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ABSTRACT

SUMMARY - CONCLUSIONS

Discussion and reporting of transient response charac-
teristics of transducers and measuring systems is often
clouded by the confusing terminology associated with this
particular branch of our modern technology. Meaningful
communication between the designer, fabricator, evaluator,
and user of such a system can result only if there is uni-
fied agreement concerning use of the terminology. It is
thus intended that this document should provide clarifica-
tion of definitions of many terms used in transducer
instrumentation technology. An alphabetical listing of
common terms and their definitions is presented. In addi-
tion, a discussion of the response of first- and second-order
systems to step and ramp inputs-is included.

It is shown that a single term does not adequately de-
fine the transient response of a transducer system. Response
characteristics should be given in terms of well-defined
parameters which are important to the measurement. If
steady-state frequency response is of prime importance, the
3 dB bandwidth, phase characteristios, and amplitude peaking
should be specified. If it is a transient response which
is of importance, the risetime, delay time, overshoot, and
settling time should be specified. The consistent use of
well-defined terms will prevent many of the problems which
have often been a part of the characterization of the tran-
sient response of transducer systems.
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IT.

TRANSIENT RESPONSE OF TRANSDUCERS

Definitions and Characteristics

INTRODUCTION

The "response time', "frequency response'", or "speed of response'" of

a measurement system or component is often quoted in an ambiguous
manner which leaves the reader uncertain as to the exact meaning of

the parameter. Since many other terms are also used to describe the
transient response characteristics of transducing systems, confusion
is generally prevalent. Meaningful communication between the designer,
fabricator, evaluator, and user of such a system can result only if
there is uniformlagreement on the terminology used to describe the
system. It is thus intended that this document should provide defi-

. nitions of the terminology used in describing the response and be-

havior of transducing systems. All phases of the system response,
from application of the driving force until final steady-state outputs
are attained,; will be discussed. The transient response of a typical
transducer can be divided into several regions including delay time,
risetime, overshoot, and settling time. Each plays an important part
in defining the overall response of the transducing system or
component. Additional terminology must be used to define the above
parameters and to further evaluate the system performance.

Accuracy, precision, range, span, and repeatability are terms which
are also an integral part of the confusing transducer terminology.-:
Unified definitions of each are necessary before meaningful communi-
cations in this field are possible. Thus, a list of pertinent terms
and corresponding definitions has been prepared and is presented in
following sections of this report. A discussion of transducer oper-
ating characteristics is also included to provide a working model

of transducer response relationships.

TERMINOLOGY

Terms used to describe instrumentation components and systems are
often used incorrectly. There is often misunderstanding concerning
the definition of terms. For example, the terms "accuracy" and
"precision" are often used interchangeably. Time constant, response
time, and risetime are often incorrectly used to describe the same
parameter. Terms which are commonly used in discussing the dynamic
response of a transducer system have been separated into three
categories. These include the general headings of A.) Response Time,
B.) Accuracy, and C.) General System Behavior. Listings of the
three groups of terms follow. Definitions of each of the terms are -
given in Section IIL of this report.
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A. Response Time

Damping Time
Dead Time
Delay Time

Equivalent Time Constant

(1g)

Frequency Response

Initial Delay Time
Lag Time

Response Time
Risefime (Tr)
Settling Time
Time Constant (t) |

Transient Response

B. .Acéuraéx |
Accuracy
Deviation (di)
Drift

Error

Least Detectable
Increment
Linearity

Noise

Preéision
Random Errors
Repeatability
Sensitivity
Systematic Errors
Transient Error

Variance (¢2)

C. General System Behavior

Amplitude Peaking (M)
Average Measurement
Bandwidth (BW)

Characteristic Equation
Critically Démped

Damped Natural‘Frequency (wg)
Damping Factor (Z)
Differential Measurement
First-Order Systém
Hysteresis

Natural Frequency (wj)
Overdamped

Overshoot

Phase Shif¥

Range

Resonant Frequency (wr)
Ringing

Second-Order System

Span

Transfer Function

Underdamped
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DEFINITIONS

Accuracy:

The accuracy of an instrument indicates the deviation of the reading
from a known input. It 1s usually .expressed as a number or quantity
defining the error as the difference between the indicated and ac-
tual values. These can be expressed as a percent of the instrument
range or as a percent of the actual value.

Amplitude Peaking (M):

The absolute value of the ratio of the maximum amplitude to the
mean or average amplitude of an amplitude vs frequency plot. A
second-order system response is presented in Figure 1.

A
mean

Average Measurement:

The arithmetic average (mean) of two or more simultaneous or sequen-
tial measurements of the parameter.

Bandwidth (BW):

The band of frequencies lyfhg between the two frequencies where the
system frequency response is 1//2 (3 dB down) or 70.7% of the peak
system response. The bandwidth-system response relationship is
shown in Figure 2. Bandwidth can also be obtained from the ampli-
tude vs frequency plot (Bode diagram) presented in Figure 1. Band-
width information is often presented as a normalized function of
the damped and undamped natural frequencies of a system, i.e., the
ratio of the 3 dB frequency to the natural frequency. Such a pre-
sentation is made in Figure 15 of Section IV of this report.

Characteristic Equation:

am? + bm + ¢ = 0. The measuring system can be described by a:second-
order homogeneous differential equation of the form

2
a Xy & - al (1)
dt2 dt

This can be expressed in terms of the damping factor 7 and natural
frequency.wn as follows:
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2 o
Xy oope 42 40204 - (2)
ae2 n dt n n a
where
£ _,2
a n
b ‘
=C .
2/ac

Solution of Equation (2) is of the form
x = A", | (3)
Substitution and factoring of Equation (1) yields the general form

emt(am2 + bm+c) =0 (4)

which must be satisfied if Equation (3) is a solution. Since emt

can never be zero, it is necessary that

4

am?® + bm + ¢ = O. (5)

This purely algebraic equation is known as the characteristic equation
of Equation (1).

Critically Damped:

The characteristic equation of the system has two real, equal roots.
The damping ratio § = 1. The response of a critically damped second-
order system can be seéen in Figure 8 of Section IV.

~

Damped Natural Frequency (wd):i

The frequency of vibration of real damped systems. The damped natural
frequency of a second-order system can be expressed in terms of the
undamped natural frequency W and the damping factor ¢ as follows:

. el
@d wn vl z



Damping Factor (g):

A measure of the oscillatory behavior of the system. It has the
following physical significance:

_ actual damping
damping for critical response °

4

Since £ influences the roots of the characteristic equation for a
system, its value is a measure of the actual damping in the system.
When,

1 the system is underdamped,

r <
Z = 1 the system is critically daﬁped,
T > 1 the system is overdamped.

The damping factor of a second-roder system can be expressed in terms
of the damped natural frequency Wy and the undamped material frequency-
w as follows:

Damping Time

Time interval measured from when the system output first reaches 90%

of final value until the time after which it remains within a speci-
fied percentage of the final value. Damping time is shown schematically
in the first-order response curve préEented in Figure 6 of Section IV.

Dead Time:

The interval of time between the impression of the input on an
element or system and the initial response to the input.

‘Delay Time:

Time interval between the application of a step function to a sys-
tem input and the time at which the system output response reaches
10% of its final value. This is shown in the first-order response
curve presented in Figure 6 of Section IV.

Deviation (di):

The difference between an individual measurement and the arithmetic
mean. or average of all measurements. Thus,




where
X, Trepresents an individual measurement,
x ~represents the arithmetic mean of the measurements.

The standard deviation or root-mean-square deviation is defined by

1/2
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Differential Measurement:

The algebraic difference of two like parameters obtained by simultaneous
measurement of these or, by direct measurement of the difference.

Drift:

A very low frequency component in output which is not produced
by the input signal.

Equivalent Time Constant (Te):

The time required for an output quantity to change by an amount equal
to 63.2% of the total change that it will experience in response to

a step change in input. This is shown in the first-order response
curve presented in Figure 6 of Section IV.

Error:

Difference between indicated and true value. Usually expressed as a
percent of full scale or percent of reading.

First-Order System:

A system which has a behavior that can be described by a first-order
differential equation. The transfer function for a first-order system
is

B () | \
Ei(s) T8t 1



where
Eo(s) is the system output,
Ei(s) is the system input or driving function,
Te is the equivalent time constant of the system,
s is the Laplacian operator,

Frequency Response:

The frequency dependent ratio of system output to system input for
sinusoidal siguals. IL 1s a complex function having both magnitude
and phase. A frequency response plot in terms of amplitude (Bode
diagram) is shown in Figure 1. Bandwidth specifications are often
erroneously listed as frequency response requirements.

Hysteresis:

. An instrument is said to exhibit hysteresis when there is a difference

in the indicated value of a parameter as the measurement is approached
from above or below the real value. That is, the output is dependent
upon the sign of the rate-of-change of input, not upon the magnitude
of the rate-of-change. Hysteresis may be the result of mechanical
friction, magnetic effects, elastic deformation, or thermal effects.
It is normally specified as a percent of the full range of the
instrument,

Initial Delay Time:

See Dead Time.

‘Lag Time:

The time span between the actual occurrence of a given value of a
parameter and when the instrumentation indicates this wvalue. The
lag time is shown on the transient error diagram in Figure 3.

The minimum change in input which will produce a detectable change
in output. ’

‘Linearity:

A measure of the deviation of the transfer function from a linear
function. Linearity is usually expressed as the percent of full
scale that the output deviates from a linear function. This con-
cept is shown in Figure 4. ’
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Natural Frequency (mn):

The frequency of vibration or oscillation of an excited system which
is free from the influence of external damping. Also called the un-
damped natural frequency. For a second-order system whose behavior
is described by:

d?x
o7t B—+yx=f(x),

the natural frequency is

w ='Y3! ]
n o
Noise:

Variation in system output when the system input is held constant.
Noise levels may be expressed as peak-to-peak values or as a root-
mean-square (rms) value.

Overdamped :

x

The characteristic equation of the system has two real, unequal roots.
The damping ratio ¢ > 1. Overdamped response in a second-order system
is shown in Figure 8 of Section IV.

Overshoot:

The difference between the peak and steady-state or equilibrium systém
outputs for a step change in input. In terms of the damping factor g,
the percent overshoot is expressed as:
P T
% overshoot = 100 exp - .
Y1-g2

Overshoot in the output of a second-order system is shown in Flgure 7
of Section IV.

' Phase Shift:

The frequency dependent difference between the phase of an output
sinusoid and the phase of the corresponding input sinusoid. Defined
for sinusoidal signals only. The effect of the damping factor 7

on phase shift over a range of input frequencies is shown in Figure
5.

Precision:

The ability .to reproduce an output for a constant input with a given
accuracy.

12
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Random Errors:

Errors resulting from random fluctuations in the instruments, -various
influences of friction, etc.

Range:

The difference between the maximum and minimum parameter values to
which a‘'system may be applied.

Repeatabilitg::

See Precision.

Resonant Frequency (wr):

The frequency at which the maximum gain (ratio of output to input)
occurs. In terms of the damping factor r, the natural frequency
Wns the resonant frequency for a second-order system is:

w = w )l—ZCZ .

r n

Response Time:

The interval of time from the initiation of a step change in input until
the output reaches 90%Z of the final value. The response time is shown
schematically in Figure 6 of Section IV.

Ringing:

Oscillatory output resulting from a step input. As in a greatly under-
damped system. (See Figure 8 of Section IV, ¢ = 0.1.)

/

Risetime (Tr):

The length of time between the 10% and 90% values on the transient
response curve for a step input. The risetime is .indicated in Figure
6 of Section IV. '

Second=Order System:

A system which has a behavior that can be described by a second-order
differential equation. The transfer function for a second-order system
is

2

EO(S) ) W
E;(8) $2 + 2zw S + w?
n . n

14



where
EO(S) is the system output
Ei(S) is the system input or driving function
w is the undamped natural frequency
¢ is the system damping factor
S is the Laplacian operator.

It should be noted that S2 + ZCwnS + wﬁ = 0 is the characteristic equa-
tion for this system.

Sensitivity:

The ratio of the output change to a specific change in the measured
parameter.

Settling Time (TA):

Sum of the delay time, risetime, and damping time. Time required for
the output to reach and stay within a specified percentage of the
steady-state value. The time to settle within 5% is indicated in
Figure 6 of Section IV.

Span:

That portion of the instrument range for which the instrument is
calibrated to perform a definite function.

Systematic Errors:

Fixed errors which cause repeated measurements to be in error by
roughly the same amount. Usually inherent in the system.

Time Constant (T1):

Equal to. the equivalent time constant Te for transducer systems.

T = RC for a simple circuit containing resistance R and capacitance
Cc. '

Transfer Function:

The relationship between the system input and its output.l This is
usually expressed in the following form:

EO(S) = fIEi(S)], where S is a Laplacian
operator.

15




Iv.

Transient Error:

The difference between the system error at any time and the steady-
state system error for a specified input. The transient error is
shown schematically in Figure 3.

N

Transient Response:

The response or output history of a system for a step input.

Underdamped:

The roots of the characteristic equation are complex conjugate numbers.
The damping factor ¢ < 1. The system tends to display an oscillatory
behavior in response to a step input. Underdamped response in a
second-order system can be seen in Figure 8 of Section IV.

Variance (02):

The square of standard or root-mean-square deviatiom.

T \
TRANSDUCER 'SYSTEM CHARACTERISTICS - TRANSIENT AND STEADY-STATE BEHAVIOR

As previously mentioned, there is much confusion about the terminology
applied to transient response characteristics. To help clarify the
definitions given in the preceding section, a discussion of some of
these terms, as applied to first and second-order systems, is pre-
sented below. Parameters used to describe the transient response of

a transducer system are presented in a normalized form as functions

of the system damping factor. Thus, a common basis of comparison

is obtained. )

A. TFirst-Order Systems

1. Step Input

Consider a first-order system having no initial delay. The
transfer function for such a system is :

I w0
E, (S) T TS+l

where
EO(S) is the system output
Ei(s) is the system input or driving function
T is the time constant of the system

S is the Laplacian operator.

16



The response of this system to a step input such that for time
t <0, Ei(S) =0 and for t > 0, Ei(S) = A is

£
E (t) = A | l-e ") _— (2)

The response of such a system to a step input is shown
graphically in Figure 6. As can be seen from Figure 6, the
risetime 7, is about 2.2 times the time constant t. Thus,
for a first~order system:-

T =221, 3)

Ramp Input

Because physical phenomena occur at a. finite rate, a

step input analysis will not always be appropriate. Thus,
consider the response of a first-order system to a ramp
input. For this case the response can be expressed as

eT-l)] (4)

where M is the rate of change of the input or driving function.
The response of a first-order system to a ramp input is shown
in Figure 7. As can be seen, the dynamic error soon attains
a fixed value. This results in a decreasing error percentage
as time progresses (t >> 1). Referring again to Figure 7, it
can be seen that the maximum error occurs after several time
constants have passed. The magnitude of the error is the
difference between the ideal and actual outputs of the system.
Since this value divided by time interval t is equal to the
slope of the input ramp, the maximum error can be expressed
as follows,

Eogt) =M [ t+t

Maximum error = TM. (5)

Where, T is the time constant of the system and M is the rate
of change of the ramp input.

Because these systems are represented by linear differential
equations, the solutions can be superposed. Thus, combina-
tions of ramp and step inputs can be used in the analysis of

a problem., This greatly simplifies the analysis of the dynamic
response of first-order systems.

17
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Steady-State Frequency Response

The bandwidth of the first-order system is determined from
the two frequencies at which the system response is reduced
by 3 dB (70.7% of peak response). The 3 dB frequency is
given by

w
_ “34p  0.35 _ 0.16-
f3dB Co2r T oo (6)

B. Second-Order Systems

1.

Step Input

Although some transducer systems can be adequately described
by the mathematics of a first-order system, the real effects
of friction, inertia, and finite mass distributions usually
place transducers in the realm of second-order systems. This
in effect requires a more precise mathematical description

of the system parameters.

The general transfer function for the second-order system is:

2
EO(S) ) we -
E.(S) 2 L2
i S + 2§wnS + wn

where
EO(S) is the system output

Ei(S) is the system input

w = Zﬂfn, the undamped natural frequency

¢ is the damping factor

S is a Laplacian operator.

The transducer response described by Equation (7) can be ob- !
tained by solving for the roots of its characteristic equation, )

2 2 _
8% + 2§wnS + w2 =0. (8)
Thus the roots are
Slz=wn (,“E‘_t’C -1) €))
-9

20




From this solution three distinct cases develop which are
dependent upon the value of the damping factor .

For:

1, the roots are conjugate complex numbers and the
system is underdamped.
t = 1, the roots are real and'equal, the system is cri-
tically damped. ’ '

X
A

t > 1, the roots are real and unequal and the system is
said,to be overdamped.

Second-order system solutions corresponding to these three
cascs are as follows.

For a step input -in which E;(8) = 0 for t < 0 and Ej(S) = A
for t > 0, the solution for the underdamped case (g < 1) is:

Eo(t) = A [l - 1i; exp(—Cwnt)sin (Y1-72 w t + ¢)] (10)
'where ¢ = t:a’n_:l —A%E— . ) (11)

The system response to a step input when critically damped
(t = 1) is described by:

E (t) = A _[l-f(l+wnt) exp (-u )] . ' (12)

The overdamped system (g > 1) w1ll respond to a step input A
in the following manner:

E(t) = al1- 1 exp (-z+/7%2~1lupt _ exp(=¢-v Z_Twnt . (13)
° 2/¢Z-1 r-vVz2-1 z+/2%-1

The response of a second-order system to a step input is shown
for various values of the damping factor ¢ in Figure 8.

The risetime T, of a second-order system'in response to a step
input ‘can be approximated by the f6llowing expression:

L ohub~ [t + 0.46 T2 + 0.0889 :
= \[ 7Z + 1.655 | (14)

21
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The risetime of such a system is shown as a function of the
damping factor in Figure 9. It will be noted that two curves
are shown in this figure. One curve represents the risetime-
which has been normalized to the undamped natural frequency
Wp, while. the other is normalized to the damped natural fre-
quency wd by using the relationship wg = wp v1-zZ. The rise-
time of a typical second-order response to a step input is
also indicated in Figure 8.

The equivalent time contant Te (time constant) is calculated
from second-order response curves such as shown in Figure 8.
It is the time required for the output to reach 63.2% of

the step input and, as can be seen, is also a strong function
of the damping factor. Equivalent time constants, normalized
to both the damped and undamped natural frequencies are shown
in Figure 10.

Just as the time constant can be determined from thé system
response curves, so too can the settling time Tp. Since the '
settling time is defined as the time required for the output

- to settle to within a specified percentage of the steady-
state value, one time is obtained for each specified percentage.
Part of this family of settling time curves are shown as
functions of the damping factor in Figure 11. Again, the
settling time has been normalized to the natural frequency w .

Also apparent in the response of a second-order system to a
step input is overshoot and ringing. As shown in Figure 8,
these also are controlled by thé system damping factor. The
percent overshoot for a second-order system can be calculated
from the following expression.

Percent Overshoot = 100 exp =l ] (15)
/IgZ
The overshoot as a function of the damping factor is shown in
Figure 12. ‘
2. Ramp Inguf

Solutions to the characteristic equation [Eq. (8)] when the input
increases linearly with time (ramp) are given by the following.
For an underdamped system where ¢ < 1:.

_u | B} e
Eo(t) = ™ [ — exp ( Cwnt) sin (V1-¢ mnt+¢ 2;+wnt] (16)
where ¢ = t;an-l %7%%%5 and a7) -

M is the rate-of-change of the input.
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When the system is critically damped and ¢ = 1:

E_(1) ='%;[(2+wnt) exp (-v_t) +w_t-2]. Coae

The overdamped case in which ¢ > 1 is described by the following
equation:

w t
Eo(t) = %;—<2Z% [exp ‘- —EL-)— l? exp v wnt)] U Y + wnt > (19)

v

- where v = R A Sl . (20)

r - /g7-1

The response of a second-order system to a ramp input is shown
for several values of the damping factor ¢ in Figure 13.

The maximum error for a given rate of change of input M is
given by:

Maximum Error = Q%M . (21)

n N

This will define the response parameter ;/mn and if the damping
factor ¢ is selected to comply with optimum design criteria, the
risetime, time constant, etc., can be determined in a manner
similar to that used for the step input.

Steady-State Frequency Response

The amplitude peaking for a second-order system can also be
~expressed as a function of the damping factor. The peaking
factor M, which represents the ratio of the maximum to mean
signal amplitudes, is expressed as a function of the damping
factor as follows:

A ax- 1
M = Am = . (22)
mean 2;Vl—cz

This relationship is shown graphically in Figure 14. For
convenience the peaking is shown both in terms of the peaking
factor M, and in decibels.

The 3 dB bandwidth of a second-order system can also be ob-
tained from a knowledge of the system damping factor. For




4.0 T T T T

T T
3.5
= 3.0
€
e}
ey
o
s 25 £=0.
2
< - 4
= , p
5 y
a /
3 2or . 2 0.5
€ ldeal (No Lag) 7
® Output < .
» \ .
> .
' » 5 y/
. . y/
o 1.0
1.0 -
/)
| 7/,
‘ 4
| 0.5 z
| 4
|
' /,
7,
| 7 :
| 0 1 I 1 1 1
| 0 0.5 1.0 5" - 2.0 T 25 3.0
| Cwpt
|
| - . o
Figure 13. Response of a Second-Order System to a

Ramp Input

29




Amplitude Peaking (M)

10.0

9.0

'8.0

7.0

6.0

5.0

4.0

3.0

2.0

0.0

Figure 14. Amplitude Peaking versus Damping Factor for a
$ ' Second-Order System Having a Step Input

30

A— T u T T 20.0
n =‘ Amax_|_ ' 418.0
Amean Zg,/ i-g2
o —16.0°
o A H14.0
— —12.0
L2
- ® —<10.0
| A - 8.0
L
- —46.0
M_’—f"
o
a
= — 4.0
0\
- : t‘ —@——02.0
‘ A\
I L | 1 1 A\_.,‘O.O
0.0 0.l 0.2 0.3 0.4 0.5 0.6 07
- Damping Factor,{,
. ANC-A-226

Amplitude Peaking(db)




convenience the bandwidth is normalized to eithér the damped
or undamped natural frequencies of the system. The bandwidth
normalized to the resonant frequency is expressed as follows:

3dB _ , 1/2
= (1 - 2z° + /2—4c2+4f;‘) . (23)

This relationship, and one in which w3gB is normalized to wg,
is shown in Figure 15. ‘

As revealed by the preceding figures, the damping factor ¢
exerts a strong influence on the response of a system. Thus,
care should be taken to insure that the damping factor is such
that the system response does not adversely effect the measure~
ment.

More complex systems are composed of combinations of ramp and
step inputs and their amalysis becomes increasingly cumbersome.
However, the system response can sometimes be approximated by
considering the lowest frequency term. If some initial delay
is included as with acoustic, electrical, or pneumatic trans-
mission lines, then this must be considered separately as an
additional delay in the transient .response.

- CONCLUSIONS AND RECOMMENDATIONS

A single term such as ''response time" does not adequately define the
transient response behavior of a transducer system. Thus, such terms
should not be used to specify transducer response requirements. Res-
ponse characteristics should be given in terms of well-defined parameters
which are important to the measurement.

If steady-state frequency response is of prime importance, the 3 dB
bandwidth, phase characteristics, and amplitude peaking should be
specified. If it is a transient response which is of importance,
then the risetime, delay time, overshoot, and settling time -should

be specified. Often the maximum allowable érror for a given rate-
of-change of input is a parameter which must be specifieéd. The use:
of well-defined terms, such as those given in Section III of this
report, will help to prevent some of the problems which have occurred
in the preparation of specifications for transient response systems.
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