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ABSTRACT 

The corrections required to deduce unperturbed neutron fluxes from 

measurements with foil absorbers have been determined experimentally for 

the case of gold foils exposed in a light-water medium. The results are 

in good agreement with the theoretical predictions of Dalton and Osborn 

and of Ritchie and Eldridge. 
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INTRODUCTION 

One of the common methods for determining the neutron flux in a 

given medium is based on the beta or gamma-ray activity induced by the 

neutrons in a foil of suitable material. This material should be easily 

available and $hould have a high absorption cross section in the energy 

range of interest; the half-life of the resulting activity should be 

neitl1er so short that most of the activity disappears prior to counting 

nor so long that the foil cannot be activated to saturation, if required, 

in a reasonable length of time. Indium and gold are materials that meet 

these criteria well and are in vride use in the measurement of low_.energy 

l neutron fluxes. 

Hith gold foils, the thermal-neutron fl?JC in a medium is determined 

by exposing bare foils and cadmium-covered foils at the same location and 

calculating the flux from the difference of the activities produced. This 

cadmium-difference activity cannot be used directly, however, but must be 

corrected for the various effects which tend to give a false reading. These 

include the depression of the flux due to the presence of an absorber in 

the neutron field; the self-shielding in the foil, resulting in the acti-

vation at points within the foil being lower than at its surface; the self-

absorption in the foil of the radiation emitted by·the activated nuclei; 

1. It should here be stated that, of course, a thin ~ absorber measures 
neutron density, ,.,hich may then be converted to flux by multiplying 
by the. appropriate average neutron velocity; for the sake of con­
venience this distinction is not made in this report. 
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and the absorption of neutrons 1vi th energies above the cadmium cut-off by 

the cadmium covers. The vrork reported here is the determination of the 

corrections applicable to gold foils exposed in a water medium, for which 

the activation is determined by gamma-ray counting techniques. Foils l em 

square, varying in thickness from ~o.o4o mg/cm2 to ~500 mg/cm2, and 

circular foils, having diameters of 0.5, l, 2, and 3 em and varying in 

thickness from 0.001 in. to 0.010 in., were exposed in an isotropic thermal 

neutron flux. Similar square foils, •vi mg/cm2 to ~500 mg/cm2 thlck, 

,.,ere also activated at a location lvhere the flux was decreasing with a 

relaxation length A = 5.8 em. 

Studies similar to the present one w·ere performed previously (,!-.7). 

The closest similarity is with the work of de Troyer and Tavernier (g), 

vho, hovrever, considered only circular foils of 2. 5 em diameter and a 

minimum foil thickness of 0.001 in. For practical purposes it became im-

portant to consider foils of other than circular shape, as well as circular 

foils with a range of diameters. It also appeared desirable to use thinner 

foils. 

EXPERIMENTAL ARRANGEMENT 

.The eXperiment lffiS carried out in the configuration tank of the 

ORNL Lid Tank Shielding Facility (~). The configuration tank is shmm in­

stalled in Fig. l. The radiation source, a 20.3%-enriched-uranium disk 

28 in. in diameter, is located on the other side of the (aluminum) vrindow. 

The foils used in the experiment were attached to a longLucite foil 

holder, Fig. 2, suspended from the instrument carriage in place of the 



Fig. 1. ORNL Lid TaL~ Shielding Facility, Showing Configuration Tank in Place. 



F::...g. 2. Foil Holder. 
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detector shown in Fig. 1~ '!'he position of the foil couJ.d be determined 

.to+ 0.5 mm in any direction •. 

For squ~re f~il thicknesses.< 1. 7 .rng/c~2 the foi~s ;.rere prepared 

by evap·oration onto a Mylar film backing, and their masses were determined 

by colorimetric analysis, with an accuracy of ~5%- The thicker foils were 
... 

cut from rolled sheets, and their masses determined by ;.reighing, with an 

accuracy of~ 0.1 mg. The disk-shaped foils were also cut from rolled 

sheeL::; aud their masses determined by ;.reigh:ing to the same accuracy. 

The cadmium covers employed for the determination of the epicadmium 
. . 

activity Here 0.023 in. thick, ;.rhich 1-ras sufficient to ensure absorption 

of thermal neutrons. The influence of the cadmium covers on the epicad-

_________ _:m==ium=--=a..=.c..=.t.::i....:..v.::i....::.t;y uas determined in_an_auxiliar..y-exper-im€-Bt-aE.d-i-s-d-iscussed-----

later. 

Tuo dif'i'erent gamma-ray counters were used to measure the activation 

induced in the foils. The square foils and the circular f'oils 1-Ti th diam-

eters of 0.5 em and 1 em 1-rere counted 1vith a Nai(Tl) scintillation 

2 
crystal, 2 in. in diameter, 2 in. in height, and containing a 3/4-in.-

diam by 1 1/4-in.-decp vrell. The effective sensitivity of the counter was 

changed by inserting a lead sleeve around the sample glass vial into the 

well for fairly strong sources, or an aluminum spacer sleeve for weaker 

ones. The counter ;.ras calibrated vTi th the aid of a sample of knmm 

strength and checked daily to ensure freedom from drift. 

2. Gratitude is expressed to the Analytical Laboratory, Analytical 
Chemistry Division, ORNL, for the use of this counter. 
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The other counter, shown diagrammatically in Fig. 3, was used for 

those foils having a diameter of 2 or 3 em. Since the outputs of its two 

crystals ,.,ere sunnned, it vTas necessary for both to have the same response 

to the incident gamma rays. The pulse-height output from each photo­

multiplier vms adjusted until the number of pulses from a standard source 

above an arbitrary bias was the same for both tubes.· The bias used for 

counting the foils was set at a level determined from prior calibration 

with knmm gold foils. 

The efficiency of the well-type counter had been established by 

intercalibration with a high~pressure ionization chamber, for which an 

absolute. calibration was available. The efficiency of the two-crystal 

counter was determined by counting the same foil, first in the ionization 

chamber and then in the tHo-crystal counter. This efficiency is a function 

of the foil diameter as 1-rell as the foil thickness. 

The foils Here exposed at a loca~ion in the configuration tank at 

vrhich the neutron flux vras approximately constant vrith position. Prior 

to each run a flux traverse ,.,as taken along the axis of the source plate 

by means of a small fission chamber. In one case it was found that the 

configuration tank had shifted a1.ray from the source plate by about 5 mm; 

data were then taken at a correspondingly corrected distance, so that the 

tot~l '.rater thickness remained constant; Figure 4 shm.rs the traverses, 

taken at different times, vrith the one just mentioned displaced by 5 mm. 

Since only the shape of the curve is important, the curves were arbitrarily 

normalized and are therefore slightly separated. 

' {l 
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To check the isotropy of the flux at the chosen position, foils 

1vere irradiated at that point, some 1ri th flat faces parallel to the source 

plate and others with flat faces perpendicular to the source. Alternate 

faces were covered 1rith cadmium. Since the cadmium ratio at that location 

vms about 10, an appreciable anisotropy in the thermal flux should have 

led to different activities in the foils. Within the limits of experi­

mental error, ~1.5%, no difference could be detected. 

The several foil-exposure runs making up this experiment were rather 

widely separated in time. In order to compare the results, it was necessary 

to normalize the data from the different runs. There are t1vo normali­

zations that must be considered: one involving the small short-term 

fluctuations in the source-plate power during a run, and one which corrects 

for possible long-term drifts between runs. 

The short-term correction is based on the output of ·a boron-lined 

ionization chamber which measures the neutron flux incident upon the source 

plate. "lhile U is known that the output is not quite linear over a large 

change in. reactor pmver (e.g., from 1700 to 3400 kw), the fluctuations to 

be expected during a run will not exceed'lOO kw, and the linearity of the 

instrument over that range is adequate. 

In t.he ci'!.BP. nf the Rquare foils, the long-te.rm normalization was 

accompiished by using the average of the normalization factors obtained 

.from the ratios of the saturated activities per unit mass of 0.001- and 

0,003-in. foils in the different runs. In.the case of the circular foils 

the normalization vms based on the comparison of 0.002-in.-thick square 
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foils exposed during the run for this purpose. 

The correction to be applied to the epicadmium activity due to the 

presence of the cadmium covers was obtained from an auxiliary experiment. 

Gold foils, 0. 002 in. thick and 7/16 in. in diameter, l·rere exposed in 

cadmium covers 0.019 to 0.070 in. thick. The saturated activity per unit 

mass 1-ras obtained as described above, and the points were fitted to a 

straight line 1-rith a least-squares fitting routine programmed for A.n TFM-

7090. The results are shmm in Fig. 5. The interce'Pt at z;ero cadmium 

thickness is (2.107 ~ 0.018) x 108 dis min-lg-1 , and the saturated activity 

per unit mass at 0.023 in., the thickness used in the investigation, is 

( ) 8 -1 -1 2·. oBo ~ 0. 010 x 10 dis min g • The correction factor is, therefore, 

1.013 ~ 0.010. ~bis correction was applied to the cadmium-covered 

activities prior to the fitting of the points. 

EXPERIMENTAL RESULTS 

The results of the foil activations for the square foils are pre-

sented in Figs. 6 and 7, in which the saturated activity per unit foil 

mass is plotted against foil mass for both the bare and the cadmium-

covered foils. Each point shown is the average of four to eight deter-

minations. The data reduction calculations were programmed for the IBM-

7090 to reduce the labor involved. 

In order to compute the flux depression factor, the value of the 

unperturbed flux must be knmm. This value can be obtained from extrap-

alation to zero foil thickness, for which the flux vrould not be depressed. 

· .. 
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To permit this extrapolation, straight lines were fitted to the thin-foil 

data by the method of least squares, using the above routine. The thick-

foil data ivere fitted ivith a sum of exponentials, again using ·a least­

squares program for the IBM-7090. 3 The choice of the function was made 

on the basis of the simplest smooth function which appeared to fit the 

experimental data. 

To facilitate subtraction of the cadmium~covered activities from 

the bare ones, the code also computed the value of the function at certain 

predetermined points, chosen.to be the mass of a foil at the thicknesses 

used. Subtracti9n of these points should eliminate errors due to small 

fluctuations in the masses of foils ••ith the same nominal thickness. For 

the very thin foils, arbitrary masses were chosen at convenient intervals. 

The errors on these co~puted points vrere determined from the errors of the 

individual points from which the curve -.ras determined and from the scatter 

of the poin,ts about ~his curve. Details and data are given in Appendix A-. 

The cadmium difference activation for the thin foils increased with 

increasing foil mass, which is contrary to all expectations~ This anomaly 

is due to the fact that the'least-squares approximation to the bare-foil 

data resulted in a constant, while ·that for the cadmium-covered foils de-

creased as expected. The scatter of the points for foil thicknesses less 

than 0.3 mg/cm2 is ~elieved to have been responsible for the peculiar re-

sult of the fit to the bare-foil data. 

3· The author is indebted toR. w. Peelle and R. 0. Chester for the use 
of some of their programs for this vrork. 
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\·lith the cadmium-difference activities per unit mass used as 

computed in this v1ay, the flux depression factor ,.,as calculated for each 

foil thickness used. This factor was taken to be the saturated activity 

per unit mass for a foil of the finite thickness divided by that for a 

foil of zero thickness. The least-squares program discussed above was 

a function of 

in Fig. 8. 

Details and data are given in Appendix A. 

The data obtained with circular foils of different diameters were 

treated in the same •my as those for the square foils, except that the. 

value for the unperturbed flux was taken to be the same as that obtained 

for the square foils and so was not redetermined for each diameter. These 

data are presented·in Figs. 9-16 (see Appendix A for details of the cal­

culation). 

To investigate the influence of a flux gradient, some data •rere 

taken at a point -vrhere the flux decreased '-lith a relaxation length 

A. = 5.8 em. This phase, hm-1ever, •ras not extensively pursued. Only 

2 square foils, ,.,ith mass in excess of 1 mg/cm , Here used, so that the 

major limitation is the extrapolation to zero-foil thickness. The data 

were treated in the same manner as'described above and are presented in 

Figs. 17 and 18. Calculational details are given in Appendix A. 
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COMPARISON HITH THEORY 

Probably the earliest attempt to compute the flux depression factor 

was made by Bothe (2). He considered the case of a spherical detector in 

an infinite, homogeneous medium. Using diffusion theory calculations, he 

obtained the flux depress:i.on factor 

Hhere 

al 
f =­B T 

00 

E
3

(T) = f e-T-I:lu:-:3du, 

1 

)

-1 

al . ' 
/ 

~u = macroscopic absorption cross section of gold, a 

x = foil thickness, 

~ = scattering mean free path, s 

L = diffusion length, 

R = radius of spherical detector. 

(1) 

Since practical detectors are disks rather than spheres, he also gave an 

approximate formula for disks: 

a>>>.. s (la) 
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and 

a<< A. 
s 

\·There a is the foil radius and the other terms are defined above .. 

(lb) 

Bothe's formula •·ras modified somewhat by Tittle ( 10), who suggested 

replacing the scattering mean free path A. by the transport mean free path 
s 

A.tr' He also advocated the use of the radius of the disk in Eq. (1) 

rather than the two-thirds approximation which led Bothe to Eqs. (ia) and 

(lb). Thus, according to Tittle, Eqs. (1~) and (lb) should be 

~+a ~ L - ,~-1 
\ 1 2A.tr a + L J 

and 

a >> A.t ' . r 

a << "'tr · 

(2a) 

(2b) 

Skyrme (11) computed the flux depression correction for a finite 

disk by using the transport theory. In calculating the neutron capture 

rate in the disk he first neglected the perturbation caus:ed by the foil 

and then corrected it for thin disks to obtain 

(3) 
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· _Au • 
vThere g = a~~ ; D

1 
is small compared 1vi th D

1
. · Graphs are presented in his 

paper from vThich A(g) and D
1 

may be obtained. 

Ritchie and Eldridge (12) calculated the flux depression correction · 

by using a variational·methop. to solve the one-velocity transport equation. 

Their results may be 1vritten 

~ ({:' 1 -1 

' T gs A,oo 
T 

lvhere ·'~. 

___________ go-~,-,_= 2~~ a-tia 1--~, ~j-,,~. -----------
L: 

1 
=-s A s 

AT 
1 

=- ' ~ 

1 
~= total mean free path, 

CD . 
and S, K, and gvfg8 are obtained from.graphs given in their paper. 

The latest theoretical approach to the flux depression problem was 

made by Dalton and Osborn (i3). They conver~ed the one-velocity transport 

equation to an iterative integral equation, vThich could then be solved 

1-Ti th the aid of a digital computer. 
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Before the experimental data can be compared with the theoretical 

predictions, an additional correction must be applied to take account of 

the gamma-ray self-absorption effect. To determine this factor, foils of 

the same thickness as the (nominai) 0.005-, 0.007-, and 0.010-in. foils 

1vere made up from stacks of (nominal) 0.001- and 0~0015-in. foils, 2 and 

3 em in diameter. These stacks were counted in the container and then 

taken apart and the individual foils counted separately. For each nominal 

thickness the self-absorption was calculated from the ratio of the sum of 

the counts of the individual foils to the counts of the stack, after 

appropriate corrections had been made for the decay time. Agreement 

bet1veen the data for the 2- and 3-cm-diam foils was excellent. The 

averages of these data as a function of thickness vrere fitted to a straight 

line, and the corrections so determined w·ere applied to all foils as indi-

cated. The correction as a function of thickness is shown in Fig. i9. 

It is tempting to use a very simple calculation to obtain these 

corrections. One assumes that the source is concentrated in the .lliidplane 

of the foil and that the gamma rays are emitted normally. The corrections 

so obtained are substantial underestimates of the measured self-absorption 

factors. 

Hanna (14) recently pointed out the importance of the "flux harden-

ing" effect in the foil. This effect must be considered in the proper 

averaging of the cross sections over the energy distribution of the 

neutrons; hmrever, for the calculations shmm in this report, the follow-

ing values lvere used: 

Lf"-U = 
a 5·17 

-1 em 
' 

from Dalton and Osborn (13) 
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Fig. 19. Correction.Factor for the Absorption of the 411-kev Gamma 
Radiation in the Gold Foil as a Function of Foil Thickness. The line is 
a least-squares fit to the points; the shaded band indicates the error. 
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).. = 0.320 em 
' 

from Dalton and Osborn (13) s 

L = 2.714 em 
' 

from H. H. Baucom, Jr. (15) 

A.T = 0.)18 em from Dal-ton and Osborn (13) 

3D 
0 0.483, from Kiichle (16) ).. =- = tr v 

The choice of these particular values is governed by the. ones used by 

Dalton and Osborn (13), whose results are not given in a form to be easily 

susceptible to a change in the input parameters. The effect of flux hard-

ening was not 'considered by them in the computation of the _average cross 

sections and therefore is not considered in this paper. The remaining 

constants wer.e chosen. so as· to. provide a consistent· set. 

The curves, calculated according to the above theories, and the 

' ' 

experimental data corrected for the self-absorption are shown in Figs. 

20-24. For c~lculation pi.l.rposes the square foils were converted-to cir-

cular ones 'Of equal area; except for tqe D~lton•Osborn method of calcu-

lation. In most cases two curves are given for the Dalton-Osbo:m approach. 

·In one case, isotropic scattering in the water was assumed, as it was for 

all the other theories. In the other case, Dalton (17) recalculated his 

curves to include the anisotropy of the scattering, using ~ = 0.3. 
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Compared with Theories. 
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Fig. 24. Experimentally Determined Flux Depression Factors (Correct­
ed for Self-Absorption) for 3-cm-diam Gold Foils in an Isotropic Flux 
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CONCWSIONS 

A comparison of the experimental data for the flux perturbation 

caused by gold foils in a ;.rater medium Hi th theoretical predictions indi­

cates that good agreement can be found 1-rith the calculations of Ritchie 

and Eldridge ( 12). In vievr of the underlying assumptions of the theory 

(one-speed isotropic scattering in the Hater, no scattering in the foil, 

approximate correction for finite foil radius), the good agreement must 

be considered at least partially-fortuitous. 

The agreement of the experiment with the calculations of Dalton and 

Osborn (13) is about as good as with those of Ritchie and Eldridge. The 

Dalton-Osborn results also are computed for the. case of isotropic_scatter­

ing in "'vater; so again the agreement appears fortuitous. This is empha­

sized by the additional calcuiations of Dalton (17) for anisotropic 

scattering, Hhich give poorer agreement in those cas·es- "'·rhere both c_alcu­

lations have been made. 

The other theories outlined above (2-11) give results Hhich diverge 

from the experimental results, e·specially for thick (> 0. 003-in.) foils. 

No theory is available vri th ;.rhich to compare the data taken in a 

nonisotropic flux. The experimental data are compared ;.ri th those in an 

isotropic flux in Fig. 25. While the data are consistent within the limits 

of error, it appears that the slope of the curve in the isotropic case is 

steeper than in the nonisotropic case. More detailed measurements are re­

quired, hmvever, before this point can be confirmed. 
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APPENDIX A 

~he saturated activity per unit mass was computed from the 

relation 

' 

where 

N = number of counts of foil and background, c 

t = foil counting time {min), c 

NB = number of counts of background, 

tB = background counting time {min), 

E = counter efficiency, 

F· = counter normalizing factor, 

m = foil mass (g)' 

M = monitor reading, 

(A.l) 

~ ..tt\ 
·:-

198 [ ( 8 . ) -4 -1] = decay constant for Au = 1.7 2 ~ 0.002 x 10 min , 

tD = decay time ·(min), 

~ = bombarding time {min). 

The variance of the saturated activity was computed from the relation 
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fr[. -A.t -A.~ ]2 [' ' -A.\ -A. t ]2 
+ \[ e D(1 - e )M V(m) + (1 - e ) me D V(M) 

\. 

(i\.2) 

1 
X --------~~------~~~-

[ 
-A.tD -A.~ ]2 

mMe (1 - e ) 

The errors associated with the various quantities are as follows: 

Quantity Error 

€ 3% 

F 1% 

N .fN c c 

NB .fNB 

m ~5~ ~or m < 1.7 mg 
-4 10 g form> 1.7 mg 

M 2 X 10-3 

A. -7 -1 2 x 10 min 



Since F was defined for the well counter only, it was set equal 

to l for foils counted on· the two-crystal counter. The error associated 

with the two-crystal points therefore should be a slight overestimate, 

since the error calculation was not changed. 

The results of these calculations were then normalized and 

corrected for the cadmium covers, as required. Tables A.l through A.4 

list the· final results, which were used as the input data to the curve­

fitting programs. 

The thin square foil data {Table A.l) were used to fit the ex­

pression 

(A.3) 

by using a weighted least-squares fit. The weight for each point was 

________ taken_t.o_b.e_lf-.[_cr_(_ljr_)_]~._The_routine_also_gav.:e_an_inter-polate.d..,...value-o:f _____ _ 

the saturated activity per unit mass, ljr , for given values of m according . c . . 
to relation (A.3)~ as well as the error associated vlith each such computed 

ljrc from the relation 

a( V c) = { (SSRM) [ ( (m)) T ( (v)). ( (m)) J} l/2, (A.4) 

where 

SSRM = (weighted sum of squared residuais)/{degrees of freedom), 

{{m)) =matrix of ol!r/oai, . 

{(V)) = coefficients' covariance matrix. 

The coeffic.ients, SSRM, and {{v)) are given in Table A.5. 

The data obtained with thick square foils, as well as those from 

circular foils of different diameters, were used to fit 
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Again, .\jr was computed for given values of m from Eq. (A.5) and the c 

(A.5) 

associated error from Eq. (A.4). The results of this fitting procedure, 

in a for.m similar to that above, are given in Tables A.6 - A.ll. 

The flux depression corrections were calculated from the \jr values - .... ····· .... . . . c 
end are given in Table A.J2. These correction i'actors have not been 

mo(j.:i.f:i.Pi.l t.n cnr:rP.d; fnr t.hP. absorpt.i.on of' the grunma. ray i"n the foil. For 

practical application, these are the desired correction factors; the 

gamma-ray absorption correction is required only for comparison with 

theo:cy •. 

To facilitate. interpolation, these correction .. factors were fitted 

with polynomials 

where 1Jr/1Jr represents the correction factor and t is the foil thickness 0 . 

in mils. The coefficients and other pertinent data are given in Table 

A.17. 



Mass (g) 

3·9 x lo-5 
4.0 X 10-5 
4.9 X 10-5 
6.6 x lo-5 
7.1 x lo-5 
8.78 X 10-5 
8.9 X 10-5 
2.13 x io-4 
2.18 x lo-4 
2.18 X 10-4 
2.31 x lo-4 
2.52 x lo-4 
2.52 x lo-4 
2.90 X 10-4 

4.9 x lo-5 
5.6 X 10-5 
7.6 X 10""5 
2.12 X 10-4 
2.41 X 10_:4 

2.44 X 10-4 

2.46 X 10-4 

Table A.l. Experimentally Determined Activation per Unit Mass (1jr) of Thin 
1-cm-Square Gold Foils inJan ~sotropic Flux 

3·137 ~ lo9 
. 3.1o8 X lo9 

2.826 X lo9 
2.713 X lo9 
2.865 X lo9 
2.212 X 109 
2.171 x io9 
2.817 X lo9 
2.499 xlo9 
2.666 X 109 
2.586 X lo9 
2.244 X lo9 
2.475 X lo9 
2.597 X lo9 

7.922 X 108 

6.893 X 108 

6.838 X 108 

9.500 X 108 

7.076 X 1a8 
6.905 X 108 

7.268 X 108 

a( ;jr) II I Mass (g) 

Bare Fohs 
4,930 X 107 . 3·33 x lo-4 
4.822 X 107 8.50 x lo-4 

5·909 X 107 8.83 x lo-4 

3·979 X 107 8.93 X 10-4 

5·745 X 107 9.04 x 1o-4 

3.544 X 107 9.12 x lo-4 

3.137 X 107 9.30 X 10-4 

4.018 X 107 9.44 x lo-4 

3·975 X 107 9.90 X 10-4 

3·795 X 107 1.427 x lo-3 
5.184 X 107 1.456 X 10-3 
3.192 X 107 1.502 X 10-3 

3.564 X 107 1.526 X 10-3 
3.697 X 107 1.570 X 10-3 

Cadmium-Cove~ed Foils 
1.499 X 107 3··33 X 10-4 

1.207 x lo7. 8.01 x-lo-4 
1.543 X 107 8.36 X 10-4 
1.662 X 107 1.000 X 10-3 
1.677 X 107 1.050 X 10-3 

. 1.552 X 107 1.650 X 10-3 
1.269 x 107 1.682 x lo-3 

2.679 X 109 
2.458 X lo9 
2.5{)1 X lo9 
2.357 X 109 
2.472 X 1o9 
2.681 X 109 
2.770 X 1o9 
2.183 X 109 

2.;51 X 1o9 
2.;.9(5 X 109 
2.L44 X 109· 
2.502 X 109 

. 2.!,61 X 109 

2.561 X 109 

7 ·527 X 108 

7 .05G X 108 

. 6.1J79 X 108 

6.:.o4 x 108 
. 8 

6.814 X 10 
6.404 X 108 

6.526 X 108 

a(ljr) 

3 .811~ X 107 
3•504 X 107 
4.074 X 107 
3.364 X 107 
4.953 X 107 
4.266 X 107 
5.885 X 107 

5·577 X 107 
5.422 X 107 
3.7o4 X 107 
3.905 X 107 
3.565 X 107 
3.916 X 107 
5.135 X 107 

1.314 X 107 
1.250 X 107 
1.229 X 107 
1.441 X 107 

1.530 X 107 
.1..511 X 107 

1.142 X 107 



Mass (g) 

2.7 x lo-3 

1.11 x lo-2 

1.135 X 10-2 

2.36 x lo-2 

2.42 x lo-2 

4.70 x 1o-2 

4.70 X 10-2 

7.52 X 10-2 

8.20 X 10-2 

8.68 X 10-2 

1.012 x lo-1 

1.227 X 10-l 

1._235 x lo-1 

1.485 X 10-l 

1.517 X lQ-1 

1.13 x 1o-2 · 

2.365 x 1o-2 

2.41 X 10-2 

4.57 x lo-2 

4.74 x lo-2 

7.31 X 10-2 

8.52 X 10-2 

8.65 x lo-2 

1.017 X 10-l 

1.228 x 10-1 

L5o6 X 10-l 

Table A.2. Experimentally Determined Activation per Unit Mass (w) of Thick 
1-cm-Square Gold Foils in an Isotropic Flux 

2.375 X 109 

2.363 X lo9 

2.214 X lo9 

2.228 X lo9 

2.134 X lo9 

2.040 X 1o9 

2.036 X lo9 

2.015 X 109 

1.865 X lo9 

1.928 X lo9 

1.817 X lo9 
9 LBll X 10 

L';Ji9 X 1o:l 
1.777 X 1(}3 

1.628 X lo9 

4.882 x lOa 

3.83o x 1o8 

3·729 X 108 

2.986 X 108 

2.977 X 108 

2.505 X 108 

2.284 X 108 

2.354 X 108 

2.128 X lr:f3 

1.778 X 108 

1.772 X 108 

cr( 1jr) 

5·191-X 107 

5.130 X 107 

3.667 .X 107 

4.4<:·3 X. 107 

3.c60 .X 107 

3.319 X 107 

4.C€·4 x 107 

4.039 X 107 

2.968 X 107 

4.C99 X 107 

2.892 X 107 

3.848 X 107 

3.711 X 107 

2.8;:·5 X 107 

2.589.x· 107 

II Mass (g) 

Bare Foils 

1.543 X 10-l 

1.928 x lo-1 

2.325 x 10-1 

2.365 X 10-l 

2.372 X lQ-~ 

3.285 x lo-1 

3.331 x lo-1 

3·354 x lo-1 

3·752 x lo-1 

3·792 X 10-l 

3.857 X 10-l 

4.827 x lo-1 

4.911 X 10""1 

4.925 x lo-1 

Cadmium-Covered Foils 

1.114 X 107 1.543 X 10-l 

6.703 X 106 1.928 X 10-1 

8.4oy X 106 1.933 X 10-l 

5.202 X 106 2.284 X 10-l 

6.696 X loP 2.331 X 10-l 

5.634 X loP 3·354 X 10-l 

3·973 X 106 3.368 X 10-l 

5 ·291 X 106 3 • 746 X 10-l 

3.701 X loP 3.902 X 10-1 

4.182 X 106 4.798 X 10-l 

3·985 X 106 ' 4.827 X 10-l 

LE99 X 109· 

l.E83 X lo9 

1.;85 X 109 

1.';(7 X 109 

1.';(8 X lo9 

l.lto2 X 109 

Lli26 X 109 

1.444 x lo9 

1.390 X lo9. 

1.'377 X 109 

1.3:59 X lo9 

1.:=:48 X lo9 

1.~+1 X lo9 

1.::26 X lo9 

l.T74 X 108 

1.592 X 108 

LEJ.8 X 108 

Llf96 X 108 

l.Jc:!O x 108 

1.212 X 108 

1.:::20 X 108 

1.151 X 108 

l.llj.7 X 108 

Lc68 X 108 

1.0.2 X 108 

3.400 X· 107 

3.898 X 107. 

2_.521 X 107 

. 2.5o8 X 107 

3.159 X 107 

2.569 X 107 

2.266 X 107 

2.891 X 107 

2.782 X 107 

2.189 X 107 

. 2.160 X 107 

2.498 X 107 

1.973 X 107 

1.950 X 107 

3.o85 X 106 

2.768 X 106 

3.636 X 106 

2.604 X 106 

3.190 X 106 

2.725 X 106 

2.120 X lcP 

2.587 X 106 

1.993 X lcP 

2.391 X 106 

2.274 X 106 



Table A.3. Experimentally Determined Activation per Unit Mass (o/) of 
Disk-Shaped Gold Foils in an Isotropic Flux 

I 

Bare FoiJ_s Cadmium-Covered Foils 

Mass (g) \jr cr(o/) ·1 Mass (g) \jr cr(\jr) 

. 0.5-cm-diaiFoils 

1.05 X lQ-2 2.092 X 109 5·454 X 107 Lo6 X 10-2 s.3o6 x 1o8 . 9.010 X 106 

1.09 x w-2 2.115 X 109 5.509 X 1Q7 1.10 x lo-2 3.232 X 108 8.867 X 106 

1.65 x 1o-2 2.005 X 109. 5.178 X 107 1.64 x 1o-2 2.762 X 108 7.497 X 106 

1.65 X 1T2 2.023x 109 4.664 X 107. 1.64 x 10-2 2.798 X 108 6.992 X 106 

2.17 x lo-2 1.975 X 109 5.101 X 107 2.16 x lo-2 2.461 X 108 6.746 X 106 

2.19 x lo-2 1.952 X 109 5.042 X 107 2.19 x lo-2 2.484 X 108 6.804 X 106 
. ' 

2.47 x lo-2 1.940 X 109 ·4.994 X 107 2.49 x lo-2 8 2.4o4 X 10 6.560 X 106 ~ 

2.49 x lo-2 1.929 X lo9 4.976 X 107 2.52 x 10-2 2.317 X 108 6.326 X 106 

4.87 x lo-2 1.760 X lo9 4.523 X 107 4.87 x 10-2 L750 X 108 4.728 X 106 
4.89 x.1o-2 1.760 X 109 4.524 X 107 4.89 X 10-2 L761 X 108 6 4.758 X 10 

6 .()( x 10-2 1.672 X 109 4.303 X 107 6 .()( x lo-2 L615 X 108 4.353 X 106 

6.21 x 10-2 1.674 X lo9 4.3o8 X 107 ~.20 X 10-2 .1.600 X 108 4.313 X 106 

9·55 x lo-2 1.514 X 109 3.891 X 107 ~.49 x lo-2 1.314 X 108 3.530 X 106 

9.86 x lo-2 1.502 X 109 3.860 X 107 I 8 -2 1.294 X 108 3·477 X 106 9· 1 X 10 
I 

. . . I 
1-cm-dia Fpils 

4.24 X 10-2 2.026 X lo9 4.639 X 107 
I 2 

3.092 X 108 7•457 X 106 f·34 X 10-

1.985 X 1o9 5.113 X 107 3.048 X 108 . 6 
4.50 x 1o-2 r·48 X 10-2 8.186 X 10 

6.84 X 1C2 1.893 X 109 4.867 x 107 6.85 x lo-2 2.577 X 108 ~.905 X 106 



Table A.3. (cont.) 

Bare Foils I Cadm!um-Ccvered Foils 

Mass {g) 
"' 

cr{'ir) Mass (g) 

"' 
cr{'ir) 

1-cm.-dia Foils {cont.) .. 

6.99 x 10-2 1.912 X 109 4.373 X 107 7.01 x lo-2 2.542: X 108 6.127 X 106 

8.89 X 10-2 1.849 X 109 4.749 ~ 107 8.90 x lo-2 2.317 X 108 6.198 X 106 

~.92 X 10-2 1.831 X 109 4.325 X 107 8.93 X 10-2 2.250 X 108 5 ·594 X 106 

1.103 x 1o-l 1.781 X lo9 4,573 X 107 1.104 x lo-1 2.il2 X 108 . 6 
5.647 X 10 

4 -1 1.11 X 10 1.781 X 109 4.Q76 X 107 1.121 x lo-1 2.o82 X 108 5.165 X 106 

1.938 X 10-l 1.587 X 109 3·745 X 107 1.947 x :~.o- 1 1.5~ X 108 3·942 X 106 
1.956 x lo-1 1.577 X 109 4.o46 x 107 1.958 x lo-1 1.619 X 108 4.475 X 106 

2.597 x·1o-1 1.469 X lo9 3.466 X 107 2.617.x 10-1 8 1.4<:8 X 10 3.495 X 106 

2.716 x 1o-1 1.453 X 109 3.726 X 107 2.714 x 1o-l 8 3.7o6 X 106 
' 1.38$ X 10 

3.874 x lo-1 1.290 X 109 2.827 X 107 3.887 x1o-1 I 8 1.1Ll!S X 10 2.849 X 106 

3·941.x 10-l 1.288 X 109 3.302 X 107 3·935 x 1o-1 8 l.ltl. X 10 6 3.104 X 10 

2-cm.-dia Foils 

0.1542 2.077 X 109 5 ·350 X 107 0.1542 4 .. 8 3·3 7 X 10 8.997 X lrP 

0.1542 2.016 X 109 4.5o8 x 1o7 0.1542 8 3 .2o6 :>: 10 7 ·574 X 106 

0.1542 2.005 X 109 4.73B X 107 0.1542 8 3.236 :>: 10 
. 6-

8.052 X 10 

0.2560 1.890 X 109 4.462 X 107 0.2585 2. 708 :>: 108 7.270 x 106 

0.2579 1.936 X 109 4,976 X 107 0.2585' 2.565 x 108 6.052 X 106 

0.2579 1.878 X 109 4.433 X 107 0.2585 2.610 X: 108 6.490 X 106 



. ' 

Table A.3. ~cont.) 

Bare Foils I Cadmium-Covered Foils 

g)- cr(\jl 
I cr( \jr). Mass \jr Mass (g) \jr 

2-cm-dia Foils l~cont.) 
0-3714- 1.826 X lo9 4.691 X 107 ~:~~~~ . 2.233 X 108 5·543 X 106 

0-3722: L784 X lo9 3-983 x. 107 2.293 X 108 6~153 X 106 

0-3728 1.775· X lo9 4.187 X 107 0-3728 2.200 X 108 5.187 X 106 

0.4357 1.707 X 109. 3 ."810 X 107 · 
I . 8 4.821 X 106 0.4444 2.044 X 10 

0.4558 1.700 X 109 4.010 X 107 6.~86 2.o63 X 108 5 ·532 X 106 

0.4634 1.749 X 1o9 4.491 x·1o7 
I . . 

2.024-x 108 5~030x 106 0.4686 . 

0-7746" 1.545 X lo9 3.963 X 107 
I 

1.630 X 108 4.373 X 106 o. 7787 . 
.J::'" 

0-7746 1.494 X 109 3.521 X 107 
I 

1.602 X ·108 3·975 X 106 \0 
0-7787 

o. 78i9 1.496 X 109 3 ·339 X 107 
I . 8 

3.729 X 106 0.7863 1.582 X 10 · 
1.0836 1.347 X lo9 3-174 X 107 

I 
1.458 X 108 3.905 X 106 1.0836 

1.0855 1.378 X 109 · 3 ·534 X 107 
I 

1.338 X 108 6 1.0964 3.155 X 10 · 
1.329 X 109 2.966 X 107 

I 
1.3;;8 X 108 

3·372 X 106 1.0919 1.0964 

1.5538 1.046 X 109 2.·335 X 107 I 
1.115 X 108 6 1-5551 2.628 X 10 

1.5538 1.157 X 109 2.727 X 107 
I 

1.167 X 108 3.125 X 106 1.5570 
1.199 X lo9 3 ·073 -X 107 

I 
L1S8 X 108 2.823 X 106 1.5577 1.5577 

I 

3-cm-dia FJils 

0-335;; 2.070 X 109 .5 .313 X 107 0.3732 8 3.272 X 10 8.772 X 106 

0.335;: 2.001 X 109 4.468 X 107 0-3732 3.ll4 X 108 7.341 X 106 

0-335; 2.011 X 1o9 4.746 X 107 0-3732 3.200 X 108 7.948 X 106 



Table A.3. {cont.) 

Bare Fo"ils Cadmium-Coyered Foils 

Mass {g) 
"' 

cr(\11) Mass (g) 1jr cr(\11) 

3-cm.-dia Foils (cont.) 

0.5866 1.861 X 109 4.389 X 107 0.8199 8 2.204 X 10 5.187 X 106 

0.8112 1.710 X 109 3.816·x 107 0.8199 2.257 X 108 5 ·590 X 106 

0.8112 1.717 X 109 4.048 X 107 0.8287 8 2.324 X 10 6.224 X 106 

0.8258 1.7S6 X lo9 4.581 X 107. 1.0314 8 2.083 X 10 5 ·579 X 106 

1.0246 -1.693 X lo9 4.340 X 107 1.0470 8 1.995 X 10 4.699 X 106 

1.0314 1.633 X 109 3,643 X 107 1.1648 1.921 X 108 6 4.762 X 10 

1.1203 1.614 X 1o9 3 .8o6 X 107 1.8028 8 6 1.520 X 10 3.577 X 10 VI 

1.7941 1.378 X 109 3·075 X 107 1.8089 8 4,327 X 106 0 
1.618 X 10 

1.7941 1.394 X lo9 J.285 X 107 1.8089 1.563 X 10 8 6 3.869 X 10 

1.8028 1.507 X 109 3·938 X 107 2.4675 8 1.349 X 10 3·337 X 106 

2.4445 1.231 X lo9 2.901 X 107 2.4882 8 1.378 X 10 6 3.681 X 10 

2.4977 1.265 X 109 3.241 X 107 2.5230 8 1.325 X 10 6 3.115 X 10 

3·4942 1.073 X 109 2.750 X 107 . 3.5024 1.141 X 108 6 3.046 X 10 

3·5024 1.008 X 109 2.249 X 107 3 ·5184 
. 8 

1.099 X 10 2.583 X 106 
... 

3·5024 1.026 X 109 2.417 X 107 3.5184 8 2.768 X 106 1.119 X 10 



Mass (g) 

1.05 x lo-3 

1.23 x lo-3 

1.125 x lo-2 

2.45 x lo-2 . 

4.68 X 10-2 

-7.85 X 10-2 

l.Oo6 X 10-l 

1.13 x lo-2 

2 .• 4?_ x lo-2 

4.57 x lo-2 

7.88 x io-2 

L551 x lo-·1 

Table A.4. Experimentally Determined Activation per Unit Mass (w) of 
1-cm-Square Gold Foils in an Anisotropic Flux Hith Relaxation 

I.enght A. = 5 .8 em 

4.714 X 106 
6 4.347 X 10 

!;.,581 X 106 

4.402 ·~ lrP 
4.150 X lcP 
4.046 x.,lrP 
3.819 X lcP 

5.018 X 105 

3·797 X 105 
3.140 .X 105 

2.525 X 105 

1:930 X 105 

o(v) · II I Mass (g) 
I 

Bare Foiils 
I 

2.290 X 105 l.012 X 10-l 

1.792 X 105 ~.572 X 10-1 
- 6.874 x. 104 L950 x 1o-l 

I -
6.378 X 104 2 370 X 10-l 

4 
I • . 

6.Q91 X 10 ].362 X 10-l 
4 I 6 -1 5.88o x 10 B·7 1 x 10 

6.844 X 104 . ~.813 X 10-1 

- I 
Cadmium-Cover~d Foils 

9·742 X lo3 1.958 X 10-l 

,.0•927 X 103 t359 X 10-l 
6 3 I 6 -1 5·7 5 X 10 3·3 2 X 10 

4 o3 I 6 -1 
'·537 X 1 3·77 X 10 

.. 3.444 X lo3 4.776 X 10-l 
-I 

3.953 X 106 

3.839 X 106 

3 ·556 X 106 

3·399 X 106 

3.l16 X 106 

3.012 X 106 

2.839 X 106 

1.733 X 105 
1.643 X 105 

1.316 X 105 

1.228 X 105 

1.099 X 105 

o(w) 

6.578 X 104 

6.233 X 104 

5.143 X 104 

4,971 X 104 

4.5o8 x 1o4 

4.346 X 104 

4.6o8 X 104 

3.056 X 103 

3.236 X 103 

2.296 X 103 

2.142 X lo3 

2.050 X 103 

VI 
1-' 



Foil 

Bare 

Table A.5. Parameters to Fit the Curve of the Activation per Unit Mass of 
Bare and Cadmium-Covered Thin 1-cm-Square Gold Foi.ls in an 

Isotropic Flux 

·ssRM, Bare Foils: 31.297 
SSRM, Cadmium-Covered Foils: 21.266 

Coefficients ({\')) 

5·955 X 1013 

Cadmium-Covered a
0 

= (7.50 ~ 0.26) x 108 16 . 
-2.785 X 10 

( 6 ) 10 a1 = -6 • 2 ~ 3 . 03 x 10 16 -2.785 X 10 4.316 X 10l9 

\.n 
1\) 



Coefficients 

a
0 

a 0 

Table A.6. Parameters to Fit the Curve of the Activation per Unit Mass of 
Bare and Cadmium-Covered Thick 1-cm-Square Gold Foils in an 

Isotropif Flux 

I ((v)) 
I 

Bare Foils; S$RM = 2.0~9 

a1 = (1·5·56 .:!: o.o63) x 1o'J l. 922 X 1cf5 2.478 X 106 15 -1.30? X 10 

a2 = 0.938 .:!: o.o83 

. 8 
a

3 
= (4.C5 .:!: o.6o) x 10 

a4 = 17.6.:!: 6.1 

a
0 

= (8.8~.:!: 0.71) x 107 

a1 ·= (1.90.:!:, 0.1~ X 108 

a2 = 5·27 .:!: 0.89 

a
3 

= (2.96 .:!: 0.25) x 108 

a4 = 35·7.:!: 6.2 

6 2.478 X 10 3·377 X l0-3 

-1.307 X 10 15 -1.741 X 106 

8 1.631 X 10 2.020 X 10-l 

I Cadmium-Covered Foil~; SSRM = 1.886 

2.668 X 1013 5.248 X 1013 6 3.418 X 10 

5.248 X 1013 1.791 X 1014 6 8.242 X 10 

6 3.418 X 10 6 8.242 X 10 4.726 X 10-1 

-3.262 X 10 13 13 -5.o48 X 10 6 -4.154 X 10 

1.582 X 107 5.462 X 107 2.452 X 10° 

.. ' 

6 -l.74lJ X 10 

1.773 X 1015 

-6.8()5 X 107 

-3.262 X 1013 

13 -5.o48 X 10 

6 -4.154 X 10 

3.4o4 X 1014 

l.4oo X 107 

8 1.631 X 10 

2.020 X 10-l 

-6.805 X 107 

\.11 

l.8o6 X 101 w 

1.582 X 107 

5.462 X 107 

0 2.452 X 10 . 

l.4oo X 107 

2.052 X 101 · 



Table A.7. Parameters to Fit the~~ of the Activatio~ per Unit Mass of 
Bare and Cadmium-Covered 0 .5 -em-die Gold Foils in ·an Isotropic 

Flux 

Coefficients ((V)) 

Bare Foils; SSRM = 0. o496 
a 

0 = 0 

a1 = (2.00 ~ 0.21) x 109 4.491 X 1016 8 !.- 16 
2.358 X 10 -1.6::>3 X 10 

I 

a2 = 2.91 ~ 1.13. 
8 

2.358 X 10 1.269 X 10 0 '7 
-9·747 X 10 

a
3 

= (2.95·~ 1.58) x 108 16 
-1.663 X 10 . -9.747 X 107 . 2.505 X 1016 

a4 = 55·5 ~ 78.6 1. 546 X 1010' 7.834 X 10 1 -1.974 X 109 

Cadm.iu:n-Covered Foils; SSRM = 0.1545 

a = 0 0 -

8 a1 = (2.20 ~ 0.17) x 10 

a2 = 5·46 ~ 0.90 
8 a

3 
= (2.62 ~ 0.29) x 10 

a4 = 73.8·~ 13.8 

·2.897 X 1014 

1.499 X 107 

1.112 X 1014 

2.049 X 108 

1.499 X 107 

8.053 X 10-l 

4.107 X 106 

1.010 X 101 

,.. 
' - 0 4.107 X .:...0 

8i55 x :.o14 

2.615 X 10 

,; 

1.546 X 1010 

7.834 X 101 

-1.974 X 109 

6.174 X 103 

8 2.049 X 10 

1 1.010 X 10 

8 2.615 X 10 

2 1.900 X 10 



Table A.B. 

Coefficients 

a = 0 0 

al = (1.83 ~ 0.37) X 109 

Parameters to Fit the CUrve ?f the Act.ivation per Unit Mass. 
of Bare and Cadmium-Covered 1.0-cm-dia Gold Fo~ls in an 

I ' Isotropic Flux 
I 

I 
Bare Foils; SS~ = 0.0476 

1.401 X 1017 8 1.740 X 10 . 17 -1.001 X 10 

(9.12 ~ 4.67) X 10-l 8 81 . -1 8 
a2 = 1.740 X 10 2.1 3 X 10 -1.265 X 10 

,.1 8 8 17 16 
a3 = (3.89 ~ 2.82) X 10 -1.001 X 10 -1.2o5. x 10 7.969 X 10 

I o 
a4 = 10.5 ~ 13.6 4.940 X 109 -3.247 X 109 6.022 X 10 

I 
Cadmium-Covered Foils!; SSRM = 0.1892 

a = 0 0 -

8 a1 = (2 .03 ~ 0.16) x 10 2.651 X 1014 
3·655 X 106 7.623 X 1013 

a2 = 1.44 ~ 0.23 
6 

3.655 X 10 5·196 X 10-2 
7·37l.x 105 

8 a
3 

= (2.56 ~ 0.25) x 10 . 7.623 X 1013 7·371 X 105 6.121 X 1014 

a4 = 17.97 ~ 3.10 4.495 X 107 5·955 X 10-l 4.5o8 X 107 

4.940 X 109 

6.022 X 10° 

-3.247 X 109 

2 1.856 X 10 

\.11 
\.11 

4.495 X 107 

5.•955 X 10 -1 

4.soB x 1o7 

. 0 
9.622 X 10 



Table A.9. Parameters to Fit the Curve of the Activation per Unit Mass 
of Bare and Cadmium-Covered 2.0-cm-dia Gold Foi:s in an 

Isotropic Flux 

Coefficients ( (v)) . 

a = 0 0- . 

a1 = (2.032 _: .Cf79) x 109 

a2 = 0.382 _: .032. 

8 a
3 

= (3.46 _: 3.29) x 10 

a4 = 7.18 2:7.99 

a = 0 0 -

8 a1 = (2.149 _: 0.109) x 10 

a2 = o.411 ,: .038 

8 a
3 

= (2.75 _: 0.21) x 10 

a4 = 5.24 _: 0.64 

Bare Foils; SSRM = 1.470 

4.249 X 1015 6 
9.728 X 1C15 1.659 X 10 

' . 
6 1.659 X 10 6 -4 ·937 X 10 

6 . 3.~72 X 10 

9.728 X 1015 6 J.472 X 10 
' . 16 

7.373 X 10 
8 3.695 X 10 . 1.378 X 10-l 1.567 X 109 

Cadmium-Covered Foils; 'ssRM = 0.8437 

1.181 X 1014 4.044 X 105 6.205 X 1013 

4.o44,x 105 1.440 ·x 10-3 1.740 X 105 

6.205 X 1013 1.740 X 105 4,q30 X 2.014 

6 . -2 
,.. 

6.118 X 10 2.013 X 10 8.532 x :c? 

3.695 X 108 

1.378 X 10-l 

1.567 X 109 

4.346 X 101 

6 6.118 X 10 

2.013 X 10 -2 

6 8.932 X 10 

4 -1 .110 X 10 



Table A.lO. Parameters to Fit the Curve of the Activation per Unit Mass 
of Bare and Cadmium-Covered 3.0-cm-dia Gold Foils in an 

Isotrou:i!c Flux 
- I 

Coefficients .\ ((v)) 

Bare Foils; 
I 

S~RM = 1.178 

a = 0 0 -

a1 = (1.965 .:!: .o84) x 109 6.022 X 10l5 
, 

6.76~ X 1015·-1.030 X 10° 

6 
. ., 

6 a2 = 0.184 .:!: .015 1.030 X 10 1.15 X 10~4 1.030 X 10 

8 6.764 X 10l5 3.526 X 1016 a
3 

= (4.46 .:!: 2.o4) x 10 LOBO X 10 

a4 = 2.76 .:!: 2.00 8 16 -2 8 1.266 X 10 2.or x 10 2.738 X 10 

Cadmium-Covered Foils; SSRM = 0.7777 
a = 0 

I 
0-

8 1.502 X 1014 13 ai = (2 ·07 .:!: 0.12) x 10 2.300 X 105 6.oo8 x 10 

a2 = 0.176 .:!: 0.019 2.300 X l05 61 -4 . 4 
3· B2 X 10 7.311 X 10 

8 6.oo8 x lo13 I 4 . 4.256 X 1014 a
3 

= (2.78 .:!: 0.21) x 10 7.317 X 10 

.a4 = 2.16.:!: 0.28 6 4.545 X 10-3 6 3.o8o x 10 3.505 X 10 

\· 

8 .1.266 x.lO 

6 -2 2.07 X 10 

8 2.738 X 10 

3.396 X 10° 
\.Jl 
~ 

6 3.o8o x 10 

4'.545 X 10-3 

6 
3.505 X 10 

-2 7 ·909 X 10 · 



Table A.ll. Parameters to Fit the ~·e of the Activatio~ per Unit Mass 
of Bare and Cadmium-Covered 1-cm-Sque..re Gol•i Foils in an 

Anisotropic Flux vri th Relaxatio~ Length \ = 5 .8 em 

Coefficients ( (V)) 

a = 0 0 -

Bare Foils; SSRM = 1.579 

6 a1 = (4.14 ~ 0.15) x 10 2.352 X 1010 4 1.465 X 10 -1.347 X 1010 . . 6 
1.231 X 10 

a2 = 0.819 ~ 0.098 

a
3 

= (4.83 ~ 1.39) x 105 

a4 =.15.2 ~ 8.9 

4 
a = (9.14 ~ 0.61) x 10 

0 

al = (2.39 ~ 0.12) X 105 

a2 = 5·34 ~ 0.61 

a
3 

=. (3.34 ~ 0.32) x 105 

a4 = 54 .• 7 ~ 8.9 

1.465 X 10 4 
9·555 X 10-3 -1.176 X 104 7.367 X 10-1 

10 -1.847 X 10· -1.176 X 104 1.937 X 1010 -7·756 X 105 

1.231 X 106 6 ... 1 7·3 7 X 10 · -7·756 X 105 7.929 X 10 1 

Cadmium-Covered Foils; SSRM = 1.502 

3.689 X 107 4.~23 X 107 ·3.502x1o3 2.939 X 106 3.164 X 10 4 

4.423 X 10! 8 1.516 X 10 5.877 X 103 6.386 X 107 4 9.039 X 10 

3.502 X 103 5·877 X 103 6 -1 3· 71 X lC 1.053 X 103 3.836 X 10 0 

6 2.939 X 10 6.386 X ·107 1.053 X 103 1.011 X 109 1.700 X 105 

6' 4 3.1 4 X 10 9·~39 X 10
4 8 6 °. 3· 3 X 10 1.700 X 105 ·1 7.917 X 10 

V1 
()) 



;._;·. 

Table A.l2. Experimentally ·.Determined Flux Depression Corrections 
for Gold Foils Exposed in an Isotropic Flux in vlater 

Foil. ,1.- em-Square 0.5-cm-dia 1- cm-dia 2-cm-dia 3-.cm-di6. Thickr_ess / 

(miJ!.) 
Foil Foil Foil Foil Foil 

0 •C: ..... 0.991 .:!: 0.031 

l.C 0.974 .:!: 0.030 0.990.:!: 0.0,36 0.95 1 .:!: 0.035 0.950 .:!: 0.033 0.940 .:!: 0.031 

1.5 0.977 .:!: 0.03() 0.93·2 + 0.029 0.9.19 .:!: 0.029 o.898 .:·o.o28 

0·9+ ~ o.ozr 2.C 0.915 .:!: o.ozr o.963 .:o.o~ 0.892 .:!: 0.028 o.863 .:!: o.ozr 

3.0 0.866 + 0.026 0.934 .:!: 0.03n o.86g .:!: o.ozr 0.8-+3 .:!: 0.025 0.805 .:!: 0.024 
VI 

4.{) 0.826 .:!: 0.025 \0 

5·-=> 0.790 .:!: 0.024 0.880 + 0.020 . 0.79!5 .:!: 0.025 o. 754 .:!: 0.024 0.7Cf9.:!: 0.022 

0.723 .:!: 0.022 0.833 .:!: 0.026 
I 

0.6"'3 .:!: 0.020 0.624 .:!: 0.019 7 J.) 0.733 .:!: 0.023 

'8.0 0.692 .:!: 0.021 

10.01 0.631 .:!: 0.020 0.769 .:!:·0.026 0.657 + 0 .• 022 0.565 .:!: 0.019 0.515 .:!: 0.017 
I -

. ,\ 

<' ~ " 
;.• · ... · 

'• 

·\ :.~- ;·. ·: ' .. 
,...~. ~ . ' . . ' : . ' .. 



r 

Table A.13. Parameters to Fit the Curve of the Experimentally Determined 
Flux Depression Correction Factors for Gold Foils in an 

Isotropic Flux 

Coefficients 

a = 0.970 + 0.020 
0 -

a1 = (6.01 ~ o.43) x 10-2 

a = 0.975 + 0.022 
0 -

a1 = (3.24 ~ 0.48) x 10-2 

a = 0.994 + 0.024 
0 -

. 2 
a1 = (5.27 ~ 0.53) x 10-

a = 1.001 + 0.042 
0 -

a1 = (5.41 ~ 2.29) x 10-2 

. . -3 
a2 = (2.25 ~ 2.23) x 10 

a = 0.996 + 0.043 
0 -

a1 = (7.37 _:t 2.38) x 10-2 

a2 = (2.00 ~ 2.34) x 10-3 

( (V)) 

1-cm-Square Foils, 
. . . . -2 

SSRM = 2.727 x 10 

8 -4 3· 77 X 10 · 

-6.6(]7 X 10-5 

0.5-cm-dia Foils, SSRM = 2.039 x 10-3 

4 -4 •973 X 10 

-8.628 X 10-5 

1-cm-dia Foils, SSRM = 3·738 x 10-3 

5·?68 X 10-4 

. -4 
-1.004 X 10 

2-cm-dia Foils; SSRM = 1.166 x.lo-2 

1.789 X 10-3 

. 6 -4 -8,79 X 10 

7•734 X 10-5 

. 4 
-~·796 X 10-

-4 5.255 X 10 

4 -5 - ·955 X 10 

3-cm-d:J.~ Foils, SSRM = 4.489 x 10-2 

8 4 -3 . -4 
1. 5 .. X 10 .-9.303 X 10 . ' . ~ . 

. -4 6 -4 
-9~~03 X 10 5· 79 X 10 

8 -5 -5·3 9 X 10 

.. 

-6 .6(]7 X 10-5 

1.814 X 10-5 

-8.628 X 10-5 

-5 2.337 X 10 . 

4 -4 -1.00 X 10 

2.854.x 10-5 

7·734 X 10-5 

-4.955 X 10-5 ' 

4 -6 ·990 X 10 

8.236 X 10-5 

-5.389 X 10-5 

4 -6 5 • 70 X 10 

0\ 
0 

,/ 



.. 

a = 1 

Table A.l4. Parameters to Fit the Curve of the Experimentally Determined 
Flux Depression Cor~ection Factors for 1-cm-Square Gold Foils 
in an Anisotropic Flux vri th Relaxation Length fi. = 5 .8 em 

Coefficients 

(5.15 ~ 0.91) X 10-
2 

SSRM = 2.831 x 10-3 
I 

1.833 X 10-3 

o8 
. -4 

-3· 2 X 10 

. ··.· .· ··,., ·:· ., ..... ····-··" 

((v)) 

o8 -4 -3 • 2 X 10 
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