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A,

In this report a description is given of
the mathematical theory and methods used
in the PDQ-5 program to obtain the numer-
ical solution to the few-group; time-
independent; neutron diffusion equations
in two dimensions. The finite difference
approximations of the continuous problem
for both x-y and r-z geometries and the
properties of the resulting matrix problem
are given, The mathematical features and
the practical applications of the numerical
methods used to solve the matrix problem
are discussed in detail,

NUMERICAL METHODS AND TECHNIQUES USED IN THE
- TWO-DIMENSTIONAL NEUTRON-DIFFUSION PROGRAM PDQ-5

I, INTRODUCTION .

This report describes the numerical solution of the few-group, timef
independent; neutron-diffusion equations in two dimensioms utilized in the

PDQ-5 program [u]l. The neutron-diffusion group equations solved by ?DQ—S

are of the form

(1.1) { - div[Dg(r) ‘grad ‘Pg(z)] + 6g(.z;)¢g(;:) - oz_,l(z)q"g_l(_r:)

- where

r = the spatial vector whose set of components denotes the

x-y and r-z coordinates,

1Number; in brackets refer to the list of references given at the
end of the report.



g = the lethargy group index,

G = the 'number of lethargy groups.

¢g(g) = the ﬂeutron‘flux;'

Dg(g) = the diffusion coefficient and Dg(g) > 0.

02(2) = the absorption macroscopic cross section.

8 .
og(g) = the scattering macroscopic cross section from group g to

group gtl, qg(z) = cg(z) = 0 and OZ(E) 2> 0.

!

BS = thé geometric buckling,
og(x) = o5(r) + oi(r) + ng;)sﬁ; 0 (z) 2 O
Xg = the integral of the fission spectrum over the lethargy

range represented by group &. Xg 2.0 and X1 > g,

uog(g) = the fission macroscopic cross section times the. average |
number of neutrons released ber fission, vcg(g) 20, .

A = the elgenvalusé.- ’

We further assume that the following conditions are satisfied:
(2) The domain of interest is a rectangular region R in the x-y
or r-z plane. | ‘
| (b) The region R may be divided into a finite number of subregions

~.

Ri such that Dgy oz,_qz, and °§ are constant withih?eagp sub-

region Rio .
39 _(r) :
(c) ¢g(£) is continuous jn R and Dg(g) __gﬁ—_ is continuous across

interfaces between subregionsl°

1 %% refers tu the normal derivative.



£

(d) When rel; the external boundary of R, then either ¢g(g) =0 or

3 _(r)
A = 0. There is no mixing of boundary conditions on any

an
one external éide of R,

(¢) For g =1, 25 ...5 Gy cg(;) >0 for some subregion R; or else
¢g(;) = 0 on some boundary segment of R, Also, cg(;) > 0 for
some subregion Ri and some g '

With the homogeneous boundary condition (d), the problem stated above

then defines an eigenvalue problem and we seek to determine solutions of (1.1)
corresponding to the largest (in modulus) eigenvalue \ of (1,1)1. For compli-
cated reactor designs, we can only hopé to find approximate solutions to this
problem by the usé of numerical methods, The PDQ-5 program was 1»11':11:ten'2 for
the Philco-2000 digital computer to solve this problem numerically.

The purpose of this report is to give a complete mathematical analysis
and discussion of the numerical methods used in the PDQ-5 program. This report
is one of three reports being written which will describe the PDQ-5 program.
The other reports will cover (1) program description [4] and (2) auxiliary

subroutines [15]. -

lFor a proof of the existence and uniqueness of this largest eigenvalue
and its corresponding eigenfunction, see Ref° 10, .

2The PDQ-5 program is written in the’ FORTRAN language.



II. NOTATIONAL CONVENTIONS AND DEFINITIONS

- 'The notation A = (a,i j) means that a; 3 is the (i,j) entry of the matrix
3 3 :

A, Similarly, the notation A = (Ai ,j) means that Ai is the (i,j) submatrix
. s

sJ
in the partitioned form of the matrix A, If A = (a.:.L j) is an n by m matrix,
. 5 .

then we say A is a nonnegative matrix if ay 3 >0 foralll <i<nand
‘ v =2 : 53 = :

1< jlg m, Similarly; we say A is a positive matrix if ay 3 > 0 for all
- " 0 . R Y .
l<i<nandl< j< m, The transpose of the matrix A will be denoted by

‘ ' *
AT and the conjugate transpose by A .

A vector in n~dimengiorial space over the complex field 7‘.1111 be indicated
by a symbol with a bar under it, such as x. In this paper, vectors are con-
: ™
sidered as n by 1 matrices. Thus, §T, x and the nonnegative and positive

properties for vectors are defined as above for matrices. The inner product

3*
of the vector x with the vector y is defined as the vector product x y. We
shall denote the inner product of x with y as [x; ¥]. A matrix A is said to

be positive definite if the inner product [x, Ax] is positive for every nonzero

vector X. .

We now define several matrix properties which will be of interest to us.

Definition 2,1. The n by n matrix A = (éi j) is said to be irreducible >
3

for any ordered pair of integers i and j, 1. < i, j<n, there exists a

sequence of nonzero entries of A of the form

a ) a'.

2 E : 9 eoo a, Y 9 a
U L WPV WL

im-l’ 3 -

Definition 2.2, The real n by n matrix A = (ai,j) with a, 5 O for all i # j
s

is called a Stieltjes matrix if A is symmetric and positive definite,




The concept of the directed graph [21, p. 19] of a matrix will be used
in Chapter V., Let A = (ai j) be an n by n matrix and consider any n distinct
5 9

points P1 P2, PR Pn in the plane, The points Pk are called nodes, Now

for every nonzero entry ai’j’ we connect the node Pi to the node Pj with an
b4 ' N
arrow pointed towards PJ,. In this way, a finite directed graph can be

associated with every n by n matrix., The directed graphs of the matrices

011 0 0O
A={0 0 1 and B={03 0
1 00 0 2 0
are given in Fig., 2.1.
Plvpz
: P3
Directed Graph of A . Directed Graph of B

FIGURE 2.1

Finally, by f£{x).= a(x) + o(x), we shall mean that

lim fx) - a(x) _ 0.
X

X —=0



III, PASSAGE TO THE DISCRETE PROBLEM

Having stated the continuous problem in Chapter I, we-néw proceed to
form and state the discrete problem,. To do this we first impose a nonuniform
mesh of horizontal and vertical lines on our rectangﬁlar'region R such. that all
internal interfaces and external boundaries lie exactly on mesh lines, The
intersections of the horizontal and vertical mesh lines theﬁ define the set; H,
of mesh points on R and we sesk the solution 9 (r) only at the mesh points of
R, If the point r is in the set H and is the point at the 1ntersection of the
i-th column and the j~th row of the mesh lines, then we let ¢g(i,j) denote an
approximation for ¢ (;1:_)° If ¢g(£) 1§ not known, then we call the mesh point
(4,3) & nodal point. In Fig. 3.1, there are (M + 2)(N) mesh points but only
MN nodal points. The ¢g(i,j) at nodal points are the unknowns for the discrete
pfoblem, If now, for every nodal point, we replace the differential equation
(1.1) by a certain finite-difference expression;, then the discrete problem
will be completely defined. A finite-difference equation which approximates
the differenéial gquatioﬁ'at a nodal point is by no means unique,  We shall
derive the . finite-difference equations used in the PDQ-5 program for the r-z
geometry and jnst state the finite-difference equations used for x-y gecmetry.

For a derivation of  the difference equations in x-y geametry, see Varga [17]

A; Derivation of the Difference Equations

In applying the diffusion equations to reactor’calculationé, we are

actually interested in a three dimensional model. The two-dimensional model

1

(1, 3) A finite-difference expression is simply a linear expression in the
? 19 j ° . .
g



y . 9=0
e /
.M
~ (4,541) L
' - by
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- (1, 1),
—
hy h,
1
0 i :
i-1 ..\,Xi e
| 9 =0
FIGURE 3.1




is obtained by asswning that the flux ¢ e is a function of only th‘r'o of the three
space variables, In order to derive the difference equations for r-z geometry,
we shall consider the three-dimensional r-z-g model but make use of the fact
that ¢ g is not a function of the varn.able 8.

Lgt. us consider an a.rbitrary interior nodal poinp (i, 3) in the r-z
plane (see Fig. 3.2). For each of the ines"h volumes, Y[, éurrbunding the

point (i,3) (see Fig, 3.3), the diffusion equation may be written as®

(3.1) {-— Dg’( div (grad (Pg(r,z)) + cg,.l <Pg_(r,‘z').- °§-1,£ <Pg_l(r,z)

%e & {=
=& vo ? (r z)

A gz—l gs ( g I=l

We now integrate Eq. (3.1) over 'each\' of the mesh voiumes, Vio

(3.2) - {- Dg’I J' '.d’iv (grad (Pg(r,z))dV'+ 9y, ¢ J‘ <Pg(r,z)dV

' "
S 4 =
- “Z.nl,[-l‘ Yy 1(r,z)ci\l =—=5 Z [vo [ 9 (r,z)dV]}

By the divergence theorem, the first term of (302) can be reduced to a surface

integral of‘2 —-5 over the six surfaces which enclose V{ Since (Pg is not a

Ihe physical parameters D (;;_) g, (;:) etc. are constant in each mash

volume V[ and we denote these constants by D g, [, o g f’ ete,
2 ¥

Here 51& represents the derivative of ¢ g in the direction of the
¥,
outward normal to the surface., Hence; Sﬁs= + S_ng .
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FIGURE 3.3
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a‘P
function of 9, > is zero over the two vertical plane surfaces which enclose

V,(" Hence, say for volume element 2, Eq., (3,2) may be written as

53 *® 3P F
(3.3) ‘ Dg,2 {I an do * J‘ an do + f Jn do .-+ I an do}
. 99 - : % %o

+ O J‘ (P (r,z)dV - g _1,2 J‘ (Pg l(r,z)dV
. 2 ) N '. .2
Xy & ‘
=& f
)\ Z [uog’2 J' <Pg(r,z)dV] o
Equations similar to (3.3) may be written for V > f=1, 3, 4. Since the neutron

P

current, -D -a-;l‘g s is assumed to be continuous across interfaces, the surface

integrals over the common surfaces cancel when the four expressions of (3.2)

are added. Hence summing (3.2) over the four volume elements, we obtain

2 W L%

’’g g
(3.4) ~Dg 2 kglj‘ - dg = D1 kgsj = 4o

— | % _

6 o2 8 9

- . 2 » 8
g,3k_5j o 48 Dghkng an 4°

O %



We now make numerical approximations to the integrals in (3.4) in order to

obtain our finite-difference equation at mesh point (i, j). Integrals of the
normal derivative such as J‘ -a—ng do are approximated by
|
o

1
» 9 (1 +1,3) - 9.(1,9)
(3.5) - -a'—hﬁdo:[?‘ ~jh - ] do
0 S !
®(1+1,3) -9 (4,)) h
JEETE PP

[

and integrals such as J‘ <Pg(r, z)dV are approximated by

V2
, h
L o ) A @by (r +7%)
(3.6) [ oglrsa)ay = o,(1,9) | dV..(Pg(i,j)[‘ Rk ] u
V2. Va

Using the above approximations, the general finite-difference equation at nodal
point (i, j) may be written as.
. a + +a i- +a i,5-1)

+ + : +a i,j) - @ i, J

"-5)5 49 5
=& Ya 9 (1,39
x.g=lg,ég" :



where

2
. _ Dgl 2(r- )+D h(r+-ﬂ)
851 2h,
h h
b
o= Dg3halr- )”’g;ﬁ(r*a)
g53 2h3
= r 1
agsz (2h2 l&) [D891 h‘l + 1?833 h3]
_ 1
(.lgsl-b '.(21'1 l&) [Dgsz hl M Dgsl& h3]

ol

h.

2y .
- + + + a + - == .
g5,0 [agsl ag,2 a893 gsli-] 4 {og,l hlhz(r L )

h h2 E&
* 05,2 My (r ¥ )+°323(""7)+°ga 34(”4)}
a =3 {0 ( i1——)+‘°‘ n (r +24)
g-1,5 4 Y%-1,1 Mhelr - 1,2 Mby, L

h ' h
_ =2 b
+013 h(r )+°glh3hh(r+h)}

h h
1) s ] y L
a'gg.é % {yo 2 h (r m ) + y0592 hl'hh(r + T )
h ’ h '
o2 f b
tv ,3 h (r L ) + Vg h3hh(r + T )} .

If the nodal point (i,j) lies on a segment of the boundary where -g% = Q,
- f .
.then the con§tants Dg, & ogx e °g—1, L and og’ { for those regions which are
outside of R are set to zero. .No finite-difference equations are needed for mesh

points on a vsegment of the boundary where <Pg = Q,

13



The finite-difference equation (see Fig. 3.1) used in the PDQ-5 program

for x-y geometry at a nodal point (i,j) is

tay (1L 0) ta, 09, (L0) —a ) o9 (4,5)
Xg f (1, 3)
= . Q L4 ipJ 9

where -

+ 4
a = _ Dgsl hl D 33 h3
. Bs? ‘ 2h2
+
_ D3P Th
853 2h3 .
+ D
X = g,u gy T Dgaty

) 1
a =-la +a + a +a + = + .
g50 [ gxl g2 g3 894] 4 {891 hlh2 08,3 h2h3

%, Bty * O g2 hz,hl}

1For a derivation of these equations, see Varga [17].

14



1 S =
== + +
%g-1,5 "} {g—l 1 mhp 0g-1,3 Nah3 + g1, Byl + 05y o 4“1}
1) f f £
a , =, + + + .
g_,é h{u og,l hlh2 uc 2,3 h3 chah h3hh vo 2,2 hb,hl}

The difference equations at nodal boundary points for the case of x-~y geometry

are modlfled in the same manner as that described above for r-z geometry,

B. Statement of the Matrix Problem

In this section we wish to form the matrii problem which results from
the above discrete approximatién of (1.1). Unless oﬁherwise stated;, the dis-
cussions angAresults‘given'fof the rest of this paper are independent of whethef
the geometry is x-y or r-z. Alsg, as is the case for Fig. (3.1), we'éhall assume
that there are MN nodal points ﬁhich are determined by M horizontal and N vertical
mesh lines, | o

For each group, using the above approximations, we have a linear equation
for each of the nodal pointsﬁ In order to represent this system of equatiéns’in
matrix form, we need to order the equations and unknowns in some specific way,
We shall do this by assigning an integrél index number from 1 to MN to each nodal
point énd then order the equations and unkmnowns for group g such.that the k-th
equation corresponds to the finite-difference equation at the nodal point of
index k and the k-th unknown corresponds to the ¢g(i,j) at the nodal point of
' index k. For example, if the nodal points are irndexed consecutively by rows,
as shown by Fig. 3.4, we may express'thé discrete approximation to Eq. (1.1) in

the matrix form

15



S X, & ] G A
(339) | { Ag Qg = Rg—l gg—l ='}\ Z Fk gk- =1 s

column‘vectors, the k-th term of which is the ¢g(i,j) at the nodal point of

s and Fg are MN by MN matrices and the Qg are MN-th order

_ : . = (.8 C . o ‘ g g
index k. The matrix Ag = (aksf) is given in Fig,.(B,S)f. The ak,k’ ak,k+l’

g g g , s ,
ak,k-l’ ak,k+N and ak,k—N are, reépectlvely, the ag,O’ ag:h’ ag,2’ ag,l’ and
qg 3 given in the finite difference expression for the nodal point of index k.

Rg«l’ Xg, and Fg are nonnegative diagonal matrices with Ro being the null

matrix. The diagonal elements of the R, 1 matrix are the a s and the

g-1s5
diagonal elements of Fg are the ag<6's, Xg is a scalar matrix with Xg on
. sV
the diagonal.

Independent of the indexing of the nodal points, the discrete

approximation to Eq. (1.1) maj always be put in the matrix form of (3.9) and

one can sndw [20] that

Theorem 3.1 The M\ by MN matrices Rg—l’ X, and Fg are all nonnegative diagonal

g
matrices, withkRO being the null matrix. The MN by MN|matrices,Ag are irreduc-
ible Stielt jes matrices. Moreover, the_inﬁerse~of each Ag has all positive

entries, i.e., A;l > 0,

We now rewrite Eqs. (3.9) in the following matrix form:

' XF
(3.10) , . E®=r ¢ ?

16



(M-1)N (1)NH2 MN-1 M
(M=2 )N+ (M-2)N+2 (-1 )N-1 (M-1)N
N+1 N+2 2N-1 N
1 2 N-1 N
FIGURE 3.4
g g g . '
21,1 %12 1,0 O
g N N '\\
82,1 © N N
N N AN N
N N N RN
- g
Ag = aN.,lsl N N\ N (O N
AN AN ‘\\\ N
N N
N O N N
AN NN N
O \ N N8 h
| AN RUAT

FIGURE 3.5
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where

2 hy 0
9 - A
b= 2 5 E= R{ 2 5
O ., Noen
g Ro1 A
(3.11)
X 0 bR oo Ry
° Fl F2 o o o FG
X= v s and ' = . o .
O ° X o ° o
G \
Fl . F2 -] -] [ .FG

Since each Ag is ﬁonsingular, the matrix E is nonsingular so that Eq. (3,10)

may be written as

(3.12) A=t xrd

The discrete problem is then to determine the largest (in modulus) eigenvalue of -

(3.12) and its corresponding eigenvector, Birkhoff and Varga [3) have shown

that

Theorem 3.2 The eigenvalue problem (3.12) possesses a simplé, positive, largest
(in modulus) fundamental eigenvalue, xl. Moreover, if Rg—l and Xg are not both

Liag

18



identically the null matrix in any group gl, then the eigenvector‘@& corresponding
to this fundamental eigenvalue may be chosen to have all positive components.

Further, any positive eigenvector of E_lXF is a scalar multiple of@E .

Thus, the discrete problem is well defined. We remind the reader that
the fundamental solution of (3.12) is only an approximation to the desired
solution of the continuous problem. The question as to whether the fundamental
sélution of (3.12) approaches the solution of (1.1) as the mesh is suitable
refined has not been completely answered and will not be discussed here,

We note that the matrix E XF is of ordér GMN and hence has GMN eigen-
values. But the rank of XF, ana hence also that of E_lXF, is at most MN so
that the matrix E"lXF has at mosf MN nonzero eigenvalues, Since we are not
interested in the zero eigenvalues, we now shall obtain an eQuivalent eigen-
value problem of order MN for which these (G-1)MN zero eigenva%ues have been
eliminated.

To do this, we first introduce the fission source vector ¥, which

is a vector of order MV and is defined by

(3.13) | Yy

1 &
= F@9 o
A éé& g8

If the MN by MN matrices Lg are now defined recursively by

g g-1 "g-1

L= AT, R L) 5 8=12, .., G
(3.14) {j

where Ln is the null matrix

1Henceforth, we shall assume that Xg + Rg;l is not the null matrix.

19



then from Eqs. (3.10) and (3.11) we have

(3.15) S %%%Y“ )

From the definition of ¥, we then obtain

(3.,16) . )\_‘I_/ = TY : )

where T is & MV by MN matrix and

G
T = gzleng .

Therefore, the fission source vector, ¥, must satisfy (3.16).. Thus, if P is
an eigenvch:or of E—1XF corresponding lto the nonzero eiggpvalue As then -\‘—.I’,
- obtained from P using. (3‘,13.) s is an eigenvectdf&;‘i‘"'f with the corresponding
eigeny_élue Ao Cor;versely, if _'4_/ is an eigenvector of T correspond.fmg_ to the
nonzero eigenvalue \ and if P is obtained from ¥ using (3.15), then® is an
eiéenvector of E—lXF with corresponding eigenvalue ).

Using é; similarity transformation, we now shall show that the nonzero
eigenvalue spectrum of T is identical to that of E-lXF, The reader may readily

convince himself that the matrix E +

[oN

XF may be written as

LlFl LlF2 ccscooenc Lng

L2Fl L2F2 20000000 L2F8

(3.17) kxr=|

LI

F. L

LeFy

F2 eeso0 0000 L FG

)
Q 00060
[ R

> 0, the matrix Ll is nonsingular

where the Lg are defined by (3.14). Since %

so that -the matrix

20



O o © o o ©o o o e O \

exists and is nonsingular, It is easily verified that

T F2 F3 -3 o L] o (-] FG

0 0 0 .....0
PEXFPT = 2 . .

0 0 0 .....0

Hence, the nonzero eigenvalues of E_}XF are the same as those of P(E_]'XF)P-1
which in turn are identical to the nonzero eigenvalues of T,

The L, afe positive matrices so tﬁatAfrdm Thm. 3.2 and Eq. (3.13) it
follows that the eigenvector f& corresponding to the fundamental eigepvalue Xl
may be choéén'tq have nomnegative components, Méreover, since the positive

1XF-is.unique]f, any nonnegative eigenvector of T is either a

eigenvector of B~
scalar multiple of !& or else has-a corresponding eigenvalue of zero,

Thus, .the lower order eigenvalue problem \Y = TV possesses essentially

the same properties as does (3.12). In the next chapter we shall describe the

iterative technique used to obtain the largest (in modulus) eigenvalue .of T

and its corresponding eigenvector.

lUp to a scalar factor,



IV. OUTER ITERATIONS

For the rest of this paper we shall assume that the eigenvalues of T
are given by {xi} Ifil’ where )y >}, {2 INgl 2 °oc 2 Iyl 5 and that Yi is
the eigenvector associated with )y i.e., xii& = Ti&,

The PDQ-5 program uses the "poWer iterativé method" to obtain
approximat.ionsl to the fundamental eigenvector and eigenvalue of the eigén-
value problem (3.16), Given an arbitrary nonnegative guess Y(0), the power
method .generates ;uccessive estimaﬁes for the fundamental eigenvector !& and

eigeﬂ%élue A by the prbcess

K SU) =T ¥ (f-1)

[s0), 50] |
J MO = 5w

i’([)=m ) 1%19 25 .00

(4.1)

In this chapter we shall assume that we have ways to obtain the matrix-
vector product TY{f-1) needed to carry out the power method (4.1), We shall
describe how this product Ty is actually obtained in Chapter V.,

In the solution of -the multi-group neuﬁron diffusion problem the

iterations (4.1) are generally. called outer iterations and [ is.called the

outer iteration index, Since the largest (in modulus) eigenvalue of T is
simple and real, the power method (4.1) is guaranteed to converge; i.e., tor

an arbitrary nonnegative guess vector Y(0),

lTheoretically, convergent iterative methods give the exact solution
only after an infinite number of iterations.- ’
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Lim A(f) =2 and lim () = c¥ ,
— ' f—-w
wheére ¢ is 'somerpositive constant,

The power method essentially involves repeated multiplication by the
matrix T. For if we assume that the eigenvalue estimates )\([ ). of ), are
'sui‘ficlently accurate, then the process (4.1) gives 1’(1) =L Y(O) 5

1
y!(2) =L Y{(l) (“‘") 3{((0) and in general

: ¢
(4.2) !(l)=(q) ¥(0) .

In order to see how quickly Y({) approaches Yl in (4.2), let us assume
that Y(0) may be expanded in terms of the eigenvectors of T so that Y(O) may

be written as Y(0) = Z cii,i for suitable scalars c;. Hence, we may write

i3 +

Y(f) = clYl i=2 ¢y ( ) Y_\_ °
Since l y | <1 foris1l, we see that V() approaches cl-'d-,l as { tends toward
1
infinity and that the convergence rate of }[;’({ ) to Yl depends ori how well
separated-the i“undamental el-genvalues M is frem the other eigenvalues of T.

In other words, the convergence rate of _‘f([ ) depends on the dominance ratio

: _ A
(4.3) . o = max —il .
i1 M

Normally, the smaller this ratio is, the faster the convergence. The most

slowly  decaying component of the error with respect to the initial guess Y(0)

decays as (E)K .
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The next theorem [20] provides the basis for the convergence criterion

used in the PDQ-5 program to tefminatefthe iterative procedure (4.1).

)
[

Theorem 4 If Y(0) is a nonnegative vector; then the iterative procedure (4.1)

is convergent; i.e,, lim x([) 11 and K}im !f({) ci&, where c is a positive'

—

scalar, ;. Moreover, if the k-th.components of W(f) and.S(f) are.denoted by
¥ (£) and s, (f)-and if for V. (f-1) # 0

| ¥ ¢ O ¥ O
(4:4) A(f):mi.x W"_ﬁ ,' §(1)=mlj<n}£§7:ﬁ

then o

e

- MO 20 2 M0 5 WO 2AW 2200 5 and
.(lq,,S) ' ’ -
im X(0) = lin A() =g

— 0O —

The estimates A({) are obtained by considering the componerits of the
eigenvector estimates in the aggregate while \({) and x(l) are obtained by
coﬁsidering these cemponenﬁs ineividually° Hence, in addition to giv1ng
upper and lower bounds for the desired eigenvalue Ay 2f) and A{) also
give a good indicatlon as to how well the elgenvector estimate *(I) is
' converged° Thus, a practlcal crlterlon for termlnating the iterative

procedure (4.1) is that the inequality

o A = A0
we) o @ st

. -)

be satisfied. The positive quantity € is an input parameter,

2h -



In the next section we shall describe the use of Chebyshev polynomials

in accelerating the rate of.gonvergence of the basic power method.

A. The Use of Chebyshev Polyhomials

Experience has shown that the eigenvalue estimates )\(f) tend to-
converge faster’ than the vector estimates Y({) in the straight power method
(4.1). Therefore, in an attempt to accelerate the convergence of the W(f),

we take linear combinations of the Y({); i.e., for the f-th iterate we take
(4.7) v, = f ag, ¥(p)
p=0

as the f-th estimate for 1[_/1, It is hoped that by a suitable choice of the
constants aIP’ the vector @kl) is a mnch better approximation to i& than W(f)
is. ' A

In order to determine the "optimm'® ag» We shall assume that the
eigenvalues xi of T are all real and nonnegative and that the corresponding‘
eigenvectors form a basis for the associated vector space of T, Since.we

have assumed that the elgenvectors of T are complete; we may write the initial

guess as
- . . m
(4.8) o) = igl os¥ :
1

1f the matrix T in (4.1) were symmetric, then the A (f{) would converge
at twice the rate of the i«[). See Bilodeau and Hageman [2]. :

2In what sense the coefficients a[p are optimized will become clear

later,
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If we now assume. that the eigenvalue estimates AM({) are sufficiently close to
Ay then from Eqs..(4.1) and (4.8) we may write Eq. (4.7) as

A;\P
U0 = Lo ﬁo sl ] %

i=1

or equivalently

(lh9) | | .' @(() 5P£({‘]'-') ‘_l_/(O) =- clP[(l)i/l + i I( ) Yi 9

i._

where P'((x)s pﬁo‘a[(pxp o

MN
The sum Z ( )‘i/ is our error and hence we would like to choose P (x)

MN
such that Pf(l) =1 and Z clP[( )W is minimized (in modulus), Since the
i=2

scalars c'i are ar‘bitraryl and the eigenvalues Ay of T are not known, a true

minimizjat‘ion is not vfeasible, However; a practical "optimum" mimmization of

MN

Y e f(l )1’1 is obtained if we could determ:me Pl(x) » under the restriction
i=2 1 ,
that PK(l) =1, such that the maximum of |PI(x)| is minimized over the range
0 < x < 0s where o is defined by Eq. (4.3). The solution to this practical
minimization problem is well known [7] and can be given explicitly. in terms -

of Chebyshev polynomials

(4.10) Py(x) = —Al;i)
S : ‘{(‘a‘l)

lThe c;'s are arbitrary since the initial guess W(0) is arbitrary,
We only assume that c, # 0,
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where the G[(y) are Chebyshev polynomials of degree { and for { > O

cos(f cos™t y) Iyl <1

C{(y ) = :
' cosh(f cosh™> y) y>1

‘Frcm the well-known three-term recurrence relation which the Chebyshev
polynomials satisfy
(4.11) '

G =15 6 (¥) =¥

it is possible to obtain the three-term relation

cosh [fY] 2
P{+l(x) =2 (cos‘h [([+DY])(~J‘GE - 1)}’1(’0
(4.12) | |
cosh [(f-1)Y] :
- (cosh [(I+1)Y]) P[_l(x),, A=21,

| (ﬁ‘ -1
where Po(x) =1, Pl(x) = (2 : 1)' , and ¥ = cosh—l(% - 1) s .
5}

for the PI(x), Thus, using the recurrence relation (4.12), the Y(f) vectors

of Eq. (4.9) may be obtained using the iterative procedurelv

lThe _identity'l -Qy, +Byp= - %Zal is also used in obtaining the three~.
term relation for W(f) given in (4.13).



[ S() = Mf-1)

s, 807
(0, YL-1)]

C(4.13) ¢

T o 1¢ O I - -
O = D) + oy gy - )|+ o [ - )]

for f > 1 and where

=4
o

cosh [(f-1)Y]7 cosh [(£-2)Y]
o= o

= - for f > 2.
cosh [fY] cosh [fY] »

When the iterative procedure (4.13) is msed, \(f) and L(I) may be computed as
before (using, of course, S(f) and @((-1) instead of s{f) and Y(f-1)) and

1im )\([ ) = lim L([ ) = M. Moreover; if _‘I_{([—]) is a nonnegative vector,

—_— — OO

then the inequalities in (4.5) are also valid

Figure 4.1 illustrates the effect of the polynomial P (—) with o = = ,9
operating on an arbitrary vector Y(0). For if Y(0) is expanded in terms of the
eigenvectors of T as in Eq, (4.8), then from Fig. 4.l we see that P (-——) operating
on Y(O) has the effect of multiplying the coefficients of all eigenvectors except
i’l by a factor of ,1.'.,5 or less while the coefficient of i’l remains unchanged.
Also sh-own in Fig. 4.1 is the effect on the coefficients produced by the operator
l ) which corresponds to performing four power method iterations (4. l)

‘Using the Chebyshev polynomial mcthod of iteration (4L.13); we see from

Eq. (h.o_9) that the most slowly decaying component of the error in the initial
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guess éxpansion decays as

(4.14)

For the straight power method (4.1); as we have seen previously, the most slowly

7élll’,{/(

wIEPS

Nt
SB‘l ()| =

decaying component decays as (-G_)K° Table 4.1 gives some indication of the gain

in the decay of the most slowly decaying component of the error one obtains by

using the Chebyshev polynomial method of iteration.

1 ITERATION 5 ITERATIONS 10 ITERATIONS
A A 2

- =31 W2 =y (2 P 2 _
| @ |0@-07| @ [né-u7| @ o103 - 1)
oD o5 .33333 .03125 .00030 . 00098 I
8 8 66667 | .32768 | .01626 | 10770 00013
.9 -9 . 81818 59049 07556 34,868 ..00286
98 | .98 96080 | .90392 | .45533 | .81707 11565

on a prior knowledge of ¢ and M-
not lnown.

constants,

TABLE 4.1

The efficiency of the Chebyshev polynamial method of iteration depends

Generally, of course, these constants are

However, practical nuwerlcal means do exist for estimating these

For example; before starting the Chebyshev method of iteration

(4.13), four or five straight power iterations (4.l) may be performed in order

to obtain an initial estimate for xlo

Further, if a low degree Chebyshev

polynomial is repeatedly applied instead of trying to apply one high degree
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polynomial, then the estimates of A may be continually updated. For'examﬁle, .

after performing the initial [i power iterations; instead of applying one high

degree Chebyshev polynomial .

~ {
U0 = 5y g () e

we dol‘instead
. o
U0 =2 ) - r st P lapllite | we

where Ki + Ié,+ so0 fh = f. The numerical methods used to obtain initial and
updated estimates for the dominance ratio, 3} will be described in Chapter VI.

The assumptions that the eigenvectors of T form a complete set and'fhat
the eigenvalues are real and nonnegative2 have noﬁ been shown to be valid except
for special cases, However, the method as givenAabove has been used quite
successfully. This seems to indicate that the above assumptions are very
nearly satisfied. |

We remark that the results of this chapter apply equélly well to the
eigenvalue problem P = E-‘1XF ®. In other words, the results of this chapter

are valid if ! were replaced by C_P and the matrix T replaced by E','l)(Fb From a

IThere are other reasons (see Chapter VI and Apiendix B) for using
repeated applications.of low degree Chebyshev polynomials instead of one high
degree polynomial, '

2The fact that the eigenvalues are nonnegative is not crucial in the
application of the Chebyshev polyncmial method of iteration. To take into account
negative eigenvalues, one needs only to change the argument of the Chebyshev
polynomials, See Bilodeau and Hageman [2]. Also, the restriction that the
eigenvalues be real may be weakened somewhat if only low degree Chebyshev
polynomials are used. As the degree of the Chebyshev polynomial is increased,
then the restriction on the eigenvalues becomes more nearly that they be real,
See, Varga [18].
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practical point of view, the eigenvalue problem 1y= Til has the advantage in

that ¥ is a lower order vector than P,
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V. INNER ITERATIONS

In this chapter we shall describe how the matrix-vector product Ti(le)
may'be obtained (or at least approxamated)

From Eqs, (3 15 and 3 16), T¢(I-1) may be written as

-

(5.1) ™HL-1) = ZFngLP(K—l) Z 2.0
g1

'where

(5.2) gg(l.) s-LgiJ(l-l) .

Hence, the matrix-vector product TW({-1) is readily obtained once the Qg(f)
are known, But from the definition of Lg (see Eq. (3.14)), the gg(() can be

determined by solving sudcessively the system of group equations
| . G
5. A9 =X ‘I/ -1l) +R_ .9
.( 3) { g_g(l) g_(I ) g—l—g-l(()} =] ,

-where Ry is the null matrix, Thus, the product TY(f-1) can be determined if

we can solve matrix equations of the form
5, A =k s
(5.4) ggg(() k()

where Ag is the MV by MN matrix given in Theorem 3,1 and k ([) is a known

2,10

nonzero column vector which is defined by k (I) =X ¢([¥l) + Rg 2

For one-dimensional problems, direct inversions of the Ag are possiblel
so that the group fluxes gg(() may. be obtained without any cemplications. For

two-~ and three-dimensional problems, however, direct inversions are not feasible

lSée; for example;, Marlowe and Suggs [14].
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and.the 2g({)~must be approximated by some iterative process. The iterations

used to obtain an approximation for the gg(l) are called inner iterations.

Before describing in detail the iterative.techniques used by the PDQ-5
program to obtain approximations for the Qg([), we shall give a short discussion
on the mechanics of stationary itefative.techniqués and shall define some

particular iterative processes,

A, Stationary lterative Techniques ‘

We are interested in obtaining by iierAtive means a good approximation

to the solution of the matrix problem

where A is a MN'by MN honsingular matrix, g is a known column vector with MN

components and x is the MN-th order column vector of unknowns,
In general, a stationary first degree linear iterative procedure for

obtaining successive approximations to at may be described as

(5.6) x(m) = Rg(mp;) +Hg , m =1, 2, ...

(0)

where P and H are MN by MN.matrices, m is the iteration index}, and x is

(m-1) is éqﬁal to the unique solution A-lgs‘

an arbitrary guess vector, If X
then for é(m) to also equal fhe-unique-solution we further demand that__
‘P + HA = I, where I is the MN by MV identity matrix,

" We now ask under what conditions does the infinite sequence of vectors

{g(m)} generated by Eq. (5.6) converge to the unique solution x = A-lgo Let

1In this paper, the superscript (m) will always denote the inner
iteration cycle number. As used previously, (f) will always denote the outer
iteration cycle number, '
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E(m)_f'g(m) - x be thé error vector at the end of the m-th iteration. Since
P +HA = I, we have from (5.6) that

(5.7) . g™ = pg(ml) _ pug(0)

For an arbitrary initial error E(O),'it is clear fram (5.7) that the error
vector becomes arbitrar‘ily small as m-—e @ <_:>Pm converges .xto‘thle null

matrix as m—e @, Thus, we make the following definition:

Definition 5.1 The iteration procedure defined by Eq. (5,6) is sald to be:

> the sequence {Pm} ;=l converges to the null matrix,

gonverggnt<(
Otherwise the iteration procedure is said to be divergent,

If o

2 ceos O are the eigenvalues of the MN by MN matrix P, then

P(P) = max | o, |
i - 1

is called ihe §pectra1,radius of the matrix P and [21].

Theorem 5.1 A necessary and sufficient condition for the iterative process

(5.6) to be convergent is that P(P) < 1.

The spectral radius, P(P), can also be used as a measure of ‘the
effectiveness of the iterative process. In general, the smaller the P the

~ faster the process will convergé and

R_(P) = - fn p(P)

is called the asymptotic rate of convergence of the matrix P, The sigﬂificance

of this definition is that the number of iterations required to reduce the initial
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error vector by a certain fraction is approx1mately (1n a certaln asymptotic
sense) inversely proportional to the asymptotic rate of convergence, Thus,
if one iterative process has an asymptotlc rate of convergence twice as big
as another, it will require roughly half as many iterations for the same
degree of convergencel°

In order to define some basic stationary iterative processes we let

the MN by MN matrix A be partltloned in the form

M M2 o A

Aa 1 Ag2 o Ayg

(5.8)

where the diagonal blocks Ai 5 are‘nonsingular teasily solvable"‘submatrices2
3

of A, and let~tne matrices D, E; and F be defined by

lFor more detailed discussions of convergence rates, the reader is
referred to Varga (21, p., 61] and Keller [13].

_ By saying that a nonsingular matrix D is "easily solvable" we mean
,that if Dy = ks~ then .y may. be easily'obtainedfby a direct method. We do not

mean that D 1 is easily available For example, a tri-diagonal matrix is-
"easily solvable, ‘
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D= ’

(5.9)

E= .

We may write Ax = g as Dx = (E + F); +-§ and this suggests the iteration
method )
(5.10) ™) = &+ ™ 4 g |

We shall refer to the method defined by Eq. (5.10) as the Jacobi iterative

-melhod and the matrix
(5.11) J=DL(E + F)

as the Jacobi iteration matrix associated with the matrix A. This scheme is

also known as iteration by simultaneous displacements or total steps by

Geiringer [9].

Ir x§m+'l) (m+1)

is the i-th component of the vector x s then the Jacobi

method is to solve for each component x§m+1) using only the previous iterate
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g(m) It seems plausible that if one always uses the latest value of all other

components when solving for a component xgmn s that the rate of convergence

might be increased. With this in mind, the Gauss-Seidel iteration method is

- defined as
(5.12) px) = prtl) o pm) g
The matrix
' (5.13) L, = (0 - 2)7F

is called the Causs-Seidel iteration matrix associated with the matrix A. The

_Gaus’s-Seidel method is also known as iteration by successive displacements or

' single steps by Geiringer [9] and the Liebman method by Frankel [8].

Te——

The third basic iteration method with wh:Lchwe are concerned is formed

~
~

by modifying the Gauss-Seidel method as follows:

(5. 1) ™) = {Ez(mﬂ) YN §} - o™

We shall follow Young [24] and call this method the successive overfela.xa.tion

method and shall refer to the matrix -

(5.15) £, = @ -y {or +. - o))
. i

as.the successive overrelaxation iteration matrix associated with the matrix
i
A. The parameter w is called the relaxation factor. When w =1, the scheme

defined by Eq. :(5.14) reduces to the Gauss-Seidel method. This iterative

method is also called the accelerated Liebman method by Frankel [8] and the
g:ctragglatgd Gauss-Séidel method by Kahan, [12]. It should be npted that in

using the successive overrelaxation method we are faced with two questions:
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first, for v;'hich values of w (if any) does the method defined by Eq. (5.14)
'con'vergeA é.nd se'cond,_ if the method does converge for scme values of w; which
value of w gives ‘t{le highest rate of convergence? In order to answ;r the
apre Quéstions ‘for; our specific problem, we introduce the following

definitiqns :

Definition 5.2 If the MN by MN matrix A is partitionéd in fhe form of (5.8),

then the matrix A is 2-cyclic (relative to the partitioning of (5.8)) <—=>
there exist two disjoint nonempty subsets S and T such that SUT = { 1, 2, ...5 Q}

and 1£°A; , #0 and 1. # J, then 1cS and JeT or JeS and iett,
3. f

Definition 5.3 If the MN by MN matrix A is partitioned in the form of (5.8)

and is 2-cyclic, then A is consistently ordered < > there exists a vector

Y = (Yl, 29 eeos YQ) with integral components such that if A; 3 #£0and i# J
« ’ b4

then

-
§
<
Il
[

for j>1

<
!
<
fi
AB

for 1 > j

For any n x n matrix A, n > 2, there exists a partitioning such that A

is 2-cyclic. For example, the matrix

ha o A2

Ay By o7

R

lThe 2-cyclic property defined here is called property A by Arms;
Gates and Zondek [1] and reduces to Young's [24] property (A) when the diagona.l
submatrices are all one by one matriceso
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is 2-cyclic. Also; not all 2—cyclicrmatricgs are consistently Qrdered but. for
any 2-cyclic matrix there exists an orderiné which is consistent., The concept
of directed graphs {21, pp. 48 and 1217 is very useful in determining if a

matrix with a;particular partitioning is 2-cyclic and is consistently ordered.

Wb now state the main result for consistently ordered, 2-cyclic matrices.

Theorem45.,21 If A, partitioned in the form'(S,S), is a consistently,o;dered,

2-cyclic matrix, then PQ(J) = P@{i), Moreover, if the eigenvalues of the

Gauss-Seidel iteration matrix<<§ are nonnegative and less than unity and if

(5016) = 2 — S
b "1 +4/1 - PQK;)
'theﬁ' .
W) > o) Nifofa, an

(5.17) .
‘ #) = — \ ’ .
f (oﬁ;b) w, -1

If A is partitioned in the form (5.8), then point iterativg methods

correspond to the case when the Ai 32 for i =1, 25, ...y MN, are one by one

matrices, Block iteration methods correspond to the case where no special

restrictions are placed on the order of the submatrices Ai i° In point

: . 9
methods only one single unknown is modified at each step of the iterative
procedure ﬁhile for block methods a group of unknowns may be modified

simultaneously,

lYoung [24] did the basic analysis for the application of the successive
overrelaxation-method to the point 2-cyclic matrix., Arms;, Gates and Zondek [1]
generalized Young's results to block methods and Varga [21] later extended the
theory to the more. general p-cyclic matrices.
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In the next section, we shall describe the "cyclically reduced three-
line successive overrelaxation method" [11] which is the inner iteration method

used in the PDQ-5 program.

B. The Cyclically Reduced Three-Line Successive
Overrelaxation Method
We now concentrate on a particular iterative method used to obtain

approximations to the solution of the matrix equation
(5, 8 R A . = | \ T
(5.18) Ag2s (L) zg(() | s

where Ag is the M\ by MN matrix of Theorem 3.1 and gg({) is a known column

vector given by k ([) =X ¢([-1) +R l([)o' In what follows we shall

g-1%¢-
drop the group subscript g and the outer iteration index ({) in Eq. (5.18).

In order to completely specify the matrix eQuationi(5,18), we need
to give an ordering for the equations and unknowns. As in Chapter III, we

shall do this by indexing the MN nodal points. We first split the nodal

points into what we shall cail.ggpare ncdalApgints and circle nodgi points.
We do this by first making the nodal ﬁoint 1l of Fig. 3.4 a sqﬁare point and
then proceeding by making circle points of the foﬁr (or fewer if near or onv
a bcundary) nearest neighbors of the square points and making square points
of the four nearest neighbors of the circle pointc, Wb now index the nodal
points by indexing first all the square . nodal points consecutively by TOWS

and then all the circle nodal p01nts consecutively by rows, For example,



see Fig, 5,.,11o The matrix A = (ai,j) is given in Flg. 5.2. The nonzero

FIGURE 5.1

1In Fig. 5.1, if MY is even, then r =5\ and if MV is odd, then
r = % Similarly, if N is even, then p =gq =§ + 1 and if N is odd,
then p =g+% andq=y4+l- o
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elements :of A are :1',1'1‘31.'cr.‘g ,0° aﬁg,'l"‘ Gg’z, a‘g”-a',f.alfld‘ ?g", 4"g}ven-1§1 "c»he finite -
difference expression’ (3.7) or (3.8).: B C

If we now let

N
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(5.19) b= .
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then Eq. (5.18) may be expressed as

(5.20) ' ] ' (I - B)ﬂ = _g_ ’
where i
(5.21) . a=np, (1-B)=p"apt, g=07k

Since A is symmetric (see Thm. 3.1), '.t.he matrix B may be written as

(5.22) :' B=

We note that the matrix B, = (b i, 3) is a r by (MN-r) matrix and is explicitly

given by
b = - ai’_j-{-zr i =1, 2, XS] r
i’j = — e
‘/é'i,i ‘\[aj.g.r,j.*r .1 :_L.p 2_1 aeay MY - r
Since a, 1>Oifi=3andai jSOifi#j, it follows that B; is a
) ' ' ! - E .8 ._. . [ . ! .

nonnegative matrix,

It

. : = N | §1
(5.23) | g;( )  and 55( )
Q. i

are partitionings for & and g'whiéh are consistent with the partitioning of B

in (5.23), then Eq. (5.20) can be written as



(5.24) . |- 1 =

3

and multiplying both sides of this equation by (I + B) gives
2y . .
(I -B%)a =(I +B)g

or equivalently

I- B]_Bg -0 ‘J_( I :Bl : gl
(5.25) = | .
_ T
' T a. B I g
0 I-BB/ 1 1 | 52

Eq. (5.25) represents two uncoupled syétémsl of equations so that the solution
to ‘the original matrix equation (5.20) may be obtained by solving a lower order
matrix problem, Thus, we may obtain the solution to (5.20) by first solving
by iterative means the system of r e‘quatioﬁé (squéi'e points)
(5.26) | (I-BBT)x= + Bg,= €

0 . 151 /% ‘§l " P16 = &
and then obtaining the rea.n;:fning (MV-r) unknowns (circle points) explicitly
trom S ,

_ T
(5.27) o =Bjx + g, .

The number of unknowns which we must determine by iterative means has been

reduced from MV to roughly %@-

: 1In essence, we have uncoupled the square points from the circle
points and vice-versa.
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We now consider the directed graphs of Bl and B{, where

0 Bl

o
m -
-

0 0

in order to show how the elements of the unknown 'veetor,. X are coupled to each’
other thréugh the matrix (B;B).

IfB = (b, J)si=12 ..., rand j =1, 2, ..,, Mi-T, then the

17V, .. | |

directed graph of'/ﬁ;L is obtained as follows: if bi j # 0, then we connect
the square nodal point of index i to .the. circle nodal point of index j + r
by means -of an arrow with the value .of b 1,3 being indicated in some manner,

. . b4

A

The direc¢ted graph of B{

nodal point of index j + r to the square nodal point -of index i. The directed

is obtained, if b 1,3 # 0, by connecting the circle

graphs of '131 and ’ﬁ'{ are given in Fig, 5.3 for an arbit:ary" section of the mesh

net. The directed graph of the prc)du»c:t‘/B\l /B\gmay be obtained very easily from

~ T T

the directed graphs ofv/Bl. and ’ﬁ 0 The'nodal pgﬁt'“'oﬂ\j:ndex u is connected to .

the nodal point of index v in the directed graph of? ﬁ;{ if the nodal point

u is connected to the nodal point w in the graph of /B\l and the nodal poinf w

is connected to the nodal point vin the directed graph of ﬁg " The directed

graph of lﬁllﬁg also gives us the directed graph of Bl B']r_ since

0 0
~~ '/\T._
B’l B’.‘L =
. ) T

0 By Bl
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The directed graph of Bl BE is given in Fig. 5.4 for the same section of the
mesh net as in Fig. 5.3. Therefore, for any square nodal point of index C
there corresponds an equation, in terms of the elementsAqf the discrete

function x of the type..

. (L - p)%g - Ppp¥pp = Prr¥rr ~ PLr*iL - Ppp*aB
5.27 ;

= PrpXTR ~ Pri*rn ~ Per*BL T PerR™BR ~ °c ¢

Note thét»we now havg.é 9—point'formula for the r square nodal points
instead of the 5-point formula for the MN nbdal points of the original system,
Since there are r square nbdal points;, equation‘(5,27) defines a system of r
equations in'r unknowns. - ‘We may index the square nodal points and represent
the system (5.27) as a matrix equation just as was done for the original
system of equations (3.7) or (3.8). The matrix equation (5.26) corresponds
to the indexing of the square nodal points consecutively by rows.

To give the in&e*ing of the square nodal éoints for the 3-line block
method, we proceed in twp steps, First, we index consecufively blécks of -
successive thfee horizontal mesh lines (see Fig. 5.5) and expréss the system

of equations (5.27) in the block matrix form

11 Eq. (5.27)s; the inhomogeneous term e 1s explicitly defined as
ec = &g + bRgR +-ngT + bLgL +-ngB° The modifications required when the
square nodal point-C is near or on a boundary are obvious, For example, if

C =1 in Fig. 5.1, then py = bs + bi and p; = Pgg = Pgy = Pgg = O.
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DIRECTED GRAPH OF B,

FIGURE 5.3

DIRECTED GRAPH OF B, B/

FIGURE 5.4
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We here assume that M is divisible by three so that s = % is an integer. The

" diagonal submatrices A 4 correspond to the coupling of square nodal points in
. 5

—

FIGURE 5.5
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the block of successive 3-lines with index i, The matrix equation (5.28)
will be completely specified if we now index the .square nodal points within

each successive triplet of horizontal mesh lines as given in Fig. 5.6.

(O O ©

FIGURE 5.6

The matrix A of (5.28) possesseslessentially the same properties -

[see Ref. 117 as does the matrix Ag of Theorem 3,1; i,e,, A‘iS\an irreducible

1 > 0. Moreover, A is a consistently ordered 2-cyclic

Stielt jes matrix and A”
métrix. The eigenvalues of the Gauss-Seidel matrixcli associaﬁed with (5.28)
are nonnegative and less than unity [11] so that thg/régaiis\of Theorem 5.2
are.valid when the successive overrelaxation method is applied té\(5,28). The

three line successive overrelaxation method may be carried out for m » 1 by

T am) 7 | m) < (m_l)
A, . X7 =- A, X, 2 — A, X + e,
(5.29) 1,17 1,4-1 Z4=1 - 74,314 T4l Y ,1<cic 8,
(m) _, oM@ _(o-1) (m-1)
N [ g s
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where w, = 2

b 1+\/'1-,p(oq)

- Each Ai 5 is a principal subminor of a Stieltjes matrix a.ndihence is
4

~

also a Stieltjes matrix. Thus, the matrix equation A ’\(m) = £, 'r which

i1 %

must be solved in order to carry out (5.29), may be solved directly for

/gém). using the square root methodl,, The number of ‘arithmetic operations.

réquired for this direct inversion may be reduced tS] by normalizing the

T
1,4 54,4 Si,i be

and let Ri,i be a

matrix equation (5.28) in the following way. We let A
the factorization, as given in Appendix A, of Ai i
b
diagonal matrix whose nonzero elements are the diagonal entries of S, i°

i,

If

(5.30) | & = 1,1 % £

then (5.28) may be written in the normalized form

M1 Ny, O I 4
Na1 Nz,z\ N2,3 Yo d,
\
\
(5.31) N : = : ;

”~
7~
-
v
7
7
7
el
7
7
o

=
=
N
u!n.

s;s=1 8,8

=17 -1 . o=l

where N = R:L,,i Ai,j R..js,j an§ d, = Ri,i & -

i i

The successive overrelaxation method associated with (5.31) may be

carried out form > 1 by

1The details of the square root method are given in Appendix A,



~m) _ (m) _ (m-1)
N, . .o =- N, = ¥ +d,
(5.32) { A il BTN e * s l<sigs.,

(m) __mb[/~(m) xémrl)] + XémFl)'

The factorization of Ni,i is now Ni,i,z Si,i Si,i’ where Si,i = Si,i Ri,i’

so that gﬁ,i hasAupit qiagonal entries, Hence; in the direct inversion of
Nigi’ the division operation in equations (A,S),and (A.6) of Appendix A is
eliminated.

The numerical method used to 6btaip an approximation to W, for use

in (5.32) is given in Chapter VI, ‘ ‘

Ir y(m% is the j-th component of the vector zgm), then the sum
residual R(m) is defined as
' p(m) (m) (m—l) |
(5.33) Z Z|yl’j WRAEE

For an eigenvalue problem, the inner iterations (5.32) in PDQ-5 are terminated

when

(5.34) r(M) o (1)

where & is.some positive constant.

| Thé main mathematical difference between the various PIQ prégrams is
the iteration method used for the inner iterations. The following table‘indi-
cates tﬁe meﬁhodé used by the various programs, Also given [11] in this table
is the asymptotic rate of convergeﬁce of these iterative schemes in the numer-
ical solution of the Dirichlet problem on the unit square with the small uniform

mesh spacing h = % -
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PROGRAM

ITERATION METHOD

ASYMPTOTIC RATE
OF CONVERGENCE

PDQ-2

POINT SUCCESSIVE .

OVERRELAXATION

~ -2h

PDQ-3

1-LINE SUCCESSIVE
OVERRELAXATION

=~ 2 .2n

PDQ-4

~ 2-LINE SUCCESSIVE

OVERRELAXATION

1l

Lh

PDQ-5

CYCLICALLY REDUCED
3-LINE SUCCESSIVE
OVERRELAXATION

> 5.47h

In Chapter IV, it was assumed that the matrix vector product TY(f-1)

TABLE 5.1

needed to carry out the outer iterations could be obtained exactly. But this

- product. is only approximated when inner iterations are needed. Hence, the

'resulté given in Chapter IV need not be strictly valid when inner iterations
are used in the solution of the group:equations. .The reader is referred to

Appendix B for-a, discussion on the effects of the inner iterations on outer

iterations,
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VI. ESTIMATION OF THE PARAMETERS o AND @

The use of the- successive overrelaxation method (5.32) requires a good
estimate for the spectral radius of the Gauss-Seidel iteration ma’trix, A
method given by Varga [21, p. 283] is used to estimate ..P.(o'{) in the PDQ-5

program, This method is based on the following theorem:

Theorem 6.1 Let A be an,irredudible consistently ordered 2-cyclic Stieltjes
matrix ahd let ,Z”l be the associated Gauss-Seidel iteration matrix, = If
_Y_(O) > 0 and if '

‘ W powl) ™ 1]
(6?1)4 I. n = a(olx H )- - [Y(m)’ Y@_l)] 9

‘then lim )\(m) = P(o{) Moreover, if the i-th component of Y( m) 'is denoted

—ec

by .ygm')_and if fo‘r_ y]g_n.l -1) #0

, T(m) _ yim) (m) . v gm)
o R
then |

| - '(m) > p({ ) > A T%{m; ' \(‘m)\z \®  ang
(6.3)

lim 3™ = 14 L(m) = %é)

m—ewo m—ex

The iteration procedure (6.1) is used to estma.te p(pé) in the PDQ-5
program. The upper and lower bounds, )\( m) a.nd )\( m) defined by (6. 2) » are

used to terminate the 1teratlon procedure in the following way. If
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sw_ 2 . () 2

-] = 7
1+v/1 - 7 1+ - ®
(m) 2

W ~1 . l/-__ )\(m) ’

then the iterations are continued until m = 15 or

wo

(6.4) | wm);¢mkggng)

The convergence criterion (6.4) implies that

(m)l <2- w(m)

'l,wb-w z

where w_ is the optimum overrelaxation factor defined by Eq. (5.16).

We note that the matrix-vector preduct Ji_Y_(m-l) in (6.1) may be
obtained using Eq. (5.32) by setting d, equal to the null vector and by
setting W, equal to unity. Hence, the iterative procedure used to eétimate

W takes essentially the same coding as that required for thé inner iterations.

A. The Initial Estimate for o

The efficient use of Chebyshev polynomials in accelerating the con-
vergence of the outer iterations requires an accurate estimate of the deminance
ratio o and the largest eigenvalue A ‘As already mentionéd in Chapter IV, an
initial _estima.te for‘ A, may be obtained by per{EMg four or fivg straight

power iterations (4.1) before starting the Crfebyshev polynomial method of
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iteration (4013_), By observing the convergence ratel of these power iterations
. one may obtain an initial estimate for o at the same time,
There are, of c‘ourse, many ways of observing the convergence rate of

these power iterations. For example, if the error ratio ERk n is defined as
. 9

s _Xm) - Am)
> - e S A

for k < n; then for the power method of 'iteration we have

(606) {(_i.mm (ER[9£+1) =g o
ﬁe;nce, we may obtain estimates for o from ER[ [ 41°
' ] b4
To see why (6.6) is true, we first write the vector v(f{) as

(6.7 B (Y X( ST YGY °

The above expression for W({) follows directly from (4.1). If we now assume>
that the eigenvectors yi of the matrix T are complete, then we may express

‘the initial guess as W(0) = %\‘ c, ¥, and Eq. (6.7) as

h=l
W = 1 }Zm Ly :
(6.8) _(l)—l‘({),k(g_l)m;\(l) & % th

) lWe assume that the convergence rate is determined by the decay of the
most slowly decaying component of the error in Y(f). For the power method, as
we have seen in Chapter IV, the most slowly decaying camponent of the error
decays as powers of T. '

2We.ma.ke this aésumption merely for the sake of simplicity. The limit ’
in (6.6) is valid even if the eigenvectors of T are not complete,
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If e i is a vector of order MN whose i-th component is unity and all other
components zero and if gﬂ_?ill # 0, then the i-th component ‘I’i([ ) of the

vector V({) may be written as?

- £, .T
S : : WMl er )
_ 19240
(6:9) N wi({) = k( o)\( v_l)ooo}\ l) 1+ a ’ 01 + h=3 ah‘,irg} ’
where
M- Ei-“-’h
rn =— <o and =
h a'h,l T
1 c18:¥%
Hence;, 312 ‘4’1([) # 0, then
MN
S. (f+1) 1+ 3y °I+1 Iﬂ
(6.10) S0 M h_3 “hyiTh
: i T+ a, oI + rl
' v h, h
As [ becomes large we may write Eq. (6.10) as
s (f4) L '
5 _ - - —
(6.11) TR CORE { 1+, G- + o(c/)}
He‘nce,j if a, = mix a2,i and .g_z,s m;i-.n ~a2,i‘, then as { becomes large we have

(6.12)

| { ) = {1+ 5,65 - D + o) )

A1) = {1 + 2,(6 - DF + o(F)}

1Aga.in for the sake of simplicity, we asspme thz—it ”‘2' > |)\3| in
writing Eq. (6.9). o ‘ ‘

i If W(o) is obtained us:.ng Eq. (3.13) from a positlve guess for the
. group fluxes, then V. ([ ) and e _iy_/l are either both zero or both nonzero.
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Therefore, using (6.12) we obtain T

lim (ER =g . .
i A L
Another way of obtaining initial estimates for o is by means’of the
sum residual ('défined by Eq. (5.33)). 1If ‘Rém) is the sum residual for grbup

g at the end of inner iteration m during the f-th outer iteration, then the

estimate for ¢ at the end of the f-th power iteration is

: (l)
R A G R (1)

(6.13) L ' o

‘ | ¢ ?_7(1 1) | |

For a discussion on the use of the sum residuals as a means to estimate the
initial o, the reader is referred to Varga [18]. ‘

Tile PDQ-5 program .uses the sum residual method for obtaining the
initial estimate for ;, Normally, this initial est.imate; for o is too low.

Thus, one would like to be able to obtain updated estimates for o.

B. Updating the Estimates for o

- If instead of applying a single Chebyshev polynomial of high degree;
one would repeatedly apply a low degree Chebyshev polynomial then new esti-
mates for o may be obtained by .compz-iring the convefg'enc_e rate actually being/
obtained with the theoretical convergence rate one would qbtairi if the o
being used were correct, |

| We use the error ratio ER, defined by (6.5); t.o moasure the convergence

rate actua.lly ‘being obtaimed In order to see. what the error ratio measures,’

let us apply’ a Che‘byshev polynomial ‘of degree t to the vector estimate i’(l ).
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We assume that A is known and shall denote the present estimate for o by o..

?‘rm Eqs, _(l;,,9) and (4.10);, we may write

(6.14) . - g (g +1) =B, <—) L) ,,

whqre
c.(2Zx_1)
(x) t °O
P x) = x 0
%59 0,3 - 1)
%
If W(f*) is expanded in terms of the eigenvectors of T, W({*) = Z h_‘l_’ 5
h=1

then ¥ ({* + t) may be written as -

. MN Ay
Y(f*+1t) = Z chpt’oo()‘l) '4’ .

h=1

As do!ine previously; we now write the i-th component of the vector Y(f* + t) as

_ My
(6.15) - W, (f* +¢) = “1’31—"—’1 {1 tay 4Py, 0(") t L 5P (rh)}

h=3
where
' T
r )\h < c and h_lllh :
h )\l ah T¢
l—:l.—l

If we assume that Z ay (rh) is small relative to a. .P (5)1, then
: 0

91 t,OO 2,1‘=t,°

(6.15) may be wrn*l'ten as

V(0% + 1) T epeity {1 * az,ipﬁ, oo"(;)}

lThis assumptlon is generally valid if o is pretty well separated from

the rh's and if % is an underestimate for @.
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and

AMfE+t+1) = M { 1 +-Eé(3 - 1)P£’°d(§)}

(6.16) { |
e+ 2y {148, - 1py 00(3)}

where .

o

i

Therefore, we have for 0 < k < t

. Pt; oo(o?
(6.17) R fticrL, bl & o =
, P o (o)
3 %
and in particular for k = 0
(6.18) - o MRy e - Pt,oogo)
Therefore, F?R['Hl, ,{*-%—f 41 glves a-measure of Pt, c’0(3).,

purposes, we shall denote ERX" 1, just by (ER),.
. 9 v

(ER) 4 to see if o, is a good approximation for AR

0
1
Case 1: , (ER), <
— o t = 2
C, (%= -1)
t oo

Tmax 8,y ond g =mbna,

For notational

We now shall examine

" From Fig. 6.1, this case implies that o < do so that we are getting

the convergence rate expected by using c,. Hence, we continue to use oo‘in

the generation of the next Chebyshev polynomial,
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Case 2: 1> (ER)t > 21 .

Ct(so -1)

Again from Fig. 6.1, this case implies that o> % and we are not
obtaining the expected convergence rate. Thus, a new estimate for o should
be used in the generation of the next Chebyshev polynomial. To obtain this

new estimate for o we use the result Agiven' by (6,18);‘ ‘ Using the definition

of Py (o), we may write (6.18) as ,
% .
(29 _
¢, 32 - 1)
(ER), =
%

and since Ct(y) = cosh (t cosh"l y) for y > 1 we have

. —l 2—.
cosh {(ER)tCt(co - l)}
cosh | - y - +1
o). 2

(6.19) . . 9o

The right side of expression (6.19) is then used as the new estimate for o,

If oy, is this new estimate obtained from (6.19), one may easily show ‘that

< @ <1 .

% < %o

‘Caoe 3: ' (ER)t =1

‘ If (ER) £ > 1, then there has been no error réduction and something

is obviously wrong.



Another technique for updating the estimates for o would be to perfonm
power iterations betwean the generation of the low degree Chebyshev polynemials.
However, in addition to slowing down the convergence rate of the overall problem,
it has been found experimentally that the estimates for o obtalned by this

method are generally not as good as those obtained by (6. 19)
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APPENDIX A

- The Square-Root Method for
Symmetric Positive Definite Matrices

In this appendix, we shall describe a systematic method to solve

directly the matrix équation
(A.1) AX=F -,

where A is an N x N symmetric positive definite matrix, X is the unknown
vector and F is the source vector.

We have [6, 23].

Theorem A,1 Let A = (a.i‘ j) be an N x N symmetric positive definite matrix,

zheorem 2.2 R :

There exists a real upper triangular matrix S = (Si j) with positive diagonal
’!

entries such that

(A.2) N | A=s%s
The elements S; j are given by
s
a, j
( ®1,1 Y31 ¢ sl,j“sll
b
s ='\A - ) 32 151 ;
i1 LT LY ’
(A.3) < .. i1
) 'ﬁl 61 % _
Si,j— si,i T 9 j>13
si,j =0,1>J .
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Therefo:e, the solution of matrix equation (A.l) can be reduced to

the solution of two triangular syétems

R

S
(An) . | :

=
=<

v
s
I
I

Both systems in (A.4) may be solved directly by

S
(1.5) fl fi - g s[si yl i
.5). y, = ; ¥y. = 2 ix>1 .
STl sy 2 1,1
N
. ¥ yi - ._Z si’I XI
(A.6) =N . 5 = =if i<N
.6) . Xy =oo 3 Xy ’ —= —_ )
i, i

N,N

We note that the matrix S is independent of the source vector F.
Hence, if the matrix equation AX = F must be solved for many different
vectors F, the matrix S ﬁeed only be computed once,

We now seek to determine the number of multiplications and divisions
required.by the square-root method to obtain the solution to (A.1) when A is

a particular sparse matrix,

Definition A,1 The matrix A = (ai J.) is an n-diagonal matrix; if n is the
3

smallest nonnegative integer such that ay j =0 if lj -il>n,
H

From Eq. (A.3), it follows that if A is an n~diagonal matrix, then

S is also an n-diagonal matrix, Hence, fram equations (A.5) and (A.6),we have"

1An n-diagonal matrix is sometimes called a band or striped matrix,
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Theoram A 2 Let A be a general irreduclble n—dlagonal Stieltjes matrix If
the S matrix is at hand, then the solution of AX F by the squane-root method

requirea an average of 2 n mnltiplieS'and 2 divisions per unknown.

In order to carry out the cyclicaliy reduced three-line successive

overrelaxation method described in Chapter V, the matrix equation

(4.7) o Xi,iAim) Ly

is gélﬁed directly using the squSre root method described above. If the squﬁre.
nodal points within each successive triplet'of horizontal mesh lines are ordéréé‘
as in Fig. 5.6, then it is easily seen that the Ai,i are 3-diagonal matrices.

" Hence, from Thm, A.2, the solution of (A 7) by the square root method requires

6 multiplies and 2 divisions per unknown. As described in Chapter V, the.

division -operation may be eliminated by the normalizat;oﬁAOf Eq. (A.7).
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APPENDIX B

The Inner-Outer Iteration Problem

[

The basic problem in multigroup diffusion problems is to determine
the fundamental eigenvalue and corresponding eigenvector for the eigenvalue

system
(B.1) \O=ExFrd .
We saw in Chapter III  that the problem (B.l) may be restated in terms of the

fission eource1 as
(B.2) . : =TV .

As described in Chapter IV, the power method (4.l) and the Chebyshev
polynomial method (4013) may be used to obtain by iterative means approxima-
tions to the fundamental eigenvalue and eigenvector of (B.2). All the results
of Chapter IV are based on the assumption that the matrix-vector product Tﬁ?
may be obtained exactly. But in Chapter V we saw that fhis preduct'ie only
approximated when inner iterations are required in the solution of the group
equations. Hence, the results of Chapter IV are not strictly valid., Two
related questions which then confront us are (l) What effect do the inner
iterations have on tne ¢a£er iterations in the solution of the eigen-problem?
(2) What accuracy is required in the inner iterations in order to minimize the
total computer time required to obtain a satisfactory numerical solution to
the eigenvalue problem?

The inter-relations between inner and outer iterations seem to be very

complex. We will not even attempt to give direct answers to the above questions.

1he definitions of the vectors and matrices given in Egqs. (B.l) and (B.2)
are as given in Chapter III,
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Instee.d we seek only to present several approaches which hopeﬁxlly will shed a
little 1ight on the answers to these questions, The first approach is simply
an error analysis designed ‘eo determine how the errors created in PDQ-—type
problems by not obtaining T;l_l exactly are propagated in the outer 1terata.ons,
The second approach is to obtain a new eigenvalue problem which takes into

account the fact that inner iterations are-being performed.

-A, Error Prupagaticn in the Outor Iterallvus

In this section we seek tn delermine how the ‘errors crcated by not
obtaining TY exactly are propagated in the outer iterations, For this

purpose we need only consider the two-group problem which may be described

as
5
MY =T Y
. = 2
Aala “RB Y 4
where - - f =g F222 .

3

Thus, the eigenvalue problem (B.3) can be written in terms of the fission

source &6

(B.4) . | o ) AV = TY ‘9

WhereT—FA1X1+F [’_X +B,1A1X1]
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For notational purposes let

911([)9 ﬂz(f)s _“.’(Ds ‘.§(1) ' be the values of the group fluxes, fission
- source, and TW([-—l) which one would have at

the end of the f-th outer iteration if the

~ TV could be obtained exactly. (The vector

S(f) is defined in Eq. (4.1).)

/(-El‘;‘()’ @2(1), ,_‘47([), E([) be the approximate values of the group
. fluxes, fission source, and ?Y(K-l) which
one would have at the end of tﬁe f-th outer
iteration when inner iterations are needed

~ to approximate the matrix-vector product
. | v

. El([ ), 52([ ) : be the innef iteration error vectors which
are defined by El(() = A1 le{r_'([—l) - 21({)
52(1) = A [Rl 1(1) + X \P(l—l)] = (Pz(l)

E() ' ' be the outer iteration error vector defined by
~ -~
s(f) - ™{-1)
B0 = —=m -

Using the above definitions we have |
) G = WD) - £ (D)
B0 = 5T 0 + L1 - g0

3 = Tf-1) - Fye () - Fyleg(f) + A5 R, ()]
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and

A (D

5(0) = - { a0 * ol + 5y (1) } .

Now assume that we have a fission source guess W(0) and an approximation

oo for o and we wish to perform the Chebyshev polynomial method (4.13) with

inner iterations, If A(f) is a good approximation for the largest eigenvalue
M of T, then from (l+0713) and above we have
3(1) = TH(0) + \,E() |

so that

o )
W(1) = ¥(0) + oy [—{1— - _“.‘(0)]

). - $1) = @5Q)

For the secoridf outer iteration we have

3(2) = Q) + ME(2) =8(2) + al',r_b;(l') + MEQ)

W2) =¥(Q1) +a, [T -‘i’(l)] + 8, [ W) - _V_/(o)].
T 1 A
1'\(2) - H2) = oy [ 1-0,+ 6,2 + aé i—l-] E(1) + a2§(~2).

‘Now using the fact that

: (1-“[+BI)E+:—QGI
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we have

/\E(?) - W2) = aa, [- -;—Q '{l] E(1) + a,E(2)

which may be written in ‘the form

#(2) - 4(2) = ) 1 ]IE(l) +a E(2)

1 [c
°o c (2 1) %M
%

For the third outer iteration we obtain in similar fashion

B) - ¥0) = b —— (el - ES
e

0 oM
C (3— - 1)
g L% 2T
tom Ty Cyl===~ 1] | E(2) + «,E(3)
% Cy (2 -1) [ L ogh )] 3 ,
%

and in general for the f-th outer iteration we have

- 1
(B.5) W - U0 5 ;I_(_::; {Y{E(l) +2 ji 5 l( - 17 j+lE(j)} s
%

where

1 | 2T

0 3 31173 O)‘l 1)+Yj-2 for j» 2

The expression on the right side of Eq. (B.5) is thus the error
introduced in' the outer iterations by the inner iterations. But since the
E_([ )'s are not known, this ex;Srjes‘sjion does not appear to be of any practical
use to us, However, this expression does allow us to determine how the inner

iteration errors are propégated by the Chebyshev polynemials.
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If we again assume that the eigenvectors i{l of T span the associated

vector space; then we may ekpress the E(f ) as

) ZMN .4
E = . .
- . i=l a[ 3 i—l

Rememberihg that we are seeking the eigenvector *1 corresponding to Ays we
are interested in seeing how the terms a.[’ 1—wi for i fl are propagated in

- the outer iterations by the Chebyshev polynomials. The following tables
show how the term a g 2:4_/2 in the expansion of E(f) is propagated for various

values of o, /The symbol Sj, { represents the coefficient of aj,2iJ2 in the

expansion of E(j) at the end of the f-th outer iteration,

TABLE I: oy = .5 ; o=.5
’l .

L1500 52,0 55,0 B0t | 5.0 %60 |57, Seut S0t |S10.0
1 |1.33
2| .47 |Lan |
| 3] .12 | .485 [1.37 ,
| .028 | 125 | 471 (1.37
| 5] .006 | .028 [.121 | .471 137 |
6| .00L | .006 | 028 | .121| .471 |1.37
7 | o002 | .ooL | .o06 | .oa8| .12 | . |13
8| - | .0002f ,00L | 006 | .028 | .121 | .471 |1.37
9| —— | — | 0002 .o01 | .006 | .028 | .121 | .47 |1.37
10| — | -— | -— | .0002] .001 | .006 | .028 | .121| .471|1.37
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TABLE II: oy =.8 ; 0=.8

S P20 15500 S0t |55 (P6d [ 310 [P0 | 590 | Pr0,0
1 [1.66
| 2 {1.43 |24

3 8 | 1.67 | L.okk

| a2s | L9577 | 1.k9 |1.915

51,203 | .489| .853 |1.46 [1.91

6] .0937| .233| 435 .838|1.46 [1L.91

71 .002 | 107 .208| .427| .836|1.46 |1.91

g | .ou8 | .on8| .o95| .204| .426] .836]|1.46 |1.91

9 | o8| .o21| .o42| .o9u| .203} .426] .e36(1.46 |1:91

10 | ,0033| .009]| .019| .o41{ .093| .203| .426| .836]1.46 | 1.91

TABLE III: oy =.9 5 0 =.9

1500 52,0 |50 |t 350 %60 57,0 [Pt |90 |Sr0.0
1 |1.82 |

2 |2.24 |2.73

3 |1.83 [2.99 [2.43 .'
L o|1.29 ]2.36 [2.56 |2.34 |
5 | .8y [1.64 |2.00 [2.44 |2.32

6 .524 11.07  |1.39 |1.91 J2.41 |2.31

7 | sl e | 90 132 [1.88 [2.40 2,31

89 | o | .56 | .ee (130 |17 200 [2m
9| w0 .2 | .34 | .53 [ .85 [i30 [1.87 [2.40 [2.31
10| .oe3| .14 | .20 |32 | .53 | .8 [1.30 {1.87 |2.40 |2.:1
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TABLE 1IV: %y .98 3 o=
K0S, 52,0 | 33,0 | Sund | S5t | et | 570 | Seut [ Sout [Sr0,0
1{1.96 ” ‘
2 | 3.50 | 3,64
3 | 401 | 6.12 | 3.43
o | a7 7.40 | 5,53 | 3.25
5 | 4.65 | 7.74 | 6.50 | 5.16 | 3.20
6 | 4.30 | 7.45 | 6.68 | 5.96 | 4.93 | 3.15
7 |3.82 | 6,82 | 6.37 | 6.06 | 5,64 [ 480 3.1
8 |3.31 | 6.04 | 5.80 | 5.75 | 5.7 5046 | .72 | 3.10
9 |2.82 | 5.21 | 5,11 | 5.21 [ 5.39 | 5.50 | 5.35 | 4.68 | 3.08
10 | 2.36 | 442 | 481 | 4.59 | 4.88 | 5.18 | 5.38 5.29 | 4s65 |3.08
" TABLE V: o, =.8 ; 0=.98
L0800 | S2,0 | 53,0 | St | S5, 56,1(57,1 8,0 | 59,4 |510,4
1 | 1.66 |
2 |a.07 | 2.
3 |2.05 | 202 | L.y
L 11.97 [ 2.36 | 2.16 | 1.915
5 189 | 2.27 |2.107| 2.12 |10
6 |18 |27 |2.02 [2.07 [2.12 |10
7 174 | 2,07 |2.93 |2.92 2,07 232 | 1.9
g |16u |1.98 1.8 [1.90 [1.98 [2.07 [2:2 | 1.
9 157 [ 176 [1m [1.89 [1.98 2.07 P22 | 1.9
10 f1.50 [1.82 {1.72 1.73 |1.80 |1.89 | 1.98 2,01 2.12 {1.91
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Even if inner iterations are not required, the above tables may be used
to determine the propagation of round-off errors in the generation of Chebyshev -
polynomials using the three-term recurrence relation (4.12). .

| ffor the straight power method (h,l); one may easily show that the

analog. of Eq. (B.5) is

S { 3 o
- T
(B.6) wl) - KO = 21(7) E(3) ,
J71 71
In the next section we shall take into account the fact that inner'
iterations are being performed and obtain a new eigenvalue problem which

under certain conditions has the same fundamental solution as (B.1).

B, A New Eigenvalue Problem

From Eq. (3.17) it is clear that the straight power method applied to
the eigenvalue problem (B,1) may be.carried out by solving successively the
system of group equations - -

' : . . . X2 o ’g?G :
(B.7) { A2, (£) =R, 12, ) + 37Ty k;lezk(I-l)} -
For two and three¢ dimensional probléms, the=Ag's generally cannot be directly
inverted so that inner itegations must be used to obtain approximafions for
the ¢ g([)'s, |
| Let Ag be written as

_ -l '
(B.8) 2 (1 - Pg) s Where P‘Pg) <1l,

A
g

so that a stationary iterative methed to solve Aggg = S may be written as
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(m) (m-1)
.9) : =P +HS
(8.9) 9 =P FHS
where m is the inner iteration index, Equation (B.9) may be written in terms

¢

of the initial guess 9;;0) as

| (m) ©) , el
.10 =p" + (I +P_+eos +PO)HS
(B.10) % " g ie I(,-g g Mgl
For the rest of this section we shall assume that a lixed nuwber m g OF
inner iterations are performed in group g for every outer iteration. If we
now define A " es
~ ‘ , m -1
~1 _ : g
= + + + L] + P b
K =@+ Pé LA
then Eq. (B.10) may be expressed as
| (m) m . o~
9 8 =p8o0  31s
* g g g =

Thus, if we let
~- (m.) -
o & (0) gy — .
gg(!):eg () and ¢ (N =2,U1)

then when inner iterations are performed we actually obtain instead of (B.7)

the pseudo system of group equations °

2210

' { ~ m . L
= g - _l
| (B.11) { zg(i) Pg 23(1 1) t A, Ry

~3 X2 G ~ g=G
* Ag W‘:ﬁ k;legk(l-l) £=1 ’
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Since‘P(Pg) < 1, we may express A;l as

- _ m.g
A - =(I+P_ + eo0 +P° + coo
g ( g 8 )Hg
) so that
- o~ By -1
B.12 . A = - °
(.12) o= (1 - R8N

~

Thus, A;I is nonsingular and we may write Eq. (B.1ll) as

- = =T e (-
(.13) A2y (D) - B () = b pef 2D

X G -
sty s |

g=G

g=1

Thus, if we let

2, ()
i 2,(0)
o (N=| . ,
()
- m
Al- 0 Pl m, 0
@{ P2 |
D = I , and P = \\f‘;
= \\ \\
\ N\
~ o o
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then (B.13) may be expressed in the matrix form

BQ () = sy @ U-L) + 0P (£-1) |
or equivalently |
(B.1) & ()=t [ﬂ%—) + BP] ® (f-1)

From Eq, (B,12) we have

~

) mg -1
A-=A(I-~-P
g 8( s )

which may be expressed in the form

- : mg 1 mg - mg
A=A |I+(@-~-P P =A +AP .
g g[ (I-Fg%) g] g “ge
Thus,

E=E + DP

and (B.14) may be written as -

& () = (& + ey [ o BP] & (f-1)

or equivalently

(8.15) . &d) =(1+5Lpp)t [%%f—% + g1 BP] d (f1) .

_' If the iterative process (B.15) is convergent, i.e., i’(f) &,Ci*(f—l) = @
and A\ (f) = k((—l—) = \s then from (B.15) we have

-1 ~

> _EXF
&

19

so that. {C_I_D, 1} is also an eigen-p;ir of the matrix E-?'XF, Moreover; from
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Thm, 3.2 webknow that any positive eigenvector of E"lXF is just a scalar‘
multiple of the fundamental eigenvector‘ZﬁQ Thus, -if the iterative process
(B.15) converges and ifCiD is a positive vector; then )\ =N _andc_ii' is-a
scalar multiple‘:of’@}l° Even though we do not know what conditions are needed
on the'matrix P to insure the convergence of (B.15), it is of some consolation
to know that if the.proces§ (B.15) does converge and has a positive solution
vector, then this solution is also the desired answer té the eigenvalue problem
(B.1). |

Assuming that the process (B.15) is convergent and that A(f) is a goed
appfoximation to As then when inner iterations are performed the power method
is actually being applied to the eigenvalue preblem

, ~ ~ -1 ~ ~

(B.16) vy®=(1+£7 p)?t [ E—)\ll@ + L DPJ o
and thus the rate_of convergence of (B.15) is determined by the eigenvalues
Y of the matrix (I + gL SP)=1 [EE;XE + 51 BP] . We note that Y =1 and
& =@, 1s a solution of (B.16), ’ |

‘The eigenvalue problem (B.16) cannot be restated in terms of the
fission source as was done in Chapter III for the system (B.1). Thus,
when inner jterations are performed, the Chebyspev extrapolation of the
fission source vectors as described: in Chapter IV are not associated with
any well-defined eigenvalue problem. The eigenvalue problem (B.16) is well-
defined; however; so might it nét be better to apply the Chebyshev polynemial
methed to this problem? |

From}Chapter IV, sufficient condigions for the rigorous application

of Chebyshev polynomials to (B.16) are that the matrix
A7 -1 [EXF . 1= ‘
(I +E DP) [ 0 +E DP] have real eigenvalues and a complete set of

M
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eigenvectors. The range of the eigenvalues is also needed. An expe;imental

and analytical investigation is currently being undertaken to determine how

~ -1 ~
nearly these conditions can be met by the matrix (I + g1 DP)-;[-—xﬁg + gt DP]

Other approaches to the general inner-outer iteration problei are also
being investigated. For example, E, L, Wachspress of the Knolls Atomic Power .-
Laboratory is éurrently investigating the possibility’of using Wie;andt's
method of fractional iterations to accelerate the outer iterations;

The author would like to express his appreciation to Professor

R. S, Varga for his aid in the developmént of this appendix,_
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