Note the small columnar  g ra ins ,  the 

The higher exposure companion to  the preceding capsule is shown 

in F igu re  4 .  23. 

ex te r io r .  
( 0 .  1 inch in  d iameter ) ,  a n  unusual mic ros t ruc tu re ,  a t ea r -d rop  shaped 

cent ra l  void, and a marked  core-cap  react ion zone. 

su remen t s  (500 g r a m  load) of the var ious  regions are: the fuel,  723; the 
sphe re ,  543; the fuel-cap interaction zone, 198; and the Zircaloy-2 cap,  225. 

The  sphere  i s  believed to be a compound, r a t h e r  than a n  alloy, of uranium, 

Note the relatively uniform coloration of the capsule 

The longitudinal sec t ions  r evea l  a hard oxidation-resistant sphe re  

Knoop hardness  mea- 

@ .  
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( 2  1 / 2 m  

062  2107-4  

F I G U R E  4 . 2 1  

I r rad ia ted  UO2-0 .0259  mole (70 P u 0 2  (GEH- 14-22) .  
Specimen Impregnated with P las t ic  t o  Retain F u e l  

Init ial  F u e l  Densi ty ,  657’0 TD;  Exposure ,  72 x 1OI8 f i s s ions / cc  
i n  Posi t ion During Examination. Capsule Data: 

A E C  G E  I 1 I C H L A I I D  W A S H  
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C o r e  
Cen te r  

(30 X) 
062 2107-12 

FIGURE 4 .22  

I r rad ia ted  UO2-0.187 mole 70 P u 0 2  (GEH-14 6 ) 
Capsule Data: Init ial  Density-65% TD; Exposure,  36 x 10” f i ss ions /cc  

A E C . G E  R ICHLAND.  W A S H  



( 1 . 7  X) 
Autoradiograph 

"'r 

. . 
( 3  X) 

Autoradiograph. of, L 
4.5.. Z"..J---7 . .- 2 . w  

FIGURE 4. 23 

I r radiated UO2-0. 187 mole 70 P u 0 2  (GEH-14-66) 
Note 0 .  l - inch Diameter  Sphere 

Capsule Data: Initial Density, 65% TD; 
Exposure,  79 x 1 0 l 8  f i s s ions / cc  

( 3 . 4  x) 
... 
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plutonium, a n d / o r  z i rconium plus f iss ion products .  

the sphe re  to be significantly m o r e  radioactive than the surrounding fuel.  

X- ray  diffraction s tudies  yielded no conclusive r e su l t s .  

chemically analyzed. 

Autoradiographs show 

The  sphe re  is being 

Figure  4 .  24 shows the charac te r i s t ic  appearance of most  of the 

i r rad ia ted  low density oxide spec imens .  Slight s in te r ing  has  occur red .  The 

gra in  s i ze  w a s  not markedly changed and relatively few c r a c k s  developed. 

Equiaxed gra ins  a re  present  in the cen t r a l  region of the fuel in the 

capsule of F igu re  4 .  25 and in i t s  companion capsule .  

contains 0 .  0259 mole 70 P u 0 2  added as  mixed c r y s t a l  ma te r i a l .  

i nc rease  in gra in  s i ze  f r o m  edge to  center  and the relat ively uniform fission 

product distribution shown by the autoradiograph. 

The  high density fue l  

Note the 

Columnar  g ra ins  were  formed in the high density oxide sample  

(Figure 4.  26) containing 0 . 0 2 5 9  mole 70 P u 0 2 .  

capsule ,  the fuel  in this  spec imen w a s  prepared  by s in te r ing  mechanical  

mix tu res  of U 0 2  and P u 0 2 .  

by the autoradiograph.  

In cont ras t  to  the preceding 

Note the f iss ion product distribution revealed 

The  high density 2 .57  mole 70 P u 0 2  spec imen shown in F igu re  4 .27  

w a s  i r rad ia ted  to a maximum of 296 x 10l8 f i s s ions / cm3  o r  10,000 Mwd/ton 

of U 0 2 - P u 0 2 .  

be 9100 Mwd/ton U 0 2 - P u 0 2 .  

cen t r a l  void w e r e  fo rmed .  

shown in the autoradiograph.  

evidence of nonuniform P u 0 2  distribution, and enhanced porosi ty  in  the 

la rge-gra in  boundary m a t e r i a l .  

region shows the accumulation of voids along the gra in  and sub-gra in  

boundaries .  Th i r ty  percent  of the krypton and 31 70 of the xenon w e r e  

F r o m  reac to r  data ,  the ave rage  exposure w a s  es t imated  to  

Very  long, nar row columnar  g ra ins  and a 

Note the nonuniform f iss ion product distribution 

The  mic ros t ruc tu re  nea r  the cladding exhibits 

The  photomicrograph of the columnar  gra in  

re leased  

The fue l  shown in F igu re  4 .  28 is the only specimen thus far examined 

that exhibits equiaxed grains  a t  the c o r e  cen te r  surrounded,  in  turn ,  by 

la rge  and small columnar  g ra ins .  

P u 0 2 .  

The  high density fuel contains 4 .  13 mole 70 
Note the markedly nonuniform f iss ion product distribution revealed 
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FIGURE 4.24 
I r rad ia ted  UO2-1.46 mole 70 P u 0 2  (GEH-14-68) 

Capsule Data: Initial Density, 6570 TD; Exposure, 110 x 10l8 f i ss ions /cc  
062 2107-9 
AEC.CE n ICRLAND.  WASH 
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. ii 
'i 

A 
I 

,utoradiograph ( 3  X) 

Edge (250 x, FIGURE 4.  25 Cen te r  (250 x) 
I r rad ia ted  UO2-0.0259 mole '$0 P u 0 2  (GEH-14-20) 

Capsule Data: Initial Density, 90% TD; Exposure,  84 x 1018 f i ss ions /cc  
0622107-6 
A E C  G E  R l C H L l Y D  W l S H  
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FIGURE 4 . 2 6  

I r rad ia ted  U02-0.  0259 mole 70 P u 0 2  (GEH-14- 
Capsule  Data: Init ial  Density, 90% TD; Exposure,  104 x lO")fissions/cc 

062 2107-10 
A F C  C F  " ,<*I  ,NO W A S H  



4. 38 HW-76300 

4. 27 

I r rad ia ted  UO2-2. 57 mole 70 P u 0 2  (GEH-14-85) 
Capsule  Data: Initial Density, 91% TD; Exposure,  296 x 10 l8  f i ss ions /cc  

b 
0622107 -7 

A F C  C E  R i c n L A H O  W ~ S H  
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FIGURE 4 .28  

I r rad ia ted  u o 2 - 4 . 1 3  mole 70 P u 0 2  (GEH-14-86) 
Capsule  Data: Initial Density, 91% TD; Exposure,  1 6 6  x 10 l8  f i ss ions /cc  

062 2107-11 
1 L C  G E  R , C " L I N O  W A S H  
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by the autoradiograph.  

the excess ive  heat generation r a t e  that occur red  when the capsule  w a s  inad- 

ver tent ly  exposed to double the requested neutron flux during i t s  l a s t  cycle 

of i r rad ia t ion .  

A probable cause  of the unusual grain formation i s  

One capsule in  the series of 24  failed during a n  inadvertent exposure 
to the rma l  neutron flux 11 t imes  g r e a t e r  than specified.  

i r rad ia ted  s ix  days,  generat ing a n  init ial  sur face  heat flux of 4 ,000,000 

Btu / (hr ) ( f t2) .  

to r i s e  until  the capsule  w a s  d i scharged .  

mole 70 P u 0 2  fuel  remained in the capsule a f t e r  d i scha rge .  

co re -cap  reac t ion  had occur red .  

ding at the rupture  s i te  w e r e  observed .  

T h e  capsule w a s  

Increased  coolant activity,  noted on the second day, continued 

None of the high density,  5 .  6 7  

An extensive 

Hydriding and g r o s s  cracking of the clad- 

Hardness  measu remen t s  on s e v e r a l  spec imens  allowed the est imat ion 

of the post i r radiat ion density ( s e e  Table  4 .  3 ) .  

occur red  in the low density fuel during i r rad ia t ion .  

Marked density inc reases  

A s  anticipated,  g r o s s  rad ia l  c racking  and some  c i rcumferent ia l  

cracking w e r e  encountered.  However,  low exposure spec imens ,  r ega rd le s s  

of density,  exhibited a lesser tendency f o r  cracking a t  higher plutonium 

contents.  

Cent ra l  cavity formation w a s  observed in seven spec imens ,  the 
majori ty  of which had the lower plutonium concentrat ions.  

low densi ty ,  mechanically mixed oxide spec imens ,  it  w a s  found that the 
extent of in - reac tor  s in te r ing  and density inc rease  w e r e  general ly  less a t  

the higher P u 0 2  concentrat ions.  A similar density change t rend has  been 

observed in out-of - r eac to r  s in te r ing  s tudies  with U 0 2 - P u 0 2  mechanical  

mix tu res .  

occu r red  when the P u 0 2  concentration w a s  less than 0 .  2 mole pe rcen t .  

In the case of 

The  mos t  significant s t ruc tu re  changes in  low density spec imens  

Metallic inclusions w e r e  noted in the mic ros t ruc tu res  of nearly all 

spec imens  which had form ed c e n t r a l  voids.  

F r o m  the autoradiographs it w a s  observed that g r o s s  segregat ion 

of the f iss ion products occur red  only in  spec imens  exhibiting columnar  g ra ins .  



T A B L E  4 . 3  

C a p s u l e  
No.  

(GEH-  14-) 

20 

9 1  

8 2  

88  

22 

66  

68 

69 

7 1  

73  

66 

MICROHARDNESS AND DENSITY DATA FOR IRRADIATED U O 7 - P u 0 2  

uo 2 - P U O  2 
(mole 70 PuO ?) 

0.0259 

0 .0259 

1 . 0 2  

5 .  67 

0 .0259 

0 .  187 

1 . 4 6  

3 . 4 7  

5 . 4 6  

7 . 4 5  

Average  Exposure"  
( f i s s ions  c m - 3  x 10-18) 

s p h e r e  

c o r e - c a p  in t e r f ace  

Z i r c a l o y - 2  c a p  

84  

104 

160 

16 

72 

79 

110 

116 

104 

113 

Approx ima te  

(KHN, 500  g r a m )  
C e n t e r  A v e r a g e  

Ha d e :k% 

477 437 

59 5 5 36 

627 5 70 

6 18 6 38 

68 1 

723 

5 0 3  

44 3 

4 20 

500 

543  

19 8 

225 

;% F r o m  f lux -mon i to r ing  w i r e  da ta  
:::::: C e n t e r ,  a v e r a g e  of t h r e e  v a l u e s ;  A v e r a g e ,  a v e r a g e  of 13  to  19 v a l u e s  

Dens i ty ,  (70 TD) 
E s t i m a t e d  f r o m  

M e a s u r e d  H a r d n e s s  
P r e  - Pre P o s t  - 

90  

9 0  

9 3  

9 1  93-94  

6 5  

6 5  

65  

6 4  

6 3  

6 3  

89-92  

92-96 

96-98  

94-97 CP 

98-  100 A 
P 98-  100 

91-93  

88-90  

87-89 

9 1-93  

2 
I 
4 
m 
w 
0 
0 
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Q 
Exte rna l  dimensional changes on the capsules  w e r e  negligible except 

f o r  four  high density oxide capsules .  

cladding d iameter  i nc reases  of 0.008 - 0.014 inches ( 1 . 4  to 2.  4v0). 

T h r e e  with cen t r a l  voids had maximum 

The  

ruptured capsule showed a fa i r ly  uniform 9 - 10% increase  in d i ame te r .  

Excellent X - r a y  diffraction pa t te rns  of the low exposure fuel showed 

well defined peak broadening and s t rong  evidence of p re fe r r ed  orientation ~ 

Weak pa t te rns  were  obtained f rom the high exposure spec imens .  
18 density oxide capsule with 5 .46  mole 7'0 P u 0 2  and an exposure of 104 x 10 

f iss ions /cm3,  a latt ice constant of a, = 5.476 f 0 . 0 0 1  A w a s  obtained. The  

theoret ical  value for  this  composition is 5. 464 A, so i r radiat ion damage is 

evident ~ 

On one low 

Nonuniform plutonium distribution w a s  noted in  both high and low 

density U 0 2 - P u 0  spec imens  not exhibiting marked  gra in  growth. It is 

believed that t he re  are  numerous small a l ternately UO - r i ch  and P u 0 2 - r i c h  

regions.  G r e a t e r  porosi ty  is observed in one type of region, believed to be 

PuO - r i ch  because the major i ty  of the f i s s ions  occur  in the plutonium a toms 2 
in spec imens  containing m o r e  than one mole 70 P u 0 2 .  

2 

2 

High density pel le ts  prepared  f rom mixed c r y s t a l  ( U ,  P u ) 0 2  and 

f r o m  U02-PuO mechanical mix tures  performed comparably.  However,  2 
the samples  made f r o m  mixed c r y s t a l  oxide tend to show m o r e  g ra in  growth 

and higher f i ss ion  gas  r e l e a s e .  Of the high exposure spec imens ,  the mixed 

c r y s t a l  oxide pellets r e l eased  127'0 of the K r  and 147'0 of the Xe while the 

pellets made f r o m  mechanically mixed oxides re leased  2% of the K r  and 4% 

of the Xe.  PuO concentration in these pellets w a s  0 .0259  mole percent .  2 

Assuming exposure and gas  r e l e a s e  data are  c o r r e c t ,  the f iss ion gas 
volume re leased  pe r  g r a m  of low density U02-PuO tends to d e c r e a s e ,  fo r  

comparable  exposures  with increas ing  plutonium concentration. New data 

f rom high density U02-PuO 

slight o r  nonexistent 

2 

specimens show the above t rend to be very  2 
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F r o m  this s e r i e s  of i r rad ia t ion  t e s t s  (assuming comparable  exposures)  

the following conclusions were  drawn: 

(1) The  P u 0 2  concentration has a marked  effect on the i r rad ia t ion  

behavior of low density fuel.  The  m o r e  d ra s t i c  mic ros t ruc tu ra l  

changes and higher f iss ion gas  r e l e a s e s  occur red  when the P u 0 2  

content was  very  low. 

P u 0 2  has  re la t ively l i t t le  effect on s t ruc tu re  change and f iss ion 

gas  r e l e a s e .  

( 2 )  High density pel le ts  prepared with additions of mixed c r y s t a l  
fuel m a t e r i a l  revealed m o r e  gra in  growth and higher f iss ion gas  

r e l e a s e  than pel le ts  made  f rom mechanically mixed U 0 2  and P u 0 2 .  

Low densi ty  fuel,  a t t rac t ive  because of the ease  of fabr icat ion,  

s in te red  to  high density in the r eac to r  and revealed relat ively high 

f iss ion gas r e l ease  values  for  the exposures  studied. (The  r e l ease  

r a t e  may d e c r e a s e  a t  high exposures  because of the s in te r ing  

which occurred  during e a r l i e r  s t ages  of the i r rad ia t ion .  ) 

T h e  P u 0 2  concentration in  high density UO2- 

( 3 )  Low density fuel capsules  operated sat isfactor i ly  to 5000 Mwd /ton 

of U 0 2 - P u 0 2 ,  although g r o s s  fuel s t ruc tu re  changes occur red  in some 

of t h e m .  

is des i rab le  before  initiating la rge  sca le  application of the low density 
fuels  to ful l -s ize  r e a c t o r  e lements .  

which can ex is t  in both low and high densi ty  U02-PuO is significantly 

reduced during i r rad ia t ion  only in  reg ions  where  marked  gra in  growth 

o c c u r s .  G r o s s  f iss ion product migrat ion occur s  in a r e a s  of columnar  

gra in  growth. 

(4) I r rad ia t ion  of fueled capsules  indicates  that U02-PuO 

fo rm adequately to a t  l eas t  5000 Mwd/ton of U 0 2 - P u 0 2 .  

performed sat isfactor i ly  to 10 ,000  Mwd/ton U 0 2 - P u 0 2 .  

A m o r e  complete understanding of the i r rad ia t ion  behavior 

Nonuniform dis t r ibut ion of plutonium 

2 

w i l l  p e r -  2 
One capsule  

A 
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Shor t  Durat ion I r rad ia t ions  of U 0 2  and U 0 2 - P u 0 2  - W .  J .  Bai ley and 

T . D . Chikalla 

F o u r  spec imens ,  each  containing high densi ty  pel le ts  of UO - 0 .  154 

, were i r rad ia ted  in  the VH-4 
235) 2 

mole 70 P u 0 2  and of U 0 2  ( 1 . 0 0  mole 70 U 

Hydraulic Rabbit Fac i l i ty  of the MTR. 

to obtain a be t t e r  understanding of the phenomenon of in - reac tor  s in te r ing  

and of the  effect  of increased  P u  content on the stabil i ty of U 0 2  during 

i r rad ia t ion .  

change and affect  fuel per formance  include f iss ion gas release r a t e s ,  

t h e r m a l  conductivity, and solid solution formation.  

T h e  objective of the exper iment  was 

During in - r eac to r  s in te r ing ,  fuel m a t e r i a l  p rope r t i e s  that 

T h e  capsules  w e r e  in  the act ive zone of the Hydraul ic  Rabbit Fac i l i ty  

(VH-4) f o r  var ious  t i m e s .  

Capsule  In -Rea c to r I r rad ia t ion  Radioactivity 
Number Time (min)  Date  ( B  and y) 

GEH-21-13 3 10/7 /62  10/18/62 ,  35 m r a d / h r  a t  3 ft  in  

GEH - 2 1 - 14 5 10129 / 6 2  12 /19/62 ,  900 m r a d / h r  a t  s u r -  

GEH - 2 1 - 15 15 11 / 19 1 6 2  12/19/62 ,  9 r a d / h r  a t  su r f ace  

GEH-21-16 60 1 2 1  10 / 6 2  

air 

face in  air:: 

in air 

:: Approximately th i s  same radioactivity was  observed  on same date  f r o m  

GEH - 2 1 - 13. 

Attempts  to obtain autoradiographs on g lass  of the f i r s t  t h r e e  capsules  

w e r e  unsuccessful .  Using high-resolution f i lm,  a faint  autoradiograph was  

obtained f r o m  Capsule GEH-21- 15 with a 27-hour exposure .  

exposure  with film produced no image of e i the r  Capsule  GEH-21-13 o r  

GEH - 2 1 - 14. 

A 25-hour 

The cobalt and A1-Co alloy flux-monitoring w i r e s  on GEH-21-16 are 
being m e a s u r e d  a t  the MTR. 

the fuel w i l l  begin e a r l y  in  1963. 

Pos t i r rad ia t ion  destruct ive examination of 
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Fis s ion  F ragmen t  Migration in  UO - J .  L.  Bates ,  J .  A.  Chr is tensen  2 
and W .  E .  Roake 

2 Dri l led samples  taken along the d i ame te r  of an  i r rad ia ted  U O  

fuel co re  confirmed earlier measu remen t s  of g r o s s  f iss ion fragment  re lo-  

cation during i r radiat ion.  ( lJ 2 J  3, Samples  were  obtained with vibrating 

tungsten carbide tools a t  radial  intervals  of 0 .  0 9 0  inch. 

w e r e  obtained by scr ibing the polished surface of a f u e l  e lement  c r o s s -  

sect ion and retr ieving the resul t ing powder on s t r ip s  of adhesive which 

were  subsequently sectioned into s m a l l  pieces ,  each  represent ing  a portion 

of the f u e l  r ad ius .  Dri l l ing is m o r e  t ime consuming than s c r a t c h  sampling 

but provides l a r g e r  s amples  of unquestionable or ig in .  

Previous ly ,  s amples  

Resul ts  of both dril l ing and s c r a t c h  sampling techniques applied to  

the s a m e  cross-sec t ion  a r e  shown in F igu re  4.  2 9 .  Both s e t s  of r e su l t s  

have the same significant fea tures ,  in par t icu lar ,  the g r o s s  depletion of 

f iss ion products i n  the high density columnar  gra in  region.  The  s c r a t c h  

samples  indicated a possible Pu redistribution; however,  this is not sup-  

ported by r e su l t s  f r o m  the dr i l led samples ,  which a r e  considered m o r e  

accu ra t e .  The differences in  isotopic concentration in the two s e t s  of 

s amples  re f lec ts  the longer decay t ime (approximately one y e a r  l a t e r )  

applied to the dr i l led s a m p l e s .  The autoradiograph is included in  F igure  
4 .  29 to i l lustrate  the g r o s s  concentration distribution of 0- and @-active 
f iss ion f ragments  a c r o s s  the fuel d i ame te r .  

In-React o r  Tes t ing  Devices  - W .  J .  Bailey and S .  H .  Woodcock 

T h r e e  novel in - reac tor  tes t ing devices  a r e  being designed and evalu- 

a ted .  T h e s e  a re  shown in F igu res  4 .  30,  4 .  31  and 4. 3 2 .  

Cadwell ,  J .  J .  Fue l s  Development Operation Quar te r ly  P r o g r e s s  Repor t ,  
Ju ly ,  August,  September ,  1 9 6 2 .  HW-74378,  October ,  1 9 6 2 .  (SECRET) 

Cadwell ,  J .  J .  Fue l s  Development Operation Quar te r ly  P r o g r e s s  Repor t ,  
J anua ry ,  F e b r u a r y ,  March ,  1 9 6 2 .  HW -72347,  Apri l ,  1 9 6 2 .  (SECRET) 

Bates, J .  L . ,  Chr is tensen ,  J .  A,, Roake, W .  E .  "Fiss ion P roduc t s  
and Plutonium Migrate  in  Uranium Dioxide F u e l ,  I '  Nucleonics 2 4 ,  

N O .  3: 88-90. 
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BE LLO W S 
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R E T  R AC T 
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u o z  - Pu 0 2  

FUEL ELEMENT 
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WATER FLOW WATER FLOW 

FIGURE 4 .  30 

Proposed Equipment to  Operate  F u e l  E l e m e n t s  a t  High Specific 
T h e m  During Reac tor  Operation Without Reducing Coolant Flow 

170-  1 

U 
WATER FLOW 

Power  and Discharge 
("Icarus" Experiment)  
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LOCKING DEVICE ) 

CONTAM INATION 

TI -RECOIL DEVICE 
TUA NSPORTABL E 

CONTAMfNATfON - 

FIGURE 4 . 3 1  

Proposed Equipment for Measurement of High Tempera tures  
in an Operating Fuel Element ("Helios" Experiment) 
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LENS TUBE 
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T V  OR FILM CAMERA 

MULTI-  CHANNEL 
OSCi LLOGRAPH 

Proposed Equipment f o r  Visual Observat ion and Recording of High Tempera tu re  
Fuel  Region of an Operating F u e l  Element  ("Argus" Experiment)  0630196 

"'UV PYROMETER 

FIGURE 4 . 3 2  
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