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.In this report a description is given of 
the mathematical theor.y apd methods used 
in the PDQ-5 program to obtain the n~er­
ical solution to the few-groupj time­
indep~ndentj neutron diffusion equations 
in two dimensions. The finite difference 
approximations of the continuous problem 
for both x~y and r-z geometries and the 
properties of the resulting matrix problem 
are given. The mathematical features and 
the practical applic~tions of the numerical 
methods used to solve the matriX problem 
are discussed in detail. 

NUMERICAL METHODS AND TECHNIQUES USED IN THE 
TWO-DIMENSIONAL NEUTRON..:-DIFFUSION PROGRA..'M PDQ-5 

I. INTRODUCTION 

This report describes the numerical solution of the few-group, time-

independentj neutron-diffUsion equations in two dime~sions utilized in ~he 
·. 1 
PDQ-5 program [4] • The neutron-diffUsion group equations solved by PDQ-5 

·are of the form 

= :& L vi (z:)rp (~) , 
X G. }g=G 
'A g=l g g g=l 

·where 

= the _spatial vector whose set of components denotes the 

x-y and r-z coordinates. 

~umbers in brackets refer to the list of references given at the 
end of the repo,rl. 



g = the lethargy group index. 

G = the 'number of lethargy groups. 

cp (r) = the neutron flux. g-

D (r) =the diffusion coefficient and D (r) > 0. g- g-

o:(r) =the absorption-macroscopic cross section. 

s 
0 g(r) = the scattering macroscopic cross sect~ on from group g to 

group g+l. 

·B~ = the geometric buckling. z 

o (r) = oa(r) + os(r) + D (r)B2• o (r) > o. g- g- g;- g- ~ g...-.., 

Xg = the integral .of the fission spectrum over the lethargy 

range represented by group g. Xg ~ 0 and x1 > O. 

vo~(~) = the fission macroscopic cross section times the average 

number of neutrons released per fission. f 
vo (r) > o. g- - .. 

= the eigenvalue. · 

We further assume that the following conditions,are satisfied: 

2 

(a) The qomain of interest is a rectangular region· R in the x-y 

or r-z plane. 

(b) The region R may be divided into a finite number of subregions 

a s 
Ri such that Dg' og' og' and 

f ,, 
o are constant withiri'·ea.9h sub-g ~ .... 

(c) 

region R .• 
J. 

oCJ' g(!:) 
~g(r) i~ continuous ~n R and Dg(~) on 

. . 1 
interfaces between subregions • 

1 <p ' . 
~ refers· t0 the n·o:rmal derivatiV-e. 

... , 

is continuous across 

,,: 



... 

(d) When r.e:~- the external.boundary of R.~~.then ·either cpg(£) = 0 or 

ocp g<.r> -
.on - Q. There is no mixing ·of boundary conditions o~ any 

(e) 

one external side of R. 

For g = 1, 2.~~ ••• , G.~~ og(£) > 0 for some 

cpg(,!:) = 0 on some boundary segment of R. 

same subregion Ri and some g. 

subregion Ri or eise 

Also, of(r) > 0 for 
g-:-

With the homogeneous boundary condition (d), the probl~ stated abo~ 

then defines an eigenvalue problem and we seek to deter.mine solutions of (1.1) 

1 correspondiJlg to the largest (in modulus)· eigenvalue A. of (1.1) • For compli-

cated reactor designs, we can only hope to find approximate solutions to this 

problem by the use of numerical methods. 2 The PDQ-5 progr~ was written for 

the Philco-2000 digital computer to solve this problem numerically. 

The ptirpose of this report is to give a complete mathematical analysis 

and discussion of the numerical.rnethods used in the PDQ-5 program. This re_port 

is one of three ·reports being written which will describe the PDQ-5 program. 

The other reports will cover (1) program description [4] and (2) auxiliary 

subroutines [15] • 

1For a proof of the existence and uniqueness of this largest eigenvalue 
and· its corresponding eigenfunction, see ~ef. 10. 

2The PDQ-5 program is written in the: FORTRAN langu~ge. 

3 



I;r. NOTATIONAL CONVENTIONS AND DEFINITIONS 

'l'he notation A = (a. j) means that ai j is the (i, j) entry of the matrix . . ~~ ~ 

A. Similarly, the notation A =(A. j) means that A. j is the (i~j) submatrix 
. 1~ 1, 

in the partitioned form of the matrix A •. If A = (ai~ j) is ~n n by m :inatrix~ 

then we say A is a nonnegative .. matrix if a1~j ~ 0 for all 1 ~- i!:: t:1 and 

1 !:: j ·!Sm. Similarly~ we s~y A is_ a posi~ive matrix if ai, j > 0 f.or all 

1 !:: i !:: n and 1 !:: j !:: m. The transpose of the matrix A Will be denoted by 
T . . . * 

A ·and the con.1uAAte transpose by A •. 
I 

.A vector in n-dimen~ional space over tne eamplex.field ~ll be-indioated 

by a symbol with a bar unqer it, such as e•. In this paper, vectors are con­
T ~ 

sidered as n by 1 matrices. Thus, e , ~ and the nonnegative and ~ositive 

properties for vectors afe defined as above for matrices. The inner product 

* of the vector e .with the vector }l. is defined. as the vector product e z.., We 

shall denote the inner product of-~ with z as (as, z]. A matrix.A is said t~ 

be positive definite if th,e inner product [e, ~] is positive for every nonzero 

vector e• 

We now define several matrix properties which will be of intere.st to us. 

Definition 2.1. The n by n matrix A = (ai .) is said to be irreducible < > ,J 

for. any ordered pair of integers i a~d j, 1·~ i, j!:: n, there exists a 

sequence of nonzero entries of A of the form 

... 

Definition 2.2. The real n by n matrix A = (a. j) with ai j < 0 for all i f j 
~, , -

is called a Stieltjes matrix if A is symmetric and positive definite. 

4 
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.. 

The concept of the directed graph [21, p. 19] of a matrix will be used . j ' . 

in Chapter V. L~t A = (ai, j) be ann by n matrix~ consider any n distinct 

points P 1, P 2jl •.•• , P n in the plane. The points P k are c·alled nodes. Now 

for every nonzerq entry ai j' we connect the node Pi to the node P. with an , ·J . 

ar~ow pointed towards Pj •. In this w~jl a ~inite directed graph can be 

associated with every n:· by n matrix. The directed graph~ of the matrices 

(J l~ A= 0 0 1 

1 0 0 . 

are given in F~g. 2:.1. 

and 

·P 
2 

Directed Graph of A Directed Graph of B 

FIGURE 2.1 

Finally~ by f(x). = a(x) + o(x) ,. we shall mean· that 

lim f(x) - a(x) = 0 . X • x-o 

5 



III. PASSAGE TO THE DISCRETE PROBLEM 

Having stated the continuous problem in Chapter I, we now proceed to 

form and state the discrete problem-.·- To do this we first impose a nonUhiform 

mesh of horizontal.and vertical lines oh-o-ur rectangular'region R such. that all 

internal interfaces and external boundaries lie exactly on mesh lines. The 

intersections of the horizontal and vertical mesh lin~s then define the set, H, 

of mesh points on Rand we seek the solution 'Pg(~) only at the mesh points of 
·t. L ~ 

0 

.... 

R. · If the point ! is in the set H and is_ the point at the intersection of tha 

i-th.column and the j-th row of the mesh lines, then we let 'Pg(i,j) denote an 

- -approximation for 'P g(rJ. If f9 g<iJ ls not lmown, then we call the mesh point 

(i,j) a nodal point. In Fig. 3.1, there are (M + 2)(N) mesh points ~ut only 

MN nodal points. The cp g(i, j) at 11.0dal ~oints are the unknowns for the discrete 

problem. If, n~, for every :nodal point, we replace the differential equation 

(1.1) by a certain finite-difference expreseion1, then the discrete problem 

will be completely defined. A finite-difference equa~ion which approximates 

the differential ~quation at a nodal point is by no means unique. We shall 

derive the-finite-difference equations used in the PDQ-5 program for the r-z 

geometry and just state the finite-differe:nce equations used for x-y geometry. 

Fpr a derivation of' the difference equations in x-y g~ametr.y, see Varga [17]~ 

A. Derivation of the Difference Equations 

' In applying the diffusion equations to reactor calculations, we . are 

actually ~terested in a three dimensional model. The two-dimensional model 

1A- finite-difference expression is simply a linear expression in the 
q> g(i, j}o 

6 
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i~ obtained by assuming that the flux ~g is a function of only t~o of the three 

space variables. In order to derive the difference equations for r-z geom~try~ 

we shall .consid~r the three-dimensional r-z-8 model but make use of the fact 
I 

that ~ is not a function of the variable. e . . 
g . 

~t. us consider an arbitrary interior nodal point (i,j) in the r-z 

plane {see Fig. 3.2). For each of the mesh volumes, Vf' surrounding the 
I 

point ( i~ j) ( ~ee Fig. 3. 3) ,· the diffusion equation may be writ ten as1 

(3.1) 
{

- D 11 div (grad ~g(r, z)) + a .d ~g{r, z") - a
0 

1 d ~ 1 (r, z) 
g, J{ g," ' g- '/t. g-

=~ l:vo fP. (r,z) X G f ~ /=4 
A g=l g,f _g . . 1=1 

We now integrate Eq. (3.1) over-eac~ of the.mesh volumes, v1. 

{- Dg,{ ~ d~v (grad ~g(r,z))dV + ag,_( ~ ~g(r,z)dV 
I t 

(3.2) 

os_~ I J ·cp _1 (r,z)dY ~ ~ [ [vel t .. J cp (r,!!:)dYJ} f-4 
g ,:1 v g I ~1 g, '1 v g ' 1.~1 

l . i 

By the divergence theorem~ 

0~ 
integral o~ ~-over the 

on 

the first ter.m· of (3.2) can be reduced to a surface 

six surfaces which enclose Vf. Since ~ is not a : g . 

1Tne physical pa~ameters ~g(.£), og(,t), ete. are oonatant in. each !11.A$h 

volume Vf. and we denote these constant·s by Dg,{:~· ag,{' etc. 

2. ~ . . . 
Here :......1!.. represents the ·deri-vci.ti ve of ~ in ·the direction o;f the on - g ' . 

0~ 0~ 
outward normal to the surface. Hence~ ~g = ± ~ . 
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ofl' 
function of 8, .::.__g is zero over the .two vertical p).ane surfaces wh~~h enclose on 
v1 .. Hence, say for volume element 2~ Eq. (3.2) may be: written as 

of~' Of9 ofl' ofl' } 
~ do + J .::_g do + J .::.__g do + J .::.__g do · on . on on ; on 

02 . . 09 . ~0 

+ o 2 J f9 (r,z)dV - o5 

1 2 J f9 1 (r,z)dV 
g, . g g- ' .g-

x Gv2[ t . . ] ~2 
= ~ L vo 2 J fl'g(r,z)dV .• 

(\ g=l g, 
v2 

Equations similar to (3 .3) may be written for v1, I = 1, 3, 4. Since the neut:r;-on 
ofl' . 

current. - D :_g . is assumed to be continuous across interfaces, the surface 
• I on I 

integral~ over th~ common surfaces cancel when the four expressions of (3~2) 

are added. Hence summing (3. 2) over the four volume elements, we obtain 

(3.4) 
· 2 ofl' 4 ofl' g 

- D [ J ~ do ~ D L J do 
g, 2 k=l '\: on g, 1 k=3 "k on 

6 Of9 . 8 ~ . 

- D g,3 k~ J it do :.. ~g,4 k~ J ~ do 

~ "k 

+~(a dS f9 (r,z)dv] ~ ~· [o
8

_11 J f9 _1 (r,z)dv] . r=l g, /1. g r=l g ' g 
~ . ~ . 

=~ t(~ voftS f9 (r,z)dV] 
(\ g=l ~ g, g 

. . ... vi . 

li' 



We now make numerical approximations to the in:tegrals in . (3. 4) in order to 

obtain our. finite-difference equation at mesh point (i,j)~ Inte~als of the 

ofP 
normal derivative such as J -~ do are appro~ted by 

01 

J do 

"1 

and intesz-als such as J 'P g(r~ z)dV are approximat~d. by 

v2 

(3.6) 

Using the above approximations, the ~neral finite:..difference equat:l.on a.t nodal 

point (i,j) may be written as. 

(3. 7) a 
1 

rp (i,j + 1) +a 2 rp (i- l,j) +a 
3 

rp (i,j - 1) 
& g & g ' & g 

+a 
4 

rp (i + l,j) +a 0 rp (i,j) -a 1 .
5 

rp 1(i,j) g, g J g, g g- , ' g-

X G , . 
;::: ::a 1: " 6 ' <1, j) , A g=l g, ; g . 

12 



... 

where 

a. =-[a. +a. +a. +a. ]+1 g,O · g,l g,2 g,3 g,4 4 

If the nodal point· (i,j) lies on a segment of the boundary where~~ 0» on 
s . f . 

then the constants D 0 , o u~ o 1 d' and o d for those regions which are 
. . g,/1. g,p. g- 'A g,p. 

outside of R are set to zero •. No finite-difference equations are needed for mesh 

points on a segment of the boundary where q> = 0. . g 

l3 



The finite-difference equation (see Fig. 3.1) used in the PDQ-5 program 

for x-y ~eometry at a nodal point (i, j) is1 . . 

(J.8J 

where· 

14 

+a 
4 

~ (i+1,j) +a 0 ~ (i~j)'- a 1 5 
~ 1(i,j) 

g, g g, . . g g- , g-

D h + D h 
a = _ _g21 2 g,2 .4 
g,1 2hi 

a 
g,.3 

= - ~g,3 h2 + Dg,4 h4 
2h; ·' . 

D h + D h 
a. == ._ g,4 3 g~2 1 
. g;4 ' 2h4· 

"g,O =- [ "g,l + "g,2 + "g,J + "g,4] + t fg,l hlh2 + .0g:J h2h3 

+ og, 4 h3h4 + og, 2 h~~ 

11i'or a derivation of these equations, see Varga [17]. 

-· 



a: 
g-lj5 

a: g,6 

The difference.equations at nodal boundary points for the case of x~y geOII1;etry 

are modified in the same manner as. that described above for r-z g~ame~ry. 

B. Statement of the Matrix Problem 

In this section we wish to form the matrix problem which results from 

the above discrete approximation of (1.1). Unless otherwise stated, the dis-

cussions an~ results .given for the rest of this paper are independent of whether 

the geometry is x-y or r-z. Als9, as is the case for Fig. (J.l)j we shall assume ... 

that there are MN nodal points which are determined by M horizontal and N vertical 

mesh lines. 

For each groupj using the above approximations, we have a linear equation 

for each of the nodal points;. In order to represent this syst.em of equations· in 
I 

matrix formj we ne_ed to order the equations and unknowns in· some specific way. 
. . 

We shall do this b;y- assignin·g an integral index· number from 1 to MN ~o each nodal 

point and then order the equ~tions and unknowns for group g such _that the k~th 

equat~on corr~sponds to the finite-d~fference equation at the nodal point of 

index k and the k-th unknown corresponds to the ~g(i,j) at the nodal point of 

index k. For examplej if the nodal points are indexed conseputively by rowe, 

as shown by Fig. 3.4~ we may express ·the discrete appro~tion to Eq. (1.1) in 

the matrix form 

15 



(3.9) 
{ 

X G } A q> =R q> =.Ji F q> . 
g -g g-1 -g-1 "' k~l k -k . 

G 

' g=l 

wh.ere Ag/ Rg-P Xg' and F g are MN ~y MN matrices and the !g are MN-th order 

column vectors, the k-th tenn of which is the q> (i,j) at the nodal.point of . g 
g g g 

index k. The matrix Ag = c~,.t) is give}1.in }i'ig. (3.5L The ~;k' ~,~+1' 

{,k-l' ~,k+N and {,k-N are, respectively, the a.g,O' ag, 4, a.g, 2 ' a.g,l' a~d 
ag~ 3 given in the fin~te difference expression ~or ·the nodal point of index k. 

R 
1

, X , and F are nonnegative diagonal matrices with R
0 

being the null 
~ g g . . 

matr~. The diagonal elements ·of the R 1 matrix are the a. 
1 5

1s and the g- g- , 

cii.agonal elements o! ·Fg are the a.gj 6 's. Xg is a. scalar matrix with Xg on 

the diagonal. 

Independent of the indexing of the nodal points, the di~crete 

approximatipn to Eq. (1.1) may alway~ be put in the matrix form of C3.9) and 

one can s~ow [20] that 

Theorem 3.1 The MN by MN matrices Rg-l' Xg' a.nd Fg are all nonnegative diagonal 

ible Stieltjes matrices. 

-1 entries, i.e., A > 0. g . 

The MN by MN ma tri.ces A are irreduc= 
' ''' . ' . g 

Moreover, the_invers.eof each A has all positive . g 

We now rewrite Eqs. (3 .• 9) in the following matrix form: 

XF 
(3.10) E cl> = ~ <:f? 

, 

16 



(M-1)N+1 (M-1)N+2 ·MN-1 MN 
1,. I 

(~~2)N+1j (M-2)N+2 (M-~)N-1 . I (M-1)N 
,. 

N+1 N+2 2N-1 2N 

1 2 N-1 N 

FIGURE 3.4 
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FIGURE 3.5 
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where 

Es 

, .. 

(3 .11) 

~ 0 Fl F2 • 0. 0 FG 

.. Fl F2 . . 0 FG 
x= . ' and F !! .• 

0 XG 
F.l F2 FG 0 0 0 

Since each Ag is nonsingular, the matrix E is nonsingular so that Eq. (3.10) 

may be written as 

{).12) 

The discrete problem is then to determine the largest (in modul~s) eigenvalue of . · 

(3.12) and its corresponding eigenvector. Birkhoff and Varga [3] hav.:e shown 

that 

Theorem 3.2 The eigenvalue problem (3.12) possesses a simple, positive, largest 

(in modulus) fundamental eigenvalue, Al• Moreover, if Rg-l and Xg are not both 

... 
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identically the null matrix in any group g1, then the eigenvector~ corresponding 

to this fundamental eigenvalue may be chosen to have all positive components. 

-1 Further, any positive eigenvector of E XF is~ scalar multiple of~1• 

Thus, the discrete problem is well defined. We remind the reader that 

the fundamental solution of (3.12) is only an approximation to the desired 

solution of the continuous problem. The question as to whether the fundamental 

solution of (3.12) approac~es the solution of (1.1) as the mesh is suitable 

refined has not been c~pletely answered and will not be discussed here. 

We note that the matrix E-1xF is of order GMN and hence has GMN eigen­

values. But the rank of XF, arid hence also that of E-1xF, is at most MN so 

that the matrix E-lxF has at most MN nonzer~ eigenvalues. Since we ar~ not 

interested in the zero eigenvalues, we now shall obtain an equivalent eigen-

value problem of order MN for which these (G-l.)MN zero eigenvalues have been 
' ,! 

eliminated. 

To do this, we first introduce the fission source vector ~ which 

is a vector of order MN and is defined by 

,(3 .13) 

If the MN by MN matrices L are now defined recursively by 
' g 

(3.14) 

. -1( ) L=.A X+R 1 L 1 g g. g . g- g- , g = 1, 2, ••• , G, 

{ 
where 10 is the null matrix 

~encef~rth, we shall assume that X + R ·1 is not the null matrix. g g-
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then frOll'l Eqs •.. (3.10) and (3.11) we have 

(3 .15) cp =L '/1 -g g- .. 

From the definition of ~' we then obtain 

(3.16) 

where T is a MN by MN matrix and 

G 
T = 2: F L 

g=l g g 

... 

, 

Therefore, the fission source vector, '£, must satisfy (3.16) •. Thus, if~ is. 
' -1 an eigen~ctor of E XF corresponding to the nonzero eige~value A' then ~' 

obtained from c.!> using. (3.13), is an ~igenvector of T with the corresponding .. . . . . ~ 

eigenvalue A• Conversely, if '£ is an eigenvecto;r. of T corresponding to the 

nonzero eigenvalue A and if <1> is obtained from './! using (3 .15), then~ is an 

eigenvector of E-lxF with correspon~ing eigenvalue h• 

Us~g a similarity transformation, we now shall show that the nonzero 

eigenvalue spectrum of T is identi"cal to that of E-lxF. The reader may readily 

convince himself that the matriX E-1XF may be written as 

1rF2 •••••••• 

where the Lg are define~ by (3.14). Since x1 > 0, the matrix 11 is nonsingular 

so that ·the matrix 
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I 
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.0 
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• I 

ex:istf:l and is nonsingular. It is eas:i,.ly verified that 

T F2 F3 • . . . • 
0 0 0 

. P(E-1XF)P-l = • . 
0 

0 0 0 • • • • • 0 

Hence, the nonzero eigenvalues of E-~XF are the same as those of P(E-1XF)P-l 

which in turn are identical to the nonzero eigenvalues of T. 

The Lg are positive matrices so that from Thm. 3.2 and Eq. (3.13) .it 

follows that the eigenvector ~l corresponding to the fundamental eigenvalue x1 

may be chosen· to have nonnegative components. Moreover, since the positive 

-1 l t' . ' eigenvector ot E XF.is unique , any nonnega ~ve eigenvector of T is either a 

scalar multiple of t1 or else has. a corresponding eigenvalue of zero. 

Thus, the lower order eigenvalue problem 'AY! = ~possesses essentially 

the same properties as does (3.12). In the n~ chapter we shall describe the 

iterative technique used to obtain the largest (in modulus) eigenvalue ·Of T 

and its corresponding eigenvector. • 

1 -
Up to a sca.la:t" :facl:,or. 
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IV. OUTER ITERATIONS 

For the rest of this paper we shall assume that the eigenvalues of T 

are given by { )..i} : 1 , where A.i > 1 >..2 t ~ I >..3 I ~ • • • ~ 1 >..MN I , and that !i is 

the eigenvector assoc.iated with )..i; i.e., >..lti = T~i. 

The ~DQ-5 program uses the "power iterative method" to obtain 

approximationa1 to the fundamental eigenvector and eigenvalue of the eigen­

value problem ().16). Given an arbitrary nonnegative guess '£.(0), the power 

method.generates successive estimates for the fundamental eigenvector ~land 

eige~~~lue 11.1 by the procel:js 

(4.1) 

!3.(/) = 'I' 'f Ct-1) 

[§([), 2<1>] 
>..({) =[~<f), f{/~1)] 
· s<t> ·, 
'f<l> ·= friT , I = 1, 2, ••• 

In this chapter we shall ·assume that we have wavrs to obtain the matrix­

vector· product TY!([-1) needed to carry out the power method (4.1). We shall 

describe how this product T~ is actually obtained in Chapter V. 

In the solution of ··the multi-group neutron diffusion problem the 

itera~ions(4.1) are gerierally.called outer iterations and l is.called ~he 

outer iteration index. Since the largest (in modulus) eigenvalue of T is 

simple ~d real, the power method (4.1) 1~ guaranteeq to converge; i.e., ror 
j' 

an arbitrary nonnegative guess vector ~(0), 

1Theoretically, convergent iterative methods give the exact solution 
only after an infinite·number of iterations. 

22 

·:. 

.. 

.. 



lim A. (f) = A.1 and 
l-a:. . 

lim 'f(f) = c!1 
~.-«> 

' 

where c is some·positive constant. 

The power ~ethod e~;5sentially.involves repeated multiplication· by t.he 

matrix T. For.if we asstune that the· eigenvalue estimates A.(/) of A.l are 
. T . 
sufficiently accurate, then the process (4.1) gives ~1) = ~ 'f(o), 

T T 2 . . . 1 
'£(2) = ~ '£(1) ""' (~) ~(0) and in ~neral · 
. . 1 1 . . 

l . 
(4.2) ~l> = (~ ) ~(0) 

1 

In order to see how quickl:y Y!(f) approaches '£1 in (4.2), let us assume 

that 'f:(O) may be expanded in terms of the eigenvectors of T so that 'f(o) may 
MN 

be written as ':/::(0) = L c1Y!,. for suitable scalars c
1
.• Hence, we may write 

i=l l. . 

A_. 

Since j A.1 j < 1 for i > 1, we see that '£(/) approaches c1_t1 as f tends toward 
1 . 

infinity and that the conve~gence rate of f(/) to ':1!.1 depends ort how well 

separated the 1Undamental eigenvalues A.1 is from th~ other eigenvalues of T. 

In other words, the convergence rate of ~(/) depends on the daminan?e ratio 

(4.3) 

Normally, the smaller this ratio is, the faster the convergence. ~e most 

slowly· decaying component of the error with respect to the initial guess 'f( 0) 

. decays as (;,)l. 
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The next theorem [20] provides. the basis for the convergence criterion 

used in yhe PDQ-5 pr0gram to terminate the ~terative procedure (4.1). 

Theorem-'4.·1 If 'f(O) is a nonnegative vector, then the iterative proce~~e (4.1) 
' . ' ' .I . 

is con~r~nt; i.e~,: /lim x(J~ =.x1 .~d-lim. ':f.(f) = c'f'J.' where cis a positive 
-al . jl..-al . 

scalar.;. Moreover, if the k .... th.camponents of tf(/) .and.§.(/) are.denoted_by 

'i-'k(') and Sk(/) .. ~nd; if for ~(/-:-1) f- 0 

Sk· (f) '~(f). 
}.(f)= max W(l-i). , k(/) :: min W,J'f-1} 

k k k ~~ 
(4.;4) 

then / 
/' 

; x(f) ~JJ~) ~ x(/) ; and 
/ -

The estimates x(f) are obtained by considering the components of the 

eigenvect9r estimates in the aggregate while i(f) and x(f) are obtained by 

considering these components individually. Hence, in addition to giving 
. . 

upper and lower bounds for the desired eigenvalue x1, X(/) and !:._(/) also 
. ,· . ~ 

giv.e a good indication as to how well the eigenvector estimate t(/) is 
. ' ( .. . ,. ' - . 

converged. Thus, a practical criterion for te~ating the iterative 

procedur~ (4.1) is that the inequality 

(4.6) 
}:(f) -~(f.). 

· 2x(l) =5 E 

be satisfied. The positive quantity E is ap input parameter. 
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In. the next section we shall describe the use of Chebyshev polynomials 

in accelerating the rate of convergence o.f the basic p9wer method. 

A. The Use of Chebyshev Polynomials 

Experience has ~hown that the eigenvalue estimates x(f) tend to· 

converge faster1 ~han the vector estimates 'f(f) in the straight power method 

(4.1). Therefore~ in an attempt to accelerate the convergence of the t<f), 
we take linear combinations of the t(/); i.e., for the f-th iterate we take 

(4. 7) 

as the f-th estimate for !1 . It is hoped that by a suitable choice of the 

constants afp' the vector t<f) is a much better approximati~n to t1 than ~(f) 

is. 

In order to determine the "optimum112 ai: , we shall assume that the 
p . ' 

eigenvalues Xi of T are all real and nonnegative and that the corresponding_ 

eigenvectors for.m a basis for the associated vector space of T. Since we 

have assumed that the eigenvectors of T are complete; we may write the initial 

guess as 

(4.8) t<o) 
MN 

= ~ c .'it. 
'-' . -~-:1. 

i=l 

11r the matrix T in (4.1) were symmetric, then the x(/) would converge 
at twice the rate of the t<f). See Bilodeau and Hageman [2]. 

later. 

2m what sense the coefficients a/pare optimized will became.clear 
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If we. now ass:ume. that the eigenvaluees1;,jmates )..(/) are sufficiently close to 

).1, then fram Eqs •. (4.1) and (4.8) we may write Eq. (4.,7) as 

or eg.ui~ently 

(4.9) 

MN (i\. 
The s~ i~2 ,c1Pl i\~}~ is our error and hence we would like to c?oose Pi(x). 

. •· MN )... ! 

such that p/· (1) '= 1 and L c1P!(_1;.}'fi· is minimized (in modulus). Since the 
i=2 i\1 

scalars c1 are arbitrary1 and the eigenvalues i\i of T are not known, a true 

minimizat:J,.on is not feasible. Howeverll a practical "optimum" mjnjmizatio~ of 
MN , i . . · ~ ' 

1~2 ciP.{('A~}i'i is obtained if we could dete:nnine Pl.(x), under the res~riction. 

that P,[<l) = lll. such that the maximum of I P,t<x) I is minimized over the range 

0 ~X~ 0~ where 0 is def~ed by Eq. (4.3). The SOlUtion to this practical 

min:iJiiization problem is well knoW~?- [7] and can be given eXplicitly. in tEimns 
I ' . . 

of Chebyshev polynomials 

(4.10) 
(2x ) c --=-1 

p (x)' =. l o · 
t . c1(~- 1) 

1The ci 1 s are arbitrary since the initial guess f(O) is arbitrary. 
We only assume tpat ci I O. 
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where the: ?t(y) are Cheb~hev polynomials of degree { 8.11:d for l ~ 0 

cos({. cos-l y) 

cosh("/ cosh-l y) y~l 

From the well-known three-term recurrence relation which the Chebyshev 

polynomials satisfy 

, l ~ 1 ' 
(4.11) 

it. is possible to obtain. the three-term relation 

(4.12) 
_{cosh [{/-l)Y] · 

cosh dl+l)Y]) p i-1 (x),. · { ~ 1 ' . 

· (2x. l) 
( ) ( ) a - h-1 {:a . ) where Po X = 1, pl· X = 2 ). I and y = cos a - 1 , . 

(a- 1 -
f,or· tl:ie P/(x). ~hua, u·sing" the reciurrence relation (4.12), the 'f(/) vectors 

of Eq. (4.9) may be obtained using the i~erative proc-edure 1 
·• . 

1
The ident~ty 1 -a{+~~=- ~:al is also used in obtaining the three­

term relation for t(/) given in (4.~1). · 



. ~(f) = Tf</-1) 

- -
C2<1>~ 2Cf>J . 

X(/) = - 'Of 

me()~ t<i-l)J 
-

~ll ~ ~<t -1) ; "t [ ~~~; - ~([-1)] + p t [ <i<!-1) + *<t -2)] 

for f. 2:: 1 and where . 

a. = 2 
1 2 - e ; f31 = 0 ; 

= 1:!. [cosh [ (,(-1)1']] . = cosh [ (/-2 )Y] . a., ·- f 13/ . , . far l :::.. .2 • 
" a cosh E/Y] cosh [/Y] ·-

When the iterative procedure (4.13) is .~sed~ i(f) and ~(f) may be computed as 

- -
before (using; of course~ §({) and 'J!.(/-1) instead of §(/) and 'J!.(/-1)) and 

lim X(/) = lim ~(/) = x1 • Moreover~ if tC!-1) is a nonnegative ve"ct9r~ 
1-= . t-= . . 
then the inequalities in (4. 5) are also valid • 

. Figure 4.1 illustrates the effect of the polynomial ~4( ~l} with a = • 9 

operating on an arbitrarY- vector t<o). For if ':J!.(O) is expanded in terms of the 

eigenvectors of T as in Eq. (4.8), then from Fig. 4.1 we see that P
4

( ~ ·} operating 
1 

on f(O) has. the effect of multiplying the coefficients o~ all eigenvectors except 
·. ' . . ' 

t1 by a factor of .145 or le.s,s while the coeffi.cient of i]_ remains unchanged. 

Also shown in Fig. 4.1 is the effect on the coefficients produced by the operator 
4 ' . 

l~1 ) ~which corresponds to performing f~ur power metho~. iterations (4.~~· 

Using the Chebyshev polynomial method of iteration (4.13)~ we see from 

Eq. (4. ~) that the most. slowly decaying component of the error in the initial 
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guess expansion decays as 

For the. straight power method (4.1)., as we have seen previously, the moot slowly 

decaying component decays as (o)f. Table 4.1 gives some indicati·on of the gain 

in the decay of the most slowly decaying component of the error one obtains by 

using the Chebyshev polynomial method of iteration. 

1 ITERATION 5 I'l'ER.ATIONS 10 ITERATIONS 

-ca), [cl (~ - l.) 
-1 

(a)' [c <~- lJJ -l (a)lo r - clo<~ - 1) a 5 0 

.5 .5 .33333 0 03125 .00030 .00098 . ----

.8 .8 .66667 .32768 o01626 .1CJ770 .00013 

.9 .9 .81811'3 .59049 0 Cf7556 .34868 .• 00286 

n98 .98 .96080 • 90392 .45533 .817CJ7 .11565 

TABLE 4.1 

The effi~iency of the Chebyshev polynomial method of i~eration depends 

on a prior lmowl:edge of o and A.1 • GeneraUv~ of courseJI these _constants are 

not lmown. However, practical .tfUJlla.dcal means do exist for estimating these 

constants. For example, before starting the Chebyshev method of iteration 

(4.13), four or five straight power iterations (4.1) may be perfor.med in order 

to obtain an initial estimate for A.1• Further, if a low degree Chebyshev 

polynomial is repeatedly applied instead of trying to apply· one high degree 
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' 

polynomial~ then the est~ates of Al may be continually updated. For example, 

after performing the initial / 1 power iterations, instead of applying one high 

degree Chebyshev polynomial 

we do1· instead 

The numerical methods used to obtain initial and 
' 

updated estimates for the dominance ratio, a, will be described in Chapter VI. 

The assumptions that the eigenvectors of T form a complete set and that 
2 . 

the eigenvalues are real and nonnegative have not been shown to be valid except 

for special caees. However, the method as given above has been used quite 

successfully. This seems to indicate that the above assumptions are very 

nearly satisfied. · 

We remark that the results of this chapter apply equally well to the 

eigenvalue problem A<1? = E-~XF <1>. In other words, the results of this chapter 

are valid if f were replaced by cJ? and the matrix T replaced by E~lxF. From a 

1There are other reasons (see Chapter VI and Appendix B) for using 
repeated applications.of low degree Chebyshev polynomials instead of one high 
degree polynomial. 

2The fact that the eigenvalues are nonnegative is not crucial in the 
appl~cation of the Chebyshev polynomial metnod of iteration. To take into account 
negative eigenvalues, one needs only to change the argument of the Chebyshev 
polynomials. See Bilodeau and Hageman (2]. Also, the 'restriction that the 
eigenvalues be real may be weakened s6mewhat if only low degree Chebyshev 
polynomials are used. As the degree of the Chebyshev polynomial is increased, 
then the restriction on the eigenvalues becomes more nearly that they be·reai. 
See, Varga [18]. 
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practical pofut of vie¥~ the eigen~ue problen). )...t = Tt has the advantage in 

that ~is a lower order vector than~. 
:.'. ·:: .· 

'-•' 
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V. INNER ITERATIONS 

In this chapter we shall describe how the matrix-vector product T~/-~) 

may be obtained (or at least approximated). 

(5.1) 

where 

(5.2) 

From Eqs. (3.15-· and 3.16).? Tf{./-1) may be written as 

Ti{{-1) 
G 

= L F L Y,(f-1) 
g=l g g-

G 
= L Fa!g(/) 

g=l 0 

Hence, the matrix-vector product T~[-1) is readily obtained once the !g(f) · 

are lmown.. But from the definition of Lg (see Eq. (3.14) ), the P..g(f) can be 

determined by solving successively the system of group equations 
. . 

(5,.3) {A~ (/)=X Y,(f-1) + R· l~ ·1 (f)} G 
g-g g- g- -g- g=l 

, 

where R0 is the null matrix. Thus, the product T~[-1) can be determined if 

we can solve matrix equations of the for.m 

(5.4) 

where Ag is the MN. by MN matrix given in Theorem 3.1 and ~g(/) is a known 

nonzero column vector which is defined by kg(/) :X ~/-1) ~R. 1~ 1 (/). - g- g- -g-

For one~dimensional problems, direct inversions of the A are possible1 
. ~ 

so that the. group fluxes !g(/) may. be obtained without any 'complicatio~s.. For 

two- and three-dimensional problems, however, direct inversions are not feasible 

1see; for e.x&ltple.? Marlowe and Suggs [14]. 
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and.the cp (f) must be approximated by· some iter~tive process. The iterations 
~g 

used to obtain an approximation ~or the !g(f) are called inner iterations. 
. . 

Before describing in detail tQe iterative techniques used by jhe PDQ-5 

program to o:t>tain approximat~ons for t~.e !g({), we shall give a short discussio.n 
. . 

on the mechanics 9f stationary iterative techniques and shall define same 

particular iterative processes. 

A, Stationary lterative Techniques 

We are interested in obtaining by iterative means a good approximation 

to the so~ution of the matrix problem 

(5. 5 ):. 

where A is a MN by MN nonsingular matrix, ~ is a khown column vector with MN 
-------------·----··"' 

components and x is the MN-th order column vector of unknowns. 

In general, a stationary first degree linear iterative procedure for 

ob'tafuing successive· appro:rlma ticms to A-'-1 may be described as 

(5. 6) (m) = Px(~l) + ·H : ·1.· ·~ 
~ _ . _ !2_ 1 m , .c., ••• , 

.. 

where P and H are MN by MN.!matric:~, m i~ the iteration index\ and ~(O) is 

an arbitrary guess vector. If ~(J11-l) is -equal to the unique solution ~-lg, · 

then for i(m) to·als~ equal the unique-solution we further demand that 

P + HA = I 1 where··r is the MN by MN identity matrix. 

·We now·ask under what conditions does· the infinite sequence of vectors 

{~(m)} generated--by Eq. (5.6)- converge to the unique solu'Liun ~ ~ A-1g. Let 

1m this paper, the super.script (m) will always denote the inner . 
iteration cycle number; As used'previously, (/)will alw~s denote the outer 
iteration cycle number. 
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~(m) ·~ ~(rri) - ~ be the error vector at the end of the m-th iteration. Since 

P + HA = I~ we have from (5.6) that 

(5. 7) . , E(m) = PE(~l) = ~(0) - _, -· 

For an arbitrary initial error ~(O),. it is clear from (5.7) that t~e error 

vector becrn;nes arbitrarily small as m --co<::=::::>~ converges.,to' the null 
' . I 

matrix as m- cri. Thus, we make the following de_finition: · 

Definition 5.1 The iteration procedure defined by Eq. ~5.6) is s~d to be· 

~onvergent ~====;:>the sequence { yn} ==1 converges to the null matr~. 

Otherwise the iteration procedure is said to be divergent! .... 

If a1, ••• , ~are t~e eigenvalues of the MN by MN matrix P, then 

P(P) := max I a. I 
i . l. 

is called the spectral radius of the matrix P and [21 ].; 

'· .. ' 

Theorem 5.1 .A necessar,y and sufficient condition for the iterative process 

(5.6) to be convergent is that P(P) < 1. 

'!'he· spectral radius, P(P), can also be used as a measure of the. 

effectiveness of the iterative process. In ~eneral, the smaller the P the 

faster the proc~ss will converge and 

is called the asymptotic rate of convergence of the matrix P. The significance 

of this definition is that the number Qf iterations re~uired t~ reduce the initial 



error vector by a certain fraction is approximately (in a certain,asymptotic 
. :. .. . 

·sense) inversely proportional to the asymptotic rate of convergence. Thus, 

.if one iterative process has an asymptotic rate of convergence twice as big 

as another, it will require ~oughly half as many iterations for the same 

1 degree of convergen~e 0 

In order to define . some bas.ic stationary iterative processes we let 

the MN by MN matrix A be partitioned in the form 

~jl ~~2 . . . \~Q 

A2,1 A . 
. 2,2 

0 0 A2.,Q 
(5o8) A = 

. . . . 0 0 0 0 

-·-- -,' -
. ·-

. 2 
where the diagonal blocks Ai,i a·re. nonsingula:r "easily solvable" ·submatrices 

of A, and 1et·the matrices D, E, and F be defined by 

,. 

1:For more detailed discussions of convergence rates, the reader is 
referred· to Varga [21, p. · 6:)..] and .. Keller (13] •. 

2By say-ing that a nonsingular matrix D is _i•easily solvable" we mean 
t.hat if Dz = !£,··t·hen,!·may_ be ·easily .. -obtained~by a direct .. metl}·od. We do not ;_1 .. ... . . . 
mean th~t · D is easily available. For example, a tri-diagon~ matrix is · 
"easur solvable". · 

36 



~,1 

D:: 

0 
(5.9) 

.... 0 
.... 

.... 

A2.~~2 

, F: 

0 
, 

o~~ 2 ••• -~ 2 
. ' , , . 

' ·-.,. 

0 
··'-

We may write ~ = g as ~ = (E + F)~ + g and this suggests the iteration 

method 

(5.10) ~(m+l) = (E + F)~(m) + ~ • 

We shall refer to the method defined by Eq. (5.10) ~s the Jacobi iterative 

. method .. ~d the matrix 

(5.11) 

as the Jacobi iteration matrix associated with the matrix A. This scheme is 

also known as iteration by simultaneous displacements or total steps by 

Geiringer [ 9] • 

If xim+l) is the i-th component of the vector ~(m+l), then the Jacobi 

method is .to :solve for each component xim+l) using only the previous iterate 
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-~(m). It seems plausible that if one always uses the latest value of all other 

components when solving for.a c9mponent xim+l)$ that the rate of convergence 

might be increased. With this in mind~ the Gauss-Seidel iteration method is 

·defined as 

(5.12) ~(m+l) = ~(m-tl) + ~(m) ~ g • 

The matrix 

(5.13) 

is called the Gauss-Seidel iteratiort matrix associated with the matrix A. The 
. . 

.. Gaus·s-Seidel method is also known as iteration by successive displacements or 

single steps by Geiringer [9] and the Liebman method ·by Frankel [8]. 
---- . ._:. 

The third basic iteration method with which we are concerned is formed 

by modifying the Gauss-Seidel method as follows: 

(.5 .14) 

We shall follqw Young [24] and call this method the successive overrelaxation 

methog_~-~c:i. shall refer to the-matrix 
I ' 

'(5.15) 
·, 

~ = (~- _wE)-l {wF +. (1 - :<:U)D} 

i 

as. the successive overrela.xation iteration matrix associated with the matrix 
I 

A. The parameter w is called the relaxation factor. When w = 1~ the ,scheme 
' I ' 

defined by Eq. _:(5.14) reduces to the Gauss-Seidel method. ~is it-erative 

method is also called the accele;r&_edJ1ie'bn!an.,£1~ by Frankel (8] and the 

extrapolated Gauss-Seidel method by Kahan$. '[12]. It should be noted that in 
. . ! 

using the suoc,essi ve overrelaxation method we are faced with two questions: 
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first, for wh~ch values of w (if any) does the method defined.by. Eq. (5.14) 
. . 

con\rerge and second, if the method does conver:ge for some values of w, which 

value of w givef! the highest rate of convergence.? In order to answer the 
·I 

above questions for our specific problem, we introduce the following 
' 

definitions: 

Definition 5.2 If the MN by MN matrix A is partitioned in the fqr.m of (5.8), 

then the matriX A i~· 2-gyclic (relative to the partitioning of (5.8))~ ~ 

there 'exist. two d~sjoint nonempty subsets S and T such that SUT = { 1, 2, ••• ,, Q} 
and if Ai, j ¥= 0 and i· f j, then ie:S and je:T or je:S and ie:'1:'1 ." 

Definition 5.3 If the MN by MN matrix A is partitioned in the form of .(5.8) 

and is 2-cyclic, then A is consistent6y ordered ~=====~ there exists a vector 

! 5 (Yp r2, ••• , :Q) with integral components such that if Ai,j fa 0 and if j, 

then 

y - y = -1 
j i 

for j > i 

for i > j 

. . 

For any n x n matrix.A, n ~ 2, there exists a partitioning such that A 

is 2-cyclic. For examplet.. the matrix 

. ' (\Jl. 
A= 

~,1 

1 .· .. 
The 2-~clic property defined here 

Gates and Zondek [1] and reduces to Young's 
submatrices are all one by one matrices. 

• I 

is called property·An by Arme, I 

[24] property (A) when the 'diagonal 
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is 2-cyclic. Alsoj. not all 2-cyclic matrices are consistentlY ordered but. for 

any 2~cyclic matrix tnere ~xists an ordering which is consistent. .The concept 

of directed graphs [2111 pp. 48 and.l21] is very useful in determining if a 

matrix with a particular partitioning is 2-cyclic and is consistently ordered. 

We now state the main result for ·consistently ordered, 2-cyclic matrice~. 

1 Theorem 5.2· If A, partitioned in the fo~ (5.8), is a consistent;t_y o~dered, 

2-cyclic ~t~ix~ then P2(J) = P(~). M?reover~ if. the eigenvalues· of ~he 

Gauss-Seidel iteration matrix~ are nonnegativ~ and less than unity and if 

{5.16) 

·then 

(5 .1?) 

P(~) > P(~ ) 
W wb 

P(£ ) = wb - 1 
wb 

!. 

~ifwi.~ 
'\ ·, . 

and 

' 

If A is partitioned in the form (5.8), then point iterative methods 
l 

correspond to the case when the Ai, ij ~or i ~ 1, 2, ••.• , :MNj are one by one 

matrices. Block iteration methods correspond to the ca~e where no special 

restrictions are placed on the order or the submatrices Ai,i" In point 

met~ods only Qne single unknown is modified at eaeh step of the iterative 

procedure while for block methods a group of unknowns may be modified 

simultaneously. 

1
Young [24] did the basic analysis for the application of the successive 

overrelaxation·.method to the ,point 2-cyclic matrix. ,Annsj Gates and Zonde~ [1] 
generalized Young's results t'o block methods· and Varga [21] later extended the 
theory to the more. general p-cyclic matrices. 

40 



Ih the next section, we shall describe the "cyclically reduced three.:.:. 

line successive overrelaxation method" [ll] which is the inner iteration method 

used in the PDQ-5 program. 

B. The Cyclically Reduced Three-Line Successive 
Overrelaxation Method 

We now concentrate. on a particular iterative method used to obtain 

approximations to the solution of the matrix equation 

(5.18) A cp (/) = k (f) 
·g-g -g .. 

where Ag is the ~ by MN matrix of Theorem 3.1 and ls.g(i) is a known column 

vector given by k (/) =X ~/-1) +.R 1cp 1(/).· In what follows we shall 
~g ~ g- ~g-

drop the group subscript g and tqe outer iteration index (/) in Eq. (5.18). 

In order to completely specify the matrix equation· (5.18), we need 

to give an ordering for the equations ~d unknowns. As in Chapter III, we· 

shall do this by indexing the MN nodal points. We first split the nodal 

points into what we shall cail square n~dal points and circle nodal points. 

We do this by first making the nodal point 1 of Fig. 3.4 a square point and 

then proceeding by making circle points of the four (or fewer if near or on 

a boundary) nearest neighbors of the square points and making square points 

of the four nearest neighbors of the circle points. We now index the nodal 

points by indexing first all the square nodal points consecutively by rows 

and then all the circle nodal points consecutively by rows. For. example, 

41 



The matrix A s {a1 .) is given in F~. 5.2;. The nonzero 
JJJ 

n--o·, I y -----o-. 
N+l r-tN+l --d. 
6 0- -I . . 
r+q p I I . . I 

~.o~""--. 
1 r+l 2 r+2 3 

-->~x 

FIGURE 5.1 

1In F.ig •. 5.1, if MN is even, then r = ·~1N .and lf MN is ~dd,· then 

MN+l ·· N 
r = -2-. S~ilarly, if N is even, then p = q = 2 + 1 and if N .is odd, 

then p = N + 2. and q = R + l 
2 2 2 2 ° 
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al,l 0 ~,r+l. ~;~o 
' a ' ' ,_ 

.2, :r:+l ' 0 ' ' ' 
·: ......... 

' " ' ' ' a.·-·. . . .. ' ' ' ' 
' p;~Io ' ' ' 

0 ' .. \ ' 
' ; . ' ' .... ·o ' ' " ' a ' ' . ;r.,r. ., 

A: -·. 
a a~l'2 ar+1,p 0 ar+l,r-h r+l,l . , . 

' " ' ' ' 0 ' ' 0'', ' 
' ' ~ <·· :: 

' ' " ) 

' ' ' .... a . . ' ' 
~,10 ' ' ' ' ' ·0-.... ' ' '-· ' - ' " ' 0 ' ' 

' ~,MN ' 

. FIGURE 5.2 .. ·. 

elements :of A are the a. 
0

, a. ·1-~ ·a.·.-~.,~ a.·· -'l·~:-.arid a. : 
4
·1 g~ven :iJ:l the finite·_ 

g, g, ' g,ilfo g,,.~ - .. g, .. . . 

difference ~Xp.t;ession' (3. 7 )'·or· (J .·s).-

If we now let 

0 

0 ' 

''l.'r.l. 
·:.&+.-~ 



then Eq~ (5.18) may be expressed as 

(5.2.0) .(I -B)~= g: , 

where 
\ 

(5.21) . 

Since A is symmetric (see Thm. 3·.1), the matrix B may be written as 

(5.22) 

We note that. the matrix ~ 5 (b1, j) is a r by (MN-r) matrix and, i':l fitxp1icitJs: 
.. ,.. . 

given by 

-a. ·-tr b ~,J 

i,j =~.-~~a--­
. i, ~ j+r, j+r 

i = 1, 2, ··~, r 

j = 1, 2, ••• , MN- r 

Since a 1 , .i > 0 ~ i =. j and. a1, j.S 0 i~ i 'f ~~. it follows ~hat B1 is a 

nonnegative matrix. 

If 

and 

are partitipnings for ~and g·which are consistent with the partitioning of B 

in (5.2.3), then Eq. (5.20) can ·be wr~tten as 



. ·. 

(5.24) 

and multiplying both sides of this equation by (I +B) gives 

or equivalently 

0 

(:) 
I 

~) (:). (5.25) = 

0 
. T BT 
I - B1B1 1. 

Eq. (5.25) represents two uncoupled systems1 of eqUa.tions s~ that the solution 

to ·the original ~triX equatio;n (5.20) may be obtain~d by solving a lower order 

matrix•problem. Thus, We may obtain the solution to ,(5.20) by first solving 

by iterative means the system of r equations (square points) 

(5.26) 

and then obtaining the reamining ·(MN-r) unlmowns (circle points) explicitly 

from 

(5.27) T a... =Bx+g 
-J.; . 1;.... . .5;2 

The ·number of unlmowns which we must determine by iterative means has been 
. . ·MN 

reduced from MN to roughly 2. 

1 . 
In essence, we have uncoupled the square points from the circle 

points and vice-versa. 
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~ -T 
We now consider the directed graphs of ~ and B1, where 

(

0 

~"' 0 
, 

in order to show how the elements of' the unlmown vectC!>r,_ ~ are coupled to each 

e>ther thro'tlgh the matrix (Bi Bi). 

If~= (b1,j), i = 1, 2, ••• , rand j = 1, 2, ··~• MN-r, then the 

if b1 . :f 0, then we connect 
. ' J . 

-~ 
directed graph of ~ is obtained as follows : 

the square nodal point of index i to .the_ circle nodal point of index j + r 

by means .·of ari. arrow with the value .of bi, j being indicated in same manner.· 

.... The dire'~ted graph of 'Bi is obtained, if b i, j :f O, by connecting the cir~le 

nodal })oint of ind.ex j + r to the s·quare nodal point of index .i. The d:i,recte~ 
' . . . 

graphs ofBJ. and J3i are given in Fig. 5.3 for an arbitra:ri section of the me~h 
. ·. """-T 

net. _The direct~d graph of thf!l product 1\ B1 .may be obtained very e.asily from 
,., . . -T - ~- -·.,. 

the directed graphs of. B1 and. B1 • The nodal po:int·-of . ...._~dex u. is connected to 

- -r· tpe nodal point of index v ~ the directed graph of B1 B1 if the nopa!_point 

. . -u is conne'cted to the nodal pC!>int w in the graph of Bj_ and the nodal point w 

. -T 
is collll:ected to the nodal point _v in .the direc~ed graph o1' B1 ._ 

· ...... -T . T 
graph of ~ B1 also gives us the directed graph of ~ B1 ·since 

0 

0 

'l'he di:rected 



T The directed graph of ~l B1 is lP-ven in Fig. 5.4 for the same section of the 

mesh net as in Fig. 5.3. Therefore, for any square nodal point of index C 

there corresponds an equation, in terms of the elements of the discrete 

'1 function ~ of the type 

(5.27) 

Note that we now have a 9-point formula for the r square nodal points 

instead of the 5-point formul~ for the MN nodal points of th~ original system. 

Since there are r square nodal points, equation (5.27) defines·a system of r 

equations in r unknowns.· ·We may index the square nodal points ;;md.represent 

the system (5.27) as a matrix equation j~st as was done for the original 

system of equations (3.7) or (3.8). The matrix equation (5.26) corresponds 

to the indexing of the square nodal points consecutively by rows. 

To give the indexing of the "sq~are nodal points for the 3-line block 

method, we proceed in two steps. First, we index consecutively blocks of · 

successive three horizontal mesh lines (see Fig. 5.5) and express the system 

of equations (5.27) in the block matrix form 

1rn Eq. (5.27), the inhomogeneous term ec is explicitly defined as 

ec = gc + bR~ + bTgT + bLgL + bBgB. The modifications required when the 

square nodal point·C is near or on a boundary are obvious. For example, if 
' 2 2 ' 

C = 1 in Fig. 5.1,_ then Pc = bR + bT and PIL = PBB = ~L = ~R = 0. 
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-~,1 ~,2 0 ~ ~1 

A2,1 A .. 2,2 A2,3. ~ .~2 
.... ..... ...... 

...... .... ...... 
(5.28) Ax= 

..... .... 
..... .... ...... = -- ..... ..... ..... 

..... ..... ...... .o ..... ...... .... 
...... .... 

....... .... ..... 
'A 

s,s-1 X e -s -s 

We here assume that M is divisible by three so that s = j is an integer. The 

diagonal· submatrices Ai,i correspond to the coupling of square nodal points in 

FIGURE 5.5 

49 



the block of successive 3-lines with index i. The matrix equation (5.28) 

will be completely specified if we now index the .square nodal points within 

each successive triplet of horizontal mesh lines as given in Fig. 5.6. 

[] D 0 
• • • [~] GJ 0 

Q GJ GJ 
FIGURE 5.6 

The ~trix A of (5.28) possesses essentially the same properties · 

[see Ref. 111 as does the matrix Ag of Theorem 3.1; i,e,, ~ 
1
is an irreducible 

--1 
Stie1tjes matrix and A > 0. Mqreover, A is a consistently ordered 2-cyclic 

matrix. The eigenvalues of the Gauss-Seidel matrix~ associa~ed with (5.28) 
,......---", 

are nonnegative and less than unity [11] so that the/result-s,of Theorem 5.2 

are valid when the successive overrelaxation method is applied t~'(5.28). The 

three line successive overrelaxation method may be carried o~t for m ~ 1 b~ 

(5.29) 

""'A ,~m) "' (m) "" (m-1) 
i,i !i -- Ai,i-1 ~~1.- Ai,i+l ~i+l 

(m) _ [-(m) (m-1)] + (m-1) 
~ - w. xi - x. x. -_._ D - . -J.. . --:1. 
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2 
where wb = ----..~===:::::::::= 

1 + ./1- P({) 

·Each Ai,i is a principal subminor of a Stieltjes matrix and•hence is 

also a Stieltjea matrix. Thus, the matrix equation Ai i~m) = f,, which 
'. -~ -J. . 

must be solyed in order.to carry· out (5~29), may be solved directly for 

dm) · · · 1 · 
~ . using the square root method • The number of 'arithmetic operations. 

required for this direct inversion may be reduced [5] by normalizing the 

- . T 
matrix equation (5.28) in the following way. We let Ai,i = Si,i Si,i be 

the factorization, as given in Append~ A, of Ai,i and let Ri,i be a 

diagonal matrix whose nonzero elements are the diagonal entries of s1, 1. 

If 

(5 • .30) 

then (5.28) may be written in the normalized form 

N •, 1,2 0 ~ 
N2,1 N2,2 N2,.3 ;r2 g2 

\ \ \ 

(5 • .31) 
\ \ \ 

\ = \ \ 
\ ' \ 

\ \ ., \ 
\, \ 

N s,s-i N 
a,'? E1a 

-1· - . -1 -1 
where Ni j = R"'. i A1 j Rj j and gi = Ri i ~i ' . ~,. ' ·. ' ' 

The successive overrelaxation method associated with (5 • .31) may be 

carried out for m ~ 1 by 

' '. 
1The details of the square root method are· given in Appendix A. 
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(5.32) 

........ 
so that Si . has unit diagonal entries. Hence~ in the direct inversion of 

ll~ ' . 

Nillill the division operation in equations (~.5) .and (A.6) of Append~ A i$ 

el:iminated. 

The numerical method used to obt~in an approximation to ~ for use 

in (5.32) is given ~ Chapter vi. 

If y~m~ is the j-th 
l..o J 

residual __ R (m) is defined as 

(5 .. 33) 

component of ~he vector ~im), then the sum 

For an eigenvalue problem~ the inner iterations (5.32) in PDQ-5 are ter.minatea 

when 

' 

where o is.same positive constant. 

The ma:l.n m.e.therua.tical dlfft:~.r•tmce between the various .PDQ programs is 

the iteration method used for the inner iterations. The following table indi-

cates the methods used by the various programs. Also given [11] in t~is t,able 

is the asymptotic rate of convergence of these it~rative s·chemes in the numer-

ical solution of the Dirichlet problem on the unit square with the small uniform 

h . h 1 mea spac1ng = N . 
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'• 

PROGRAM ITERATION METHOD ASYMPTOTIC RATE 
OF CONVERGENCE 

PDQ-2 POINT SUCCESSIVE - 2h -
OVERRELAXATION 

PDQ-3 1-LINE SUCCESSIVE - 2 ../2h -
OVERRELAXATION 

PDQ-4 
( 2-LINE SUCCESSIVE - 4h -

OVERRELAXATION 

PDQ-5 CYCLICALLY REDUCED > 5.47h 
3-LINE SUCCESSivE 

OV,ERRELAXATION 

TABLE 5.1 

In Chapter IV, it was assumed that the matrix vector product ~J-1) 

needed to carry out the outer iterations could be obtained exactly. But this 

product_ is only approximated when inner iterations are needed. Hence, the 

- results give~ in Chapter IV need not be strictly valid when inner iterations 

are used in the solution of the group; equations •. The reader _is referred to 

Appendix B for &-,discussion on the effects of the inner· iterations on outer 

iteration~. 
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VI. ESTIMATION OF THE. PARAMETERS a AND w 

The use of the· successive overrelaxation method (5 • .32) requires a good 

estimate for the spectral radius of the G13-uss-Seidel iteration matrix. A 

metho_d given by Varga [21, p. 283] is used to estimate ,p·({) in. the PD,Q-5 

program. This method is based .on the roll owing th~orem: 

Theorem 6.1 Let A be an irreducible consistentlY ordered 2-cyclic Stieltjes 

matriX a.nd let~ be the associated Gauss-Seidel iteration matrix. If 

!(O) > 0 and if 

I (m)= .;;X(m-1). 
-. d...l , 

· [y(m) y(m)] 
(m) - - , -

. ~ - [ !(m), x<m-1)]_ 

then lim A (m) = P(~). Moreover, if the i-th component of !(m) is denoted 
m-CID 

by y~m) and if for y~m-l) r 0 
' l. . . . l. . 

. (6.2) 

then 

(6.3) 

• , 
(m) 

A (m) ~min Yi 
' . (m-1) 

.. _l. . yi . 

~- ------
~(m), > · P( .P) ·~·A(~) • X(m) :> -~(mJ :> A (m) • 

- «.1 - - , - "·~ , 

lim ~(m) = lim A (m) = P~) 
. - ~ l m-CID m-CID · 

The iteration procedure (6.1) 

. and 

program. The upper and lower bound~, 

is us~d to estimate P~) in the PDQ-5 

~(m) a~d A(m) defined by (6.2), are ...... .' 

used to ter.minate the iteration procedure in the following way. If 
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w(m) = 2 · 

, , - 1 +Ji - ~ (m) 

·(m) ; ~ = 

then the iterations are continued until m = 15 or 

2 

l +J. -· ~ (m) 

(6.4) 1
-(m) · (m)l (2 - w(m) )· 
w -~ ::: ··5 

The convergence criterion (6.4) implies that 

( ) (m) ., mJ 2-w 
wb - w ~ 5· ' 

; 

where ~ is the optimum overrelaxation factor defined by Eq. (5.16). 

We note that the matrix-vector product ~!(m-l) in (6.1) may be 

obtained using Eq. (5.32) l:?Y setting g_i equal to the null vector and by 

setting~ equal to unity. Hence, the iterat~ve procedure used.to estimate 

~ takes essentially the same coding as that required for the inner iterations. 

A. The Initial Estimate for a 

The efficient us~ of Chebyshev polynomials in accelerating the con-

vergence of the .outer iterations require~ an accurate estimate of the dominance 

ratio a and the largest eigenvalue ~1 • As alreaqy mentioned in Chapter IV, an 

initial estimate for ~l may be obtained by per!.or.miqg four or five straight 
. . . 

power iterations (4.1) before starting· the Cnebyshev polynomial ~ethod of 
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iteration (4.13). 
. 1 . 

B.r obse~~ the convergence rate of these pow~r iterations 

.. one may obtain an ;initial estimate for o at the s~e time. 

There are, of course9 many w~s of observing the convergence rate of 

these power iterations. For examp1e9 if the error ratio ~ is defined as -K,n 

(6.5) 
}:(n) - x(n) 

~an= i(k) - i\.(k) 

for k < n.~~ then for the power method of ··iteration we have 

(6.6) 

.H.ence9 we may obtain estimates for o from FJJ.I..~~l+l. 

To see why (6.6) is true 9 we first write the vector'£.(/) as 

rl~o> 
ttl> = x(f)·>.(f-.l)·. ·A(l) {6.7) 

The above expression for '.£(/) follows directly f'rom (4.1). If we now assume2 

that.the e~g~nvectors ti of the matrix Tare complete, then we may express 

the initial guess as ~0) = ~ ~~ and Eq. (6. 7) as 
. h=l . 

(6.8) 

lwe assume that the convergence rate is determined by the decay of the 
most slowly decaying component of the error in~/). For the power method, as 
we have seen.in Chapter IV, the most slowly decaying component of the error 
decays as powere of cr. . 

2 . 
We. make this assumption merely for the sake of simplicity. The limit 

in (6.6) is·valid even if the.eigenvectors ofT are riot complete. 
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If ~i is a vector of order MN whose i-th component is unity and all other 

components zero and if ~~l f 0~ then the i-th component ~1(/) of the 

vector ~~) may be written as1 

(6.9) 

where 

Hence, ir2 o/i(f) f 0~ then 

(6.10) 

As l becomes large we may write Eq. (6.10) as 

(6.11) 

Hence, if a2 :: ~ a2 i and !!:2 .:: min a2 i~ then as {becomes large we have 
l. ~ ' i ' . 

(6.12) 

1 ' ' ' ' 
·Again for the sake of simplicity~ we ass:ume that 1).2 1 > 1).

3
1 in 

writing Eq. (6.9). 
2 ' ' 

. If ~(0) is obtained using Eq. (3.13) from a positive guess for the 
. group fluxes; then ~1(J) and ~t1 are eit~er both zero or both nonzero. 
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Therefoz:-~, using ( 6.12) we obta.in 

--Another w~ of obtaining initial estimates for a d.s by means;·' of the . . 
sum residual (defined by: Eq. (5.33)). If R(m) i~ the sUm. residual for group 

\ g 

g at the end of inner iteration m during the f-th outer iteration, then the 

estimate for a at the end of the f-th power iteration is 
I 

(6.13.) 

. G R(l)(,() . 

1 [ .-:5·~­
G g=l R(l 1 (.(-l) 

. g .. 

For a discussion on the use of the sum residuals as a means to estimate the 

initial a, .the reader :is referre~ to Varga [18]. 

The PDQ-5 program,uae~ the sum residual method for obtaining the 

initial estimate for a. Normally, t~is initial estimate for a is too low. 

Thus, one would like· to be able to obtain updated est:i.rnat.es fo:r a. 

B. Updating the E3tim&tee for I.Ti 

If instead of applying a; s·ingle Chebyshev polynomial of high degree; · 

one wo~d repeatedly apply a low degree Chebyshev polynomial tben n~w esti-
. I 

mates for a may be obtained by comparing the convergence rate actually being 

obtained with the theoretical convergence rate one would obtain if the a 

being used were correct. 

We ~tse the er~or ratio ER51 defined by (665)j to measure the convergence 

rate actually being obtained. I~ order to see what the errQr ratio measures; 
- ! 

~~ . * 
let us apply a 'Chebyshev polynomial of degree t to the vector estimate '£(/ ). 
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We assume that Al is known ~d shall denqte the present estimate for a by o0• 

From Eqs. (4.9) and (4.10), we may write 

C (2x - 1) 
t 00 

2' c (-- 1) 
t 00 

, 

. MN 
If '£([*) is expanded in tenns of the eigenvectors of T,. ~J'*) = [ ctJth' 

- h==l 
then ~ (f* + t) may be written as 

' -As done previously, we now write the i-th component of the vector '.f.(f* + t) as 
' 

(6.15) ~i(f* + t) = c..·~iTY!l {i + a2 .Pt - (9) + .r ah .Pt . (rh)} , 
. . J. , l. , 0 0 h=? , l. , 0 0 

where 

If we assume that l: a .Pt (rh) is s.mall relative to a2 .Pt (o)1, then 
h=? -n, l. , oo , l.. ' oo 

. (6.15) m~ be wrj.tten as 

~i (/* + t) : 01•i'.li { 1 + a2,ip t, a/0>} 
1This assumption is generally valid'if a is pretty well separated fre.m 

the rh 1s and if o0 is an und~resttmate for o. 
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and 

(6.16) { 
i<l* + t + 1) - ).1 { 1 +~{a- l)Pt,ll

0 
·(~)} 

0 

. !<i* + t + 1) :· ).1 { 1 + ~2(a- l)Ptlloo (a)} 

where 

a2 = max ~2 . i and g_2 = min a2 . 
i ll . 1 ,~ 

Therefore)) we have for 0 < k < t 
- i 

(6.17} 

and in particular for k = 0 . 

(6.18) 

Therefore.,? ~{*+l.9/*+t.+l gives a··measure of. P t.9 
00 

(c). 

purposesl' we sha;Ll denote ERt~+lll/K·+~+i just ~~- (ER>t_. 
-· (~)t to see if o0 is a good approximation for a;· 

Case 1~ 1 
(ER\ ~ 2 c (-- 1) 

t 00 

For notati_onal 

-'. 

Fram Fig. 6.1.9 this case implies that a ~ 00 so that we are getting 

the con~ergence rate ~ected by using o0• Hence.? we continue to use o0 .in 

the generation of the next Chebyshev polynomial. 
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Case 2: 
1 

l > (ER\ > -~2-=---C (- 1) 
t 00 

Again from Fig. 6.1~ this case implies that o > o0 and we are not 

obtaining the expected convergence rate. Thus, a new estimate for o should 

be used _in the generation of·the next Chebyshev polynomial. To obtain this 

new estimate for owe use the result given by (6.18). Using ~he definition 

of' Pt (a), we may write (6.18) as 
'00 

c (2 0: - 1) 
t. aO 

2 c (- - l) 
t 00 

and since Ct(y) =cosh (t cosh-l y) for y ~ 1 we have 

(6.19) 0: 2 

tl 
The right side of expression (6.19) is then used as the new estimate ·for ~. 

If o00 is this new estimate obtained !rom (6.19), one may easily show that 

Caoe 3: 

If (ER)t > 1, then there. has been no erro~ reduction and something 

is obvioUsly wrong. 
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Another technique for updat~g the estimates fqr a would be to perfor.m 

power iterations between the generation of t~e low degree Chebyshev po~amials. 

However, in addition to slowing down the convergence rate of the overall problem, 

it has been ~ound experimentally that the estimates for c obta~ed_ by this 

method are generally not as good as those obtained by (6.19). 
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APPENDIX A 

The Square-Root Method for 

Symmetric Positive Definite Matrices 

In this appendix~ we shall describe a systematic method to solve 

directly the matrix equation 

(A.l) J\!=.E ·~ 

where A is an N x N symmetric positive definite matrix~ X is the unknown 

vector and E is the source vector. 

We have [6, 23]. 

Theorem A.l Let A = (ai~j) be anN x N symmetric positive definite ~atrix. 

There exists a real upper triangular matrix S = (s .. ~) with positive diagonal 
~~~.~ 

entries such that 

(A.2) 

The elements s. j are given by 
~,9 

(A.J) i-1 

s .. 
~l,J - J=

1 
s[,l "f,J 
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s .. = 0 ~ i > j 
~, J 

s .. 
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Therefore, the solution of matrix equation (A.l) can be reduced to 

the so+ution of two trian~a~ systems 

(A.4) 

Both systems in (A.4) may be solved di~ectly by 

(A. 5) . 

(A.6) 

N 
· Y ~· L s IJ xu 

X = i f=i+l i,~ ~ 
i s. 'i l., 

·' i < N 

We note that· the matrix S is independent of the source vector ,!:. · 

Hence, if the matrix equat~on A! = ,!: must be solved for many different 

vectors E) the matrix S ne.ed orily be computed once. 

We now seek to dete~ine the number of multiplications and divisions 

required by the square-root method to obtain the solution to (A.l). when A is 

a particular sparse matrix. 

Definition A.l The matrix A 

smallest nonnegative integer 

:: (a. .) is an n-diagonal matrix1 if n is 
l., J 

such that a1, j = 0 if I j - i I > n. 

the 

From Eq~ (A.3), it follows that if A is an n-diagonal matrix, then 

s is also an n-diagonal matrix. Hence, from equations (A.5) and (A •. 6r we have· 

1
An n-diagonal matrix is sometimes called a band or. s .. triped matrix. 
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Theorem A.2 Let A be a general irreducible n-diagonal Stieltjes matrix. If 

the S matrix is at hand, then the solution of A! = ~ by the squane-root method · 

requires an average o£ 2 n multiplies· and 2 divisions per unknown. 

In order to carry out the cyclically reduced three-line successive 

overrelaxation method described in Chapter V, the matrix equation 

(A. 7.) -A .~m) = f 
1,1 :!1 -1 

ie eo~ved directly using the square root method described above. If th~ square 
' ·,' 

nodal points withiR each s~ccessive tripl~t of horizontal mesh lines .are ordered 

as in Fig. 5.6, then it is easily ·~een that the Ai,_i ~re 3-diagonal matrices. 

- Hence, fram Thm. A.2, the solution of (A.?) by the square root method requires 

6 multiplies and 2 divisions per unknown. As described in Chapter V, the 

division-operation may be eliminated by the normalization of Eq. (A.?). 
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APPENDIX B 

The Inner-Outer Iteration Problem 

The basic problem in multigroup diffusion problems is to dete~e 

the fundamental eigenvalue and corresponding eigenvector for the eigenvalue 

system 

(B.l) 

We saw in Chapter III· that the problem (B.l) ~y be restated in terms of the 

fission source1 as 
........ ·-· 

(B.2) 

As described in Chapter IV, the power method (4.1) and the Chebyshev 

polynomial method (4.13) may be used to obtain by iterative means approxima­

tions to the fundamental eigenvalue and eigenvector of (B.2). All the results 

of Chapter IV are based on the assumption that the matrix-vector product T~ 

may be obtained exactly. But in Chapter V we saw that this product is only 

approximated when inner iterations are required in the solution of the group 

equations. Hence, the results of Chapter IV are not strictly valid. ·Two 

related questions which then confront us are (1) What effect do the inner 

iterations have on the outer iterations in the solution of the eigen-problem? 

(2) What accuracy is required in the inner iterations in order to minimize the 

total computer time required to obtain a satisfactory numerical solution to 

the eigenvalue problem? 

The inter-relations betwe.en inner and outer i~erations seem to be very 

complex. We will not even attempt to give direct answers to the above questions. 

1The definitions of the vectors and matrices given in Eqs. (B.l) and (B.2) 
are as given in Chapter III. 

67 



Instead we seek only to present several approaches which hopefully will shed a 

little light on the answers to these questions. The first approach is simply 

an error analysis designed to detennine how the errors created in PDQ--type 

problems by not obtaining T~ exactly are propagated in the outer iter,ations. 

The second approach is to obtain a new eigenvalue problem which t~es into 

account the fact that inner iterations are·being perfor.med • 

. A. Errur P.t·opagatiofi it1 the Outer Ittt.ral.l~uli 

In this &uitction we se~k t.n ~ALe·nnine .how the ·errors created by not 

obtaining Tte.xactly are propagated in the outer iterations. For this 

purpqse we need only consider the tW;O-group prob~em which may be described 

as 

(B.3) 

where 

X 
A~2 = 11_!1. + 'A 2 Y!. 

\ 

, 

Thus, the eigenvalue problem (B.3) can be written .. in ter.ms of the fission 

source ao 

' 
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~(f) 

For notational purposes let 

be the values of the group fluxes, fi~sion 

s~urce, and T'£(/-1) which one would have at 

the end of the /-th outer iteration if the . . 

T~ could be obtained exactly. (The vector 

£({) is defined in Eq. (4.1).) 

be the approximate values of the group 

. -. fluxes, fission source, and Tt(/-1) which 

one wo~d have at the end of the f-th outer 

iteration when inner iterations are needed 

to approximate the matrix-vector product 

be the inner iteration error vectors which 

-1 - -are defined by ,£1 (f) = '\ ~'£(/-1) - ! 1 (f) 

.£2 (1) = A,2i[f1_~ (/) + x)'<f-1)] - i 2<l> 

be the outer iteration error vector defined by 

.,...... -§.(/) - Tf{/-1) 
~(/) = "A(f) 

Using the above definitions we have 

.......... -1 .......... 
!l(f)- ~ Xl'£(/-1,) ~ .£1(/) 

'i;CI> = A,21Cf1.~ (J) + x2~/-l)J ~ ~2(/) 

§<I> = T~/-l) - Fl.£1 (/) - F2[.£2,(.() + A2~.£1 (~)] 
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and 

Now assume that we have a fission source guess 'f(O) and an approximation 

o0 for"a and we wish to perform the Cheby~hev polynomial method (4.13) with 

inner iterations. ·If 'A(f) is a·good approximation for the largest eigenvalue 

}...l of T, then fr~ (4.13) and above we hav~ 

sQ that 

For the second outer iteration we have 

Now using the fact that 
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we have 

which may be written in ·the form 
' 

For the third outer iteration we obtain in similar fashion 

~(3) - Y:(3) =!La 2 1 . [c {~ 1) 
" . 0 c (-' - 1) 2 0 0).,1 -

3 a · 

c (~- 1) 
3 00 ' 

0 

and in general for the 1-th outer iteration we have 

where 

The expression on the right side of Eq. (B.5) is thus the .error 

introduced in the outer iterations by the inner iterations. But since the 

~(f)'s are not lmo'Wl'l.11 this expression does not appear to be of a,ny practical 

use to us. Howeverj this expression does allow us to determine how the inner 

iteration errors ·are propagated by tpe Chebyshev polynomials. 
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If we aga~ assume that the eigenvectors Y:i of T span the associated 

vector space.~ then we may express the ~(f) as 

E(f) 
MN 

= L al ~f· ·-1 ~~ J. J.-

Remembering th~t we are seeking the eigenvector .t1 corresponding to A-p we 

are interested in seeing how the te~s aJ,i~i for i f 1 are propagated in 

the outer iterations by the Chebyshev polynomials. The following tables 

show how the te~ a1,~2 in the expansion of ~(/) is propagated for various 

values of o0• , The eyml:?o1 S j:; l represents the . coefficient of a j ~ ~2 in the 

expansion of ~(j) at the end of the /-th outer iteration. 

TABLE I: o0 =: • 5 o = • 5 

I. 81~1 s l" 2:~ 
83~1 s4,[ . 85:~/ 86~! 8

7,1. 
8

81}/ 89,/ 81o~t 
; 

1 1.33 

2 .47 1.411 
I 

3 .12 .485 1..37 i I 

I 

4 .028 ' .;125 .471 1.37 
' 

5 .006 .028 .121 .471 1.37 
' 

6 I .001 .006 .028 .121 .471 1.37 

7 • 0002 .001 . .006 .028 .121 .471 1.37 

8 --- • 0002 • OOil . .006 .028 .121 .471 1.37 

9 --- --- .0002 .001 • 006 .028 .121 .471 1.37 

10"" --- --- .0002 .001 .006 .028 .121 .471 1.37 
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TABLE II: o0 = • 8 ; o = • 8 

'I 51~~! s2,{ S3~[. 54~~! s5,/ s 
6111. s7,/ s8.?/. 59~~1 510,{ 

1 1~66 

2 1.43 2.14 

3 .83 1.67 1.944 

4 .425 .957 1.49 .1.915 

5 ;203 .489 .853 1.46 1.91 

6 .093: .233 .435 .838 1.46 1.91 -
7 .042 •107 .208 .427 .836 1.46 1.91 

8 .018 .048 .095 .204 .426 .836 1.46 1.91 

9 • OCY/8 .021 .• 042 .094 •. 203 .426 .836 1.46 L::91 

10 .0033 .009 .019 .041 .093 .203 .426 .836 1.46 1..91 

TABLE III : o0 = • 9 ; o = . 9 

i 51~~1 s2,f S3~~f. 5
4,/ 55,[ 56 l · 57~~! . s8,/ s9,f. s1o,f ' . 

·1 1.82 

2 2.24' 2.73 

3 1.83 2.99 2.43 I 

4 1.29 2.36 2.56 2.34 

5 .84 1.64 2.00 2.44 2.32 

6 .524 1.07. 1.39 1.91 2.41 2.31 

7 .318 .67 .90 1.32 L88 2.40 2.31 

8 .189 .40 .56 .86 1.30 L87 2.40 2.31 

9 .110 .24 .34 .53 .85 1.30 L87 2.40 2.31 

10 .063 .14 .20 .32 .53 .84 LJO L87 2.40 2.31 
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TABLE IV: 00 = .98 ; 0 = .98 

I s1,/ s2,/ s3,/ 84,i 85,[ s6,f. s7,/ 88,/ s9,[ 81o,t 

1 1.96. 

2 3. 50 3.64 

3 4.41 6.12 3.43 

4 4.74 7 .• 40 5.53 3.25 

5 4.65 7.74 6.50 5.16 3.20 --OOOL 

6 4.30 7.45 6.68 5_.,96 4. 93 3.15 

7 3.8<. 6,R2 6.37 6. 06 5.64 4.80 ,3.ll 
. " -- . ·~·~ 

8 3.31 6.04 5.80 5.75 5. 71"" 5.46 4.72 ).10 

9 2.82 5.21 5.ll 5.21 5 • .39 5.50 5.35 4.68 3. 08 

10 2.36 4.42 4.41 4.59 4.88 5.18 5.38 5.29 4~·65 3.08 

TABLE V: 00 = .8 ; 0 = .98 

I. s1,{ s2,f s I 3, 84,/ 85,! s6,/ s7,/ 88,/ s9,/ 810,/ 

1 1.66 

2 ~.07 :2.l4 

3 2. 05 2.42 1.'744 

4 1.97 2.36 2.16 1.915 

5 1.89 2.27 2.107 2.12 1.91 

6 1.81. 2.17 2.02 - 2. 07 '2.12 1.91 -- - ... - ----·7 1.74· 2. 07 lu 93 1.98 2.rt7 .2;-12, 1.91 
~ 

$ 1.~4 1.98 1.84 1.90 .1.98 
........ 

2.07 2'12 . ' 1.91 
' 

9 1.57 1.91 1.76 1.81 1.89 1.98 2.07 "-2.12 1.91 
' 

1.98 ' 10 1.50 1.82 L72 1.73 1.80 1.89 2.07, 2.12 1.91 
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Even if inner iterations are not required, the above tables may be used 

to dete~ine .the propagation of round-off errors in the generation of Chebyshev 

polynomials using the thre~-ter.m recurrence relation (4.12). 

For the straight power method (4.1), one· may easily show·th~t the 

analog of .~· (B. 5J is 

(B.6) ;_
f T f~j 

= (~) §(j) 
J /\1 

In the next section we shall take into account the fact that inn~r 

iterations are being perfor.med and obtain a new eigenvalue problem which 

under certain conditions has the same fundamental solution a,s (B.l). 

B. A Ne"f Eigenvalue Problem 

From Eq., (3.17) it is clear th.at tl:le strai~t power method applied to 

the eigenvalue. problem (B.l) may be-carried out by solving successively the 

system of group equations · 

(B.?) 

For t-w and tlaree dimensional problems, the .A is generally cannot be directly g . 

inverted so that inner ite~ations must be used to obtain approximations for 

the cp (/) 's. -g 

Let Ag be written as 

(B.S) A = H-1(I - P ) g g g 

so that a stationa~ iterative method to solve A.cp · = S mav be written as • ., g--g - .., 
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(B. 9)· ~(m) = p ~(m-1) + H S 
-g ~rg . . g-

where m is the inner iteration index. 

of the.initial guess ~(O) as 

Equation (B. 9) may be written in terms 
\ 

(B.lO) 

-g 

<p(m) = tn ~{O). + (I + P + • •; + p111-~)H S 
-g . g ""':g' ' g g ~ 

I 

For the rest of this section we· shall assume that &. 'fixed .awubei• ·.w of 
- . g 

inner iterat:i.0ns are performed in ·group g for e~ry outer iteratiG>n. If we 
--1. 

now def~e Ag as 

m -1 A-l =(I + p + p2 + • 0 • + p g )H 
g g g g g 

then Eq. (B~lO) may be expressed as 
I 

Thus, if·we let 

then wRen inner i~erations are performed we actually obtain instead of 1B.7) 

the pse~d~·systam 0f group equations · 

(B.ll) 
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m 
-1 (' g ) A ·= I+ p + •oo + p + ooo Hg g g ' g . 

so that 

(B.l2) . 

--1 ( ) Thus, Ag is nonsingular and we may writ!=! Eqo Bo11 as 

(Bo13) {A ; .([) - R ; <i> =·A p:g ig</-l) g--g· . g-1-g-1 g 

X G - }g=G 
+ -:;:rf-ry L F~k (/ -1) 

. k=:=1 ' g=1 

Thus, if we let 

-t1> (/): 

DE 

-
p_1{/) 
-p_2{/) 
. 
• . ... -P.rz(/) 

·o 

' ' ' 

~ 

EE ' , 

b 

, and P = 

0 

A2 

' ' 
' ' ' ' ' ' -' -JlG-1 'A 

G 

0 
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then (B.l.3) may be expressed in the matrix form .. 

- XF - - -
E <l> (f) = )..({-l) <l> Ci-:-1) + DP <1> (/-1) 

or equivalently 

(B.l4) 

From Eq. (B.l2) we have 

which may be expressed in the form 

Thusj 

E = E + DP 

• 
and (B.l4) may be written as · 

or equivalently 

(B.l5) 

- - -
If tl:le iterative process (B.l5) is convergent, i.e., q:(f) ==.<:t(/-1) = p 

and )..(f.) = )..(i-1):: )..j then from (B.l5) we have 

so that { ~' ).. } is also an eigen-p~ir of tl:le matrix E-~F. Moreover, frem 
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- -1 
Thm. 3.2 we_.know that any positive eigenv~ctor of E ~F is just a scalar 

multiple of the fundamental eigenvector <P1 • Thus,~~ -if the iterative process 
- -

(B.l5) converges and if <l> is a- positive vector.~~ taen A = Al _and~ is- a 

scalar multiple- of~.: Even though we do not know what condit-ions are needed 

on the matrix P to insure the convergence of (B.l5).~~-it is of some consolation 

to know that if the-process (B.l5) does converge and h~s a positive solution 

vector, then this solution is also the desired ans~r to the eigenvalue problem 

(B. 1). 

Assuming that the process (B.l5) is convergent and tha~ A(f) is a good 

appro~ation to x1 , then When inner iterations are perfo~ed the power method 

is actually be;ing· applied to the eigenvalue preplem 

(B.l6) 

and thus the rate of convergence of (B.l5) is determined by the eigenvalues 

~ of the matrix (I + E-1 iiPJ-1 [ E-~F + E-1 jjp] • We note that Y = 1 and 

~ ='!?1 is a solution of (B.l6). 

The eigenvalue problem (B.l6) cannot be restated in ter.ms of the 

fiss.ion source as was done in Chapter III for the system (B.l). Thus, 

when inner ::l.terations are performe~.)l the Chebyshev extr~polation t>f the 

fission source vectors as described: in Chapter IV are not associated with 

any well-defined eigenvalue problem. The eigenvalue problem (B.l6) is well­

defined,~~ however,~~ so might it not be better to apply the Chebyshev polynomial 

method to this problem? 

From 1Gl:lapter IV.l> sufficient condi1ions for the rigorous applic:ation 

of Chebysl:lev polynomials t~ (a.l6) are that the matrix 

(I + E-1 iiP)-1 [ E-~,F + E-1 jjp] )lave real eigenvalues and a CQIIIp1ete set 0f 
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eigenvectors. The range of the eigenvalues is also needed. An experimental 
I 

and analytical investigation is currently being undertaken to dete~e how 

· ( -1 - )-1 [ E-
1
XF -1 - J nearly these conditions can be met by the matrix I + E DP . . + E DP • 

. }..1 . 

Other approaches to the general inner-outer iteration problem are also 

being investigated. For example, .E'. L. Wachspress of the Knolls Atomic Power 

Laborator.y is currently investigating the possibility of using Wielandt 1 s 

method of fractional iter~tions to accelerate the outer iterations. 

The author wo~d like to express his appreciation to Professor 

R. s. Var~a for his aid in. the development of this appendix. 
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