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Abstract

This report outlines the application of finite element methodology to large deformation solid
mechanics problems, detailing also some of the key technological issues that effective finite
element formulations must address. The presentation is organized into three major portions: first,
a discussion of finite element discretization from the global point of view, emphasizing the
relationship between a virtual work principle and the associated fully discrete system; second, a
discussion of finite element technology, emphasizing the important theoretical and practical
features associated with an individual finite element; and third, detailed description of specific
elements that enjoy widespread use, providing some examples of the theoretical ideas already
described. Descriptions of problem formulation in nonlinear solid mechanics, nonlinear
continuum mechanics, and constitutive modeling are given in three companion reports.
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Introduction

In this chapter we explore the finite element techniques utilized in the description of large
deformation problems in solid mechanics. Beginning with the notational framework and problem
description discussed in Formulation of Nonlinear Problems and utilizing the nonlinear
continuum mechanics and material modeling issues discussed in Nonlinear Continuum
Mechanics and Table of Contents, we discuss in this chapter how discrete approximations to the
governing nonlinear field equations are generated and solved.

The discussion will take place in three general stages. The first stage, consisting of the first five
sections of the report, emphasizes the global formulation of the finite element method and
treats aspects best understood by considering the discretized system in its entirety. Topics to be
discussed in this way include a brief presentation of weak forms appropriate for large
deformation problems, in Weak Form Revisited, a general discussion of Discretization, time
independent and dependent problems (i.e., Quasistatics and Dynamics), and Nonlinear Equation
Solving. These sections will emphasize the derivation of discrete system equations from the
underlying variational principle, the form of these system equations in matrix form, and the
iterative solution of these equations that is required for nonlinear applications.

The next stage treats element technology, presenting the fundamentals necessary to formulate
and implement the basic building block of the finite element method: the finite element. Indeed,
the most basic advantage of the finite element method over other more classical variational
methods is its modularity. That is to say that the method of discretization is tailored to small
systematically generated subdomains of the problem of interest (i.e., elements) making the
method applicable to a myriad of geometrical situations. Importantly much of finite element
technology is sufficiently generic so that many aspects of element formulation are virtually
unchanged from application to application. We will discuss these aspects in two sections. The
first, Basics of Element Design, will cover the most essential features of element design
including requirements for global convergence, shape function definition, and numerical
integration to produce local contributions to the global equations. The second section, Advanced
Element Design Issues, deals with concerns more specific to large deformation solid mechanics
with the primary concern being near incompressibility of materials and the effect numerical
treatment of such phenomena.

The third stage of our presentation will consist of specific element examples, summarizing
some formulations that are in particularly prevalent use in computational solid mechanics. In
Eight-Node Uniform Strain Element, we present some of the implementational details associated
with an element widely used for the description of three-dimensional continuous media,
particularly in explicit dynamic and matrix-free quasistatic applications. In Four-Node
Corotational Shell, a common structural element is discussed in some detail.

Theory Manual Finite Element Formulation - Introduction 1



Weak Form Revisited

We begin by providing a brief review of the field equations to be considered. The problem to be
solved is as shown schematically in Figure 1.7, where the finite deformation response of a body,

denoted Q in its reference configuration, is to be computed. Assuming that this time-dependent
configuration mapping is denoted by ¢, , the following problem is to be solved for each time, t,

in the time interval of interest:

V-T+£f = paonq.(Q), (3.1)
9. = ¢, on 9. (L), (3.2)

and
t = Eon o (), (3.3)

where all notations are as discussed in Notational Framework. In particular a is the material
acceleration expressed in spatial coordinates, £ is the body force per unit (spatial) volume, and
T is the Cauchy stress tensor. The vector t is the Cauchy traction vector, obtained via £ = Tn,

where n is the outward unit normal to the spatial surface @ _(T';) .
The problem is also subject to initial conditions of the form
(X, 0) = ¢y(X) on Q, | (3.4)

and

g—(g(x, 0) = Vy(x) on Q. 3.5

Recall that although Egs. (3.1)-(3.3) are written in the so-called spatial configuration, we still
consider ourselves to be working in a Lagrangian framework, where all quantities are ultimately

indexed to material points through the mapping x = @_(X) (see Lagrangian and Eulerian
Descriptions).

A prerequisite of the finite element method is that a weak, or variational, form of the above field
equations be available for discretization. This can be obtained, following the general procedure
outlined for linear problems in Weak Forms, by considering weighting functions ¢* , defined

over {2, which satisfy the following condition:

¢* = 0onT, (3.6)
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(cf. (1.82)), where we also assume that all ¢* are sufficiently smooth so that any desired partial
derivatives can be computed. In treating large deformation problems, it is useful to consider

spatial forms of the functions ¢*, obtained by composition with the (unknown) mapping (p;1 .

We denote these spatial variations in the sequel by w, and note that they may be obtained via
-1
w(x) = 0*(¢, (x)) (3.7
for any x € @_(X). This causes the condition
w = 0on () (3.8)

to be satisfied, and provided the configuration mapping ¢, is smooth (which we assume to be

the case), all required partial derivatives of w can be computed.

With these definitions in hand, the development in Weak Forms can be reproduced in the current
context to provide the following spatial representation of the variational form for large
deformations:

Given the boundary conditions £ on ¢ (I';), (B: on ¢ _(T",), the initial conditions @, and V,
on £2, and the distributed body force £ on ¢_(Q), find @, € S, for each time t € (0, T) such
that:

J pw-adv + j (Vw):Tdav

©.(Q) 0. (Q)
(3.9
=( J w-fav+ j W-Eda]
0. (Q) o (Ty)

for all admissible w, where S, is as defined as
S, = {(Pth’t =®(t)on T, @, is smooth} (3.10)

and where admissible w are related in a one-to-one manner via (3.7) to the material variations

¢* € W with the definition of W being
W = {¢*|¢* = 0 on T, @* is smooth}. (3.11)

Note that in contrast to previous development, the constitutive relation governing T is left
unspecified: it can, in general, be subject to both geometric and material nonlinearities. The
notation a for the acceleration is to be understood as the material acceleration, as defined by
(2.27) in Material and Spatial Velocity and Acceleration.
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In addition, the solution ¢ is subject to the following conditions at t = 0:

Jor - (0], _o—9)d2 = 0 (3.12)
Q
and
jcp*.gﬁ —V,dQ = 0 (3.13)
otl._, ’ |

both of which must hold for all ¢* € W.
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Discretization

Introduction

The process of numerically approximating a continuous problem is generically called
discretization. In the finite element method, the entity discretized is a weak form (alternatively,
variational equation). In the current context the variational form to be considered is that
described in Weak Form Revisited. We now refer the reader to Figure 3.1, which gives the
general notation to be used in description of the discretization process for the problem at hand.

77—\ b
S

- J

%> O

Figure 3.1  General notation for finite element discretization of the reference
domain.

As referred to in Figure 3.1, the reference domain  is subdivided into a number of element

subdomains, %, where the superscript e is an index to the specific element in question, running

between 1 and n_, , where n_, is the total number of elements required for the discretization.

We assume in the figure and throughout the ensuing discussion that €2 is a subset of xR , with
the two-dimensional case readily obtained as a special case of the theory we will discuss.

Note also from Figure 3.1 that a number of nodal points are indicated by the dots. We shall
assume that all degrees of freedom in the discrete system to be proposed will be associated with
these nodes. As one might also notice, these nodes may lay at corners, edges, and in interiors of
the elements with which they are associated. A key feature of the finite element method will be
that a specific element can be completely characterized by the coordinates and degrees of

Theory Manual Finite Element Formulation - Discretization 5




freedom associated with the nodes attached to it. In the following we will index the nodes with
the total number of

uppercase letters A, B, C, etc., with such indices running between 1 and D,,»

nodal points in the problem.

Galerkin Finite Element Methods

The essence of any finite element method lies in the discretization of a weak or variational form.
This discretization process involves two important approximations: approximation of a typical

member of the solution space S, , and approximation of the weighting space W. These

approximations are typically expressed as an expansion in terms of prescribed shape or
interpolation functions, usually associated with specific nodal points in the mesh. Since the
number of nodal points is obviously finite, the expansion is likewise finite, giving rise to the
concept of a finite-dimensional approximation of a space.

Roughly speaking, the idea of discretization is as follows. We know from earlier chapters that if
the variational equation is enforced considering all ¢, € S, and @* € W as mandated by its

definition, then the solution of the weak form is completely equivalent to that of the strong form
(i.e., the governing partial differential equation with boundary/initial conditions). This fact results
because of the arbitrary nature of the @* and because of the very general definitions for S, and
W . If we restrict our attention only to some subset of the above spaces, we now make an error
with the solution of our approximated weak form no longer being identical to the solution of the
strong form. If our choice for the type of shape functions to be used is reasonable, however, we
can represent the full solution and weighting spaces with arbitrarily closeness by increasing the
number of nodal points and/or the degree of polynomial approximation utilized in the

interpolation functions. In the limit of such refinement, we should expect recovery of the exact
solution (i.e., convergence).

Let us represent the shape function associated with node A as N, , and assume it to be as follows:
N, Q- R. (3.149)

Given a time, t, the finite-dimensional counterpart of ¢, will be denoted as (pf:1 and is

expressed in terms of the shape functions as

In

np
h
Qc= Y, Nzdy(t), (3.15)
B=1
Theory Manual Finite Element Formulation - Discretization - Galerkin Finite Element Methods 6
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where dg(t) is a 3-vector containing the (in general unknown) coordinates of nodal point B at

time t. Given a prescribed set of nodal shape functions {N;}, B = 1, .. the finite

o g

dimensional solution space Si is defined as the collection of all such (p?:

nnp
sh= {(pi’: Y NBdB(t)I(p}tl =P (X) forall X e Fu}. (3.16)

B=1

In other words, we require members of the discrete solution space to (approximately) satisfy the
displacement boundary condition on I' ;. The approximation comes about because, in general,

h, . — . .
we only force @ to interpolate the nodal values of ®_ on I' | with the N serving as the

interpolation functions. We might also note that I" | itself is typically geometrically

approximated by the finite element discretization, contributing also to the approximation.

This defines the discretization procedure for (plg , at least notationally. It still remains, however, to

approximate the weighting space. The (Bubnov-) Galerkin finite element method is characterized
by utilizing the same shape functions to approximate W as were used to approximate S, .

Accordingly, we define a member of this space, (p*h , via

Nop
h
P* = Y Nye,, (3.17)
=1

where the ¢, are 3-vectors of nodal constants. We can then express the finite dimensional

- h .
weighting space W~ via

nnp
W= {(p*h= Y Nicu|e* = 0forall xe ru}. (3.18)

A=1

Analogous to the situation for Szl , Eq. (3.18) features a discrete version of the boundary

condition on I' ;. In other words, w" consists of all functions of the form (3.17) resulting in
satisfaction of this condition. Note that the only restriction on the ¢, is that they result in

satisfaction of the homogeneous boundary condition on I ; they are otherwise arbitrary.

With these ideas in hand, the approximate Galerkin solution to the initial/boundary value
problem takes the form described below.

Theory Manual Finite Element Formaulation - Discretization - Galerkin Finite Element Methods 7



Given the boundary conditions £ on (pltl(l“ﬁ) , (p_t on (plg(l"u) , the initial conditions @, and

V, on £, and the distributed body force £ on (pil(Q) , find (p}t1 € S}t1 for each time
t € (0, T) such that:

J' pwh-ahdv+ J- (th):Thdv

2o 2
9. (2} 0.(Q) (3.19)

= J'wh-fdv+ J w' - Eda

0e(Q) 0T,)
for all admissible w' , where S, is as defined in (3.16) and where admissible w are related

. . h_ _h .
to the material variations @* € W~ via

w(x) = o ((oh) (x)). (3.20)

In Eq. (3.19) 1" refers to the Cauchy stress field computed from the discrete mapping (pz
through the constitutive relations, whereas a " is the discrete material acceleration.

The initial conditions are ordinarily simplified in the discrete case to simply read:

a,(0) = @o(Xs) (3.21)
and

ds(0) = Vy(Xp), (32

both of which must hold for all nodes B = 1, ..., n, , where X are the reference coordinates

of the node in question.

Generation of Matrix Equations

We are now in a position to summarize the discrete equations that will result from Eq. (3.19).
Before doing so, let us develop one more notational necessity. We can reexpress the nodal vectors

¢, and d; in terms of their components via:

ey = {c,hi=123 (3.23)

and
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dg = {dzh3 = 1,2,3. (3.24)

Note that indices i and j are spatial indices, in general. It is useful in generating matrix
equations to have indices referring not to nodes A and B or spatial directions i and j, but rather
to degree of freedom numbers in the problem. Toward this end we define for notational
convenience the concept of an ID array that is set up as follows:

ID(i, a) = P (global degree of freedom number) . (3.25)

In other words, the ID array takes the spatial direction index and nodal number as arguments and
assigns a global degree of freedom number to the corresponding unknown. In general, the

number of degrees of freedom is ny ¢, given by

Ngor = 3X1n,,. (3.26)

np

With this notation in hand, the equation numbers P and Q are defined as follows:

P = ID(4, A) (3.27)

and

0 = ID(5, B). (3.28)

We now generate the discrete equations by substitution of Egs. (3.15) and (3.17) into (3.19),
causing the variational equation to read:

nnp nnp
| p[ 3 N, (¢ <x>>cA) : [ 3 NB(cp;‘(x»éB(t)]dv

(p};(g) A=1 B=1

+ z VN ((p_l(x))®c ]:Thdv
J [ S metees, e

o(Q) A =

= J ( Z NA((p:__l(x))cA] -f£dv + j ( 2 NA(tp;l(x))cA] -tda
1

ol(Q) A= PRI A =1

Dnp
where we note in particular that T" is a function of (pzz 2 Nydy(t) through the strain-
B=1
displacement relations (nonlinear, in general) and the constitutive law (as yet unspecified and
perhaps likewise nonlinear).

Proceeding now to examine (3.29) term-by-term, the inertial term can be expanded as follows

Theory Manual Finite Element Formulation - Discretization - Generation of Matrix Equations 9




[ p[ PIENCH (x))cA) : ( y NB<<p;1<x))&B<t)}dv

or@ 2=l B=1
Ny 3
= 2 2 j (pNA(cpt (x))clA( 2 N5(Q, (x))dlBJdv]
=li=1,F Q
0.(Q) , (3.30)
o r 3 » » )
= Y D%l X 2 f PNL(@, (3))8; Np(@, (x))dvd;s
A=1i=1 B=1j=l(p1;(Q)
Ngof Raof
= > CP( > MPQde
P=1 Q=1
where Mp, is defined as follows:
Mpg = J. PNA((PEI(K))fSijNB((PEl (x))dv. (3.31)

ORQ)

The second term of (3.29) can be simplified via

Dnp
J ( Z VNA((PZI(X)) ® CA]:Thdv

oRQ) B =

S 33
j [Z 2 ZNA,j((Pt-:l(x))CiATijh ]dv’ (3.32)

P a=1i=15=1
Daot .
= Y o Fp
p=1
where
3
P = | {2 NA’j((pzl(x))Tijh]dv. (3.33)

oh@)-i=1

Finally, the last two terms of (3.29) can be treated as

| (2 NA(<p;1(x))cAJ.fdv+ | (XNA(le(x))cA]-Eda = Y o Fa . (334)

Gu@) A= Qe(lg) A= p=1
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where

ext

-1 -1 —
Fo = j N, (@, (%))£;dv + j N,(0; (%)) - t,da. (3.35)
Pr(R) Pu(Ty)

‘We now define the following vectors and matrices of global variables, all with dimension of

Ngot-
c = {cy}
a(t) = {dy(t)}
FPRA(Y) = {Fp ) . (3.36)

ext ext ’
F = {F; }
M= M)

The results of Egs. (3.30)-(3.35) can now be summarized as follows:

cT[Md(t) + FE(a(t)) - F] = 0, (3.37)

which must hold for all n 4. -vectors ¢ that result in satisfaction of the homogeneous boundary

condition imposed on W (i.e., Eq. (3.18)).

Finally, we make the observation that not all of the members of d(t) are unknown; for those
nodes lying on I, these degrees of freedom are prescribed. Furthermore, the corresponding

entries of ¢ at these nodes are typically taken to be zero, so that the aforementioned condition on

w” is obeyed. Since the remainder of the vector ¢ is arbitrary, it must be the case that the
elements of the bracketed term in (3.37) corresponding to unprescribed degrees of freedom must
be identically zero, so that (3.37) will hold for arbitrary combinations of the ¢, . Thus we can

write the following nonlinear equation that expresses the discrete equations of motion:

int

Md(t) + Fo(d(L)) = F° (3.38)

Here we employ a slight abuse of notation because we have asserted in (3.36) that all vectors and
matrices have dimension n,_. ; and yet we only enforce Eq. (3.38) for unprescribed degrees of

freedom. Denoting the number of unprescribed degrees of freedom as n__, one can account for

eqg?
this difference in practice by calculating the vector and matrix entries for all degrees of freedom
and then by merely disregarding the n4,; —n,, equations corresponding to the prescribed

degrees. of freedom. The members of d(t) that are prescribed do need to be retained in its
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definition, however, since they enter into both terms on the left-hand side of (3.38). It should
simply be remembered that only n_, members of d(t) are, in fact, unknown.

Localization and Assembly

The development to this point is mostly a matter of mathematical manipulation with little insight
gained into the character of the interpolation functions, N, . In fact, the basic nature of these

interpolation functions distinguishes the finite element method from other variational solution
techniques.

The details of shape function construction will be discussed in Basics of Element Design in the
context of element programming. However, it is useful to discuss now the basic character of
finite element approximation functions to give general insight into the structure of the method.

We refer then to Figure 3.2, which depicts a node, A, in 2 and some generic elements attached
to it. A basic starting point for the development of a finite element method is as follows: the
shape function associated with Node A, N, , is only nonzero in that subportion of Q2

encompassed by the elements associated with Node A and is zero everywhere else in €.

This property of the shape functions is crucial to the modular character of the finite element
method. Shape functions N, having this property are said to possess local support.

Figure 3.2  Local support of finite element interpolation functions. Region of
: support for N, shown as shaded.
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To gain insight into the effect of this property, let us examine the expression given in Eq. (3.31)
for an element of the mass matrix M,,. We note in particular that the integrand of (3.31) will

only be nonzero if both Nodes A and B share a common element in the mesh; otherwise, My,

must be zero. If we fix our attention on a given Node A in the mesh, we can, therefore, conclude
that very few Nodes B will produce nonzero entries in M. This matrix is, therefore, sparse; and it
would be a tremendous waste of time to try to compute M by looping over all the possible

combinations of node numbers and spatial indices without regard to elements and the node
numbers attached to them.

Instead the global matrices and vectors needed in the solution of (3.38) are more typically
computed using two important concepts: localization and assembly. Still considering the matrix

M as an example, we note that by the elementary properties of integration, we can write:

Mpg J PNA(QZI(X))SijNB((P;I (x))dv
()
nel

S| (e (2)8;;Ny(9r (x)dv (3.39)
e=1lgQ%

Ney
2 Meg

e=1

where

-1 -1
Moo = | PN(9] (%))8;N5(0; (x)av. (3.40)
h e
0 (Q7)
Thus, the global mass matrix can be computed as the sum of 2 number of element mass matrices.

This fact in itself is not especially useful because each of the M® is extremely sparse, even more

so than M. In fact, the only entries of M° that will be nonzero will be those for which both P and

Q are degrees of freedom associated with element e.

This fact can be exploited by defining another local element matrix m° containing only degrees
of freedom associated with that element. We introduce element degree of freedom indices p and
g, as indicated generically in Figure 3.3. Assuming that p and g can take on values between 1

and n_g,, where n_;, is the number of degrees of freedom associated with the element, an

. e .
D gs ><_n eqf Mmatrix m~ is constructed as follows:

m = [me ) (341
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p=3

p=1
Figure 3.3  Element (local) degrees of freedom for a sample finite element.

The m:q can be specified by introducing the concept of a local node number a or b, as also

shown in Figure 3.3. With these definitions we can write

e

-1 -1
mog = [ PNL(0L (3)8; N (ep (x))av, (3.42)
h, e
9.(Q7)
where a sample relationship between indices i, a, and p appropriate for the element at hand
might be

p=(a-1)x2+1 (3.43)

(similarly for j, b and g). The notation N, simply refers to the shape function associated with

local Node a . By definition it is the restriction of the global interpolation function N, to the

element domain.

Calculation of local element entities, such as m® , turns out to be a highly modular procedure
whose form remains essentially unchanged for any element in a mesh. Detailed discussion of this
calculation is deferred until Basics of Element Design. Let us suppose for a moment, however,
that we have a procedure in hand for calculating this matrix. We might then propose the

following procedure for calculating the global mass matrix M and internal force vector Pt

Step 1: Zero out M, For
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Step 2: Foreachelement e, e = 1, ...,n_;:

« a) Prepare local data necessary for element calculations —e.g., X~ (n_y¢ -vector of element
nodal coordinates), 4% (n oaf -vector of element nodal configuration mappings), etc.

intle

e .
* b) Calculate element internal force vector £ {f lrltIp‘} and element mass matrix

e e .
m = [mpq] via

3
int|e -1 h
or@%H-I =1
and Eq. (3.42).
* ¢) Assemble the element internal force vector and element mass matrix into their global
counterparts by performing the following calculations for all local degrees of freedom p and

q:

Mpo = Mpo+m_, (3.45)

PQ
and

Fi™t = P4 £700|2, (3.46)

where local degrees of freedom are related to global degrees of freedom via the LM array,
defined so that

P = LM(p, e) (3.47)

and
Q0 = LM(q, e). (3.48)

Step 2a) above is referred to as localization; given a particular element, e, it extracts the local
information from the global arrays necessary for element level calculations. Step 2b) consists of
element level calculations; these computations will be discussed in detail in Basics of Element
Design. Step 2c) is the process known as assembly and takes the data produced by the element
level calculations and places them in the proper locations of the global arrays.

We can thus now summarize the effect of localization and assembly in a finite element
architecture. They act as pre- and post-processors to the element-level calculations, enabling the
entities needed for global equilibrium calculations to be computed in a modular manner as a
summation of element contributions. Of course, the effectiveness of this procedure, as well as the
convergence behavior of the numerical method in general, depends crucially on the interpolation
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functions chosen and their definitions in terms of elements. We defer this topic for now and
concentrate in the coming sections on the classes of problems and global equation-solving
strategies to be utilized.
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Quasistatics

Introduction

As discussed previously in the context of Linear Elastic IBVP in The Quasistatic Approximation,
the quasistatic approximation is appropriate when inertial forces are negligible compared to the
internal and applied forces in a system. As discussed in Discretization, the quasistatic system of
equations is obtained by omission of the inertial term in the discrete equations of motion. Thus in
this section we discuss solution of problems of the form:

FPNA(r)) = F5(L) (3.49)

subject to only one initial condition of the form
da(0) = 4,. (3.50)

Note that the time variable t may correspond to real time (e.g., if rate-dependent material
response is considered) but need not have physical meaning for rate-independent behavior. For

example, it is common for t to be taken as a generic parameterization for the applied loading on
the system, as discussed below in Incremental Load Approach.

It could also be noted that if the initial condition were taken as the same as the reference
configuration of the body, then

do|, = Xa- (3.51)

Internal Force Vector

The quantity Fmt(d(t)) is known as the internal force vector and consists of that set of forces
that are variationally consistent with the internal stresses in the body undergoing analysis. The
generic expression for an element in this vector is

3
| (ZNM«p?(x»TE‘j}dv, (3.52)

er(@) NI =1

as given in Generation of Matrix Equations. This vector-valued operator is, in general, a
nonlinear function of the unknown solution vector d(t) due to the possible Material

Nonlinearity and/or Geometric Nonlinearity inherent in the definition of the Cauchy stress T,
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in (3.52). As implied by our notation, we assume the solution vector @ to be smoothly
parameterized by t, which may represent time or some other loading parameter.

External Force Vector

The external load vector FeXt(t) must equilibrate the internal force vector, as is clear from Eq.

(3.49). As first presented in Generation of Matrix Equations, the expression for an element F§Xt

of FeXt(t) 1s as follows

[ Na(or e Es(t)av

h
Q
FE*t = 9:() , (3.53)

[ wel) Ti(v)aa
el

where the explicit dependence of £; and £, upon t has been indicated and where

P = ID(1i,a), as given in (3.27). In other words, we assume that the prescribed internal force

loadings £, and prescribed surface tractions t; are given functions of t.

Equation (3.53) as written implies no dependence of either t; or £; upon @ (x) (and thus d).

Provided no such dependence exists, the external force vector is completely parameterized by t,

and the sole dependence of the equilibrium equations upon d occurs through For However, it
1s important to realize that some important loading cases are precluded by this assumption, with
perhaps the most important being the case of pressure loading, where the direction of applied
traction is opposite to the outward surface normal, which in large deformation problems depends

upon @, (x). Such a load is sometimes called a follower force and will, in general, contribute

additional nonlinearity to the problem. Such complications are readily handled but are not
encompassed by our current notational framework for the sake of simplicity.

Incremental L.oad Approach

We may now summarize the global solution strategy most commonly applied to quasistatic
nonlinear solid mechanics applications. We assume that we are interested in the solution d(t)
over some interval of interest for t:

t e [0, T]. . (3.54)
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We subdivide this interval of interest into a set of subintervals via

N-1
[0,T] = U Ity to ], (3.55)

n=0
where n is an index on the time steps or intervals, and N is the total number of such increments.

We assume that t;, = 0 and that £ty = T, but we do not, in general, assume that all time

intervals [t _, t, , ;] have the same width.

With this notation in hand, the incremental load approach attempts to solve the following
problem successively in each time interval [t_, £, ]:

Given the solution 4 corresponding to time level t, find 4, ; correspondingto t

satisfying:

int t
F

@, = F (ta, ) (3.56)

This governing equation is also often expressed by introducing the concept of a residual vector
R(4,,):

Xt int

R(A_,,) = F (to,)-F (4., 1. (3.57)

Solution of (3.56), therefore, amounts to finding the root of the equation
R(d,,;) = 0. (3.58)

The physical meaning of this approach is depicted graphically in Figure 3.4. Starting with an
initial equilibrium state at t_, so that R(d,) = O, we introduce a prescribed load increment

ext

AF

that will restore equilibrium (i.e., result in satisfaction of (3.58)). This will require a nonlinear

= FeXt( toe1)— FeXt( t,,) and attempt to find that displacement increment, &, , ; — 4,

equation solving technique for determination of &, _ ; , a topic that will be discussed further in

Nonlinear Equation Solving.
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Figure 3.4  Simple illustration of the incremental load approach to quasistatic
problems.
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Dynamics

Introduction

We now restore the inertial terms to the discrete equation system and examine prospective
techniques for solution. To recap the key result of Generation of Matrix Equations, the problem
we consider now takes the form

int

Md(t) +F(d(t)) = FEF, (3.59)
to be solved for t € [0, T], subject to the initial conditions
ae0) = 4, (3.60)

and

d(0) = v,. (3.61)

The Semidiscrete Approach

It might be noted from Eq. (3.59) that time remains continuous in our formulation at this point,
whereas the spatial discretization has already been achieved by the finite element interpolations
summarized in Discretization. This type of finite element approach to transient problems is
sometimes referred to as the semidiscrete finite element method, since the approximation in
space 1s performed first, leaving a set of equations discrete in space but still continuous in timne.
To complete the approximation, a finite differencing procedure is generally applied in time, as
discussed below.

Time-Stepping Procedures

As discussed in Quasistatics, we subdivide the time interval of interest [0, T] via

N-1
[0,T] = Uty thyql (3.62)
n=0
and consider the following generic problem. Given algorithmic approximations for the solution

vector (d,,), velocity (v ), and acceleration (a,) at time t_, find approximations d_ |, v, ,

and a ., for these quantities at time t_ _, ;. Note that in contrast to the quasistatic problem, the

n+l

variable t here does have the interpretation of actual time.
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Several time-stepping algorithms have been proposed for this incremental problem we have
posed. So that we might have a template with which to work, we will consider perhaps the most
pervasive of these schemes: the Newmark family of temporal integrators ([Newmark, N.M.,

1959]). This algorithm can be summarized in a time step [t_, t,,, ;] as follows:

int
Ma_, ,+F  (d,,,) = FGXt(th)
2
At
dn+1 = dn+Atvn+T[(1—2B)an+2Ban+l]? (363)
v, = vy+tAt[(l1-v)a +va_ 4]

where B and 7y are algorithmic parameters that define the stability and accuracy characteristics of
the method.

Although, obviously, a wide range of algorithms exist corresponding to the different available
choices of B and y, two algorithms in particular are prevalent in common use:

1. Central differences (f = 0,y = %). This integrator is second order accurate and only

conditionally stable, meaning that linearized stability is only retained when At is less than

some critical value. This algorithm is an example of an explicit finite element integrator, to be
discussed in Explicit Finite Element Methods.

1 _ 1
FAR
unconditionally stable for linear problems, meaning that the spectral radii of the integrator

remain less than 1 in modulus for any time step At (in linear problems). This algorithm is an

example of an implicit finite element integrator, to be discussed in Implicit Finite Element
Methods.

2. Trapezoidal rule (B = ). This integrator is second-order accurate and

Explicit Finite Element Methods

Examining the central differences algorithm as an example, let ustake § = 0,y = -21- and

substitute into Eq. (3.63). Upon doing so, we obtain the following algorithm:

~1 :
a,,| =M (FeXt(th)“Flnt(dnn))
2
At
dn+] = dn+Atvn+Tan ) (364)

At
= vn+—2—~[an+an+1]

4
I
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where the first equation has been written as solved fora_ _ ;.

Equation (3.64) can be used to explain why this formulation is termed explicit. Consider the case
where M is a diagonal matrix. This is not, in general, the case if we strictly follow the variational
formulation; reference to Eq. (3.31) will verify that unless two shape functions N, and N are

mutually orthogonal, the mass matrix will not, in general, be diagonal. However, it is common
practice, as will be discussed in Basics of Element Design, to diagonalize the mass matrix. In the
event that this is done, Eq. (3.64) shows that given the three vectors {a_, v, d}, the data at
the1> 180410 Ve 1r 9,41+ can be computed explicitly (i.e., without the need for solution of
coupled equations).

Although this form of the central difference formulation is readily obtained from the Newmark
formulae, it does not give insight into the source of the “central difference” terminology and, in

fact, does not represent the manner in which the integrator is ordinarily implemented. To see the
usual form, let us define the following auxiliary algorithmic velocity vector:

v o= vn+%Atan, (3.65)
n+s

which also implies a corresponding relation for the previous time step:

_ +ZAta__;. (3.66)

vV 1=V 1 = Vy—V _1+1At(a -a _)- (3.67)
n+ = n—-= n n 2 n n
2 2
However, evaluation of (3.64) during the time step [t _, t, ] reveals that
1
Va=Vnoy = 5At(ata, ), (3.68)

so that upon substitution into (3.67) we find

v ,-v ,=Ata_. (3.69)
n+§ n-—i

Furthermore, substitution of (3.65) into the second equation of (3.64) gives

d ., , =4 +Atv . (3.70)

n n+
2
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Thus by collecting these latest two results, together with the equilibrium equation evaluated at

t_ , we can reexpress the algorithm completely equivalently as

ext int

-1
a =M (F (t)-F (d))
v =v +Ata
R ; : (3.71)
dn+1 = dn+Atvn+_l_

2

Note that the velocity and displacement updates emanate from centered difference
approximations to the acceleration a and velocity v ;, respectively, giving the algorithm its
n+x=

name. The velocity measures that are utilized by the algorithm are shifted by a half step from the
time values at which the acceleration and configuration are monitored.

As mentioned above, explicit finite element schemes are only conditionally stable, meaning that
they only remain stable when the time increment At is less than some critical limit. This limit,
sometimes called the Courant stability limit, can be shown to be as follows

2
At < o’ (3.72)

where @ is the highest modal natural frequency in the mesh. It can also be shown that this
frequency can be conservatively estimated via

o= 2(§)max, ' (3.73)

where ¢ and h are the sound speed and characteristic mesh size, respectively, associated with

the element in the mesh having the largest ratio of these two quantities. Combining Egs. (3.72)
and (3.73) we find that

Ats(g) o (3.74)

In other words, the time step may be no larger than the amount of time required for a sound wave
to traverse the element in the mesh having the smallest transit time. This fact tells us immediately
that explicit finite element methods are most appropriate for those problems featuring very high
frequency response or wave-like phenomena. For problems featuring low frequency response,
literally thousands of time steps may be required to resolve even a single period of vibration due
to the stringent stability limit posed by (3.74). For such problems an unconditionally stable
algorithm is highly desirable, albeit at the cost of explicit updates in each increment.

Theory Manual Finite Element Formulation - Dynamics - Explicit Finite Element Methods 24



Implicit Finite Element Methods

To introduce the concept of an implicit finite element method, we examine the trapezoidal rule,

which is simply that member of the Newmark family obtained by setting B = % andy = -12- .

Substitution of these values into Eq. (3.63) yields

int t
Ma'n+1 +Fln (dn+1) = Fex (tn+l)
_ At?
dn+1 = dn+Atvn+——4—-[an+an+1], (3.75)
At
Va+1 = vn+_2_[an+an+1]

Insight into this method can be obtained by combining the first two equations in (3.75) and
solving for 4 , ; . Doing so gives

4 ext
_ZMdn+] F (tn+])
At - 4
; +Ma_ +Atv +——d)
+F1nt(dn+l) ( n n At2 n

(3.76)
4 4
ar+1 < At2(dn+ 1 _dn)(—Atvn_ an)

v

_ At
n+l ~ vn+7[an+an+l]

Clearly solving the first equation in (3.76) is the most expensive procedure involved in updating
the solution from t to t . ;. This equation is not only fully coupled, but also is highly
nonlinear, in general, due to the internal force vector. In fact, we could write the first equation of
(3.76) in terms of a dynamic incremental residual R, ; via

Fo (e, )+ M(an +Atv_+ —ft—zdn)
R ) = At
n+1/ =
4 ; _ . 3.77
(e, + 7@ ) G77
At
=0

This system has the same form as (3.57), which suggests that the same sort of nonlinear solution
strategies are needed for implicit dynamic calculations as in Quasistatics. Some common
equation-solving alternatives are discussed in Nonlinear Equation Solving.
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Nonlinear Equation Solving

Introduction

In this section we explore some of the alternatives available for solving the nonlinear discrete

equations associated with computation of an unknown state at t in either the context of a

n+1>?
quasistatic problem (i.e., Eq. (3.57)) or an implicit dynamic formulation (Eq. (3.77)). In either
case, the equation to be solved takes the form

R(d,,,) =0, (3.78)

where the residual R(d_ ;) is considered to be a nonlinear function of the solution vector

d

n+1-

Newton Raphson Framework

We now return to the general concept of a Newton-Raphson iterative solution technique, as
discussed in the one-dimensional context in Material Nonlinearity. To review, a Newton-Raphson

solution technique for (3.78) is defined in iteration i by

i JR
R(d,, )+ [ég]diﬂé\d =0, (3.79)
followed by the update
i+l i '
d ;=4 ., ,+Ad. (3.80)

Iterations on i typically continue until the Euclidean norm “R(dri1 + 1)" is less than some

tolerance; [JAd| is smaller than some tolerance, the quantity R(d:1 +1) - Ad is small, or some
combination of these three conditions.
It is instructive to examine the form taken by Eq. (3.79) for the quasistatic and implicit dynamic

cases. For the quasistatic case R(d_ , ;) takes the form

R(d., ) = F~%(t,, ) -F 0@, ), (3.81)
so that Eq. (3.79) can be rewritten as
K(d,,)Ad = R(d;, ), (3.82)
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where the incremental stiffness matrix K(d_

o +1) 18 given by

n+1

Thus application of the Newton-Raphson method to quasistatic problems amounts to solution of
successive linear problems, as defined by (3.82).

In the implicit dynamics case, let us consider the trapezoidal rule as a template. In this case, the
residual is of the form

FeXt(tn . 1) -+ M(a.n + Atvn + f}dn)
i t
R(4,,,) = . - = 0. (3.84)
_(——_2Md:1+ 1t Flnt(d;-r- 1))
At
This causes (3.81) to take the form
4 i i
[A—tzm +r(@:, 1)]Acal = r(@, ). (3.85)

i

where the stiffness matrix K(d_ | ;

) is as given in (3.83). In either case solution of the global

incremental equations will require the assembly of the coefficient matrix on the left-hand side.
Following the same assembly procedures outlined in Localization and Assembly, this matrix is

i

given as an assembly of element stiffness matrices ke(di +1) » €ach of which can be expressed

generally as
k(4. ) = [kge(dn, D1, (3.86)
where
i int N
Koq(@ni1) = a—p (4.1 (3.87)
g

where f;nt is as given in Eq. (3.44).

We can, therefore, conclude that for a Newton-Raphson treatment of either a quasistatic or
implicit dynamic system, an important function of the element subroutine is to return an element
stiffness in addition to the internal force vector and mass matrix that may also be required. We
will discuss in detail the mechanics of this operation in Basics of Element Design.
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Line Search

It is noteworthy that the Newton-Raphson method is only guaranteed to be convergent in an
asymptotic sense, subject also to some smoothness and differentiability conditions. This means
that solution updates may not be effective if one is excessively far from the solution or if
significant nonsmoothnesses are present in the equation system. Indeed, in many problems the
early displacement updates in a given load increment given by (3.82) or (3.85) may actually be
counterproductive in that they take one farther from the solution rather than closer. It is,
therefore, imperative to have a technique that controls the manner in which the solution is sought
such that bad displacement updates, as predicted by the linearized kernel, are not allowed to
carry one too far from the desired solution.

The concept of line search, pervasive in nonlinear equation solving, is employed for this purpose.
To motivate the concept, we consider the case of a so-called quadratic system, where the total

system energy I1(d)can be expressed as a quadratic function of the solution vector @ via
T T
(@) = 3a xa-F* q, (3.88)

where for simplicity we assume K and F°~ to be constant. We seek the minimizer of I1(d),
which, of course, can be equivalently expressed as the solution of

xt

Kd = F° (3.89)

In fact, this problem statement is a finite-dimensional analogue of that discussed in Weak Forms,
where it was asserted that the linearly elastic boundary problem can be solved by finding the
displacement field, minimizing the total potential energy of the system. We could, therefore,
think of the problem we have posed as a finite element discretization of such a system. Although
the system we consider here is quasistatic, the technique we motivate is utilized for solution of
nonlinear dynamic systems as well.

Neglecting the fact that this problem could be solved via Gaussian elimination, we consider a

generic iterative procedure for solving it.Suppose we have a current iterate a' as well as a
proposed displacement increment Ad. In a Newton-Raphson method Ad would be computed in
a given iteration by solving (3.82), which would produce the exact solution (to machine
precision) after the displacement update (3.80). If Ad is not such a good choice for the
displacement increment, however, we would like a method for detecting this fact and for

controlling growth in the residual. In this discussion we take Ad as a search directionin n -

space and look for solutions in this direction reducing (or at least controlling growth in) the
residual.

Given d” and A4, then, we introduce a search parameter s and consider an update of the form:
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a**l(s) = a* +sAq. (3.90)

The line search parameter is chosen such that the update produced by (3.90) is in some sense
optimal. In this spirit we choose s as the minimizer of:

1.1 T i

R =(d" +sAd) K(d +sAd)

fi(s) = |2 , (3.91)
_(a' + sAq) FE

which can be found by finding the solution of —a—ﬁ(s) = 0. If we assume that K is symmetric,

ds

positive definite, one finds in taking this derivative that s is given as the solution of

AdT(R(A" + sAQ) - FT%) = 0. (3.92)

'Two forms of this equation are useful under various circumstances. First, in the linear system we
now consider, (3.92) is readily solved to explicitly yield s:

T i
s=29R (3.93)
Ad"RAQ

where R = F*° —Ra". This form of the line search is actually used in some implementations
but depends, strictly speaking, on linearity to be effective. Thus a more generally used form is

generated by reexpressing (3.92) as the following problem:

Find s such that
AdR(a* +sAd) = 0. (3.94)

In (3.94), R(djL +sAd) = Fo K(di + sAd) in the linear case. The advantage of Eq. (3.94),
however, is that it admits more general representations of the residual; for a nonlinear quasistatic

problem, we can use (3.94) with R(o:ijL + sAd) given by

R(@" +sAd) = F _F (@' + sAQ). (3.95)

Similar generalizations for the dynamic case are, of course, also possible with the dynamic
residual given for the trapezoidal rule in (3.84).

From (3.95) we conclude that a line search procedure looks for updated iterates where the search
direction 1s orthogonal to the residual. This is equivalent to an energy minimization in the linear
case, whereas the interpretation in the nonlinear case is not quite so straightforward.

Furthermore, in the nonlinear case it is not efficient or even necessary to find the root of (3.94) to .
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machine precision. More commonly one uses some sort of root finder to find an s between 0 and
1 that satisfies (3.94) to some tolerance. Making the definition

G(s) = AA'R(@" + sAQ), (3.96)
a typical algorithm to find s could be outlined as:
Given d* and Ad
 IF (JG(1)| > TOL % [G(0)] or G(1) X G(0) < 0) THEN

Iterate for s € (0, 1] such that |G(s)| < (TOL)|G(0)| (3.97)
*» ELSE

s = 1. (3.98)
* ENDIF

The check in the IF statement amounts to checking whether a full step (with s = 1) leads to an
unreasonably large increase in G and whether a root might reasonably be expected in the interval
(0,11].

Quasi-Newton Methods

One can establish that Newton-Raphson iteration is quadratically convergent asymptotically,
meaning that the error associated with a given iteration tends to the square of the previous
iteration’s error as iterations proceed. One can, in fact, roughly see the reason for this fact from
Eg. (1.21), which states that the Newton-Raphson update is motivated by a first order Taylor
series expansion of the residual about the current solution vector iterate. We might, therefore,
expect that the error incurred from this approximate update should tend toward the square of the
displacement update as iterations proceed, which is, indeed, the case. A much more rigorous
derivation of this property can be found in [Kelley, C.T., 1995]. This quadratically convergent
behavior is a highly desirable property and makes the Newton-Raphson method much more
rapidly convergent than many other equation-solving alternatives.

However, it is also true to say that a full Newton-Raphson method can be tremendously
expensive due to the necessity of solving the successive fully coupled linear systems implied by
(3.82) and (3.85). If we choose to use a direct equation-solving technique for solving these
systems, such as Gaussian elimination, the cost of solving each linearized problem will vary as

the cube of the number of equations (n.) . For very large problems this cost can become
prohibitive.

In response to this situation, a number of methods, known collectively as quasi-Newton
(alternatively, secant) methods, have been developed. These methods replace most of the
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Newton-Raphson iterations with a cheaper update to the solution vector, sacrificing convergence
performance but making the average equilibrium iteration much less expensive. The interested
reader should consult [Dennis, J.E. and Schnabel, R.B., 1996] or [Kelley, C.T., 1995] for
excellent overviews of these methods from a generic, nonlinear equation-solving viewpoint.

Before discussing specific quasi-Newton methods, let us motivate them through consideration of
the term “secant method”. Suppose we have a scalar-valued, nonlinear equation

R(d) = 0 (3.99)

and wish to employ an iterative method to obtain the root. If we are currently performing
iteration 1 and wish to obtain the next iterate i + 1, a secant method will do this by replacing
R(d;)-R(4d;
_a (ds) ~R(d; ) in the
dd d;-4;_;

Newton-Raphson updating scheme (see Figure 3.5). Thus, the next iterate is obtained via

the tangent to the curve, K; = [R(d;)], with the secant K; =

dj,g = di‘R(di)—R(di—l)
d.-d

R(d,). (3.100)

Figure 3.5  One-dimensional illustration of quasi-Newton (secant) iteration.

In generalizing this concept to multiple directions, we seek to approximate so-called consistent
tangents needed by Newton-Raphson updates (see (3.83)) with stiffnesses that will be cheaper to
compute and invert. In a secant method, using the one-dimensional example as motivation, we
demand that these approximate tangents obey the so-called quasi-Newton equation:

f{i(di—di_ﬂ = R(4;)-R(4;_;), (3.101)
or in terms of the inverse:
~-1
d;-4d; _; = K; (R(4;)-R(d;_;)). (3.102)

In the one-dimensional case either expression implies uniquely the secant method already
discussed but with multiple unknowns, expressions (3.101) or (3.102) place a less stringent
restriction. There are, therefore, a multitude of such methods, collectively termed quasi-Newton
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or secant methods, whose defining feature is the satisfaction of (3.101) and (3.102). Here we
concentrate on one particular method, the BFGS (Broyden-Fletcher-Goldfarb-Shanno) method,
proposed originally and most coherently for specific use in finite element calculations by
[Matthies, H. and Strang, G., 1979].

In the BFGS method, one typically starts with an assembled Newton-Raphson tangent given, for
example, by (3.87). One performs one iteration with this tangent (probably including a line
search). Rather than repeating this procedure for subsequent iterations, the BFGS method takes
the tangent from the Newton-Raphson iteration and updates it in a manner consistent with
(3.102) and uses this tangent to compute the next iterate for the solution (also probably including
a line search in the update).

The BFGS method is effective in many circumstances because the update to the tangent matrix is
inexpensive and is actually done to a previously determined inverse so that no matrix inversion is
necessary in most equilibrium iterations. To be more specific, we suppose that the last tangent

utilized in an iteration process is K; _; . The BFGS update is defined as

K = (T+v,w, D& (T+w,v,D), (3.103)
where
Ad; _,
ViT A4, | (R(@)-R(@, ) (3109
w, = —(R(d;)-R(d;_,))+a;R(d;_,;), (3.105)
where
1
a; = [—Si—l(Rli?;i) _-II){Fiiéil_))l A4, _ IT _ (3.106)
Throughout the above equations we have indexed the search directions and line search
parameters such that
4, =d, ;+s;_,Ad4,_;. (3.107)
The next search direction Ad; is then computed via
~ 1
Ad; = s R(4y) (3.108)

T, -1 T )
= (T+v;w)K; _(T+w,v,)R(4,)
One may discern from (3.108) why a BFGS iteration is so much cheaper than a Newton-Raphson

N o ~-1 . i . . . .
iteration. Keeping in mind that K; _; is typically stored in practice as a factorized stiffness
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matrix, one can compute Ad, efficiently by proceeding right to left in the second line of (3.108).

Thinking in this manner, the update consists only of dot products, scalar vector multiplies, and a
backsolve procedure.

The BFGS method is, like other quasi-Newton methods, superlinear in convergence rate,
meaning that the error decreases in a manner faster than linear but not as fast as the quadratic rate
displayed by Newton-Raphson. Thus it is most effectively used in large problems, where this
disadvantage in convergence behavior is offset by its great savings in the iteration process. It
should also be noted that the success of BFGS depends critically upon the incorporation of line
search. Since the iterations are based less directly on the underlying mechanics of the system
than they would be in Newton-Raphson, it is particularly important that the line search prevent
excessive excursions away from the solution in the case of bad search directions. Typically,
BFGS solvers also contain provisions to compute new Newton-Raphson tangents to restart the
iteration process in the event the BFGS iterations are ineffective.

Conjugate Gradient Methods

The desire to solve very large problems has recently led researchers to consider so-called indirect
iterative, or matrix-free strategies, where the set of nonlinear equations is iteratively solved
without any need to compute, store, or invert a tangent matrix at any stage of the iteration
process. Perhaps the most celebrated iterative technique for solving linear equations in the last
two to three decades has been the conjugate gradient method. In this section we briefly consider
its extension to matrix-free, nonlinear equation solving. To do so, however, it is useful to
examine the linear case first, from which the nonlinear algorithms are readily derived.

We begin then by considering the same linear system and potential energy function Il given in
(3.88) and consider that this potential energy is to be minimized. We note that at any prospective
solution point d, the steepest descent direction of the objective function II is given by the
negative of the gradient:

0 _ mSxt _
~5g@ =F -Kd = R(d). (3.109)

In other words, the steepest descent direction at any prospective solution d is merely given by

the residual R(d) . One of the most elementary methods from nonlinear equation solving/
optimization, the steepest descent method, utilizes at each iteration the current steepest descent
direction as the search direction, with a subsequent line search defining the update to the solution
vector. This method, while intuitive, is not as effective as other alternatives including, in
particular, the conjugate gradient strategy we now discuss.

The difficulty with steepest descent is that in many cases, successive search directions “zig-zag,”
meaning that a given search direction will contain significant components in the direction of
previous steps. It is readily imagined that such repetition is wasteful, since presumably these
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~ earlier iterations have already eliminated, or at least markedly reduced, the error in their
respective search directions.

This discussion is made more quantitative by recalling the formula for a generic line search, Eq.
(3.94). In the case of a linear problem, this condition takes the form

ext

AdTR(a* + sAd) = AQT(F

_R(d" + sAd)) ' 3.110)

AdTR(d-(d" + sAd)) =0

In (3.110) the term d - (c‘li + sAd) is recognized as the error associated with the next iterate

a* + sAd. Thus we can see from (3.110) that the line search criterion causes the error associated
with the next iterate for the solution vector to be K-orthogonal to the search direction. Thus if we
consider the solution space to be described by a sequence of vector spaces of increasing
dimension, where search directions form the basis and the stiffness matrix K serves as a metric,
then each iteration with line search removes all error in that direction. It is, therefore, wasteful to
have subsequent search directions that have non-zero components in previous directions. The aim
of the conjugate gradient method is to orthogonalize this direction as iterations proceed.

To begin derivation of the method, let us use the notations p for a search direction and o for a

line search parameter, as opposed to the Ad and s used previously (in large part to conform to

usage in the literature). The restriction we will place on the search directions is that they will be
K-orthogonal:

p.Kp; = 0, (3.111)

where i and j are indices for two different iterations. In each iteration a line search will be
performed eliminating all error in the current search direction via

d;,) = @;+0;p;, (3.112)
where o; is given by (cf. (3.93)):
T
p;R(4;)
i = (3.113)
P;Kp;

Since the method operates by eliminating all error in each successive search direction, which is
orthogonal to all previous directions, this method will yield the exact solution in n oq lterations

in perfect arithmetic. In this sense conjugate gradients can be viewed as a direct method,
although in practice iterations are terminated far before this point, making the method
approximate.
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Yet to be discussed is the generation of the orthogonal search directions. This is done by
applying a Gram-Schmidt orthogonalization procedure to a set of linearly independent vectors,
taken in the case of conjugate gradients as residual vectors. The process is begun by taking the
original search direction as the residual, which would be the same direction taken by steepest
descent:

Py = R(dy). (3.114)
Subsequent search directions are defined via

i-1

p; = R(A)+ D Biypy. (3.115)
k=0

where the coefficients 3 ;, must be found to ensure K-orthogonality of p, with previous search

directions. This calculation can be done by taking the K-inner product of (3.115) with p:

0= priKpj
i-1
= R(d;)"Kp;+ 3, B; PP (3.116)
k=0

T T
R(di) Kpj + BiijKPj

Eq. (3.116) then allows us to write a formula for 3

ij

R(d;) Kp;

B,s = (3.117)

P?Kpj
At first glance it would appear that to find search direction p, , all Bij would need to be

calculated for j < i . However, we can apply further reasoning to see that, in fact, only one of the
coefficients required by (3.115) is nonzero. To begin, since the error in a given iteration is K-
orthogonal to earlier search directions, we can write

piKe; = 0,3 =0,...,i-1, (3.118)
where e, = d, —d. Since Ke; = —R(d,), it follows that

PiR(d;) = 0,3 =0,...,i-1. (3.119)

We can further conclude that since the search direction in a given iteration is a linear
combination of all the residuals that preceded it,
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R(d;)'R(d;) = 0,3 =0,...,i-1. (3.120)

We can write the residual at the j + 1 iteration as

(3.121)
= (R(dj) =0y Kpj)
Taking the inner product of this equation with R(d,), we find
oR(4;)"Kp; = R(d;)"'R(d;)-R(d;) 'R(dy, ). (3.122)
Using now the orthogonality property (3.120), we find
L R@)"R@,), j=i-1
R(d;)'Rpy =1 o, & TGk T (3.123)
0, j=0,...,1i-2

Thus examining (3.115) and (3.117), we find that only one of the needed coefficients is non-zero
— namely, B i, i -1 - Naming this quantity B; subsequently we can rewrite (3.115) as

p; = R(d,))+Bp;_;, (3.124)

where

1 R(&;)'R(4,)

B, = (3.125)

“i-1p;_iKp;_,
Eq (3.125) can be written even more simply by noting that
o;_P;_|KP;_; = p;_K(d; -4, ;)
= p;_(R(@;_;)-R(&)))
= p;_,;R(@,_,) . (3.126)
= (R(&; 1) +Bp;_2)"R(@;_))
= R(&;_)"R(&;_;)
Thus,
R(d;) B(E,) (3.127)

" R@a,_)"R@,_;)
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Eq. (3.127) is the Fletcher-Reeves version of the orthogonalization [Fletcher, R. and Reeves,
C.M.,, 1964]. Another commonly used form, due to Polak and Ribiere, is trivially obtained from
the orthogonality property as

_ R(4)°(R(4,) ~R(&;_ 1))

Bs

= (3.128)
R(d; ;) R(4;_,)

Collecting all of these results, the conjugate gradient algorithm for linear problems can be
summarized as

Py = R(4,)

_ PiR(d;)  R(4;)'R(4,)

T T
PiKPi PiKPi
i+1 = Q3 +0;P;

r . . (3.129)
R(4;, ;) R(4;, )

- (Fletcher-Reeves)
5 R(d;) R(4,)
o Tl@!(di;,l)T(R(diH)—R(di))

R(d,)"R(4,)

(Polak-Ribiere)

.
P;.q1 = R(d;,1)+B; 1P

With our derivation of the linear conjugate gradient method now complete, we return to the
actual problem of interest here, which is nonlinear conjugate gradients. At this point we should
distinguish between two alternatives. One could still adopt a Newton-Raphson nonlinear
equation-solving strategy and employ a conjugate gradient-type algorithm to solve the linear
system of equations. This type of algorithm is sometimes termed a Newton-iterative method (see
[Kelley, C.T., 1995]). One should note, however, that use of this method still requires formation
of the stiffness matrix, so that even if equation-solving savings are realized by using CG over a
direct solver, the memory requirements of the method will tend to be extensive. Also if
determination of the global Jacobian matrix is difficult, expensive, or impossible, then this
method will be limited just as its more traditional ancestors are.

Thus one is led to consider the possibility of using conjugate gradient iterations themselves as the
nonlinear solution iterates. The algorithms of this type commonly used look remarkably like the
linear algorithm summarized by (3.129). We summarize here perhaps the most successful of

these, termed the Polak-Ribiere algorithm after the form of B, used in the (now approximate)
orthogonalization:
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Dy = R(do) - FeXt-—’Fint(do)

oy obtained from nonlinear line search

d; 1 = d;+oyp;
R(d;,,) = F7°-Fa;, ) : (3.130)
R(4;, ) (R(d,, ) -R(d;))
Bi+1 =

R(d;)"R(4,)
P;.1 = R(A;, ) +B;, Py
Really only one difference from the linear algorithm is obvious. The line search in (3.130) must

now be given by an expression appropriate for nonlinear problems. Although several alternatives
might be devised, one of the simplest (attributed to [Bartels, R. and Daniel, J.W., 1973]) is

generated by considering only the first Newton-Raphson iterate (with initial guess o; = 0) to

the line search equation

p;(R(d; +0;p;)) = 0, (3.131)
which would lead one to consider
T
‘R(4. :
= e ( l), (3.132)
T
P;Rp;

where K is in practice a diagonalized estimate of the tangent (perhaps a secant) evaluated at the
last iteration.

Preconditioning

It is widely recognized that conjugate gradient methods are best behaved when the condition
number of the underlying stiffness matrix is small (i.e., when the eigenvalues are clustered
together). Due to this fact conjugate gradient algorithms are almost never applied without
preconditioning, a term referring to the act of converting an equation system to one having the
same solution while possessing a tighter clustering of eigenvalues.

Thinking somewhat simplistically about this idea, we might conceive that the ultimate in a well-
conditioned coefficient matrix would be the identity matrix, which has all eigenvalues equal to
one. Relying once more on a linear system to motivate our ideas, let us consider that our generic
linear system

Rd = F°° (3.133)
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is ill-conditioned and that we wish to employ a well-behaved CG algorithm to solve it. If we
devise a matrix, M, that we feel to be a good approximation to the inverse of K, we might choose
to iteratively solve the equation

MRd = MF, | (3.134)
since the matrix MK should have a tight cluster of eigenvalues about one (if M is, indeed, a good

o -1
approximation of K ).

However, CG is only applicable to symmetric systems, and MK is not necessarily symmetric. If
the M we select is symmetric positive-definite, we can find a matrix, E, such that

EE® = M (3.135)
and consider solution of the system
e 'xkg"d = g 'FT, (3.136)

where d = E"d. It is to be noted that this system also will be satisfied by the solution of
"(3.133), while remaining symmetric and positive-definite. If we straightforwardly apply the
linear CG algorithm (3.129) to (3.135), assuming the Polak-Ribiere form, we obtain

- _— -1_ext -1 T
pO=R(O)=EF —E KE dO
—_~ o~ T~
0. = R(di) R(d3i)
i~ ~T_-1 ~T .~
P:E KE p3
~ ~ —

(3.137)
R (31«» 1) = R(d3)- aiEKET’Ei

CR(@i) (R(@i41)-R(Aw)
’ﬁ(’&i)T’ﬁ(’&i)

Pi = R(A;,)+B;,P;
Algorithm (3.137) can be written in a form not explicitly involving the matrix E or the
supplementary vectors R , D ,and d by noting that R(di) = E_IR(di) ,M = EE ", and

by taking p'; = E pi . We therefore write the Preconditioned Conjugate Gradient algorithm for
linear systems as:
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R(d.) = F"-Kq,
o - R(d;) MR(4,)
. =
p; Kp;
d,,; =4,+0;p; . (3.138)
R(d;, ;) M(R(d;, )~ R(d;))
Bi+1 =

R(d;) 'MR(Q,)
P;i.1 = MR(4;, ) +B;, 1P

Finally, we are in a position to discuss a preconditioned matrix-free conjugate gradient structure
for a fully nonlinear system. We might summarize such an algorithm as

ext int
(

R(d,) = F -F

d.)
Py & MR(do)

o; obtained from nonlinear line search

d; ) = d;+04p; 39)
. (3.1
R(di+ 1) - Fext_Flnt(di+ 1)
T
R(4;,;) M(R(4;,,)—-R(d;))
Bisr = T
R(d,) MR(4,)
Pi,; = MR(d;, ) +B; . P;
Following the lead of the last section, one alternative for the line search would be the first
iteration for a Newton-Raphson strategy to find o; :
T 1
p;M R(4,)
| = — (3.140)

T
P;Kp;

To conclude, it should be remarked that the simplest choice for preconditioning, Jacobi
preconditioning, is accomplished when the matrix M is chosen as diagonal. One choice might be
to take M to be the inverse of the diagonal of the stiffness matrix.
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Basics of Element Design

Introduction

In this section we explore the basic issues associated with the design of finite elements, which are
the building blocks of the methods we have discussed. In particular we will discuss how
definitions and manipulations are done at the local level to produce the elemental quantities like

m®, £77°°, and k° that are needed for assembly of the global equations of motion. We

concentrate in this section on one field problems (i.e., where only the deformation mapping @, is
discretized). It will turn out that many nonlinear solid mechanics applications of interest,
including nearly incompressible elasticity and metal plasticity, require more sophisticated
approximations in which other variables (like pressure) must be explicitly included in the
formulation. Discussion of such advanced methods is deferred to Advanced Element Design
Issues.

Convergence

Before introducing in detail the manipulations necessary at the element level, it is worthwhile to
discuss in general terms the general requirements usually placed upon shape function definitions.
It should be noted that these conditions are sufficient but not necessary, so that many
formulations exist that violate one or more of them. However, it is also fair to say that most finite
elements in wide use satisfy the conditions we will now place. The discussion we give now is
brief and rather qualitative; the interested reader should consult [Hughes, T:J.R., 1987] or
[Strang, G. and Fix, G.J., 1973] for more technical discussions of these points (notably within the
context of linear problems).

We begin by defining m, which will denote the highest order of shape function spatial derivative
present in the expression for the stiffness matrix. For the class of problems we have considered in
this text, we recall from Newton Raphson Framework that the element stiffness matrix takes the
form

s int 5
koo(dr 1) = - 2 (dn,1)- (3.141)
q

The internal force vector required in (3.141) was given generically in Localization and Assembly
as
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int|e -1 h

fmtlp - I [Z N, (0, (x))Tijildv. (3.142)
pr(@)-i =1

Performing the differentiation indicated in (3.141) will produce no higher than first-order

derivatives of the shape functions; therefore, m = 1.

The three general convergence requirements we wish to mention are as follows.

* The global shape functions N, should have global continuity of the order m— 1. In

mathematical terms they should be ¢™~ Y on QF.

* The restriction of the global shape functions to individual elements (i.e., the {N_} ) should be

m . .
C on element interiors.

* The elemental shape functions {N_} should be complete.

The first two of these requirements are fairly simple to understand. The first, the C" ! continuity
requirement, simply means that all derivatives up to m — 1 of the shape functions should not

undergo jumps as element boundaries are crossed. In the current case this means that all N,

should be C°. Since the approximation to the configuration mapping (pht is a linear combination
of these shape functions, we see that the physical restriction placed by this condition amounts to
no more than a requirement that the displacement be single-valued throughout the domain (i.e.,
gaps and interpenetrations at element boundaries may not occur).

The second requirement on element interiors simply states that the shape functions should be
sufficiently smooth so that the element stiffness expression is integrable. Physically speaking, the
first derivatives of the configuration mapping produces strain measures, so we simply require that
the strains be well-behaved on element interiors by this restriction. Note that global smoothness
of the strains (and, therefore, stresses) is not required. This point is of some importance in the
reporting of results.

The third requirement, the completeness requirement, is somewhat more involved to explain and
yet corresponds fairly directly to physical ideas. We say that a given element is complete when
setting the element degrees of freedom according to a given low-order polynomial forces the

solution (in this case (plg) to be interpolated according to the same polynomial pointwise within
the element. The degree of polynomials for which we place this requirement is referred to as the
degree of completeness for the element.

In the current case where we deal with solid continua, the usual degree of completeness
demanded is 1. This means that all polynomials, up to and including order 1, should be exactly
interpolated by the element. It is worthwhile to consider an example of this point. Suppose we
are in three dimensions, and set the element degrees of freedom via
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e e e e
d, =cy+ c X, e, +c,Y e +c3Z e, (3.143)

where ¢ — ¢ are arbitrary constants and X:, Yz, Zz are the (reference) coordinates for local

node number a . The completeness condition requires that

nen

N_(x5)a;
El (3.144)

0 (X%

e e e
(co+ciX e, +c,Y e, +C3Z e))

hold for all Xx° e QF and for all values of the arbitrary constants.

As mentioned above, this requirement has a physical interpretation as well. In solid mechanics
we have already pointed out that the first spatial derivatives of the displacements produce strains.
Since we require that an element be able to reproduce arbitrary linear polynomials, this also
implies that any state where the first derivatives (i.e., strains) are constant should be exactly
representable. Thus a complete element should be able to exactly represent any uniform strain
state. A practical way to test for this condition is to impose a boundary value problem on an
arbitrary patch of elements having a constant strain (and thus stress) solution and then to demand
exactness of the numerical solution. Such a test is called a “patch test” and has become one of the
standard benchmarks by which any new proposed element formulation is tested and evaluated.

Parameterization

With the three criteria in hand for element definitions, we proceed to define a recipe through
which element definitions and manipulations can be systematically performed. The most basic
definition to be made toward this end is the concept of the local (or parent) parameterization of
an element. In effect we seek to define a local coordinate system that will be the same for every
element in a problem, contributing in great part to the modularity we will desire for element level
operations.

We will denote a vector of these local variables by r, with ¥ being a 2-vector in two dimensions

and a 3-vector in three dimensions. Specifically we define r as

T! (two dimensions)

I
L

H
il
1
J

(3.145)

(three dimensions)

o 0 R
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The local variables r, s, and t are all assumed to range between -1 and 1, so that the domain

definition is likewise standardized among all elements in a given problem. The domain of x is
often referred to as the parent domain. In two dimensions it is a biunit square, and in three
dimensions it is a biunit cube (see Figure 3.6).

AS

t

Figure 3.6  Local parameterizations and coordinate mappings in two and three
dimensions.

Of course, for this alternative element coordinate system to be of any use, its relationship with
the global coordinate system must be defined. This is accomplished through a shape function
expansion via

X5(x) = Y, No(2)Xg, (3.146)

a=1

where X° is the global (reference) coordinate mapping covering element e and where xj are

the element nodal (reference) coordinates, as before. Note also that in (3.146) the shape functions
have been written using the parent coordinates as the independent variables. This is the reason

for the superposed tilde on the shape function. One could think of r as an material point label

within the element, so that X° and r are two reference coordinate systems for the element that
are related according to (3.146).

The most important generic class of finite elements is comprised of so-called isoparametric
elements. Such elements are defined by utilizing the same shape functions for definition of

(pl,z(xe) (see Eq. (3.144)) as for the element coordinates x° (as in (3.146)). One can show (and
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the reader should) that providing all element shape functions sum to one at any point in the
element, an isoparametric element automatically satisfies the completeness condition outlined in
Convergence. Thus provided we choose shape functions that sum to one, are suitably smooth on
element interiors, and match neighboring element descriptions on element boundaries, the
convergence criteria are automatically satisfied. We will concentrate on the mechanics of shape
function definition in the next section.

In the meantime let us consider the implications of the isoparametric approach for the
Lagrangian description of large deformation solid mechanics we now consider. So that we may

distinguish carefully between mappings taking r as an argument and between those taking X,

we will use superposed tildes for the former (as in Eq. (3.146)). If an element is isoparametric,
then by definition the configuration mapping over an element is given by

nen

Pe(x) = Y N (v)as, (3.147)

a=1
where the shape functions ﬁa(r) are exactly the same as in (3.146). However, it should also be
the case that the function (~pt(r) should be attainable from the composition of (pt(xe) (defined

according to (3.144)) with X°(x) (defined according to (3.146)). Thus we can write

Y R (0)a = §o(x) = T N (R(x)ar. (3.148)
a=1 a=1

Comparing the leftmost and rightmost expressions of (3.148) and realizing that the equality must

hold for any given combination of the element degrees of freedom dz , we are led to conclude
that the alternative shape function expressions N,(r) and N a(xe) must be related by mere
composition via

N, = N_oX". (3.149)

Thus we have the option of defining the shape functions over whatever domain is convenient, and
since the parent domain is the one that is standardized, we typically begin with an expression for

N, and then derive the implied expression for N, according to

N, = NooX® . (3.150)

Equation (3.150) has important implications in practice for, in general, we have no guarantee that
. ~1
the inverse mapping X° of X° is well behaved, which it must be for the shape functions N, to

make sense. Fortunately, according to the implicit function theorem, the inverse function to
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(3.146) is smooth and one-to-one, provided the Jacobian of the indicated transformation is
nonzero. This essentially amounts to a geometric restriction on elements in the reference domain.
In two dimensions, using a four-noded element, the implication is that all interior angles in each
element must be less than 180° (see Figure 3.7).

all interior angles < 180°

5 =

Figure 3.7  Geometric restrictions on a four-noded element to retain well-pos-
edness of the coordinate and configuration mappings.

Finally, let us introduce the notation N 4 for shape functions that take the current coordinates

x° = (plg(xe) as arguments. Such an expression is needed — for example, in Eq. (3.142) (note
the abuse in notation) — where the spatial derivatives I:T;,i = ——Z-a—el\/I\a must be computed.
ox;

1

Following similar reasoning to the above, one can conclude that the functions N » must obey

-1

N, = Naohp . (3.151)

-1
Again for the needed function (I)f:1 to be well-behaved, the Jacobian of the transformation

(3.147) must be nonzero. This restriction amounts to:
~ h ~ h
0 0 .
det| 2ot | = der| 2% det{a—x ] #0. (3.152)
or xS or
Provided the original element definitions are not overly distorted, the second term on the right-

hand side of (3.152) will be nonzero. Thus the well-posedness of the spatial shape functions N 5
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~h

requires that det [—&] be nonzero. The reader will recognize this as the approximated

ox°
determinant of the deformation gradient J, as defined in Measures of Deformation. According to

Eq. (2.10) J must be positive pointwise for the concept of volume change to have any physical
meaning. Thus provided the approximated deformation mapping remains kinematically
admissible (i.e., J > 0), the spatially defined shape functions are guaranteed to be well-behaved.

With these arguments as background, we now turn our attention to definition of the N,

according to the parent domain. To keep notational complexity to a minimum, we will drop the

explicit distinction between N, N,,and N ., referring to all these objects as simply N, in the

sequel.

Shape Functions

Most continuum-based finite elements rely on Lagrange polynomials for their shape function
definitions. Beginning with expressions appropriate for one-dimensional domains, let us suppose

that we have a one-dimensional element with nen nodes, which are equally spaced over the

[-1, 1] domain. Use of nen — 1 order Lagrange polynomials Lzen_ ! (x) for definition of each

of the element shape functions N_ leads to

nen

H (r—xy)

N (r) = L3 \(r) = 2=lbze : (3.153)

nen

H (ra_rb)

b=1,bza

where the r refer to the local (parent) coordinates of the individual element nodes. The reader

may care to verify that these shape functions have two useful properties. First, that
N_(r,) = 0, (3.154)
and second, that

nen
Y N (r) = 1forallre [-1,1]. (3.155)
a=1

Equation (3.155) is noteworthy in that it provides an important ingredient of the completeness

argument (see Parameterization), whereas Eq. (3.154) ensures that the nodal degrees of freedom
have the actual interpretation that
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as = oo(xd) = xo (3.156)

(see Eq. (3.144)).

Before proceeding to the more interesting multidimensional case, some examples may be useful.
For nen = 2 the element coordinates are r; = —1 and r, = 1. The corresponding element

shape functions are computed from (3.153) as N;(r) = %(1 -r) and Ny(r) = %(1 +r),

thereby providing the basis for the one-dimensional linear finite element. For nen = 3 the local

nodal coordinates are r; = -1, r, = 0,and r, = 1, with the shape functions turning out to

be Ni(x) = %r(r —1),Ny(xr) = 1- rz, and N3(xr) = %r(r + 1), thereby defining the one-

dimensional quadratic element. These shape functions are plotted in Figure 3.8.

Figure 3.8  Low-order, one-dimensional Lagrange shape functions.

Next we turn to the generalization of these concepts to two and three dimensions. This can be
accomplished by building up “products” of one-dimensional shape functions, as indicated
schematically for the four-noded quadrilateral element depicted in Figure 3.9. In general, let us

suppose that local Node a in a two-dimensional element has local coordinates (r, s ), where

indices ¢ and d refer to the node number in the r and s directions, respectively. The two-
dimensional shape function is given by

nen

N, (x,s) = L,

neng -1

oyxnT (), (3.157)

r

where nen_ and nen_ are the numbers of nodes in the r and s directions, respectively.
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Taking the four-noded quadrilateral depicted in Figure 3.9 as an example, the shape functions N
are found tobe N, = }1(1 -r)(l-s),N, = }1(1 +r)(l-s),N; = %(1 +r)(1+s),and

N, = %(l—r)(l +5).

o

[
R

R

1@

Figure 3.9  Definition of element shape functions for two-dimensional, four-
noded quadrilateral.
The three-dimensional case can be treated analogously, and in doing so we use the trilinear brick
element depicted in Figure 3.10 as a template. Here we consider that local Node a has local
coordinates (r_, s4, t.) and write the three-dimensional shape functions as:

nen, -1

ey x L2 (o). (3.158)

r nS

nen, -1 ne
N, (x,s) = L, (r)XLg
The appropriate shape functions for the trilinear brick turn out to be:

N, = 41—1(1 -r)(l-s)(1-t),N, = %{(1 +r)(1-s)(1-t),N; = 411(1 +r)(1+s)(1-t),

N, = %(1—r)(1+s)(1-t),N5 - L—ll(l—-r)(l—s)(1+t),N6 - §(1+r)(1-s)(1+t),‘

N, = L—l‘(l+r)(1+s)(1+t),and N, = %(1-r)(1+s)(1 +t).

Figure 3.10 Definition of element shape functions for three-dimensional, eight-
noded brick.
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Quadrature

With the element parameterizations and shape functions now defined, we are in a position to

. . .. int®
discuss how element-level calculations are performed to evaluate such quantities as m® £

and k°. Notably all these calculations involve integrals over the element domain, as evidenced

by the expression for £ ine® given in (3.142). One can evaluate these integrals analytically only
for a few highly specialized cases, meaning that numerical integration (i.e., quadrature) is
required for any type of generality to be present in the element formulation. Accordingly, we are

led in this section to consider the generic problem of integrating a function, £, over the element
domain via

| f5av, (3.159)
0e(Q%)
where £ could, in principle, be scalar, vector, or tensor-valued.
The first step in evaluation of (3.159) is generally to perform a change of variables, converting

the integral in the current element physical domain (pE(Qe) to one over the parent domain,

which we shall denote by [J . This is accomplished using the standard change-of-variables
formula from multivariate calculus,

‘ j f(x%)dv = j £(x"(x))](r)ad , (3.160)
o) 0
where j(x) is the Jacobian of the transformation from parent coordinates x to spatial

. e
coordinates x :

i(z) = det{:g—}:_ , (3.161)

where x° is as given in (3.147).

The advantage of (3.160) over (3.159) is that the integration takes place over a standardized
domain, for which quadrature rules are readily tabulated. One typically approximates the integral
in (3.160) by applying quadrature via

nint

Jf(xe(r))j(r)dD = 2 f(xe(rl))j(rl)wl, (3.162)
a 1=1
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where nint is the number of integration (quadrature) points in the element, x, is the parent

coordinate of quadrature Point 1, and W, is the weight associated with quadrature Point 1. The

choice of these quadrature point coordinates and weights effectively defines the numerical
integration scheme and the accuracy associated with it.

The most prevalent quadrature schemes in finite elements are based on Gaussian quadrature
rules, which may be derived in terms of Legendre polynomials. While this derivation is
unnecessary for our present purposes, its result is that in one dimension the Gaussian quadrature
rules are optimally accurate in that no greater accuracy can be achieved for lesser cost. By cost
we mean the number of integration points used, whereas by accuracy we mean the lowest order
polynomial not integrated exactly by a given quadrature rule. The Gaussian rules in one

dimension have the property that given nint integration points, 2 X nint order accuracy is
achieved, meaning thata 2 X nint — 1 order polynomial in r will be integrated exactly. Below
are listed the first few Gauss integration rules over the domain [-1, 1].

*nint = 1: r; = 0, W, = 2 (second order accurate).

*enint=2:r, = -—,r, = —,W, = W, = 1 (fourth order accurate).
1 2 1 2

A3

. . 3 3 5 8 .
* nint =3:r; = —J;,rz =0,r; = «E’Wl =Wy = §,W2 = 5 (sixth order
accurate).

Now returning to the problem of interest, multidimensional quadrature, we can use very similar
reasoning to that used to define multidimensional shape functions in the last section. Since
integration in a multidimensional domain involves integrating with respect to each variable
separately while holding the others constant, we might expect that numerical integration in
successive directions is done in just the same way. The result of this fact is that we can define
multidimensional quadrature rules as products of one-dimensional ones, just as was done for
shape function definitions. It turns out the optimality property present in the one-dimensional
formulation is lost but that a highly systematic and effective integration procedure results.

Beginning in two dimensions we refer to Figure 3.11, which depicts a four-point quadrature
scheme in two dimensions that we will use as a template. Let us consider quadrature Point 1,

having local coordinates (rlr, Sls) , where indices 1, and 1 refer to the appropriate

quadrature point number in the r and s directions, respectively. The two-dimensional weight is
given by the product of the appropriate weights from the one-dimensional rules, i.e.:

W, = W, XW, . (3.163)
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(rlr’ Sls)

Figure 3.11 Quadrature rule definition in two dimensions: four-point Gaussian
quadrature.

Taking the two-dimensional, four-point quadrature rule depicted in Figure 3.11 as an example,
the appropriate parameters are found tobe: W, = W, = Wy = W, = 1,

1 1

(rypsq) = (—%, ~J§) (ry s,) = (j_g —-—A/l-g) (r3, 85) = (%, 7_3—),and
1 1
(ry4,84) = (__.\/;3-’ ﬁ)

Three-dimensional quadrature rules are similarly conceived; the reader should consult Figure
3.12 for a template of the procedure. We consider quadrature Point 1, having local coordinates
(ry.s;,t; ), whereindices 1, 1., and 1, refer to the appropriate quadrature point number

inthe r, s, and t directions, respectively. The three-dimensional weight is given by the product
of the appropriate weights from the one-dimensional rules, i.e.:

Wy = Wy XW, XUy (3.164)
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4 s A
x®>r>< | X = X x>

t tX :

(rlr’ Sls’ tlt)

Figure 3.12 Quadrature rule definition in three dimensions: eight-point Gauss-
ian quadrature.

Considering the case in Figure 3.12 as a specific example, we find the following parameters:

1 1 1 1 1 1
Wy -Wg =1,(r,s,t) = ( ) (ry 8y ty) = ( )

NG B BB

(r59 SS, t5) - —i, ‘—i, -l- . (r6’ S6’ t6) =|—F= - ,
333 B BB
1 1 1 1 1 1
(r7,89,t9) = (—5, :/—_g, —ﬁ ,and (xg, Sg, tg) = (_E’ :]'5’ 7_3)

Local Arrays

The final task in the section is to give brief prescriptions for how element-level calculations are
done to find m°, ginte , and k° for a given element, e . These quantities are needed by the
global assembly algorithm to form M and ot (as discussed in Localization and Assembly) and

K (as discussed in Newton Raphson Framework). Beginning first with m® we recall the general
expression for the element mass matrix
e _ -1 8 -1
Moy = | PNL(®L (3%))8; 3N, (0, (x))av. (3.165)
h ~e
P.(Q)

One cah apply a change of variables to the reference configuration to find that
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=]
i

| P (x%)8, 3, (x%)3av
Qe

pd

(3.166)

[ P, (x%)8; ;N (x)av
Qe

where the second line of (3.166) holds because p, = Jp (conservation of mass, see Eq. (2.74)).

Looking at the second line of (3.166), we see that the element mass matrix is independent of the
deformation. It is straightforwardly calculated using quadrature via

nint
Mog= . Po(T DN (T1)8; N, (x1)Io(x )W, (3.167)
1=1
where
. ox*®
Jo(xy) = det[a—r] (3.168)

According to the discussion of the last section, the ordinary strategy in applying quadrature
would be to use a sufficiently accurate rule so that (3.167) is evaluated exactly (at least if the

reference density p, is constant). This would lead one to employ a four-point Gauss quadrature

rule for a four-noded quadrilateral in two dimensions and an eight-point Gauss rule for an eight
noded brick in three dimensions. Following this procedure produces a “consistent” mass matrix
m°.
The difficulty with a consistent mass matrix, however, is twofold. First, it is, in general, banded
but not diagonal (as would be preferable for an explicit dynamics application, for example), and
second, experience shows that better accuracy is often exhibited in dynamics problems with
“lumped mass”, where the rows of (3.168) are actually summed and the result placed on the
diagonal of the mass matrix. Use of this row sum technique produces the following alternative,
more widely used expression for element mass:

nint

e

Moa |} ymped ~ 033085 Y po(x)N, ()Tl )W, . (3.169)
1=1

Turning attention now to £ ines , we begin by applying the change of variables to (3.142):

nint

i e h.
£0~ ¥ N, @) o), (3.170)
1=1
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Two requirements of (3.170) are notable: the determination of the stress T?j (dependent, as

indicated on the current element deformation field through the constitutive law), and the need for
the spatial derivatives N, ; of the shape functions. In fact, derivatives of this type are also

needed for the stress calculation, which will ordinarily involve the approximated deformation

gradient:
dpr]  [PePon
P |20 o |y Tage (3.171)
ox° ox° °
a=1

. aN’a, aNa . . . int® . .
Thus calculation of both - and — s typically necessary to obtain £ .These derivatives
dx ox ,
are usually produced by a shape function subroutine, called by the element subroutine for each

N
quadrature point. Taking the spatial derivative —= as an example, the chain rule can be invoked

ox°
to obtain the appropriate expressions via:
en-1
M, | _ ] o, [EJ =1 9N, Ff_{i} (3.172)
9% dr, |LoxS or, |[9%x

where (r,) = (r, s) intwo dimensions, and (r,) = (x, s, t) in three dimensions. The reader

will recognize that —= can be computed through simple differentiation of the local shape

or,
e

X
functions, whereas BTJ is found by differentiation of (3.147). Calculation of the required inverse
k

is rather simple and is readily done in closed form, since the matrix involved is 2x2 in two
dimensions and 3x3 in three dimensions.

Completing our discussion of element-level calculations, the element stiffness matrix k° is given
generically by

. int .
e e’ _ o) e’
ko (@®) = —2 (@), (3.173)
q

where the internal force vector is as given in (3.142). Some manipulation of (3.142) is useful at
this point:
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intle
p

= j[Na S(xF )‘EJJ lj]Jdv
o

= | [N, ,(x%)P%,]lav
Qe

, (3.174)

where in the second line of (3.174), the Piola stress Pril 5 has been introduced in accordance with

(2.54). There are many ways in which the derivative indicated in (3.173) can be expressed; here
we do it by computing the derivative of the Piola stress with respect to the deformation gradient
(Eq. (3.171)) and invoking the chain rule:

kiq(del) = %j [N, ,(x%)P,lav

aQ®
35" 3 (3.175)
P ¥
J' N, o(X5)—2—="av
o aFkLad
Simplification of the second line of (3.175) results in the following expression:
: h
ko (%) = j N, +(X%)Ci 550 (00)N, (XD)AV, (3.176)
Qe
where the material moduli C; ;4 are defined as
opt
Cigjn = — - | (3.177)
JF 4,
Application of the quadrature rule to (3.176) gives
i nint
koo(@5)= 3 N, 1(x1)C g5 (x )N, 1(x1)To(x )W, (3.178)
1=1

The required reference coordinate shape function derivatives can be calculated as discussed
above for each quadrature point, as can the Jacobian j. The material moduli C; ;4; are,
typically, the most difficult to compute, as they require linearization of the tensor-valued
constitutive relation with respect to a tensor-valued strain measure (in this case the deformation
gradient). It should be noted that (3.178) is given for illustrative purposes only; the stress and
strain measures conveniently utilized in the linearization vary widely, depending on the
constitutive relation used. It should be noted, however, that provided the moduli are symmetric

(in the major sense), then the element stiffness matrix k° will be as well.
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Advanced Element Design Issues

Introduction

In this section we discuss some advanced element design issues having particular relevance to
large deformation problems featuring inelastic response. We begin the discussion with a specific
example of how the standard element formulations discussed in Basics of Element Design can
have difficulty in problems featuring near or complete incompressibility, as is common, for
example, in computational plasticity. Some basic remedies for this situation are then discussed.

Constrained Media and Locking

The incompressibility dilemma can be motivated fairly simply by considering linear elastic,
isotropic behavior. Returning once more to the discussion in Linear Elastic IBVP, we consider a
stress strain relation of the form

Ti5 = CijxaBras (3.179)
where the material moduli C; 5, are of the form
Cispr = A8y 50,y +1[8:3851 +8;,85,]. (3.180)
Plugging (3.180) into (3.179), one obtains
Tis = 20ug; 5y + A8, 50y . (3.181)

We are most interested in the volumetric response of this material; accordingly, let us define the
hydrostatic pressure p as

1
-p = 3Tk (3.182)
and the dilitation (volume change) © as
O =uy . (3.183)

Computing according to (3.181), we find that for an isotropic material,
-p = %(2u+3k)®. (3.184)

The coefficient relating —p and © is ordinarily called the bulk modulus K :
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K =2u+3A (3.185)

and corresponds physically to the volumetric stiffness of the material. Recalling that pu is the
shear modulus, representing the resistance of the material to shearing motions, it proves useful to
examine the ratio of K to |l as an indicator of the degree of incompressibility of the material.
Using the relationships between the Lamé parameters and the more familiar elastic modulus and
Poisson’s ratio (see (1.64) and (1.65)), we find this ratio can be written solely in terms of the
Poisson’s ratio:

K _ 2(1+v)
TR (3.186)

Recalling that the thermodynamically admissible values for v range between —1 and % , We see
that the case where v approaches é— from below causes (3.186) to grow without bound, so that

the bulk modulus becomes infinitely large when v = % . In this case the volume change © is

constrained to be zero pointwise in the medium, and the material is said to be incompressible.
Let us now consider the behavior of a finite element discretization of the linear boundary value
problem described in Linear Elastic IBVP, where v = % . We consider the mesh shown in Figure
3.13, comprised of linear triangles. This is an element not discussed to this point but can be
obtained formally by consideration of the four-noded quadrilateral discussed in Basics of
Element Design, with two of the nodal coordinates set to be the same. Thus the displacement

field is linearly interpolated with the result, in the case of triangles, that the strains are constant
throughout the element.

Figure 3.13 Sample mesh illustrating mesh locking for the incompressible case.
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Since the strains are constant in the element, the requirement that

up, =0 (3.187)

pointwise causes the total volume change in the element to be zero also:

dA h

= = Jug,aa =0, (3.188)
A

meaning simply that each element in the mesh may not change area due to the incompressibility

constraint.

Examining now the behavior of Element I in Figure 3.13, the constant area constraint implies
that Node A can only move in the horizontal direction, since the two lower nodes of Element I
are fixed. However, Element II places the restriction that Node A can only move vertically. Taken
together, the isochoric constraint in each element prevents Node A from moving at all, in any
direction. This argument can be repeated throughout the mesh, to conclude that no node can

move at all, so that uh = 0 is the solution to the discrete problem. However, it is clear that in the
physical situation, the fact that the material is incompressible does not preclude all deformation.
Thus the finite element solution produces a solution that is nearly nonphysical because of the fact
that the numerical approximation of the incompressibility condition overconstrains the numerical
representation of the physical system.

The phenomenon described for this admittedly specialized system is referred to, generally

speaking, as “mesh locking”. It will not, of course, always be the case that u® = 0 for every
boundary value problem, but it does turn out that fully integrated elements of the type discussed
in Basics of Element Design will, in general, produce excessively stiff solutions when the
material is either nearly or completely incompressible. We are thus led to consider techniques
where the amount of constraint placed by the approximation of the volumetric material response
can be relaxed when appropriate.

Selective/Fully Reduced Integration

One of the simplest techniques used to eliminate element locking is to deliberately underintegrate

the internal force vector £ nt

© (and the element stiffness k° in the case of a quasistatic or
implicit dynamic calculation). Selective reduced integration means that only the troublesome
volumetric terms are underintegrated, whereas fully reduced integration means that all terms are
underintegrated. The latter option is particularly attractive in explicit dynamic and matrix-free
quasistatic calculations, since the element level calculations comprise a large proportion of total
solution costs in these cases. Since the cost of element calculations is directly proportional to the
number of quadrature points, fully reduced integration becomes very attractive when speed is of

special concern.
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Let us consider the case of the eight-noded hexahedron in three dimensions as an example, and

apply fully reduced integration in the calculation of £ 10t The ordinary quadrature rule for this
element would be eight-point Gauss (two points in each direction), but it turns out that this
element locks. The reduced quadrature rule would then be one-point Gauss, which leads to the

following expression for £ :

int|e

h .
£ o =8N, 5(0)T;5(0)34(0), (3.189)
where, as indicated, all quantities are evaluated at the origin 0 of the parent coordinates.

Schemes such as this have the advantages of being cheap and of eliminating locking but come at

1 e
a cost. They do not accurately integrate those parts of the integrand of £ int p that come from
deformation varying spatially in a superlinear fashion.

Hourglass Control

Arguably the most important work done in this area was published by [Flanagan, D.P. and
Belytschko, T., 1981]. The development in this section closely follows their original presentation.
To understand more clearly the possible spurious behaviors enabled by reduced integration, we

first note that the shape functions N, can be written in terms of some standardized element

deformation modes as follows:

1 1 1 1
Na = §2a+ ZrA1a+ ZSA2a+ ZtA3a

1 1 1 1 G150
+ zstr‘la + irtl‘2a + 51:51“3‘_=1 +5rs tl,,

These modes are depicted schematically in Figure 3.14. As can be seen therein, X represents a
rigid body translation, the A, represent constant strain deformation modes, and the I, are
referred to as hourglass modes.

If we consider the velocity field representable by this element, we find that it can be written via

nen
e

VS = vie, Vi = Y V.N,. (3.191)

a=1
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Figure 3.14 Mode shapes for the eight-noded hexahedron element.

The fully linear portion of the velocity field is made up of the £_ and A, modes, so that the

hourglass portion of the velocity field can be written as

hg _ lin _ 1 -
Via = Via—Viy = ﬁqiar

(3.192)

aa’

I . - : .
where T is a normalizing factor, and g, are the hourglass normal velocities. It turns out that
N8

the hourglass velocities are orthogonal to the element’s other modes in that
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vi¥s =0 (3.193)

ia“a

and

VA, = 0. (3.194)

ia‘*ia
Basically the one-point integration scheme discussed in the last section fully controls the linear

. . ... h

modes of the system but provides no resistance at all to the hourglass velocities Vig . The
objective of hourglass control therefore is to restore such control even in the context of one-point
integration.

Flanagan and Belytschko wrote the hourglass nodal velocities in terms of the hourglass shape
vector Y, via

: 1
Qi = :/_gviayaa’ (3.195)
with the shape vector y,,, found to be
10V
Yaa = Taa~ \—,&-;—bel“ab- (3.196)

Hourglass forces £ 1:2 are applied in these directions, so as to be orthogonal to the physical

modes of the system. One choice is

1
fi2 = 5%aYaa- (3.197)

where the generalized forces Q, , are given via

i ov ov -
Qia = q'ay (3.198)
50 +
Vox$,0x3,

with [i being an effective shear modulus. The interested reader should refer to Hourglass Control

Algorithm in Eight-Node Uniform Strain Element for the details of a specific implementation of
hourglass control.
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Eight-Node Uniform Strain Element

Introduction

The eight-node, three-dimensional isoparametric element is widely used in computational
mechanics. The determination of optimal integration schemes for this element, however, presents
a difficult dilemma. A one-point integration of the element underintegrates the element, resulting
in a rank deficiency that manifests itself in spurious zero energy modes, commonly referred to as
hourglass modes (see Hourglass Control). A two-by-two-by-two integration of the element, by
contrast, overintegrates the element and can lead to serious problems of element locking in fully
plastic and incompressible problems (see Constrained Media and Locking). The eight-point
integration also carries a tremendous computational penalty compared to the one-point rule.
Particularly in explicit dynamic applications (see Explicit Finite Element Methods), this added
expense is extremely undesirable.

In this section we present an element that is widely used in explicit analyses, wherein one-point
integration is utilized in combination with an hourglass control scheme that controls the spurious
modes. The implementation presented below follows directly from [Flanagan, D.P. and
Belytschko, T., 1981]. In particular the aspects of this element pertaining to hourglass control
have already been discussed in Hourglass Control.

The hexahedral element relates the spatial element coordinates x; to the nodal coordinates d;

through the isoparametric shape functions N_ as follows

Xf = Na(&r le C)dia7 (3.199)

where for convenience the summation convention on nodal indices a has been adopted.
Subscripts i have a range of three, corresponding to the spatial coordinate directions, and
subscripts a have a range of eight.

Our discussion here will focus primarily on explicit dynamics applications, where the argument
for the use of this element is most compelling. As such it is necessary to have expressions for the
elemental velocity field

v. = N, v, _, (3.200)
a:nd for the acceleration field

a, = N_a,_. (3.201)
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In (3.200) and.(3.201) the nodal velocities v, and nodal accelerations a;, are the localized

global velocities and accelerations, which for central differences are produced by the updates
(3.75) given in Explicit Finite Element Methods.

The velocity gradient tensor L has been discussed in Rates of Deformation and was specified in
Eq. (2.30). It can be written in the domain of an element as

Li..=v., . = v._N

ij i, 3 ia

(3.202)

a, 3

By convention a comma preceding a lowercase subscript denotes differentiation with respect to

V.
the spatial coordinates (e.g., v; ; denotes =——=).

0x.

J

The three-dimensional isoparametric shape functions map the unit cube in r-space (r is written

explicitly as (r, s, t ) to a general hexahedron in x-space, as depicted for the element reference
configuration in Figure 3.6. The trilinear shape functions defined over this domain, as
summarized in Shape Functions, can be conveniently expanded in terms of an orthogonal set of
base vectors, as was mentioned previously in Hourglass Control:

1

1
g7a" 4 4 4

. ) : . (3.203)
+ §Str1a + zrtrza + irsl"3al + irs tly,,

The basis vectors represent the displacement modes of a unit cube, as was also discussed in
Hourglass Control. The first vector, Z_ , accounts for rigid body translation. The vectors A
may be readily combined to define three uniform normal strains and three rigid body rotation
modes for the unit cube. We refer to A, as the volumetric base vectors since, as we will

illustrate below, they are the only base vectors which appear in the element volume expression.
The last four vectors, I'  , where Greek subscripts have a range of four, give rise to linear strain
modes which are neglected by uniform strain integration (i.e., the one-point quadrature rule

summarized in (3.189)). These vectors define the hourglass patterns for a unit cube, so that we
refer to I', as the hourglass base vectors. The displacement modes represented by all these

vectors are shown in Figure 3.14.

Element Force Vector

Recalling the development of Basics of Element Design, the generic expression for the element
intema_l force vector (see (3.142)) is
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£ = [ N, Tev. (3.204)
022
In the element we consider, the one-point integration scheme neglects the nonlinear portion of

the element displacement field, thereby considering a state of uniform strain and stress. The
preceding expression is approximated by

int}e —

£ fa =Ty j N, 4av, (3.205)
9e(Q%)
where T; 5 , the mean stress tensor, represents the assumed uniform stress field. By neglecting the

nonlinear displacements, we have assumed that the mean stresses depend only on the mean
strains. Mean kinematic quantities are defined by integrating over the element as follows:

Gy = ‘17 [ v sav. (3.206)
e(®)
We now define the discrete gradient operator as
Bin= [ N, iav. (3.207)
92(Q%)

The mean velocity gradient, applying Eq. (3.202), is given by

. .=1l, g | (3.208)

Vi3 T FViaPia-
Combining Equations (3.205) and (3.207), we may express the nodal forces by

intl}e
£ Iia =

Hi

B (3.209)

ij*~ja-

Computing nodal forces with this integration scheme requires evaluation of the gradient operator
and the element volume. These two tasks are linked since

X: 2 = 0. (3.210)

1,3 i3»

where Sij is the Kronecker delta. Equations (3.199), (3.207), and (3.210) yield

ia“ja

XiaBja = [ (x5 M) av = v8j;. (3.211)

v

Consequently, the gradient operator may be expressed by
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B, =9V (3.212)

ia axia

To integrate the element area in closed form, we use the Jacobian of the isoparametric
transformation to transform to an integral over the biunit cube:

+1 +1 +1

v=|dv = jdrdsdt. (3.213)
J o1
v -1 -1 -1

The Jacobian is given in terms of the permutation symbol e, j, as

Jx dy 0dz
= @, ., 2 = 214
J eljkari dr; dr, 214
Therefore, Equation (3.213) can be written as
V = X, V2. Copes (3.215)
where
+1 +1 +1
dN, ON, ON
-1 -1 -1

Observe that the coefficient array C,, . is identical for all hexahedrons. Furthermore, it possesses

the following alternator properties:
Cave = Coca = Ceab © ~Cacb = = Cpac~ Ceba- (3.217)

Therefore, applying Equations (3.212) and (3.217) to (3.215) yields the following form for
evaluating the B-matrix:

beC

B, = | Zp¥e |Cope- (3.218)

ia

bec

In light of Equation (3.203), it is evident that evaluating each component of C_, _ involves

integrating a polynomial that is at most biquadratic. However, since we are integrating over a
symmetric region, any term with a linear dependence will vanish. The only terms which survive
the integration will be the constant, square, double square, and triple square terms. Furthermore,
the alternator properties cause half of these remaining terms to drop out. The resulting expression
for C_,.. is
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Cabe = @eijk

(3 AiaAijkc + A:i_arkb]‘—qj c

(3.219)
F AT+ T i)

Since C,, . has the alternator properties given in Equation (3.217), only 56 (the combination of

eight nodes taken three at a time) distinct nonzero terms are possible. However, the volume must
be independent of the selection of Node 1, which implies that C_, . must be invariant under all

node numberings, preserving the relative orientation of the element. Consequently, only 21 (the
combination of seven nodes taken two at a time) terms may be independent. Furthermore, once
Node 1 is selected, three orientations of the node numbering system are possible, so that only

seven terms of C_, . need be evaluated.

The seven sets of triples (a, b, c) giving rise to independent terms of C_, _ are: (1,2, 3);

(1,2,5);(1,2,6); (1,2,7); (1,2,8); (1,3,5); 1,3, 6. Of these, only the first three terms do
not vanish. All other nonzero terms of C_, . are found by permutations and use of the alternator

properties summarized by Eq. (3.217).

With the C_, . in hand, the first term of B, _ is expressed using (3.218) as

Bjy = %[Yz((ze_ z3) = (24=25)) +¥3(23— 24)

+Y4((Z3— 28)—(25-— 22)) +y5((28— 26)—(22“ 24)) - (3220)

+ve(z5-2,) +Yg(z4— zs) ]

After permuting the nodes according to the transformations described above, other terms of B,

are also evaluated using (3.218). The element volume is most easily computed by contracting the
B-matrix and nodal coordinates as per Eq. (3.211).

Lumped Mass Matrix

In order to reap the benefits of an explicit architecture, we must diagonalize the mass matrix (see
Explicit Finite Element Methods). We do this by integrating the inertial terms as

(m°a%)ia = aymg,, (3.221)

where

my, = PV, , (3.222)
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and O, is the Kronecker delta. Clearly the assembly process for the global mass matrix from the

individual element matrices results in a global mass matrix that is diagonal and can be expressed
as a vector, M, if desired.

Finite Rotation Algorithm

As discussed in more detail in Frame Indifference, an important factor in proper formulation of
large deformation problems is the assurance of material objectivity. In the element we now
consider, this is achieved by formulation of the constitutive updates in the rotated configuration
depicted in Figure 2.2 and introduced more thoroughly in Rate of Deformation Tensors. Of
particular interest in constitutive modeling are quantities like the rotated rate of deformation

tensor D (see Eq. (2.39)), the rotated Cauchy stress T in Eq. (2.57), and the Green-Naghdi rate
of Cauchy stress T defined in (2.122).

Notably all of the above objects require the determination of R, the rotation tensor defined by the

polar decomposition summarized by Eq. (2.13). Here we describe an incremental algorithm for
determination of this tensor with emphasis on computational efficiency and numerical accuracy.

We begin by considering (2.42) as a first-order differential equation in R

R = LR. (3.223)

The crux of integrating Eq. (3.223) for R is to maintain the orthogonality of R. Unfortunately, if
one merely applies a forward difference scheme, the orthogonality of R degenerates rapidly no
matter how fine the time increments. Instead the algorithm of Hughes and Winget ([Hughes,
T.J.R. and Winget, J., 1980]) for integrating incremental rotations can be adopted as follows.

A rigid body rotation over a time increment At may be represented by
Kepae = QeXe, (3.224)

where Q. is a proper orthogonal tensor with the same rate of rotation as R, as given by Eq.
(3.223). The total rotation R is updated via

Riiae = QacRe- (3.225)
For a constant rate of rotation, the midpoint velocity and the midpoint coordinates are related by
1
At (Rerac—X) = 5L(Re, o+ XD (3.226)

Combining Egs. (3.224) and (3.226) yields
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(Qpc~I)x, = 71.(QAt +I)x, . (3.227)
Since x, is arbitrary in Equation (3.227), it may be eliminated. We then solve for Q Ac » Which
gives

-1 A
Q. = (I _ %L) (I + 7%,). (3.228)

The accuracy of this integration scheme is dependent upon the accuracy of the midpoint
relationship of Equation (3.226). The rate of rotation must not vary significantly over the time
increment. Furthermore, [Hughes, T.J.R. and Winget, J., 1980] showed that the conditioning of

Equation (3.228) degenerates as At L grows.
Our complete numerical algorithm for a single time step can be summarized as below.
* Calculate the rate of deformation tensor D and the spin tensor W (see Egs. (2.31) and (2.32))

* Determine L from W and V (the left stretch, see Eq. (2.13)), using the following algorithm
due to [Dienes, J.K., 1979]. Compute

Z; = ;3. VDo (3.229)
1=w-2(V-It(V)) z (3.230)
—_ 1 3

L= Qeijklk’ (3.231)

where
Wi = €545 Wyy. (3.232)

* Solve

A
(I - %L)RU_ Ae = (1 + —ZEL)Rt. (3.233)
» Calculate
V = (D+W)V-VL. (3.234)
. *» Update

Ve, o = Vo +ALV. (3.235)

* Compute the rotated rate of deformation (see (2.39))

D = R'DR. (3.236)
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* Integrate the constitutive equations in the rotated frame of reference

T = £(D, T). (3.237)
» Compute the Cauchy stress in the spatial configuration

T = RTR". (3.238)

Note that this algorithm requires that the tensors V and R be stored in memory for each element.

Determination of Effective Moduli

Algorithms for calculating the stable time increment require effective moduli for each element
(see (3.73) in Explicit Finite Element Methods). Such calculations of dilatational and shear
moduli are also necessary for hourglass control, bulk viscosity, and nonreflecting boundaries.
Here we present a procedure for adaptively determining the effective dilatational and shear
moduli of the material.

In an explicit integration algorithm, the constitutive response over a time step can be recast a
posteriori as a hypoelastic relationship. We approximate this relationship as isotropic. This

defines effective Lamé parameters, A and [L, in terms of the hypoelastic stress increment and
strain increment (in the rotated frame of reference) as follows:

AT,j = At(ADy S5 +20D;, ). (3.239)

1

Equation (3.239) can be rewritten in terms of volumetric and deviatoric parts as

AT, = At(3L+20)D,,, (3.240)
and
Si5 = At2ﬁeij, (3.241)
where
515 = ATy~ AT, 8, (3.242)
and
e15 = Dis=3Dds;. (3.243)

The effective bulk modulus X follows directly from Equation (3.240) as
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ATy,

3% = 3h+2{ = .
AtD,,

(3.244)

Taking the inner product of Equation (3.241) with the deviatoric strain rate and solving for the
effective shear modulus 21, gives

S..e. .
20 = —=3. 24
H= Ateem (3:243)

Using the result of Equation (3.244) with Equation (3.245), we can calculate the effective
dilatational modulus A + 2{i:

A+20 = (3R +2-(20)). (3.246)

W]

If the strain increments are insignificant, Equations (3.244) and (3.245) will not yield
numerically meaningful results. In this circumstance the dilatational modulus can be set to an

initial estimate, A, + 2}4, . An initial estimate of the dilatational modulus is, therefore, the only

parameter which every constitutive model is required to provide to the time step control
algorithm.

In a case where the volumetric strain increment is significant but the deviatoric increment is not,
the effective shear modulus can be estimated by rearranging Equation (3.246) as follows:

20 = %(3(xo+2u0)—3f<). (3.247)

If neither strain increment is significant, the effective shear modulus can be set equal to the initial
dilatational modulus.

Determination of the Stable Time Increment

Flanagan and Belytschko [Flanagan, D.P. and Belytschko, T., 1984] provided eigenvalue
estimates for the uniform strain hexahedron described in this section. They showed that the
maximum eigenvalue is bounded by

(3.248)

Using the effective dilatational modulus from Determination of Effective Moduli with the
eigenvalue estimates of Equation (3.248) allows us to write the stability criteria of Eq. (3.73) as
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( PoVo)

a2
At <

1

= (3.249)
2 (A+2W)B;.B;

The stable time increment is determined from Equation (3.249) as the minimum over all
elements.

Equation (3.249) is numerically invalid if the effective dilatational modulus is less than or equal
to zero. A negative modulus indicates a strain softening situation that renders the central
difference operator unconditionally unstable. In practice, however, strain softening is generally
short lived, so that the calculations can continue in a stable manner once the softening energy has
been dissipated. To aid the user in controlling an unstable strain-softening situation, the effective
dilatational modulus can be adjusted with a strain-softening scale factor, ssft, as follows

A ~ . Ay+2u
Ifk+2u<0then7\.+2u=—2. (3.250)
( ssft)
To avoid dividing by zero in Equation (3.249), one can enforce the following condition:
A +202 (Mg +21) - 10°°. (3.251)

The estimate of the critical time increment given in Equation (3.249) is for the case where there
is no damping in the system. If we define € as the fraction of critical damping in the highest
element mode, the stability criteria of Eq. (3.249) becomes

At <AR(WJ1+e~¢). (3.252)

Conventional estimates of the critical time increment size have been based on the transit time of

a dilatational wave over the shortest dimension 1 of an element or zone. For the undamped case
this gives

Ql-

, (3.253)

where c is the dilatational wave speed.

There are two fundamental and important differences between the time increment limits given by
Equations (3.249) and (3.253). First, our time increment limit is dependent on a characteristic
element dimension, which is based on the finite element gradient operator and does not require
an ad hoc guess of this dimension. This characteristic element dimension, 1, is defined by
inspection of Equation (3.249) as

(3.254)

N

Bi1B;

Theory Manual Finite Element Formulation - Eight-Node Uniform Strain Element - Determination of the Stable Time Increment 72




Second, the sound speed used in the estimate is based on the current response of the material and
not on the original elastic sound speed. For materials that experience a reduction in stiffness due
to plastic flow, this can result in significant increases in the critical time increment.

It should be noted that the stability analysis performed at each time step predicts the critical time
increment for the next step. Our assumption is that the conservativeness of this estimate
compensates for any reduction in the stable time increment over a single time step.

Hourglass Control Algorithm

The mean stress-strain formulation of the uniform strain element considers only a fully linear
velocity field. The remaining portion of the nodal velocity field is the so-called hourglass field.
Excitation of these modes may lead to severe, unresisted mesh distortion. The hourglass control
algorithm described here is taken directly from [Flanagan, D.P. and Belytschko, T., 1981]. The
method isolates the hourglass modes so that they may be treated independently of the rigid body
and uniform strain modes.

A fully linear velocity field for the hexahedron can be described by

R RS N IEE B (3.255)

The mean coordinates X; correspond to the center of the element and are defined as

X, = oX; 2. (3.256)

T, = =v, 3_. (3.257)

The linear portion of the nodal velocity field may be expressed by specializing Eq. (3.255) to the
nodes as follows:

LIN -
ia = ViZa+ Yy (%5,

-R5Z,), (3.258)

where Z_ is used to maintain consistent index notation and indicates that ¥, and i'cj are

independent of position within the element. From Equations (3.211) and (3.258) and the
orthogonality of the base vectors, it follows that

v, % LNy -~ 89, (3.259)

ia“a & Yia “a i»

and
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_ . LIN
ia¥ja T Yia “ja 1,3

v, B B. = v, .. (3.260)

HG . . . .
The hourglass field v, may now be defined by removing the linear portion of the nodal velocity
field:

HG LIN

i (3.261)

ia ia ia

Equations (3.259) through (3.261) prove that X_ and Bj, are orthogonal to the hourglass field:

HG

vieE, =0 (3.262)
ViaBsa = 0. (3.263)

Furthermore, it can be shown that the B matrix is a linear combination of the volumetric base

vectors A, , so Eq. (3.263) can be written as

VeA, = 0. (3.264)

i1a“"ia
Equations (3.262) and (3.264) show that the hourglass field is orthogonal to all the base vectors
depicted in Figure 3.14 except the hourglass base vectors. Therefore, vfz may be expanded as a

linear combination of the hourglass base vectors as follows:

HG 1
v =

ia :/—gq‘ia

The hourglass nodal velocities are represented by g, above (the leading constant is added to

r (3.265)

oa-
normalize I' ). We now define the hourglass shape vector v, such that

1

q; = jg-liiavaa. (3.266)

By substituting Equations (3.258), (3.261), and (3.266) into (3.265), then multiplying by I',,

and using the orthogonality of the base vectors, we obtain the following:
Ui1lgr— U4, 5% ar = Uir¥or- (3.267)

With the definition of the mean velocity gradient, Equation (3.208), we can eliminate the nodal
velocities above. As a result, we can compute Y, ; from the following expression:

1
Yoaa = raa - '\_7Biaxibrab . (3.268)
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The difference between the hourglass base vectors I, and the hourglass shape vectors ¥,,, is

very important. They are identical if and only if the hexahedron is a right-parallelepiped. For a

general shape I', is orthogonal to B, , whereas ¥, is orthogonal to the linear velocity field

ja’
LIN

ia - [ 4a defines the hourglass pattern, and Y, is necessary to accurately detect hourglassing.

For the purpose of controlling the hourglass modes, we define generalized forces Q; , , which are
conjugate to d;, so that the rate of work is
1 .
Viafia = 599 (3.269)

for arbitrary u, ;. Using Equation (3.266) it follows that the contribution of the hourglass

resistance to the nodal forces is given by

HG 1

£ia = 5QaYaa: (3.270)

Two types of hourglass resistance are possible: artificial stiffness and artificial damping.

Considering the stiffness type as an example, we can define a tuneable hourglass stiffness, €, and
express the resistance by

. BipBip

K -
520, . (3.271)

Qi(x=2

Note that the stiffness expression must be integrated, which further requires that this resistance
be stored in a global array.

Observe that the nodal antihourglass forces of Equation (3.270) have the shape of v, rather

than I' ,, . This fact is essential since the antihourglass forces should be orthogonal to the linear

velocity field, so that no energy is transferred to or from the rigid body and uniform strain modes
by the antihourglassing scheme.

Artificial Bulk Viscosity

Artificial viscosity may be desirable in numerical calculations for two reasons. First, high-
velocity gradients can collapse an element before it has a chance to respond if no viscosity is
employed. Second, viscosity is often useful in quieting truncation frequency “ringing”.

Ideally one would like to add viscosity only to the highest mode of the element, but isolating this
mode is impractical. The standard technique is to simply add viscosity to the volumetric or
“bulk” response. This generates a viscous pressure in terms of the volume strain rate as follows:
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v V\?
= blpc_\-;-—p(bzl-_\}-) , (3.272)

where by and b, are coefficients for the linear and quadratic terms, respectively. The quadratic
term in Equation (3.272) is more important and is designed to “smear” a shock front across
several elements. This term yields a jump in energy as a smeared shock passes, which simulates
the shock heating. As a result, the smeared shock front can be propagated as a steady wave.

The linear term is intended to dissipate truncation frequency oscillations. The quadratic term is
only applied to compressive strain rates, since an element cannot collapse in expansion.

The preceding expression is simplified if we use the undamped stable time increment defined by
Equation (3.249) and write

2
e 1 _ v p
At = = ’\[ZBlaBla TR (3.273)
or
~ m A\
At = »j7»+2u ZBla ” (3.274)

where m is the element mass. We now define the factor € such that the quadratic viscosity term
vanishes in expansion

e = b, ~ byAf min(0, D, ). (3.275)

This quantity is required for the damped stability criteria of Equation (3.252). Note that the
condition imposed by (3.251) prevents Equation (3.275) from yielding so large a value of € that
Equation (3.252) would numerically yield a zero value.

We will show below that € can be used to estimate the fraction of critical damping in the highest
element mode. Using Equation (3.275) in Equation (3.274) allows us to write the viscous
pressure as

a = (by—bsAED)(A+21)ALD,, . (3.276)

The bulk viscosity pressure is appended to the stresses during the internal force calculations to
yield the following forces:

fia = @By, (3.277)

The above expression can be expanded using Equations (3.274) and (3.275) to yield

fi, = 8pcIBB, U (3.278)

ia jb
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This form indicates that if B, is an eigenvector, the modal damping is

ep%’— . (3.279)

The critical damping estimate of the maximum element frequency is

s = Py (3.280)

The two expressions above show that € is half the fraction of critical damping in the highest
mode.
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Four-Node Corotational Shell

Introduction

In this section we discuss in detail some of the implementational issues associated with a
frequently utilized structural element in nonlinear mechanics: the four-noded corotational shell
element depicted in Figure 3.15. In so doing, we will add some important detail to the very
conceptual discussion of shells and other structural entities given in Structural Components.

Figure 3.15 Four-noded, corotational shell element also showing the element
coordinate system.

Although much of the discussion is equally applicable to matrix-free quasistatic solution
strategies (see Conjugate Gradient Methods), We target our discussion here primarily to explicit
dynamic calculations (see Explicit Finite Element Methods). In such settings the equations of
motion of the deformable body thus become a system of uncoupled equations governing the
nodal motions in the discretized system. For continuum elements each equation in the system is
| the equation for three-dimensional motion of a particle,
|
F
l
|

EXT

= (Fia

aja = —FﬂT )/ My, (3.281)

T

) . EX’ INT . )
where a,, isthe acceleration, F,, and F,, are the external and internal forces, and M, is

the Jumped mass, all associated with global Node A. For a continuum element with displacement
| degrees of freedom 4, _ , a localized version of Eq. (3.281) completely describes the motion of
the nodes.
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By contrast, a shell element requires rotational degrees of freedom in addition to the
displacement degrees of freedom The additional equations governing these degrees of freedom
are Euler’s equations for the rotation of a rigid body about the principal axes, written here for an
individual shell element

EXT _INT
Oy = [y —myy ) = (T — Tpp ) @305, 1/ Iy

EXT INT

EXT _INT
O3y, = [(m3y — Mgy ) — (Tpp = I1p)0504,1/ I3y,

In these equations 0.}, is the angular acceleration for local Node b, ®,,, is angular velocity, and

I, is the mass moment of inertia associated with local Node b in principal Direction 1.

Similarly numerical subscripts 2 and 3 designate the other principal directions. A coordinate
system is used at each node to track rotation of the principal axis system.

Shell Kinematics

In Mindlin shell theory (see [Mindlin, R.D., 1951]), the shell normals are assumed to remain
straight, although they are allowed to rotate. Rotation of the normals allows the element to model
transverse shear strains. Because displacements are assumed to vary linearly through the shell
thickness, the velocity at any point can be expressed as

v* = v+2é3Xd, ‘ (3.283)

in which v* is the velocity of a point in the shell body, v is the velocity of the point on the

midsurface lying on the same normal, and q is the rotational velocity of the normal (see Figure

3.16). Z is the coordinate through the shell thickness along the unit normal vector, ;3 . Vector

-components in the corotational coordinate system are indicated by the ) symbol.

The components of velocity strain in the corotational coordinate system are

; 1{0%; 9%
d;y = =t | (3.284)
E)xj 0x;

Strain-displacement relationships for the shell are obtained by substitution of Eq. (3.283) into Eq.
(3.284), giving
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a%, 9%,
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9%, . ]
— -
9%,

3, .
— +d,
0%,

.(dq, dq
+ z(—?-? - ﬂﬂ : (3.285)

axz axl

where all quantities are expressed in the corotated coordinate system; the X; being the

coordinates in this system, and the ¥, being the spatial midsurface velocities expressed in this

system.

Figure 3.16 Shell kinematics.
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Constitutive Assumptions

If the velocity strain components in the corotational system are arranged in a column matrix, 4,
as

p - - - ° T
d = [d;}, &y, 2d,,, 28,2451 (3.286)

then the conjugate Cauchy stress components in the corotated coordinate system can be written
as

A A A A A T
Furthermore, the shell is assumed to be in a state of plane stress, so

83 = 0. (3.288)

A

Note also the omission of d,,, the rate of through-the-thickness thinning, from (3.285) and
(3.286).

The representations of deformation and stress given in (3.286) and (3.287) are conjugate, in the
sense that the stress power P, discussed in general continuum mechanical terms in Stress Power,
can be expressed as

P=d4dTrT. (3.289)

Shell Element Coordinate Systems

We consider now the element formulation of a four-node, quadrilateral shell (see Figure 3.15),
where the midsurface velocities ; and rotation rates q; are interpolated using the bilinear

shape functions described in Shape Functions. Thickness of the shell is handled as an element
attribute. The element uses reduced integration with hourglass control and is based on a
corotational formulation (see [Belytschko, T., Lin, J.I. and Tsay, C.S., 1984] and [Belytschko, T.,
Ong, J.S.-J., Liu, WK. and Kennedy, J.M., 1984])

Three coordinate systems are used in the shell element formulation. The translational equations
of motion (Eq. (3.281)) are written in the global system with coordinates x,; and basis vectors

e, . Strain-displacement relationships and constitutive equations are enforced in a local element

coordinate system that rotates and translates with each element. This corotational coordinate

system has orthonormal basis vectors denoted by ©, and coordinates designated by x ;- The
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internal element force (£) and moment () resultants are also computed in this element

coordinate system. New element coordinate systems are computed at each time step using

current nodal coordinates. The equations governing the rotational motion are written in a local
coordinate system at each node. These nodal coordinate systems are assumed to rotate with the
principal axes at each node with the motion governed by Egs. (3.282). The nodal systems have

orthonormal basis vectors, €, , with coordinates designated by x, . The nodal coordinate systems

are updated at each time step.

The element (corotational) normal vector &; is approximated by the normalized cross product of

the element diagonals (see Figure 3.15)

T3 XXy

&, = o142
7 e xxy

(3.290)

In (3.290) r_,, is the position vector of element Node a relative to element Node b in the

current configuration. The direction of the normal vector is thus determined by the element-nodal
connectivity, and the positive side of the shell is the one for which the nodes are numbered

counterclockwise. Next the direction of &, is taken as the portion of the vector connecting

nNodes 1 and 2 that is orthogonal to &;.

The final basis vector for the element coordinate system is obtained from the cross product of &;

and &,,

Internal force resultants at the nodes are computed from the stress gradient in the local element
coordinate system (see (3.142) in Basics of Element Design); they are then transformed to the
global coordinate system via

. e-x e . e
int ~int
£, ~ . . TIET
€1x ©2x ©3x
int®t _ [~ A & ~int®
= < ] 3.294
fy s ely e2y e3y f2 ; ( )
fintej €1z €2z ©3, J?f;nte,

Internal moment resultants are also computed in local element coordinates and transformed to
global coordinates using Equation (3.294). However, Euler’s equations for the rotational
accelerations (see (3.282))are written in nodal coordinates that rotate and translate with the node
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in question (denoted here by superposed bars). The transformation from global to nodal
coordinates is accomplished by

Iy €1x ely €12 m,
fiy b = | By By, €22 1My f- (3.295)
ms3 €3x €3y €32 m,

Therefore, the complete transformation for moments from the element to nodal coordinates is

{@} = [&)"[e]{m}. (3.296)

Element Equations

The shell element is based on a four-node quadrilateral with bilinear interpolations of midsurface
coordinates and of both translational and rotational velocities. Coordinates in the midsurface of
the shell are approximated as

x; = %X;,N (1, s), (3.297)

1

where N, are the shape functions, and r and s are the parent domain coordinates. Repeated
indices, a, indicate summation over the four nodes of the element. Similarly the velocity of the
midsurface and the angular velocity of the normal are interpolated as

v = v N, (1, s), (3.298)

and

using the same shape functions used for the midsurface coordinates.

In a similar fashion as described for the three-dimensional, constant stress element (see Eight-
Node Uniform Strain Element), the shape functions can be expanded in terms of an orthogonal
set of basis vectors as

1 1
=X, + EJ:Ala + iSAZa +rsl,. (3.300)

These basis vectors represent deformation modes of a unit square, analogous to their three-
dimensional counterparts shown in Figure 3.14. Rigid body motion is represented by the first

vector _Za. The volumetric basis vectors, A, and A, , can be combined to represent the normal

and shear strain in an element. With the reduced integration formulation, the element area
involves only these two vectors. Since the last vector, I',, is neglected in the uniform strain
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formulation, it represents spurious energy, or hourglass, modes for the element. Substitution of
Egs. (3.298) and (3.299) into Eqs. (3.285) yields the discretized strain-displacement
relationships:

1 ~ ~ .
dn = K[Blavla'*-ZBlana]
— 1 ~ Fal J
dpyp = g[BZaVZa—'ZBZana]
" 1 ~ ~ A . -
~ 1 R .
2dy3 = E[BZaV3a_Naqla]
~ 1 N ]
2dy3 = Z[Blav3a+Naq2a]

The gradient operator, B, . , is defined as

aa’

d
By = j ?adA, (3.302)
Aeaxa

where Greek subscripts indicate the 1 and 2 coordinates in the plane of the element. For the
reduced integration element, the gradient operator is needed only at the point r = 0, s = 0 and

can be expressed in closed form in terms of the corotational coordinates of the element nodes
(see [Belytschko, T., Lin, J.I. and Tsay, C.S., 1984]) as

[B

wal = 3 (3.303)

A

119,-9,4 5\73—‘91 iV, V%3

Because the element is a quadrilateral, its area, A, can also be expressed in terms of nodal
coordinates:

A= %[(}23 —R)(F4-32) + (B = %) (T3 - 9] (3.304)

Computation of Internal Force and Moment Resultants

Representation of the rate of internal energy for a shell element in the global variational principle
requires derivation of the internal force and moment resultants. Let the velocity vector for an
element node be defined as
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v = {5, (3.305)

in corotational coordinates of the element. Then the corresponding internal element force and
moment vector is

~

rfla.

~

~

f2a

A

£,=1t, 0 (3.306)
a
m

\ 2a’

The concept of stress power, discussed for a general continuum in Stress Power, can be utilized

here to define the vector £;, via
T
Element stress power = j T;5Vv;, AV = J. d Tav. (3.307)
Ve

Substitution of Egs. (3.285) into (3.307) and using one-point quadrature leads to the following
expressions for the element internal forces and moments:

A ~ A

f1a = Biaf11 +Braf12

f20 = By +Bif12

= Biafi13+ By f23

~ - N (3.308)
Mia = ~BaaMp= BraMiz — 7 fyz

th
w
V]

I

Mya = BraMyy + Boalyp + 7 Fxz
my, = 0.

with

Theory Manual Finite Element Formulation - Four-Node Corotational Shell - Computation of Internal Force and Moment Resultants 85



foup = jTade
faz = K[ Te,dz, (3.309)

~

where K = 5/6 is the shear factor from classical plate theory. The integrals of stress over the shell
thickness are computed analytically for linear elastic materials. For nonlinear materials the
internal force and moment resultants are computed by numerical integration through the element
thickness (h) using the trapezoid rule. Currently the user may use either three or five integration

points; the first point is at Z = —h/2, the middle pointis at Z = O (the midsurface), the last
pointisat Z = +h/2.

Hourglass Control

Reduced integration of the stress divergence leads to spurious zero-energy modes (hourglass
modes) in the element, as discussed, in general, in Hourglass Control. The hourglass control
algorithm implemented for the shell element is one developed by [Flanagan, D.P. and
Belytschko, T., 1981} and by [Belytschko, T., Ong, J.S.-J,, Liu, W.K. and Kennedy, J.M., 1984].
Removal of the linear portion of the nodal velocity results in the definition of hourglass shape
vectors Y, :

1
Ya = 1-.a - gBaaXabrb » (3.310)

and the corresponding hourglass forces and moments

" HG

faa = QaYa

“HG

f3a = 037, (3.31D)
~ HG

My = Po¥a
with the generalized hourglass stresses given by

~

Q(X = Cl'YbY(Zb
Q3 = Cr¥pVay, (3.312)
Py = C3¥pdop

and the hourglass stiffnesses defined via
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Eh

C1 = rm_s—A—BotaBoca
3
Gh
C, = rz_lezBotaBaa, (3.313)
3
Eh
c3 = relngBaaBaa

where E and G are Young’s modulus and the shear modulus, respectively; and h is the element

. . . "HG
thickness. In the preceding equations the £, represent the nodal hourglass membrane forces

. - .. ~ “He . . .
associated with in-plane velocities v ; £3, , the hourglass bending forces associated with out-of-

plane velocity v;; and mgi , the hourglass bending moments associated with rotational velocities

d, - The corresponding hourglass parameters r, , r,, and ry are usually assigned values

ranging from 0.01 to 0.05.

Calculation of the Stable Time Increment

The central difference operator is conditionally stable with the stability limit for a system with no
damping given by

At < 2 , (3.314)
®

max

where @, is the maximum frequency of the system (see also Explicit Finite Element

Methods). The maximum frequency in the system can be bounded by the maximum element
frequency, so the stability limit becomes

At < 2 , (3.315)

MAXIMUM(®:. )

max

e
max

where MAXTMUM(®_ .. ) is the maximum element frequency of all the elements in the system.

Conservative estimates of the maximum frequency for quadrilateral shell elements were
developed by Belytschko and Lin [Belytschko, T. and Lin, J.I., 1985] and are given for
membrane, bending, and shear deformation as
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2 _ 12D

(R, + B> - 16(1 -v*)a?%)

max,m 2

MAh
2

2 h™ 2
Cl)max,z = mmmax,m (3.316)
2 4/c 00 C A
(‘Omax,e = ﬁ( Z + 4Sa)
with
c, = KGh
R; = 2By,Bga
2 2 .
Ry = .[R1—16A , 3317)
o; = (R;+R,)/4
Eh’
D=——"7"
12(1-v7)

where E is Young’s modulus, G is the shear modulus, v is Poisson’s Ratio, h is the element
thickness, M is the element mass, and « is the shear correction factor.

In the preceding expressions for maximum element frequency, o is a rotational inertia scaling
factor assumed to be

) (3.318)

where T and A_ are the mass moment of inertia and area, respectively, of the cross section. o is

approximated using the value for a flat, rectangular element:

2
h™+A

o =
12

(3.319)

The maximum stable time step is computed using the maximum frequency over all shell and
brick elements.

Constitutive Models

Two plane stress constitutive models that are widely implemented for the shell element described
here are described next: an elastic model and an elastic-plastic model with combined linear
hardening. In corotational coordinates the stress rate follows directly from the velocity strain.
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Since all stress and strain quantities are computed in corotational coordinates, the " notation has
been dropped.

For a plane stress, linear elastic model, the stress rate is computed from the velocity strain as

T = AM(trd)I +2ud, (3.320)
where |t is the shear modulus.
_ _ E
L=_G= A V)’ (3.321)

A' is the Lamé constant for plane stress

A = (—IE—"Z) (3.322)
-V
(trd) = 4,;, : (3.323)

and I is the second-order identity tensor.

Material properties required as input are Young’s modulus E and Poisson’s ratio v, from which
the above Lamé parameters can be calculated. There are no internal state variables.

In treatment of elastic-plastic materials, on the other hand, it should be first noted that internal
force and moment resultants for nonlinear materials are computed by numerical integration
through the element thickness, so the constitutive model must be evaluated at each integration
point. The general theory for elastic-plastic materials, with combined isotropic and kinematic
hardening, is discussed in detail in Constitutive Modeling.

Here we concentrate on the implementational details of plane stress radial return, as they differ
from the fully three-dimensional situation. For plane stress, d3; must be computed from the
constraint on the constitutive model rather than directly from the finite element equations. This
constraint requires iterations on the radial return algorithm. The secant approach, presented by
[Hallquist, J.O. and Benson, D.J., 1986] and assessed for accuracy and efficiency by [Whirley,
R.G., Hallquist, J.O. and Goudreau, G.L., 1988], is described below.

Because the plane stress assumption only affects the volumetric strains, the trial shear stresses
can be computed outside the iteration loop. The trial shear stresses are

T}, = Tpp+2HAtd,, (3.324)
Ty = Tp; +2UALd,, (3.325)
T)s = Ty3+2UAtd,,, (3.326)

Theory Manual 3 Finite Element Formulation - Four-Node Corotational Shell - Constitutive Models 89



where d; ; is the rate of deformation at the integration point computed from Eq. (3.285). The

stress difference tensor &;; is defined as the difference between the deviatoric stress tensor S; 5

and the back stress tensor oy;,

glj = Sij_alj
S;5 = Ty;5+D0;;
1
p= _gTil

The shear stress differences are
T T
&2 = T1p— 0y
T T
Er3 = Tp3~ 0y

T T
€13 = Ty3—043.

The iteration loop is entered for computation of the volumetric stress difference and the
equivalent plastic strain. For iteration i the volumetric velocity strain is

(er@)t = a;; +dy, +al.

The trial normal stresses and pressure then follow as:

T}, = Ty, +kAt(trd)(i)+2p.Atd11
To, = T, + Mt(trd)™ + 2pAtd
2 = Ty u 22
Tr, = AAt(trd)? +2pAtd
33 = |2 33
T 1, 7T T T

The first two normal components of the stress difference computed from Eq. (3.327) are:
T T T
Sit = T +p -0y

T _ T T
€ = Ty +P — 0y

Because the stress difference tensor is deviatoric, the third normal component is given by
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(3.337)
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E3; = ~(E], +E3,). (3.340)

The increment in equivalent plastic strain for the 1™ jteration is

i 1
M = ——— (e R, (3.341)
Zu(l +§L—l)

where R is the radius of the yield surface from the previous time step,

R = jgu—gu ) (3.342)

The hardening slope H' depends on Young’s modulus and the plastic modulus Ep,

H = 2 (3.343)
E—Ep

The normal stress difference in the thickness direction follows from the radial return algorithm as

.
T = T - 2HAYBER/ JELEL (3.344)

where [ is a scalar parameter ranging from O to 1 that determines the relative amounts of
isotropic and kinematic hardening. For B = 1 all hardening is assumed to be isotropic. At the
other extreme 3 = 0 means only kinematic hardening is present. Finally, an estimate for dgé +D
is obtained from a secant update,

e R e I S P8

The (i+1) iteration proceeds by substituting the new value of ds3 into (3.333) and repeating Egs.
(3.334) through (3.344) until 633 has converged to zero.

Because the plane stress algorithm is based on a secant update, two starting values are required

for dz3. The two starting values are

(0 \4

which assumes a completely elastic step, and

dyy = ~(dyy +dy) (3.347)

based on a completely plastic (incompressible) step.

Once the algorithm has converged, the yield surface radius, equivalent plastic strain, and back
stresses and are updated as
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t+ At

R =R+ %BH’AY (3.348)

t+At t
P =3+ ./%Av (3.349)
2 .
ati:;At = azj + 5(1 - B)Hygij . (3.350)

Finally, the stresses are updated using radial return
t+A T T T T
ai; = Ti5- Z“A'Yﬁéij/,\( {;klékl . (3.351)

Time-Stepping Algorithm

In a central difference algorithm to integrate the equations of motion, such as is used in explicit
dynamics, the translational variables are handled just as they would be for an ordinary
continuum. Once the nodal accelerations at time t are solved from Eq. (3.281), the velocities and
displacements in global coordinates follow as

¢ +AL g At
2 2 t
v =v + Ata
. (3.352)
t+ At t tJr'A'z—t
d =d +Atv

Angular accelerations at time t for nodes connected to shell elements are computed in
coordinate systems that are local to each node. Because these coordinate systems rotate with the
nodes, the angular accelerations cannot be integrated directly for updating the configuration.
Instead the procedure of Belytschko and coworkers (see [Belytschko, T., Lin, J.I. and Tsay, C.S.,
1984]) is implemented.

The nodal rotations are updated from the angular accelerations in the same manner as the
translational velocities,

At At
= £
2 2 t
® = +Ato . (3.353)
The updated nodal basis vectors are then

&{7%% = 8l +Atd;

g+ AL . (3.354)
_t 2 -t
= e+ At(m X eiJ
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—t+At . .
For &, , the preceding equation becomes

At t
_t+At _ _t e STk
e, = e;+tAtj0;, e/-0; &, (3.355)
—t+ At -t .
The scalar product of € and €, gives

At

£+ 2=
5 % = Ao, . (3.356)

—-t+At

Similarly the scalar product of &5 Zt+At

-t . -
and e, gives the ¥ component of &;

e+ 48

as 4% = _Ate, 7. (3.357)

. —t+ At . . . . . .
The third component of €5 *2% is found by normality. The rotation over a single time step is

assumed to be smal,l so second-order terms are dropped; and the Z component of the updated
vector is

2 2
é§-+At _ ﬁ_(é;mt) _(é§_+At) . (3358)
4 X v

Next €, is updated. From Equation (3.354)
At At
t+ = £+ =
&t = &t + At(co2 ‘&-a, EE}. (3.359)
The scalar product of Equation (3.359), with §§ , gives the ¥ component of &, as

8l T4 = At At (3.360)

. s ~t+At . . . . .
If it 1s assumed that eff is approximately one (i.e., small rotations over the time step)
X
. ~t+ AL —t+At .
orthogonality of &, and e; yields

t+At  _t+At_t+At

e +e = )
—t+At ( 32 ly 3y
elz - —t+At ’ (3-361)
€3
z
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again neglecting the second-order terms. The third component of éf *A% is then found by

imposing unit length on the vector, so

2 2
étl:;At _ »\/1 _(étlz;-At) _(_e_*lc;At) . (3362)

_tH+At . _t+At . _t+A .
The cross product of e3t *A% with elt tar gives e§ 2% to complete the update of the basis

vectors for the nodal coordinate system.
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