

HIGH-TEMPERATURE HEAT CONTENTS AND ENTROPIES OF THE SESQUIOXIDES OF ERBIUM, HOLMIUM, THULIUM, AND YTTERBIUM

By L. B. Pankratz and E. G. King

UNITED STATES DEPARTMENT OF THE INTERIOR
Stewart L. Udall, Secretary

BUREAU OF MINES
Marling J. Ankeny, Director

This publication has been cataloged as follows:

Pankratz, Louis B

High-temperature heat contents and entropies of the sesquioxides of erbium, holmium, thulium, and ytterbium, by L. B. Pankratz and E. G. King. [Washington] U. S. Dept. of the Interior, Bureau of Mines [1963]

8 p. illus., tables. 27 cm. (U. S. Bureau of Mines. Report of investigations, 6175)

1. Sesquioxides. I. King, Edward G joint author. II. Title.
(Series)

TN23.U7 no. 6175 622.06173

U. S. Dept. of the Int. Library

CONTENTS

	<u>Page</u>
Abstract.....	1
Introduction.....	1
Materials.....	2
Measurements and results.....	2
Erbium sesquioxide.....	2
Holmium sesquioxide.....	4
Thulium sesquioxide.....	5
Ytterbium sesquioxide.....	6
Discussion.....	7

ILLUSTRATIONS

<u>Fig.</u>		
1.	Heat content of Er_2O_3	4
2.	Heat content of Tm_2O_3	6

TABLES

1.	Heat content of Er_2O_3 (measured values).....	3
2.	Heat content and entropy increments for Er_2O_3 (smooth values).....	3
3.	Heat content of Ho_2O_3 (measured values).....	4
4.	Heat content and entropy increments for Ho_2O_3 (smooth values).....	5
5.	Heat content of Tm_2O_3 (measured values).....	5
6.	Heat content and entropy increments for Tm_2O_3 (smooth values).....	5
7.	Heat content of Yb_2O_3 (measured values).....	6
8.	Heat content and entropy increments for Yb_2O_3 (smooth values).....	7

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

HIGH-TEMPERATURE HEAT CONTENTS AND ENTROPIES
OF THE SESQUIOXIDES OF ERBIUM, HOLMIUM,
THULIUM, AND YTTERBIUM

by

L. B. Pankratz¹ and E. G. King²

ABSTRACT

The heat contents of the sesquioxides of erbium, holmium, thulium, and ytterbium (Er_2O_3 , Ho_2O_3 , Tm_2O_3 , and Yb_2O_3) in the cubic crystalline form were measured over the temperature range from 298° to 1,800° K. The erbium and holmium sesquioxides gave regular heat content-temperature curves. Thulium sesquioxide had a minor thermal anomaly near 1,680° K, with a heat absorption of 310 cal/mole; similarly, ytterbium sesquioxide had a minor anomaly near 1,365° K, with a heat absorption of 150 cal/mole.

The heat content results are presented in both tabular form (at 100° intervals) and in algebraic form. Entropy increments, corresponding to the tabulated heat content results, also are listed.

INTRODUCTION

This is the third Bureau of Mines report giving results of high-temperature heat content measurements of rare-earth oxides. Previous measurements were of cerium dioxide³ and the sesquioxides of europium, gadolinium, and neodymium, and samarium.⁴ This report gives the experimentally determined heat content values of the sesquioxides of erbium, holmium, thulium, and ytterbium over the range from 298° to 1,800° K. Smooth values of the heat contents and corresponding entropy increments are given in tabular form, and equations were derived to represent the heat content values.

¹Physical chemist, Berkeley Thermodynamics Laboratory, Bureau of Mines, Berkeley, Calif.

²Supervisory chemist, Berkeley Thermodynamics Laboratory, Bureau of Mines, Berkeley, Calif.

³King, E. G., and A. U. Christensen. High-Temperature Heat Contents and Entropies of Cerium Dioxide and Columbium Dioxide. BuMines Rept. of Inv. 5789, 1961, 6 pp.

⁴Pankratz, L. B., E. G. King, and K. K. Kelley. High-Temperature Heat Contents and Entropies of Sesquioxides of Europium, Gadolinium, Neodymium, Samarium, and Yttrium. BuMines Rept. of Inv. 6033, 1962, 18 pp.

No previous data exist for the sesquioxides of holmium and thulium. The only previous data for the sesquioxides of erbium and ytterbium are measurements made in 1880 between 273° and 373° K. Kelley's⁵ treatment of these data gives an average heat capacity of 24.86 cal/deg mole for Er_2O_3 and 25.5 cal/deg mole for Yb_2O_3 . The lack of heat-capacity values below 298° K makes possible only a crude comparison. The old value for Er_2O_3 is 4 percent lower and that for Yb_2O_3 is 9 percent lower than the measurements reported in this paper.

MATERIALS

The four sesquioxides used in this work were commercial products having a claimed purity of 99.9 percent. X-ray diffraction showed them to be the cubic crystalline variety. Before use in the measurements, the substances were heated to at least 1,470° K and then pressed into pellets. The pellets were reheated and crushed for filling the sample capsules. At the close of the measurements each substance was again examined by X-ray diffraction; no change in pattern was observed.

MEASUREMENTS AND RESULTS

The measurements were made with previously described apparatus.⁶ The results are expressed in defined calories (1 calorie = 4.1840 absolute joules) per mole. Molecular weights conform with the 1961 Table of Atomic Weights⁷ and are as follows: Er_2O_3 , 382.52; Ho_2O_3 , 377.86; Tm_2O_3 , 385.87; and Yb_2O_3 , 394.08. The masses of the samples measured (corrected to vacuum) were: Er_2O_3 , 16.2631 g; Ho_2O_3 , 15.1308 g; Tm_2O_3 , 17.9038 g; and Yb_2O_3 , 20.0342 g. The precision uncertainty of the heat content measurements was 0.1 percent or less for all substances.

During the measurements the samples were held in platinum-rhodium capsules (the heat contents of which were determined separately). After filling, the capsules and contents were heated to at least 1,350° K and then sealed gastight by platinum welding.

Erbium Sesquioxide

The measured heat content values for erbium oxide are listed in table 1 and are plotted against temperature in figure 1.

Table 2 contains smooth values of the heat content of erbium oxide above 298.15° K and the corresponding entropy increments. The entropy increments were calculated from the heat content results by the method of Kelley.⁸

⁵ Kelley, K. K. Contributions to the Data on Theoretical Metallurgy. XIII. High-Temperature Heat-Content, Heat-Capacity, and Entropy Data for the Elements and Inorganic Compounds. BuMines Bull. 584, 1960, 232 pp.

⁶ Kelley, K. K., B. F. Naylor, and C. H. Shomate. The Thermodynamic Properties of Manganese. BuMines Tech. Paper 686, 1946, 34 pp.

⁷ Chemical and Engineering News. IUPAC Revises Atomic Weight Values. V. 39, Nov. 20, 1961, pp. 42-43.

⁸ Work cited in footnote 5.

TABLE 1. - Heat content of Er_2O_3 (measured values)

T, ° K	$H_T - H_{298.15}$, cal/mole	T, ° K	$H_T - H_{298.15}$, cal/mole
399.0...	2,680	1,098.2...	23,740
503.5...	5,650	1,201.4...	26,990
607.6...	8,700	1,291.4...	29,820
704.9...	11,610	1,400.9...	33,360
793.1...	14,280	1,499.1...	36,560
874.6...	16,750	1,600.6...	39,900
998.1...	20,620	1,695.8...	43,070
1,097.0...	23,680	1,797.3...	46,350

TABLE 2. - Heat content and entropy increments for Er_2O_3 (smooth values)

T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole	T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole
400..	2,710	7.80	1,300..	30,140	43.27
500..	5,540	14.11	1,400..	33,360	45.66
600..	8,470	19.45	1,500..	36,600	47.89
700..	11,460	24.06	1,600..	39,860	50.00
800..	14,490	28.11	1,700..	43,140	51.99
900..	17,560	31.72	1,800..	46,440	53.87
1,000..	20,660	34.99	1,900..	49,750	55.66
1,100..	23,790	37.97	2,000..	53,070	57.36
1,200..	26,950	40.72			

The heat content values in table 2 are represented by the following equation. The average deviation of the equation from the smooth heat content data and the temperature range of validity are shown in parentheses. The equation was derived by the method of Shomate,⁹ which permits simultaneous use of all the heat content data, rather than selected values. All similar equations in this paper were derived in this manner.

$$\text{Er}_2\text{O}_3 \text{ (cubic): } H_T - H_{298.15} = 29.66T + 1.00 \times 10^{-3}T^2 + 4.50 \times 10^5T^{-1} - 10,441; \\ (0.1 \text{ pct; } 298^\circ - 2,000^\circ \text{ K}).$$

The corresponding heat capacity equation is

$$C_p = 29.66 + 2.00 \times 10^{-3}T - 4.50 \times 10^5T^{-2}.$$

⁹Shomate, C. H. High-Temperature Heat Contents of Magnesium Nitrate, Calcium Nitrate, and Barium Nitrate. *J. Am. Chem. Soc.*, v. 66, 1944, pp. 928-929.

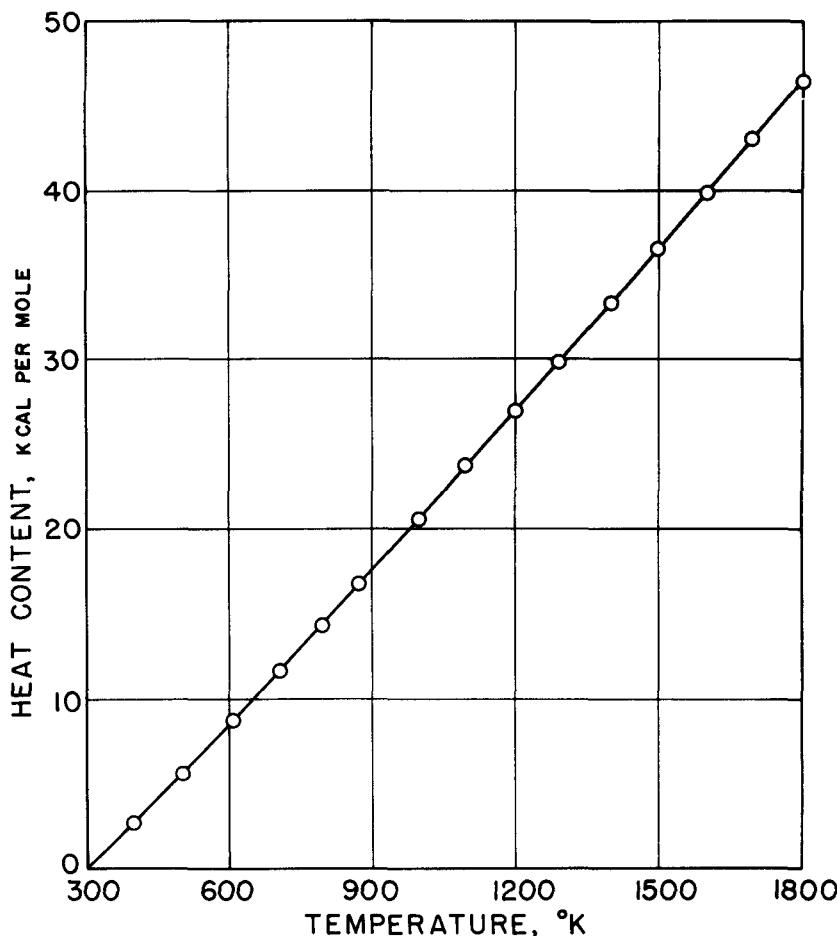

FIGURE 1. - Heat Content of Er_2O_3 .Holmium Sesquioxide

Table 3 contains the measured heat content values for holmium oxide.

TABLE 3. - Heat content of Ho_2O_3 (measured values)

T, ° K	$H_T - H_{298.15}$, cal/mole
399.7..	2,800
500.7..	5,750
504.3..	5,840
599.9..	8,650
602.7..	8,740
694.5..	11,530
786.2..	14,340
904.2..	17,980
1,006.7..	21,150
1,091.3..	23,780
1,200.1..	27,180
1,301.0..	30,470
1,401.3..	33,650
1,499.2..	36,880
1,598.2..	40,160
1,700.6..	43,590
1,798.6..	46,840

Smooth values of the heat content of holmium oxide above 298.15° K and the corresponding entropy increments are in table 4.

The heat content values in table 4 are represented by the following equation:

$$\text{Ho}_2\text{O}_3 \text{ (cubic): } H_T - H_{298.15} = 28.93T + 1.30 \times 10^{-3}T^2 + 2.40 \times 10^5T^{-1} - 9,546; \\ (0.2 \text{ pct; } 298^\circ - 2,000^\circ \text{ K}).$$

The corresponding heat capacity equation is

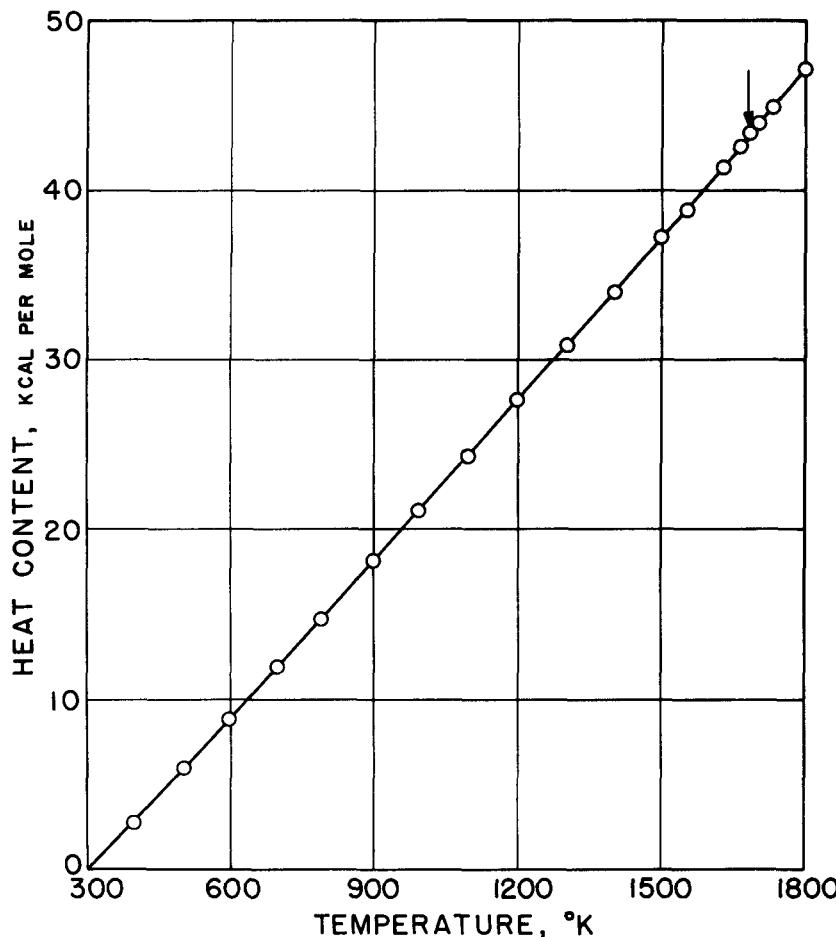
$$C_p = 28.93 + 2.60 \times 10^{-3}T - 2.40 \times 10^5T^{-2}.$$

TABLE 4. - Heat content and entropy increments for Ho_2O_3 (smooth values)

T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole	T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole
400..	2,820	8.13	1,300..	30,420	43.90
500..	5,710	14.57	1,400..	33,640	46.29
600..	8,680	19.98	1,500..	36,900	48.54
700..	11,700	24.64	1,600..	40,200	50.67
800..	14,760	28.72	1,700..	43,540	52.69
900..	17,840	32.35	1,800..	46,920	54.63
1,000..	20,940	35.62	1,900..	50,330	56.47
1,100..	24,070	38.60	2,000..	53,770	58.23
1,200..	27,230	41.35			

Thulium Sesquioxide

The measured heat content data for thulium oxide are listed in table 5 and plotted in figure 2. This substance had a minor thermal anomaly near $1,680^\circ \text{ K}$ (indicated by the vertical arrow in figure 2), the heat absorption being 310 cal/mole. All other results were regular.


TABLE 5. - Heat content of Tm_2O_3 (measured values)

T, ° K	$H_T - H_{298.15}$, cal/mole	T, ° K	$H_T - H_{298.15}$, cal/mole
396.6...	2,780	1,399.7...	33,980
501.0...	5,880	1,499.6...	37,230
597.5...	8,770	1,550.9...	38,840
697.1...	11,830	1,630.6...	41,340
789.1...	14,700	1,665.9...	42,600
898.9...	18,150	1,681.0...	43,240
993.4...	21,110	1,699.8...	43,970
1,096.8...	24,340	1,730.8...	44,930
1,198.9...	27,620	1,800.7...	47,110
1,301.9...	30,830		

Table 6 contains smooth values of the heat content and entropy increments above 298.15° K .

TABLE 6. - Heat content and entropy increments for Tm_2O_3 (smooth values)

T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole	T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole
400..	2,890	8.32	1,400..	34,000	46.95
500..	5,840	14.90	1,500..	37,200	49.15
600..	8,860	20.41	1,600..	40,400	51.22
700..	11,930	25.14	1,680..	42,960 (α)	52.78 (α)
800..	15,040	29.29	1,680..	43,270 (β)	52.96 (β)
900..	18,170	32.97	1,700..	43,910	53.34
1,000..	21,310	36.28	1,800..	47,110	55.17
1,100..	24,460	39.28	1,900..	50,310	56.90
1,200..	27,630	42.04	2,000..	53,510	58.54
1,300..	30,180	44.58			

FIGURE 2. - Heat Content of Th_2O_3 .

The heat content results in table 6 are represented by the following equations:

Th_2O_3 (cubic):

$$(\alpha): H_T - H_{298.15} = 31.00T + 0.39 \times 10^{-3}T^{-2} + 3.42 \times 10^5 T^{-1} - 10,424;$$

$$(0.1 \text{ pct}; 298^\circ - 1,680^\circ \text{ K});$$

$$(\beta): H_T - H_{298.15} = 32.00T - 10,490;$$

$$(0.1 \text{ pct}; 1,680^\circ - 2,000^\circ \text{ K}).$$

The corresponding heat capacity equations are

$$(\alpha): C_p = 31.00 + 0.78 \times 10^{-3}T - 3.42 \times 10^5 T^{-2};$$

$$(\beta): C_p = 32.00.$$

Ytterbium Sesquioxide

The measured heat content data for ytterbium oxide are listed in table 7. This substance had a minor thermal anomaly near $1,365^\circ \text{ K}$, with a heat absorption of 150 cal/mole. With the exception of this anomaly, the results were regular.

TABLE 7. - Heat content of Yb_2O_3 (measured values)

T, °K	$H_T - H_{298.15}$, cal/mole	T, °K	$H_T - H_{298.15}$, cal/mole
400.2...	2,900	1,344.4...	32,340
499.6...	5,880	1,358.2...	32,880
598.5...	8,900	1,370.9...	33,360
699.4...	12,040	1,382.6...	33,710
789.0...	14,830	1,400.4...	34,300
887.7...	17,960	1,499.8...	37,460
1,003.9...	21,630	1,594.5...	40,550
1,104.0...	24,810	1,698.7...	43,970
1,198.5...	27,750	1,797.6...	46,990
1,298.4...	30,910		

Table 8 gives the smooth heat content values and entropy increments for ytterbium oxide.

TABLE 8. - Heat content and entropy increments for Yb_2O_3
(smooth values)

T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole	T, ° K	$H_T - H_{298.15}$, cal/mole	$S_T - S_{298.15}$, cal/deg mole
400..	2,910	8.38	1,365..	33,000 (α)	46.42 (α)
500..	5,890	15.03	1,365..	33,150 (β)	46.53 (β)
600..	8,950	20.61	1,400..	34,280	47.35
700..	12,060	25.40	1,500..	37,500	49.57
800..	15,200	29.59	1,600..	40,720	51.65
900..	18,350	33.30	1,700..	43,940	53.60
1,000..	21,500	36.62	1,800..	47,160	55.44
1,100..	24,650	39.62	1,900..	50,380	57.18
1,200..	27,800	42.36	2,000..	53,600	58.83
1,300..	30,950	44.88			

The following equations represent the smooth heat content data:

$$\text{Yb}_2\text{O}_3 \text{ (cubic): } (\alpha): H_T - H_{298.15} = 32.58T - 0.31 \times 10^{-3}T^2 + 4.62 \times 10^5T^{-1} - 11,236;$$

$$(0.1 \text{ pct; } 298^\circ - 1,365^\circ \text{ K});$$

$$(\beta): H_T - H_{298.15} = 32.20T - 10,800;$$

$$(0.1 \text{ pct; } 1,365^\circ - 2,000^\circ \text{ K}).$$

The corresponding heat capacity equations are

$$(\alpha): C_p = 32.58 - 0.62 \times 10^{-3}T - 4.62 \times 10^5T^{-2};$$

$$(\beta): C_p = 32.20.$$

DISCUSSION

The heat contents of the four substances are similar in magnitude despite the minor thermal anomalies exhibited by two of them. For example, the values of $H_{1000} - H_{298.15}$ vary by only 4 percent, from 20,660 to 21,500 cal/mole. Similarly, the values of $H_{1800} - H_{298.15}$ vary by only 2 percent, from 46,440 to 47,160 cal/mole.

The minor thermal anomalies found for thulium and ytterbium sesquioxides were reproducible. It is believed that they are associated with intra-atomic phenomena. Similar anomalies were found previously¹⁰ for the monoclinic variety of europium sesquioxide, the hexagonal variety of neodymium sesquioxide, and the monoclinic variety of samarium sesquioxide. The small

¹⁰Work cited in footnote 4.

magnitude of the heat absorptions, as well as the observations of Stecura and Campbell¹¹ and of Roth and Schneider,¹² would appear to eliminate the possibility of ascribing these anomalies to any macrocrystalline transformation.

¹¹ Stecura, S., and W. J. Campbell. Thermal Expansion and Phase Inversion of Rare-Earth Oxides. BuMines Rept. of Inv. 5847, 1961, 47 pp.

¹² Roth, S. S., and S. J. Schneider. Phase Equilibrium in Systems Involving the Rare-Earth Oxides. Part 1. Polymorphism of the Oxides of the Trivalent Rare-Earth Ions. NBS J. Research, v. 64A, 1960, pp. 309-332.