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ABSTRACT

This dissertation is concerned with the estimation of three func-
tions of the binomial probability of "success”: estimation of a linear
combination of independent binomial probabilities; fixed precision esti-
mation of the binomial probability; and estimation of the logit trans-
formation of the binomial probability. A Bayesian viewpoint is adopted
temporarily to "suggest" a wide class of admissible estimators for each
problem. Designated the class C of SBP estimators® it is the class of
Bayes estimators derived from Symmetric Beta Priors (the class of con-
jugate priors for the binomial), and often includes the maximum likeli-
hood estimator as a special case.

Once a class of estimators for each problem is suggested by the
Bayesian viewpoint, three criteria are used to obtain the "optimum"
estimators in that class. Two of these criteria are classical in nature:
minimax risk and minimax weighted risk. The third criterion, the solution
of which is the estimator corresponding to the "least favorable" prior
in the class of priors considered, is subjective in nature and would
appeal more to Bayesians.

For each of the three problems, a class C of SBP estimators is sug-
gested, and the optimum estimators from this class are obtained. In
addition, for a special case in the estimation of a linear combination
of binomials, an estimator is found that is minimax among all estimators,

as well as minimax among SBP estimators.



CHAPTER 1I. INTRODUCTION

The experimenter frequently encounters the situation where he ob-
serves the same experiment a fixed number (n) of times, and each obser-
vation can be classified in one of two ways, which we shall arbitrarily
term "success" and "failure." After collecting n such observations, he
may be interested in using the information from this sample to make in-
ferences about the population from which the sample was drawn. For ex-
ample, he may want to estimate the proportion of "successes" in his ex-
periment if he were able to subject the entire population to the experi-
mental conditions. The sample of size n represents a collection of n
independent and identically distributed Bernoulli random variables, each

having probability distribution

]
o

Pr (success)
0~ 9~1
1-9

Pr (failure)

The sum of Bernoulli random variables is itself a random variable, say
X, where X represents the number of successes observed in n Bernoulli

trials. X has probability distribution that is binomial with parameters

n and 9, i e.,

Pr(X =x) = (%) 99X (1-9)n-X

for 0~ 9 41, and x = 0,1,...,n. The interest of the experimenter in
estimating the probability of success in the entire population can now
be formulated as the problem of statistical estimation of the parameter

9 in the binomial distribution.



This thesis is a study of three problems of estimation involving
binomial probabilities. The first is the estimation of a linear combi-
nation of independent binomial probabilities, when loss is measured by
squared error. A special case of this problem, estimation of the dif-
ference between two binomial probabilities, was discussed (for equal
sample sizes) in a paper by Hodges and Lehmann [14].

The second problem involves fixed precision estimation of 8  The
problem of finding optimal fixed precision estimators of the binomial
parameter (0 was suggested as early as 1957 by Steinhaus [20], and one
estimator was discussed as a special case in a paper by Waddeo [18].

The third problem is the estimation of the logit of 8, in(8/(1-8)),
when the loss is squared error. The logit transformation is often used

in the analysis of multidimensional contingency tables (see Woolf [23])

and in the estimation of the parameters of the logistic function in

quantal biocassay problems (see Berkson [3]).

1.1 The General Approach to the Three Estimation Problems

The general problem of statistical point estimation may be formu-
lated from a decision-theoretic point of view as follows. The popu-
lation parameter of interest, 0, is unknown and is to be estimated.
Although the parameter itself cannot be observed, a random variable X
whose probability distribution, p(x|8), is a function of 8 is available.

A
Based on an observation of X, an estimate 0(x) is chosen for 0. To
evaluate an estimate, we must measure its accuracy in estimating 8 with
a loss function, L(0(x),0). This loss function is defined such that,
A
for any estimate 8(x), and any value of 8, the loss is nonnegative, and

the loss is equal to 0 if the estimate is correct.



A
It is possible to specify a rule that determines the estimate 0(x)
. . . A A rA .
to be made for any observation of X. Denoting this rule by 9, 0 = {0(x)j
A
for all x defined by X. Whereas 0(x) is called an estimate of 0, the
A
rule 0 is called an estimator of 0. The worth of an estimator is measured
by a risk function, R (0, 0), which is equal to the average loss incurred
when the estimator 0 = {©(x)} is used to estimate 0, i.e., R(0, 0) =
< [L(O(x),0)].
The evaluation of an estimator is usually made by considering some
measure of the overall performance of its risk function. For example,
an estimator may be considered optimal if its risk function has maximum
value over © that is smaller than that for any other estimator. Such an
estimator is designated a minimax estimator. If 0, the parameter being
estimated, is considered a random variable with known density function
| (0), called the prior, then the worth of an estimator may be measured
by its expected risk. If 0 is the space of values 0 may assume, the ex-

. A
pected risk (or "global" risk) for an estimator 0 is defined by

(fl[R(O, 0)] = / R(0,0) |[(0) dO

For this situation, the optimum estimator is the one that minimizes the
expected risk, designated the Bayes estimator, while the minimum ex-
pected risk is designated the Bayes risk.

In this thesis, two general measures of optimality for estimators
will be emphasized. The first is the criterion of minimax risk. Intro-
duced by Wald [21], the estimator that minimizes the maximum risk (often
called simply the minimax estimator) is widely used in the decision-
theoretic approach to estimation for situations in which it is desirable

to be protected against the worst that can happen.



The second criterion is based on the integrated weighted risk:

R(e, e) uofe) de

©
where u)(8) is a weighting function such that J u(9) d8 = 1. This inte-
grated weighted risk shall be called simply the weighted risk. Consider
statistical estimation as a game played between the Statistician and an
Adversary who has at his disposal a set of functions A from which he
may choose the weighting function uu(8). Let the Statistician then
choose the estimator that minimizes the maximum possible weighted risk

for all w( 8) e ft. In other words, he chooses the estimator 8 to minimize

This shall be called the minimax weighted risk estimator

The general concept of minimax weighted risk includes two other
criteria as special cases. If ft, the set of weighting functions avail-
able to the Adversary, includes all possible weighting functions, then
full weight can be placed at the value of 8 where the maximum risk occurs.
Thus, the minimax weighted risk is equal to the minimax risk, and the
minimax weighted risk estimator is the minimax estimator. On the other
hand, if ft contains only one function u)(9), then the estimator possessing
minimax weighted risk is the Bayes estimator corresponding to the prior
w(e).

In general, the three problems discussed in this thesis involve
the estimation of functions of probabilities from independent binomial

distributions. When estimating a binomial probability, it is usually



desirable to have estimates whose values are symmetric, i.e., 9(x)
A
1 - 9(n - x). When this property holds, the estimates for 9 remain un-

changed when the roles of "success" and "failure" in the binomial experi-
ment' are interchanged. An example of an estimator that does not possess
this symmetry property is 9 = (x + 1)/(n + 1). If, in a biological ex-
periment performed to estimate the survival rate of mice in a polluted
environment, "success" is defined to be survival and 8 out of 10 mice
survive, the estimated survival rate is 9 = 9/11- If "success" is re-
defined in the same experiment to be death, then the estimated survival
rate is 1 - 1) = 1 - 3/11 or 8/11. To avoid such discrepancies, only
estimators with this symmetry property will be considered.

All loss functions used in this thesis also happen to have the
property of symmetry inthat L(8(x),9) = L(l1 - 9(x),l1 -8).This, in
conjunction with the symmetry of the estimators just mentioned, can be

used to show that the corresponding risk functions, R(9,9), are symmetric.

Consider the risk at 0:

R(0,e) = £ O 0x(i - 9)n“x L(e(x),9) .
A
x=0
The risk at 1 - 9 is
R(O0,1 - 9) = J (1 - 0)X 0n_ X L(O(x),1- 0)
x=0
From the symmetry property of the estimator (i.e., 9(x) =1 - 9(n - x)),

R(9,1 - 9)

~ (") (1 - 6)X n"X L(1L - 8(n - x),1 - 0)
x=0 X

But the symmetry of the loss function indicates that

L(L - O(n - x),1 - 9 = L(O(n - x),8 )



so that
R(0,1 - e) = Yi (x) (! - 0O)x on"x L(e(n - x),0)
x=0
If y = n - x, then the above expression may be written as
r(9,1-8 = w » ~ - onwy Le(y)e)
y=o

and the risk function is symmetric about 0 = 1/2.

When comparing estimators with symmetric risk functions, using the
criterion of minimax weighted risk, it is possible to restrict the
class of weighting functions to the class of symmetric weighting functions.
This is true because, for any weighted risk produced by a nonsymmetric
weighting function, the same weighted risk may be produced by a symmetric

weighting function. To demonstrate this, let WR denote the weighted risk

produced by a nonsymmetric weighting function, ou(8). Then
WR
0
Let uw*(0) = -— §1, Since ou*(0) = wui*(1 - 0), cii*(9) is a sym-
metric weighting function. Let WR* denote the weighted risk produced

by ai*(0). Then



WR R(e, e) a)*(e) ae

R(e,e) [-(e) + u(z - e ae

= IAf R(e, &) u>(e) ae + AJr R(e, e) uj(i - e ae

From the symmetry of the risk function® R(e,6) = R(6,1 - 6)* so that the

second term in the above expression may be written
D/ Rie,i- e ufi-e ae

. pO A . . .
gi R(e,i - ¢ («(i - ¢ a(i- ¢

5 R(e, e) tu(e) ae

Jo

Therefore

wr = / R(é, e) ujle) ae = wwm
Jo

The particular class fi of symmetric weighting functions u)( 6) to be
considered in this thesis is the class of symmetric beta functions de-

fined on ®:

Q = Jr(e)|».(e) - ) e > 1



where B(ft + 1, + 1) = /

weighting functions was chosen because it is a fairly flexible class

of one-parameter functions. For example, the members of ft range from
functions that approach a discrete distribution with weight 1/2 at 0 = 0
and 1 (for near -1), to a function that weighs all intervals in ©
uniformly (b = 0), to functions that place full weight at 9 = 1/2 (for
very large b). The flexibility of this class of functions, together

with the ease of computations achieved by using a beta weighting function
indexed by only one parameter, led to this choice for ft. In Chapter II,
where © is k-dimensional, this concept is generalized to a class of inde-

pendent symmetric beta weighting functions of the form

k
ft = <ou(e)u)e) = n
i=1
In searching for optimum solutions to the three problems to be dis-
cussed in this thesis, consideration will be restricted to a particular
class of estimators. This class will consist of estimators that can be
derived as Bayes estimators corresponding to certain prior distributions
on 0. Although a Bayesian viewpoint is needed to conceive of 9 having
a prior distribution, Bayesian theory will be used here only to suggest
a class of estimators from which optimum estimators may be selected.
Therefore, the estimators under consideration will be referred to as

"Bayes-suggested" estimators. They will be derived from the class E of

symmetric beta prior distributions on ©, | (0), where



9a (1 - 9)a

5 -1
(e) B(a + 1,a + i) c > -l

Since all Bayes estimators are admissible, the class of Bayes estimators
from symmetric beta priors constitute a class of admissible estimators.
This particular class of priors, E, was chosen for several reasons.
First of all, from a Bayesian viewpoint, the beta prior is the most com-
monly used prior for problems involving the binomial (see, for example,
Bindley [1?] and Good [8]). It meets the Raiffa and Schlaifer criteria
of tractability, richness, and ease of interpretation ([191* P*
making it the "natural conjugate" for the binomial.
Moreover, the symmetry of the prior ensures, in the problems to be

considered in this thesis, that the estimates have the symmetry property

stipulated above, namely, 9(x) =1 - 9(n - x). This can be shown as
follows. If x is observed, the posterior density of 9 is
5(9)p(x19)
5(elx) 1

5(v) p(xlv) dv

where p(x|9) = (x) 0X(1 - 9)n X If n - x is observed, the posterior

density of 9 is

s(9) P(n ide}

5(9|n - x)
| (v) p(n x|v) dv
5(1-9 -x11-9 A (1-9 -x|1-9
£ (1-5nx) (1-9) p(n-x11-9) (1-9) p(n-x|1-9)
/ 5(v) p(n-x|v) dv £(1-u) p(n-x|l-u) d(l-u)
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Using (i) 1(8 = |(1L - 9 (from the symmetry of the prior), and
(ii) p(x|9) = p(n - x|1 - 9) (a property of the binomial distribution),
lie) p(x19),
[(1 - OIn - x) 1

£(u) p(x|lu) gy

= l(e|x) .

It will be demonstrated later (Section 3*1-1) that the Bayes estimator

is made up of the set of estimates that minimize the posterior expected

A
loss for x = 0,1,...,n. Let 9(x) be the Bayes estimate when x is ob-

served, i.e.,

~ 1 (9]1x) L(0(x),9) dO 4 F 1(9|x) L(z, 9) do for all z
Using the fact that |[(9|x) = |(1 - 0)n - x) developed above and the sym-
metry property of the risk function (.. (0(x),9) = L(1 - 9(x),1 - 9)), the

above inequality may be written

| (1-0 |n-x) L(1-0(x),1-0) dO < | (1-9|n-x) L(1-z,1-0) d0 for all z

£(u|ln-x) L(1-9(x),u) du < | (ulpn-x) L(w,u) du for all w

9(n - x) = 1 - 9(x)

Finally, note that each member of the class of Bayes-suggested esti-
mators derived from symmetric beta priors is optimum in the sense that

it minimizes the weighted risk for some weighting function uu(9) in fi,
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which has already been chosen to consist of all symmetric beta weighting
functions (see Section 1.2).

In Chapter II, where © is k-dimensional, the class H of priors will
consist of the set of k-dimensional independent symmetric beta priors,
[(_9), of the form

a. a,
k 9.1 (1 - 0.
1 ,nn B(a, + 1,a. + 1) a, > -1
i=1 '-i 'l

The class of estimators considered in this thesis will be denoted
as the class C of admissible SBP (Symmetric Beta Prior) estimators. The
optimum SBP estimators will be offered as solutions to the three prob-
lems discussed. Unless otherwise specified, the "optimum" estimators
derived here will be those estimators that are best in the class C. For

example, the term "minimax weighted risk" estimator will be used to

refer to the estimator in C that minimizes the maximum weighted risk,

where the class of weighting functions is the class of symmetric beta
functions. However, referring to the minimax estimator in C, the term
"C-minimax" will often be employed to distinguish it from the "universal
minimax" estimator.

In addition to the C-minimax estimators and minimax weighted risk
estimators, a third type of estimator will be derived, namely, the Bayes
estimator associated with the "least favorable prior." The least favorable
prior is that prior distribution in H which maximizes the Bayes risk for
all priors in S. From a Bayesian point of view, it represents the prior
distribution against which the Statistician will be least successful in
minimizing the expected risk, even if he knows the prior and selects his

estimator accordingly.
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Under certain conditions, the Bayes estimator corresponding to the
least favorable prior will be the minimax estimator, so the least favor-
able prior can be used in some situations to derive minimax estimators
(see Wald [22]). Unfortunately, these conditions do not hold for the
problems considered here, mainly because of the restrictions on E, so
the derivation of least favorable priors and their corresponding Bayes
estimators may be only of academic interest.

The order in which the three estimation problems will be discussed
is as follows. In Chapter II, the problem of estimating a linear com-
bination of binomial probabilities is considered. Chapter III concerns
the search for optimal fixed precision estimators of 9. Chapter IV

deals with the estimation of the logit (i.e., in ----- -) . In each chap-

ter, estimators in C are found that (i) minimize the maximum risk;

(ii) minimize the maximum weighted risk; and (iii) correspond to the

least favorable prior.

1.2 Notation

The following notation will be employed throughout this thesis.

X is a random variable with outcomes x in a sample space x*

pP(x|0) is the conditional probability distribution of X. In this
thesis, the conditional distribution of X is binomial with parameters n
and 9, so that p(x]8) = (*) 0X (1 - 9)ri X, for all x e X"

X is the sample space of a binomial distribution with parameters n
and 9; i.e., x = [0,1,2,.. .,n}.

n is the sample size for the binomial distribution. It will be con-

sidered a fixed quantity.
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9 is the parameter to he estimated, the probability of "success" in
the binomial distribution. In some cases, more than one binomial distri-
bution may be involved in the estimation problem, in which case the
parameter to be estimated will be 9§ = (& vey ~ 130 J is a
vector whose ith element is the probability of "success" in the ith bi-
nomial distribution.

© is the parameter space for J. If the estimation problem is one-
dimensional, then the space 0 is just the interval [O0,1]. If the esti-
mation problem is k-dimensional, i.e., 9 = (91,02, .. ., 0%) , then the
space 0 is the k-dimensional cube 0 < 8 < 1, i =1,2,..., k.

T is the estimation space. The dimension of T is the same as the
dimension of O.

A

9(x) is a point in T, an individual estimate of 8, which is a
function of the outcome x.

A A

0 is a rule that specifies 9(x) for every x in designated an
estimator of 0.

L(’,') is the loss function defined on T X 0. Used for estimation

problems, L(9(x),9) is equal to the loss incurred when X has distribution

A
based on 0, outcome x is observed, and the estimate 0(x) is chosen.

R(-,') is the risk (expected loss) function. R(0, 9) is the expected

A
loss when estimator 8 is used and X has conditional probability distri-

bution p(x|9). The expectation is taken over the conditional distribution

of X, so

R(0,9) = J L(0(x),0) (x) 0X (1- 0)n X

x=0



), is the class of symmetric beta weighting functions of the form

k PEICE ei) 1
o)fe) = i3 B(ge.+ 1,2) .4 1) b_>=1 1

which may be used to weight the risk functions.

E is the class of symmetric beta density functions, defined on ©,

of the form
a. ai

k efCi- e,

i 1
5(9) n

ai> -1 k s i

B(ai+ 1,0%+ i) * '

This class of density functions is used to suggest a class C of SBP esti-
mators (Bayes estimators from symmetric beta priors) from which optimal
estimators are obtained.

A

0~ (x) will be used to designate the Bayes estimate of 0 based on
outcome x, for the prior distribution | (0). Similarly, the Bayes esti-
mator from | (0) will be denoted by 0 = {6(.(x:), x = 0,1, ...,n}. Although
it will be demonstrated in Chapter III that the Bayes estimator for a

prior is made up of those estimates that minimize the posterior expected

loss, the Bayes estimator is defined to be the one that minimizes the
weighted or average risk, when the risk function is weighted by the prior

5(0); irer,

JeE(Vel 609 « B If /QR(S,e) zzz ae .

Thus, each SBP estimator is optimum (it has minimum weighted risk) for a

weighting function u)(0) e fi, if a)(0) = | (0). Each SBP estimator is also

an admissible estimator, since all Bayes er“imators are admissible. Be-

cause all estimators in the class C under consideration are Bayes esti-

mators, the subscript | will often be omitted.
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R (”oJ) is the expected or weighted risk for an SBP estimator based

on the prior £(9), when its risk function is weighted by the weighting

function up(0) :

= f® R(e”e) *e) '

Therefore® R(£,£) is the Bayes risk for the prior | (8).



CHAPTER 1II. ESTIMATION OF A LINEAR COMBINATION

OF BINOMIAL PROBABILITIES

Let i = 1 , = , be independent random variables, each having
a binomial distribution with parameters n” and (L, and let 7 be an arbi-

trary linear combination of the binomial probabilities of '"success,"

i.e.,

= a 9 (2.1)

where the Ch's are specified constants. Estimation of 7 is the topic
for this chapter.

Examples of situations in which estimation of a linear combination
of binomial probabilities is of interest include the following.

(1) If a comparison of the proportions of response for one treat-
ment, T, versus a control, C, is desired, then estimation of 7 = 0T - 9%,
the difference between the probabilities of response for the two groups,

is one method that may be used. In this case, a, = 1, and Mz = -1

(2) It is often of interest to compare the average proportion of
response for several treatment groups with a control group. If t equals

the number of treatment groups, then this comparison may be made by

estimating
7 o J
so that a =a = ... = a = i, and a, = -1
= t t t+i
(3) In a 2n factorial experimental design with proportions as

observations, a main effect for a factor is defined to be the sum of the

16
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probabilities of "success" at the upper level of the factor minus the

sum of the probabilities of "success" at the lower level of the factor,

all divided by 2n 1. Thus, estimation of a main effect involves the

estimation of a linear combination of 2n binomial probabilities, half

with coefficient 1/2n , and the other half with coefficient -1/2n 1.

This chapter is a study of the estimation of 7 using the squared
error loss function; i.e., 1(7,7) = (7~7)2> where 7 is an estimate of 7
In this study, consideration is restricted to the class of Bayes esti-
mates derived from symmetric beta prior distributions on 0 (referred
to as the class C of SBP estimates). The chapter is divided into three
sections, dealing with (i) the search for minimax estimates of 7 among
the class C of SBP estimates; (ii) the derivation of the SBP estimates
which minimize the maximum weighted risk, when the risk function is
weighted by any member of the class of symmetric beta distributions;
and (iii) the derivation of the set of Bayes estimates corresponding
to the "least favorable" symmetric beta prior.

To obtain an expression for the SBP estimates, first consider the
"prior" distribution over the parameter space 0, which is the unit
hypercube [0 < 0i <1, 0 ~ 02 ~1, ...,0”~0~~ 1}. Define the prior
to be

£(0) = n L.(e.) (2.2)
i=1
where |~ (0%) is a symmetric beta function of the form

a. a.
e. (1 - e)
NAei”r = B(a.+1l,a.+1) ) oi > -1 (2.3)

1 1

Therefore, the posterior distribution of 0% is given by
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a.+x. a.+n.-x.
e,1 1 (i-9¢ 1 1 1
1 (®@ilxi) B(a.+x.+1l, a-+n.-x +1) (2-M
i i = s B I

If a'9 is to be estimated using the squared error loss function,
then the familiar properties of that loss function (see, for example,

Lehmann [16], Chapter IV, p. 31) say that the Bayes estimate of a'_6 is

<S(a'9| x), the posterior expectation of a'j). Now,
(5(ed|xi) = ei h<<0ilxi> (2.5)
1l a.+x.+i a.+n.-x.
eir 1 (i- 1 1 1 dei
0 A ALs AA A3 (2.6)
B(a*+x"+i, a —-—x"i)
B(a.+tx.+2, a.+p.-x.+i
[ e T i M S
B(ai+xi+i, a*”*—x"1i)
a.+x.+1
2a tn 42 (2=7)
a.+n.
|
a well-known result (see [8], p. 17, for its equivalent).
/i i\ v' A A xi ci
Thus, tS(a *|x) = /jCt.Q0. , where 9 = ——+ “¢— and c* a. + 1
i i i
The SBP estimate of 7 = y,Q!'. 0. is therefore of the form
~7 7
A
7 cr >0 , i =1,2,...,k (2-8)
This chapter is concerned with finding the set of constants,
{cl'é ,...,cK} in (2.8) which have optimum properties for the three esti-

mation criteria given in Chapter I.
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2.1 Estimates Which Minimize the Maximum Risk

The search for estimates of 7 = a191 which minimize the maximum

of the risk function was conducted by analyzing the form of the risk
function for the class C of estimates given in (2.8).

Estimators that are minimax in the class C (designated C-minimax)

were obtained in two special cases:

Case 1. All sample sizes are the same (r* = rn and

cr = +1, for i =1,2,...,k. (These conditions pertain in particular
to factorial experimental designs.) It is shown that, in this case,
the C-minimax estimators are also universal-minimax estimators.

Case 2. Estimation of the difference between probabilities for
two groups: 7=9, - 9, n not necessarily equal to n

Although estimates which minimize the maximum risk are obtained
for only these two special cases, it is convenient to present first a
discussion of the general behavior of the risk function for estimators

of the form (2.8).

2.1.1 The Form of the Risk Function

If 7 = Xaiei' and * then

since $ (x.) = n,9,.. The bias of 7 is defined to be (7% - 7 so
xv i 171 xN 1
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ra.n,e. + a.c
y o o111 11 i1 1

n. + 2c. " n. + 2c
i

Biasx(7) =

rc.o:. (1 - 29.)1

The variance of 7 is given by

Varx (') = Z (n. fac.)8 ni%i(l m K’
1 1

since Var (x.) = n.9.(1 - 9.)- Let z. = 9. - 1/2. Then 1 - 29. = -2z.
xv il 11 1 i I 1 1
and
T2
BiasZ(}) = 2cia121
lasx(7) = E; + 2c.
1
Also, 971 - 9i) = (| + zi) (* - zi) = i - zi, go that
2
a.
var (7) - 2 (n. fgc.y ni(i ' zi>
x 1
1 1

The risk function, when the loss function is squared error, may be ex-

pressed as

R(7>z) (7 - 7)! (mean squared error)
b4

= Bias%:'(%) + Varx/(;)\

<2-9)

' 2c. .a.
v Clalzl 2 n.a cx_ ‘

o7 zZ1>
ni * 21':1 r

Now let
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Vil g
yi n. + 2c. (2-10)
i i
and
2c.
., - — (2.11)
"I = vn7
2 2
2c.a.z. n.a.z
Then \{I—l 1~ Z YiV and " (n.Vpc.)2 = S yi* 30 that
B + ke 1 o W = 1
2
R(7,1) = z''v1'" Z-2z2"Z+ 12 "av~t"2~p ! "2-12)
where = (yi,y2,''+,yR) and v' = (~*v2* v Alternatively,
2
R(7,Z2) = Z' AZ + i Z |n ' 2c.)B * (2-15)
where
A = v vV (2.14)
and is the unit matrix of order k.

With the risk function expressed as a quadratic form plus a constant
term, as in (2.13), it is now possible to analyze the behavior of this
risk function for given (¢ ,c ,...,c ). This is facilitated by expres-

sing the quadratic form, y' Ay, in (2.13), in terms of canonical variables

Yl,é yoee 'Y]i' This transformation permits the simplified expression

z AZ = ii Xi w3 |
(2.15)

i=1
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where the are the eigenvalues of the matrix A. This is accomplished

by performing an orthogonal transformation on y;, y; = FT, such that y' a%;

is equal to y'p'AFY, a quadratic form in the canonical variables (Y1,Ya,

L Y). The matrix of this quadratic form, P'AP, is a diagonal matrix

with diagonal elements (© , Xg, ¢°¢°¢, X*)! Such a transformation may be

= [p. ,pP where

accomplished by forming the orthogonal matrix P

P* is a linear invariant vector (eigenvector) corresponding to the eigen-

value Xi- Under this transformation, Y* =_Pj

The axis for the ith canonical variable, Y%, is given by y = p*

(where )i, is any real number). This may be seen by finding the wvalues

of the canonical variables when y = p

iz £12Z = FpiAL oW

both results due to the orthogonality of P.

In order to find the eigenvalues of the matrix A, it is necessary

to solve the determinantal equation

a - Xi( = 0 (2.106)
Recall from (2.it) that A = v v' - 1I. Therefore,
v, -1-X ViV, ¥,V
2
V1V2 vz—l—x 2 k

|A - >I|

Vivk Vo Vi ~71x
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Now factor out from the ith row and ith column, i = AL , =2 _, to
obtain
1+ X
2 1 1
1
1+
| 1
. 2 2 2
la - xi V.V ...V (2.17)
i a k
1 +x
1

The last term in (2.17) is the determinant of a matrix having the same
form as the matrix B in (2.60) of Appendix 2A. Therefore, this determi-
nant may be evaluated using (2.61l), replacing (3. with g— This

i

yields the result

== 2 ]
) v v v
1A - X1 A + oo F
X2 1+x 1+x 1+x
= (-D)k1 (1L + x)k 1 [vi +v2 + ... + vk - 1 - ¥] . (2.18)

Expression (2.10) implies that, of the k roots of the equation

|IA ~ >11 =0, k - 1 of them are given by X = -1, and the other root is
k 3
X= - v. - 1. The quadratic form Ay; may now be written in canonical
i= 1
form:
1 vi - ~ yYio" Yj [ (2-19)
Since is the only canonical variable whose coefficient in (2.19)

is not always negative, the Yl axig will be of considerable interest.
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This axis may be obtained by finding the eigenvector corresponding to

X=v' v - 1. This eigenvector is the solution for x in the equation
[A - (vv -1) 1] x = 0 (2.20)
Since A=wvwv"' - I, (2.20) may be written

tzz' " (z'z) M2 = 2 (2.21)
This equation has solution
x = k12 (4 e Re) . (2.22)
since replacing x by (, v in (2.21) yields the identity
bz(z'z) “ M(z'z) 2 = 4
The axis corresponding to ¥ is given by
y = Iz
vAnT o:. z 2c
Recall from (2.10) and (2.11) that y., = 1 5 ia and v. = —— so
i n._+ 2c. * i '
= = X1i
that, along the ¥x axis, y* =p v*, or
2c.(n. + 2c.)
zi H l na.— - 1 for i = (2.23)
11
The risk (2.13) may now be written
E<>x) - i E +(Z ~ —E) < - ' E

2c
Substitution of —= for v. yields
VH7 i
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2
R(*>X) = i =z i , I E R R (2.25)
v(n.i + 2ci,)2 J

This expression can now be used to study the behavior of the risk function,

in particular the location of its maximum for fixed (c_,c
12 K
hc?
Case 1. AN — < 1. In this case, all eigenvalues of the
i i

canonical form are negative, and the maximum of (2.25) occurs when

(Y1 ,Y2, ... ’YK:) = (0,0,...,0). (This corresponds to the point O_Z=8=
n.a.
= 0~ = .5) The risk at this point is ~# & 7—-——yg . A special
i i i
example of this case is the choice of all c¢* = 0, which corresponds to

the maximum likelihood estimate of 7.

Case 2: [/, —-——- > 1. If Y 2.}( g |Y,kare all held constant at

zero, then the risk function (2.25) increases as Y* moves in either
direction away from the canonical origin. Therefore, the maximum of
the risk function occurs on the boundary of the parameter space. The

exact location of the maximum does not appear easy to determine.

Case 3- Z —~ = 1% In this case, the risk function (2.25)
i i
attains its maximum value at all points on the axis. Along that axis,
n.a.
the risk function has a constant value of ~ &~ —t 2¢ )s '

2.1.2 Two Special Cases

Using the class of SBP estimates, minimax estimates for two special

cases will now be derived. In the first case (Section 2.1.2.1), all
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sample sizes are equal and the absolute values of the Ch’s are equal.
It is shown that the class of SBP estimates contains a universal mini-
max estimator. The results are applicable in particular to the design
and analysis of factorial experiments for binomial responses. In the
second case (Section 2.1.2.2), estimation of the difference between two
binomial parameters is considered without requiring equal sample sizes.
The estimates which are obtained, after a somewhat involved proof, are

C-minimax; it is not known whether or not they are universal minimax.

2.1.2.1 Minimax Estimator for 7 When n1,= n, a. = +1, for i =
1.2.. ..,k According to Theorem 2.1 of Hodges and Lehmann [14], esti-
mates which have risk that is maximum and constant over some subspace $

of ® and which can be expressed as Bayes estimates from some prior distri-

bution on >, are the estimates that minimize the maximum value of the risk

function. This theorem will now be used to demonstrate the following
theorem.

Theorem 2.1. If nx = = ... =n*=n and Ch = +1 for i =
1.2....,k, then the SBP estimates

; (2.26)

based on the set of constants = , i =1,2,...,k>, are universal
minimax.

Proof: then From Section 2.1.1 (Case 3),

the risk function is maximum and constant along the eigenvector corre-

sponding to the eigenvalue 0. The value of the maximum risk is
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2
n.a.

iy ii 2.27
41j (a. #+ 2c.)2 i/ — 1 \s ( )

and from (2.23) it achieves this maximum all along the line

£
k k ) .
z, = (i, e Re) , for i = 1,2, ...,k . (2.28)
i a,
1
But (2.28) may be equivalently described as the subspace $ = = Q*z =
= Q*z*}. in order to apply the Hodges-Lehmann theorem, it remains

only to find a prior distribution on 3 whose Bayes estimates of 7 are

given by (2.26).

In | since a z = a.z for j - 2,... k. and since =z = 0. _- i, then
11 D J —m_ —m g
al a.
= a, 9, - A
3 3 2
a.
6D — e, Yn I) for 3 =2,...,k
a. i
3
Suppose there are 1] positive ay 's. Label the 01 's such that [01,02,... 0
correspond to the positive (X's. Then

- Z «d Si “« Z 9i + £
(-1) ¢
i=1 L=T\H

and

t = {elez =ea = .. = -1-02=..=1- %] (2.29)
A particular point in the subspace * can be written

9 = [6~0*...,6”1 - 01,+.,1 - OJ
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Assume some symmetric beta prior density for 0*:

92 (1 " 9x)a
(2.30)
= B(a+l,a+l)
This defines the probability density over since, for given 97 § is
described by
! 1%
- =a =i-e
The conditional distributions of the random variables i=1,2,
over the subspace §, are given by
-X.
(1 for 1 i~
£(x.]9.)
il il
n-x X.
0 (1 -10)1 for M+ 1+~i k
i
Therefore,
X +  y5 (n-xi) (n-x*+
k . N
£ (x 19) n i=T1fl (1 ex) i=TH-1
i=1

Since | (cp),

density for 9~ 1(0~ in (2.30),

given by

the prior probability density for ¢ is defined by the prior

then the posterior distribution of 9 is
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I(cp|x) | (cp) £(xlcp)

/ I{cp) f(xlcp) dcp

(n-x.)+

The Bayes estimate for 7 is the posterior mean of 7, since the loss func-

tion is squared error. But

so that 7, the Bayes estimate of 7 is

7 5 (cpu) (7) ACcplx) -~ k +

k S(cplx)~9ir k + 1

where

£ (n-X:) + a + 1

i=TH-1

S (<p|x) <6X>
(<plx) kn + 2a + 2

Therefore”
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I E xi + E (n-xi) + a +
ti=1 1 i=T}H
kn + 2a + 2

+ (a+i) (2TV-k)

. i k
i=TH-1 (2.31)
n +
From (2.26), the SBP estimate for 7 when i
is
"xE 4+ K 'xi + vfe l
A
7 Y
-n + 2~ — LJ  -n + 27—
i=TH-1
Xy + (211 - k)
i=Tfrl (2.32)

The SBP estimate for 7 in (2-32) is equal to the Bayes estimate of 7

based on the prior |(cp) in (2.30) when a = -77* - 1. This can be demon-
strated by replacing a by - 1 in (2.31), yielding the same expression
as (2.32).

Since 7 in {2.26), with jc* ~ > i = Ij.-.jkj , has risk func-
tion that is maximum and constant over the subspace $ in (2.29), and can

be expressed as the Bayes estimate of 7 for prior |(cp) in (2.30) when

a = - 1, then 7 satisfies the Hodges-Lehmann criteria for a universal

minimax estimate.
The minimax estimate for the difference of two binomials, when

n = n2, was given by Hodges and Lehmann [1*-]- It should be pointed
X
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out, since the difference of two binomials is a special case of Theorem
2.1, that the SBP estimate in (2.26) defined by Theorem 2.1 for k = 2

is identical to the Hodges-Lehmann estimate.

9 I s Y A minimax

2.1.2.2. C-Minimax Estimator for / = 9 - ,_n
A << 2

estimator for the difference between two binomial parameters was found

by Hodges and Lehmann [1”] for case n = n . In this section” the dif-
ference 7=0 - 9 is considered for n “~ n . Attention is limited to
the class of SBP estimators y, given in (2.8), and the estimator in C
that minimizes the maximum risk is obtained. Although this estimator is

C-minimax, it is not necessarily universal minimax.

Development of the C-Minimax Estimator

The SBP estimators of 7 = 91 - 92 are of the form
X + ¢ + c
A 2
7 n1 + : + 2 > 0 (2.33)
a ¥ 2 €

The search for the SBP estimator that minimizes the maximum risk involves
finding the set of constants {c”c”} that produce this result. Any
estimator of the type in (2.33) may be considered as a point (c”c?) in
the positive quadrant of two-dimensional C-space, represented in Figure
2.1. The optimum estimator will be obtained by finding the point in C-
space that produces the minimax risk.

The form of the risk function for the SBP estimators was discussed
in Section 2.1.1. Frequent references will be made to expressions de-
veloped in Section 2.1.1, especially the risk function as a constant plus

a quadratic form in (2.13), and the canonical representation of the quad-

ratic form in (2.19).



Figure 2.1. Partition of Two-Dimensional C-Space



33

itc 4c
In Figure 2.1, the ellipse n = 1 corresponds to the con-
dition that the eigenvalue, X = - 1, is =zero. The importance of
n.
i=1 i

this eigenvalue, as a coefficient in the canonical representation of the

risk, was discussed in Section 2.1.1.

Theorem 2.2. Let R*(c. ,c,) denote the maximum risk over © for
the estimator in (2.33) that corresponds to the point (~,0 ). Then
L2 , 2
1o ifcl
there exists a point (c ,22) on the ellipse --- + --- = 1 such that
1 n n
R*(c',ct) ~“R* (¢ ,c ). 1 2
v ox' 2y v ox-' 2t

The proof of this theorem is rather long and tedious, and only a
summary of it will appear in this section. A detailed version is given
on pp. L4-55'

Theorem 2.2 is proved hy partitioning the (cl”c2) space into several
regions. For each of these regions, it is then shown that, starting
at any point (cl,c2) in that region, the maximum risk may he continuously

reduced hy following a path which eventually leads to a point on the

ellipse n n = 1.
Case 1: “~es on ellipse> and 'the theorem is true at
onee 4c?  4c3
Case 2: 3c.1 7,c2; lies within the elligse,? i.e., -t + ;—2 < 1
1 2

All eigenvalues of the matrix A are negative so that, in the canonical

representation of the risk function in (2.25), the coefficients of all
of the canonical variables are negative. The risk assumes its maximum
value at the center of the parameter space © (i.e., when 9 =9 = 4,

and this maximum risk is
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n
X

+ 2c )2 in,

X

R* (c

TS

R* (Ci,cs) can now be continuously reduced by increasing c¢* and/or c*

until the ellipse is encountered.

Case 3. (ci”ca) 1lies outside the ellipse on the dashed curve in
Figure 2.1. For (cl”c2) 4o be on the dashed line, the slope of the
axis, with respect to the y* axis, must be equal to the slope of the
line extending from the center A, of the parameter space, to the corner
D, as in Figure 2.2.

The maximum risk for this case occurs at corners D and F in Figure
2.2, where the risk is

R* (c > L

n + 2c

1
o]
+
N
Q
-

R* (cl,c2) can be reduced by decreasing cx and c2 simultaneously, moving
along the dashed line in Figure 2.1 to point P. Let (c”~cg) equal the
coordinates of P, and Theorem 2.2 is satisfied.

Case 4; (ci-’c2) 1i03 outside the ellipse to the right of the dashed

curve. For any point (c ,c ) satisfying this case, the slope of the Y

axis is less than the slope of the line AD, as indicated in Figure 2.3*%
The maximum risk for (cl,c ) can be shown to occur either at point
D, or in the interval CD in the parameter space pictured in Figure 2.3-
(Equivalently the same maximum risk also occurs either at point F, or
in the interval EF, because of the symmetry of the risk function about

each canonical axis.) The location of the maximum risk depends on the
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Figure 2.2. Canonical Axes: Case 3
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Figure 2.3- Canonical Axes: Case D
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dR(r, z)
sign of , i.e., the derivative of the risk, with respect to y
D
evaluated at D.
. LR
Case 4a: If ;c ,cz) is such that 3 is negative, the maximum
¥2 o
risk occurs between C and D and has value
n
R* (Cc1I>c2) = i
Tn2 + 202)2 . LA
(n + 2 1L 1 I&
1
BE
But <o 1 < 0, making the second term in the above expres-
n
D
sion for R*(c ,c ) positive. Thus, the maximum risk can be reduced by
1 2

decreasing c” until the ellipse in Figure 2.1 is encountered, in which
case the theorem holds, or until the dashed line is encountered. In
the latter case, conditions for Case 3 are again satisfied, and the
theorem is true.
. SR
Case 4b: If (c,,c_) is such egRaw is positive or zero, the

——————— i' a S
g D

maximum risk occurs at D, and has wvalue

R* (C , <) = r— I
v it 2! n, + 2c, n + 2c
Li i 2 2

This maximum risk may be continously reduced by decreasing ci in C-
space until

(a) the ellipse is encountered;
(b) the dashed line is encountered, Case 3 holds, and the theorem

is true;

becomes negative, Case 4a holds, and the theorem is true.



38

Case 3! (ci'c2) lies outside the ellipse to the left of the
dashed curve in Figure 2.1. All points in this case satisfy the con-
dition that the slope of the axis is greater than the slope of line

AD, as demonstrated in Figure 2.4. As in Case 4, the maximum risk is

known to occur at corners D and F, or in the shaded intervals CD and EF.

8R(7,y) |
The location of the maximum is dependent on the sign of ' |
ID
Case 5a: < 0. The maximum risk occurs between C and D
ay-L
and has value
4cs
R* (C1>C2) = 4
Tn+ 2c )!
R k-
(n2 + 2cs)2
| dc .,
But T— <0  -———- 1 < 0, so the second term in the expression for
ni
R* (ci,c2) is positive. The maximum risk, therefore, can be continuously

reduced by decreasing c* until the ellipse or dashed line is encountered.
If the ellipse, the theorem follows immediately. If the dashed line,
Case 3 holds, and the theorem is true.

drR(7,y) . .
Case 3!> £ 0. The maximum risk occurs at the corner D

8y,
Y D

of the parameter space, and is equal to

R*(c ,c | +
v i 21 n_ + 2c
This maximum risk may be continuously reduced by decreasing c until
(a) the ellipse is encountered, Case 1 holds, and the theorem is

true;
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Figure 2.4. Canonical Axes: Case 5



do

(b) the dashed line is encountered, Case 3 holds, and the theorem
is true;
SR ! i i

(c) ~— Dbecomes negative, Case holds, and the theorem is true.

Cases 1 through 5 include all points (¢ ,c ) such that ¢ £ 0,

c so. Since it has been demonstrated that Theorem 2.2 is true for
s

all five cases, the theorem is proved.

From Theorem 2.2, it is known that the point (¢ ,c ) having minimax
s 3,2 12
4c1 4c2
risk is on the ellipse ——— + -—- = 1. The maximum risk for all points
ni n2

on this ellipse is given by the expression

n n
R , i i + 2 2.34
;s i, + 2e))2 (n, + 2¢,)2 (2.34)

1

To find the point (c”“) having minimax risk, it is necessary to mini-

mize R* (ci,c2) with respect to © and c*, subject to the restriction

that (¢ ,c_) is on the ellipse. This will be done using a Lagrange
multiplier.
Let
n, n 4c2 hc?
- . 1 2 1 2
F =} (n, + 2CI)2 + vx -1
ni n2
Then
dF 8\c
3c. n.
3F 8Xc
and

IkT



41

. 4cf 4cs
BF 1 2
ni n2 _ '
'dF AF
Now* , and “ must be set equal to zero, and the three
1 2
resulting equations solved simultaneously. But

pF -n .
Sr = O ¥ 8ci [(~ + 2¢i)l_
and
-~ = 0 -n
oc + 2c2):

so that the unknown X may be omitted by combining these first two
equations to give:
n n

c (n +2c;3 c(n+2c%3
11 i 2 2 2

1

or

civ(ni + 2ci,): c, (nz + 2c2)3

n' n

This equation must be solved simultaneously with the equation

lie2 4c?
+ —2- = 1
ni
in order to obtain the point (c”,c ) having minimax risk.

These equations have been solved numerically for many values of

n® and n”, and the results are given in Table I. For each pair (n”“n*),
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Table I

C-Minimax Estimators of 7 = 8, - 8

The C-minimax estimator of 7 is of the form

+ e *
X X + c
A - e 5 2
7 ~ n + 2c* ii 4+ 2c*
2 2
For each pair (n ,n ) the following entries are given (in order):
(1)
1
(i1)
(iii) the C-minimax risk corresponding to c*.c*.
1 s
The C-minimax estimators for those values of (n ,n ) in Table I with
entries omitted may be obtained from the cell for (n ,n ), in which case
the entries are (in order):
(1) e*
(ii)
(iii) the C-minimax risk corresponding to cl,cz.
For example, for n*® = 1, n* = 2, the entries given in the table are
c* = .40345
c = .41767
C-minimax risk = .13877
Fer n, = 2, no = 1, the C-minimax estimator is obtained from the cell
1
for &~ _ n?
= .40345
2
*
= .41767

C-minimax risk = .13877
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20

30

Uo

50

60

70

80

90

100

1

+ 35355
135355
*17157

1.1180
1.1180
.03339

2

40345
u41767
*13877
.50000

+50000
1111

20

1.3889
1.0685
.02551
1.5811

1.5811
.01864

Table I
3 1‘
43231 45101
+43511 .4 3167
12198 .11138
*55103 + 58657
*54273 +55887
.09689 .08785
61237 66243
*61237
.08404 .07585
70711
70711
.06823
30 40
1.4910 1.5342
-91114 +76487
.02224 .02044
1.8520 2.0014
1.5347 1.4101
01575 .01413
1-9365 2.1949
1.9365 1.8911
.01307 .01156
2.2361
2.2361
.01011
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(continued)

5 6 7
46377 47273 47916
41782 .39891 37795
+ 10399 .09851 .09428
61214 *63147 64625
55965 55111 .53689
.08147 .07669 .07297
.70022 «72959 «75284
.65788 .65983 .65387
.07007 .06571 .06229
«75582 79456 u82593
«73207 74365 74580
.06283 -05877 «05557
«79057 .83792 .87692
79057 .81084  .82062
«05772 .05387 .05084

.86603 91209
.86605 .88285
.05018 .04727
«93541
*93541
04447

n

50 60 70
1.5543 1.5646 1.5703
.64845 «55840 48831
.01929 .01852 201795
2.0867 2.1372 2.1681
12703 1.1390  1.0236
.01308 «01235 .01181
2.3628 2.4734 2.5472
1.7874 1.6628 1.5363
.01057 .00988 .00937
2.4816 2.6564 2.7815
2.1914 2.1013 1.9900
.00917 .00851 .00801
2.5000 2.7337 2.9103
2.5000 2.4561 2.3754
.00826 .00762 .00714

2.7386 2.9619
2.7386 2.6954
.00699 .00653
2.9580
2.9580
,00607

8

.48384
.35662
.09091

*65770
*51933
.06997

77147
*64255

.05954

.85165
*74121
*05299

.90943
.82262
48382

.95099
.89114

.04492

.98028
.94961
.04220

1.0000
1.0000
.04000

80

1.6737
43285
.01752

2.1877
.92456
.01140

2.5975
1.4168

.00897

2.8718
1.8722
.00763

3.0440
2.2748
.00677

3.1377
2.6216
.00617

3.1721
2.9156
.00572

3.1623
3.1623
.00537

48730
.35589
.08817

.66667
.50000
.06750

.78655
.62769
*05725

.87293

73177
.05084

.93676
.81881
.04634

+98414
.89286
.04296

1.0189
.95665
.04032

1.0437
1.0121
.03817

1.0607

1.0607
.03638

90

1.5758
.38817
.01718

2.2007
.84024
.01107

2.6324
1.3079
.00865
2.9376
1.7558
.00732

3.1455
2.1657
.00647

3.2762
2.5297
.00588
3.3460
2.8471
.00543
3-3682
3.1205
.00509

3.551*!

.00481

10

.48989
.31626
.08589

*67375
*47993
.06545

.79885
.61057
+05533

.89066
.71887
.04903

95992
.81063
.04461

1.0125
.88950
.04131

1.0623
.95804

.03872

1.0820
1.0181
.03662

1.1034
1.0711
.03487

1.1180
1.1180
.03339

100

1.5772
*35155
.01691

2.2095
.76834
.01081

2.6572
1.2102
.00840

2.9861
1.6455
.00707

3.2252
2.0548
.00630

3.3856
2.4283
.00564

3.4871
2.7621
.00520

3.5394
3.0563
.00486

3-5527
J.JIJO
.00459

3.5355
3-5355
+004}6
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the point (é&ck) corresponding to the C-minimax estimator of the form
(2.33) is given, along with the value of the minimax risk (obtained by

evaluating (2.34) at (clk,c;k)).

Proof of Theorem 2.2

Case 1: (c ,c ) lies on the ellipse. Let (¢'?¢') = (¢ ,c¢ ) and
—————— 1 2 127 ' s'
the theorem is satisfied.
nct 3
Case 2 (c ,c.) lies within the ellipse, i.e., —-— + —— < 1.
______ v 1i* 2A A ! ! n n
1 2
When this is true, then the eigenvalue of A given by
4c?
X » Z IT -1 <2-35)
i
and all other eigenvalues of A are negative. Recall that the eigenvalues

of A are the coefficients of the canonical variables when the quadratic
form Ay; is expressed in canonical form. From Section 2.1.1 (Case 1)
it is known that, when all the eigenvalues of A are negative, the risk

function attains its maximum at the center of the parameter space,

(01,62) = (-g,%) or (Zi,z2) (0,0). From (2-9), the risk at the

center is given by

NS
+

(2.36)
+ 2c.)2

R (c_, in (2.36) can be reduced by increasing c nd/or ¢ until the
€15 (2.36) Y 9 JYVES

ellipse is encountered at some point. Denoting this point by (c*,c?),

the theorem is satisfied.

For the remaining three cases, (CjjOg) lies outside the ellipse;

1’ de)
1

i.e., -—— + ——= > 1, and the eigenvalue in (2.35) is positive. From
1 2
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Section 2.1.1 (Case 2), it is known that, when the eigenvalue in (2.55)
the risk increases in both directions along the axis.

is positive,

Along the Y! axis,

with respect to the yx axis, is

so that the slope of this axis,

(2-57)

note that AD is the line extending

In Figures 2.2, 2.5? and 2.4,
The slope of

from the center to the corner of the parameter space.
this line is equal to the ratio BD/AB. Using the relationship

Jn. a. =z
— — — — , and the z-coordinates of the points A, B, and D, the lengths
i i
of these line segments were found to be
J7
BD 2 (2.58)
2 + 2 ' )
(n2 c2)
AB : (2.59)
2(nl + 2cx) ’
The slope of AD is therefore equal to
Jn (n 2+ 2c )
T (2.40)

"(n + 2c ) Jn~
2 2 1
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When the slope of the Yl axis is equal to the slope of the line AD,

expression (2.37) equals expression (2.40) and the following equation

holds:
c. (n + 2c. c (n, + 2c,)
iv i 1; s 2 2 (2.41)
n,
i
This equation is represented by the dashed curve in Figure 2.1.
When the slope of the axis is less than the slope of the line AD,

the inequality obtained by replacing the equal sign in (2.41) with a

"greater than" sign holds. This corresponds to points lying to the right

of the dashed curve in Figure 2.1. Similarly, when the slope of the Yi

axis is greater than the slope of the line AD, the equal sign in (2.41)

must be replaced by a "less than" sign, and the resulting inequality

is satisfied by all points to the left of the dashed line in Figure 2.1.
The last three cases depend on the relationship between the slope

of the Y¥* axis and the slope of the line AD.

4c1 4c2 c (n + 2c_) c_(n_ + 2c_)
Case 3 -— + -—— >1 and ----—-—--—-—- = —mmmmm——————— , i.e.,
————— - n n n n
z = 1 2

(ci,c2) lies outside the ellipse on the dashed line in Figure 2.1, and
the slope of the Yl axis is equal to the slope of AD, as indicated in
Figure 2.2.

When the eigenvalue in (2.35) is positive and all other eigenvalues

are negative, the canonical form of the risk function in (2.25) indi-

cates that the risk increases with a decrease in Iy I. Thus, for any
L2

point in the parameter space in Figure 2.2 not on the Y* axis, a larger
risk may be obtained by moving along a perpendicular dropped to the Yi

axis. Therefore, the maximum risk must occur on the Y axis.
i



Since the eigenvalue in (2.35) is positive, a move in either di-

rection along the axis away from the origin will result in an increase
in the risk. The maximum risk, then, must occur at one of the inter-
sections of the ¥x axis with the boundaries of the parameter space. Since

the slope of the Y axis is equal to the slope of the line AD, these
intersections occur at the corners D and F in Figure 2.2. Due to the

symmetry of the parameter space and risk function, the risks at D and F

are the same. From (2.9), the risk at D, where (z, ,z ) = (Bi,--?), is
c c "12
R | c = + (2.42)
<V.2) n + 2c n + 2c
c + 2c c (n + 2c
1(5_ 1% 2 ( 2 2) . . .
The curve n is monotone increasing, so

R (c”c”) can be reduced by decreasing c* and c* simultaneously, moving
along the dashed line in Figure 2.1 to point P. Let (cf,cé) equal the

coordinates of the point P, and Theorem 2.2 is satisfied.

4c : c_(n + 2c c_(n + 2c
X 2 lé{l l% 2;(2 2% .
Case 4: >1 and ---—--—----1C > —ST—so———-tT Doie.
n n, ||2
= 1

(cl,cz) lies outside the ellipse to the right of the dashed curve in
1

Figure 2.1, and the slope of the Yl axis is less than the slope of the

line AD, as indicated in Figure 2.3- For this case, the maximum risk
/T
occurs somewhere on the boundaries y* = + —t 2¢c ) '

intersection of the Y¥* axis with the boundaries, or between the points

of intersection and certain corners of the parameter space. These regions
are indicated by the darkened lines CD and EF in Figure 2.3- It is

known that the maximum must occur in these regions because, for any

point located elsewhere in the parameter space, a larger risk may be
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found by moving along a perpendicular dropped to the axis, or by

moving along, or parallel to, the Yl axis toward the boundary. Again,

the behavior of the risk is explained by the canonical representation
2

of the risk function in (2.25) when the coefficient of Yl is positive

and the coefficient of ¥s is negative.

Because of the symmetry of the risk about the canonical axis, every
point in the interval CD has the same risk as its image in EF. Thus,
the search for the maximum risk can be restricted to the interval CD.

The exact location of the maximum risk along line CD depends on
the sign of the derivative of the risk, with respect to at the

point of intersection of the Yi axis with the boundary of the parameter

space. The point of intersection, for this case, is point C in Figure

The risk, from equation (2.13), is given by

2 2
+y (v —1) +2y ~ v , (2.43)
2 2 fb 12
where Therefore, along the right-hand boundary of the

parameter space.
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dr (7,
T s oy 12y, o

1
Y1  2(ni+2ci)

" 2y2(~ - 1) +n + 2¢c (2.44)

At the point of intersection C, y, = zki_f+ ) and y ;
V2 /Tl
2(n + 2c )  Thus
v
a4 1
v fri v v /rT
c®(7,z
( ) vk (nx +1 20~ “V% o N (n112+ Rch
v ii it
1 2
o on +2e ) IvE -1+ VAT
1 v 1 1 w -
77 N
1 -
v. (nx + ReJ 1 (2.45)
4c' 4c’
For this case vA = A~ 4+ -y-*- > 1, and the derivative in (2.45)
i=1 o+ N Vi

is positive. A positive value for the derivative at C indicates that

the maximum risk in CD occurs at D, or between C and D, but not at C.

The location of the maximum can now be pinpointed by observing the

sign of the derivative of the risk, with respect to y*, at the corner, D.

The expression for the derivative at D is foxxnd by evaluating (2.44)
77

at v 2(n + 2c_|
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J~ vv J-
SR(7,y) ! (v! - i) + !
n, + 2c 3 n + 2c.
D 2 2 i i
/IT /be \ 4c c
s (3 _nl+ i3 (2.46)
n +2c 1ln / /rT (n + 2c¢ ) :
2 2\ 2 / 2Vl 1’

The location of the maximum risk is now defined, depending on which of

the following two cases hold:

Case 4a: < 0. The maximum risk in this case occurs on

the boundary yi = g/ + 2c¢ | Dbetween the intersection of the Y axis
v i iy

(point C) and the corner (point D).

The location of the maximum risk can be found by observing in

(2.43) that, for fixed y , the risk is a quadratic function in y2.
X

nr

Thus,., at Y‘n = 5-7;1___+_Ec—
5 1 1/

r n n 1 n

R(7,y2) )
2 Tn + 2¢ VIJt kTr—
cl)3 vn2 %7 _Kl‘ 4 2¢

v - L)
1)

nr

'v2 y3 + 2 -
+n1+ vivl y (w

In general, if y is a quadratic function of x, i.e.,
= b +b x+b,Xx
Y o "1 2 '

then the stationary point, xq, is given by
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2b_

At that stationary point, the value of y is

= bo+ 6i 2F1 +
s \kbg

In (2.47)> the risk is a quadratic function with

2

nivli
b = } Xn + 2c )s + 2¢c )s
o
L 1 2 27
Jn v v
= 1xX3
1 " nx + 2ci ! and
b = (v! -1
2 x 2 !
The maximum risk occurs at
v v
1 12
n + 2c
- 2 - D
and has value n v2v2
) 113
nlv1 n (nl+2c1')2

Xii + 2c )2 Xn + 2¢c )2 4(v2 - 1)

2
A"

% 3 11
“n 4+ 2c )2 " Xn + 2¢c Kvll - 1)
L 2 2 1 lyv 2 !

n 4c2
1

(n + 2c )2
2 2

(2.48)
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Reiterating the restrictions imposed for Case "J-a, the following

conditions must hold:

H A
hcz AC
Condition 1: _t — > 1
n, n
i S
c (n + 2c ) c (n + 2c )
11 1 2 2 2
Condition 2: n
Condition 3: < 0
4c*
Condition 3 and expression (2.46) imply that ——--- 1 < 0. Thus, the
second term in (2.48) is positive. Since this term is monotone increasing

in ¢ R (cl”c3) may be reduced by decreasing c”. Condition 3 will con-
tinue to be satisfied (see (2.46)), but either the ellipse or dashed

line will eventually be encountered. If the ellipse is encountered,

let (c”c3) equal the coordinates of the point of encounter, and Theorem
2.2 is satisfied. If the dashed line is encountered, Case 3 applies,

and the theorem is again satisfied.

dR(7,z)
Case 4b: so. If (cl,c2) satisfies conditions 1 and

D

2 of Case 4a, but not condition 3, then the maximum risk again occurs

8R

at the corner of the parameter space, D. If = 0, the risk has a
D

8r

8r
stationary point, a maximum, at D. If b > 0, then, because v— >0

and because the risk is a quadratic function of y* for fixed y*, the risk
must increase along the boundary from C to D.

The maximum risk at point D is, again.

R* (c y r cl + c2 1
i,c2; n + 2c n + 2c
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The maximum risk may be reduced by decreasing ©~ in C-space until one
of the following occurs:

(a) the ellipse is encountered. Case 1 holds, and the theorem is

satisfied;

(b) the dashed line is encountered. Case 3 holds, and the theorem

is satisfied;

(c) Condition 3 is again satisfied, Case 4a holds, and the theorem

is satisfied.
4C1§ clv(nl + 2c1) ) czkré + 2c2’)
_ n, n n. n.

(c”Cg) lies outside the ellipse to the left of the dashed curve in

Figure 2.1, and the slope of the axis is greater than the slope of
the line AD, as indicated in Figure 2.4. As in Case 4, the maximum
risk is known to occur along the axis, or in the shaded intervals CD
and EF in Figure 2.4. For a point (Cl,C3) in any other region, a point

of higher risk may be found by moving along a perpendicular dropped to
the Yi axis, or in a direction parallel to the Y axis, away from the
center. Because of symmetry, the search for the maximum risk may again
be restricted to the interval CD.

The proof that Theorem 2.2 is true for points (c ,c2) satisfying
the conditions in Case 5 is almost identical to the proof for Case 4.
For this reason, details will be omitted from the proof for Case 5,
when the analogy to Case 4 is clear.

The location of the maximum is again dependent on the derivative

of the risk at the point of intersection, C. At C, v = —A—-———=A"*——71r
!



5/\

2

v, 2 (na + 2=3) and

iR é7 AZl i 2

This derivative is positive under the conditions of this case, so the
maximum risk occurs between C and D, or at D, depending on the sign of
the derivative of the risk, with respect to y*, at D. This partial

derivative is given by

A
R (7, 2) /T \ cil, )
n +2c \n _1/ +Jdn, (n , o (2.79)
3 iNi ;12 21
rR(7>=)
Case 9a- < 0. The maximum risk occurs at
oy.
2 V12
n, + 2c2
2(v2 - 1)
and has value
n
R* (V2 (2.50)

(nt+ 2c )2
i i

(n + 2c )
2 2

The conditions imposed by this case are

4c e

Condition 1 n > 1

ony +29) S(n, +2<),

Condition 2
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A
Condition 3' SR(77) < 0

D

From (2.49) if Condition 3* holds (along with Conditions 1' and 2'), then

he?
c
—— - 1 < 0~ and R*(c1,§) in (2.50) may be decreased by decreasing c

nl 2
until the ellipse or the dashed line is encountered- If the former.
Case 1 holds and the theorem is satisfied. If the dashed line is en-

countered, Case 3 holds and the theorem is satisfied.

dR(7,x) N

Case 5b: 0. If conditions 1' and 2* hold, but not
Syx
3 , then the maximum risk occurs at the corner of the parameter space
(point D), where the risk is
c
R*(c ,c ) 1 + 2
n + 2c n + 2c
1 1 2 2J

This maximum risk may be reduced by decreasing ca until

(a) the ellipse is encountered, Case 1 holds, and the theorem is
true;

(b) the dashed line is encountered. Case 3 holds, and the theorem
is true;

(c) Condition 3' is again satisfied, Case 5a holds, and the theorem
is true.

It has now been shown that Theorem 2.2 is true if (cl”c2) satisfies
any of the Cases 1-5- Since there is no point (c®ec”®, ©~ SO, c2 SO,

which does not satisfy one of these cases, the theorem is proved.
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2.2 Estimates Which Minimize the Maximum Weighted Risk

In this section estimates are derived that minimize the maximum
weighted risk., when the risk function is weighted by any member of the

class of symmetric beta functions on ®  Again, the parameter of

interest is 7 = ~ a.o0., the loss is defined to be squared error,

i=1 1 1

and the estimators of 7 considered are those in the class of SBP esti-

mators, given by expression (2.8).

2.2.1 Derivation of the Weighted Risk, 1?(j;,a))

ft, the class of weighting functions, U)(j), defined on the k-

dimensional space ®, is restricted to functions of the form

k
w(0) = H 00 (0.
i=1
where un (8*), the marginal weighting function of 8%, is a symmetric beta

function of the form

fc. &.
opl (1 - ¢op) 1

Vt) " B(b.vijt.tiy ! ' <2-5D
v 1 1
Recall from equation (2.9) that the risk function for an SBP esti-

mator of 7, under squared error loss, may be written

2
Eit¥4i%] + £ "f1

R(7,z) + 2c7F (1 - (2.52)
1

,ni

When this risk function is weighted by the weighting function tu(_8), the

weighted risk is given by
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1 oi A k *, b.

R(7,z) N 9.1 (1 - 9.) 1 4.9.

0 Jo i=1
RU , <D) =

n B(b.+1,i.+1)
i=1 1 1

It is convenient in what follows to view uw(0) as a probability

density function which is in fact the product of the k independent den-

sities given in (2.51)- Thus R(£, (B) can be written as 'the
expectation of R(7,z%). Since ~(9”) is a symmetric beta function,
WP<F = i and —zi) = - i) = °- A (zi) = ei - Qi + i) =

1/4(2*. + 3).

The independence of 9.,9. implies that
a J

Su)v(Zi.Z.) = 1zi) ¢c?(z.) = 0 ,
and
c2as 3 (z.)
r c.a.z. I _ 14 i
oL iJ oy * 20492
Thus
‘ 2
ﬁcg ccz_ n, a
Z i i \ 171
(n, + 2c.)2 4(2*. +3) / L+ 2¢.)2
1 1 v 1 1
2
Z |
- (n. + 2c.?2 4(2*%. + 3)
i i
and
a2'('4c -n % 1 a?
_ . v Prowy i 4 v ni (2.53
RUL0)) (SIR(7,2)] A A (ni+2ci)2(2*i+3) 4 ~ (ni+2ci) ( )
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Since the prior density, |[(_9), is specified by the vector £ of
constants cp = + and the weighting function U)(9) is specified by
the vector h of constants b?, the weighted risk R(£,u) may be indexed
by the vectors £ and b. Because the weighted risk will be analyzed as

a function of £ and b, it will often be convenient to adopt the notation

R(£,_fc) = ' (2.54)

2.2.2 Maximum Weighted Risk for Fixed ¢

When the estimator 7 is the Bayes estimator derived from a fixed
prior £(_8), the set [c*,c”,...,c } is a set of fixed constants. The
maximum value of R'(£,iu) possible, when £(_9) is fixed, can be obtained
by considering expression (2.53) as a function of [b ,b the
set of parameters specifying uw(0) .

Note that for each i in the sum (2-53)” the corresponding term

contains one and only one member of the set (b To find
the set {&*, Z)*, .. ., 3*} that maximizes R(£,S), therefore, it is sufficient
it
to maximize each term separately, i.e., maximize
a. (4c” - ni) ni
Ri(ci”®i) - 1i|(n.+2c.)s(225.43) + 4(n. + 2c. , » i =1,2, ... k. 12.55

Wow consider the behavior of Rl (cl'&l) as a function of bl' for
the following cases:

(a) cl* > n~/4. In expression (2.55)> if then
4c” - n* > 0 and that term is positive. In order to maximize R*(c”*,Zb),

Z1 should be as small as possible, so Zn = -1, Thus,
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ba? &
R (c., t,) ot (2.56)
i A An. + 2c.)2 :
. v i i
i
2 2
(b) < n*/4. For this case” - ru < 0, and the term in
(2.55) that contains 7Zb is negative. Maximizing R~c”~Zb) for this case
requires minimizing the term containing so that Zb = %. Thus
s
n. a.
sup Bf.fc.,*.) » i (n. + 2i.)'4
(c) c;‘ = n*/4. Here "c?‘ - n* = 0 so that, for any value of Zb,
2
n1 a
sup s', (c., Zb) = 57——
Ih iv 4 (n. + 2c.)2
The weighting function that maximizes R(£,u)) for fixed prior |[( 9),

denoted by o7 (9), is defined by

7). ).
k e1 (1-e)
w* (e) nn B(Z7%41, A +1)
1=1 1 1
where 7Z2b, i =1,2,...,k, is determined by case (a), (b), or (c), de-

pPending on the value of c*.

2.2.3 The Value of £ That Minimizes the Maximum Weighted Risk

Notice that, in (2.53), if R(|,c) is evaluated at CJD(_9) = uu*(j),
then
a. (bcs. - n.) _ n. a
R(*, (U ) - R(c,£ ) - k (nJ+2c.)2(22>*+3) + ~ ~ (n,+ _
11 4/ (al+2c.y2 ' (25T)

v 1 1
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To determine the set |[c*,c*, ..., c*} that minimizes I  ; it is clear
12 K.
that each term in (2.5?) can minimized separately, i.e., minimize
2
a. (kci - n.) n. a
i i i’ 171 ) 58
R:(c./&.) 4(n. + 2c.)2(2b* + 3) + 4 (n. + 2c.)?2 (2.58
1 -1 -1 1 1

Consider again the following three cases:

(a) cl > n~/4. From case (a) of Section 2.2.2
4 2 2
a
R. (c.,b*) 1 :1
1 1 1 sn.l + cl.)3
21
n? frn
+ —— + h
C‘{ C.l

As c1 increases, the denominator decreases, and R:(_CIEE.) increases.

(b) c? < n~/4. From case (b) of 2.2.2,
n. a?

R._( ) = '1'———1 i—r

1C:L':f_ (n. + 2c))

As c. decreases toward its minimum value of 2zero, the denominator de-
1

creases,7 and R. (c.AZ)*) increases.

(c) c. = n./4. From case (c) of 2.2.2,

1 11
RI(Cl’bl)

]
-~
)
+ -
> f
H
~
%}
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These three cases can be summarized by the graph of BL(c*,J>*) as
a function of c#, in Figure 2.5* which indicates that R* (c*£>*) is
minimized when ¢. = jin. 12, i = 1,2, Thus, the set [¢ ,¢c ,...,c }

which minimizes the maximum weighted risk is {/rT/2, J~n~/2,..., JHA/Z}.

From (2.53) observe that the value of the weighted risk corresponding

to Tc;k, .,c; }, for any weighting function o(0) in 0, is
2 2
ai
R(£*>£) = 4 E (n. + JTT)S = *"E
(1 + /nT)2

Note that, although the integrated risk is invariant for all weighting
functions in fi, the risk function itself is not constant over 0. The
reason for the invariance of the integrated risk can be seen by writing

the risk function (2.52) in matrix form.

n. a.
= 1 Wn.h ¢t. +
4c -n )a 4c ¢c a a
( 1 :ﬂl 121 2 ] .
(n +2c_)3 (n +2¢ ) (n +2¢c ) (ni+2ci) (N7 2ck)
v i
4 dc - 4c c,
c]_c2c<fl.§ ( 02 ns)a2 czckazak
(n1+2cl) (n3+2c2) (n +2¢c )2
i+CiCkQ:il\
((N72cl) (N7 2c]t) (N72ck)2

iet '9* i 1 where cl Then
1



Figure 2.5-

Minimization of R”*(c*, &*)
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2
bt |
R(7%*,

7=, = 3 4(1 + yop?

0 (147 ) (1+Jn2) (1+v ) {1+JIn*J
aa, 0 a\
. (ityir) (i+/x) uzrrju"

(1+zZn*) (1+/\)

which is not constant over ©. However, if R(7 , z) is weighted by any

symmetric beta function, then the last term in R(T* _z), when weighted
and integrated, can be written as a linear combination of expectations
c?(z.zj) taken over the density defined by the weighting function. These
expectations are all zero, as shown in Section 2.2.1, because

(1) “w(zt') = = (0 > and

(ii) <?(z.z.) = <S..(z) S (z.)

In fact, for any weighting function U)( () such that UJ(Z1 ,...,z,K) = a)1 (zl ).

aiK (ZI() where 5D (zl.) =0, i=1,2, ...,k, the integrated risk will be
. . ( 1
invariant.

2.3 Estimates Corresponding to the Least Favorable Prior

In this section estimates are found that correspond to the "least
favorable" prior distribution in E, the class of independent symmetric

beta priors. The "least favorable" prior, denoted by !*(_§), is the
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prior in H that maximizes the Bayes risk. The Bayes risk for any prior

[(_0) is found by evaluating the weighted risk R(£,(w), given in (2.53)

at = |(0) (i.e., at zx = - 1),
2
Ch “ np) v n.i a.i
= Y 4§n.+2c. )2(2c..+1) + (n.+2¢.)3
i v 1 Y

a2(4c.S- n.) + (2¢. + 1) (n. a.)

E:Lv1 i i i

4(n. + 2c.)2 (2c, + 1)
i n/ voo1

2

i A
2.59
» E 2(n. + 2c.)(2c. + 1) ( )
The least favorable prior, |*(j)” can be obtained by finding the
values of its parameters, [c:L,c2 ,...,cK }, that maximize the Bayes risk,
R(I, ). The value of c. that maximizes R(|,|) is found by setting
J
0, 3 —-12 .. . k
oc .
a
aan.o _ (2ni * T 8c®)oa -
6c 4(n. + 2c.)2 (2c. + 1)2
J

J 3 J

(2n. - 8c2.) as

3 3 3 = 0
4(n. + 2c¢ .)2 (2c. + 1)2 ~
J 3 3
*£
c. n./4

J T
Since 8 is greater than zero for c¢. < n./4 and less than zero

c

for ¢. > n./4,

J J

it is clear that the stationary point at c. = n./4 is
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a maximum and not a minimum. Therefore” the least favorable prior,

|*(0), is given by

k 8.1 (1-0)1
I*(e) n °* : .

B(c*,c?)
i=1

where c¢c* = /nT/2, for i = 1,2,

The value of the Bayes risk for the least favorable prior is found
by evaluating (2-59) at = Jn*/2, for i = 1,2,...,k. Notice that,
since the {c”} corresponding to the least favorable prior is the same

set {c.} that minimizes the maximum weighted risk in Section 2.2, the
J

Bayes risk here is the same as that minimax weighted risk, i.e.,

3

ocC,
- if£ i+ JT)s

2.k Summary of Results

For the criteria discussed in Chapter I, optimum SBP estimators of

the form

where 7 = ~* a. Q. have been found. They can be categorized according
i=1 1 1

to the optimum values of {c*}, as follows.

In Section 2.1, the general form of the risk function for an SBP
estimator 7 was discussed. For two special cases, estimators were

found that produced the minimax risk in the class C of SBP estimators.
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When l|<x|l =1 and n* = n* for i = 1,2, the estimator 7Abased on
the set of constants {c* =y/?*” is C-minimax and universal minimax. When
k=2, a =-a =1, and n f n , then the SBP estimator % based on the
constants {ci:,c2}, obtained as the solution to the set of equations
Clhni + 2c1" ¢, (n, + 2c.)
2 3 3
n2 n3
1 2
2
4c
1
n 1 !
1

is C-minimax.

In Section 2.2* it was found that estimates with [c* mini-
mized the maximum weighted risk, when the risk function was weighted by

any member of the class of independent symmetric beta functions defined

on ©. For [c* =yj*-} , it was determined that the weighted risk had

k a2

value ~ (1 + fn \2' wlaa*ever weighting function in this class.
i=1 bi

The values of {c.} corresponding to the least favorable symmetric

beta prior were found in Section 2.3 to again be {c. = /nT/4}. The Bayes
2
k a.
risk for the least favorable prior is also 4 T] ¥
. (1 + /n.)2
i=1
The results of this chapter suggest that optimum estimators of a
linear combination of binomial probabilities, 7 = 04, can be ob-
tained by using a linear combination of simple transformations of the

maximum likelihood estimators of the 0., x./n.. The transformations

performed on the maximum likelihood estimators are determined by the
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constants {c*}, and these constants may be chosen by the experimenter

to produce certain desirable results. If the worth of an estimator is
judged by the behavior of its risk function” then the results in Section
2.1 allow the experimenter to control, to some extent, the behavior of

the risk function by the proper choice of {c*}. In particular, for

two special cases, he may minimize the maximum value of the risk by
choosing certain c*. If the worth of an estimator is measured by weighted
risk, then the maximum weighted risk may be minimized by using the c* de-

veloped in Section 2.2.
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APPENDIX 2A

Let B be a k-dimensional square matrix of the form

1 - 1 1 1
1 1 - p2 1 v 1
(2.60)
1 1 - P
where ~0, i=1,2,...%%. The determinant of B, denoted |B|* may-

be derived as follows.

First subtract the first row from each of the others in turn, 1leaving

the determinant unchanged; then partition as shown.

1 - pJ i 1 1
2 .y 0 ... 0
0 -p3 0

I ) ]
Pi 0 -P]

In general, the determinant of the partitioned matrix

B i B
———-12

B i B
21 ! 22

may be written (see [10], Theorem 8.2.1) as

|B [ + |B - B B-1 B \
22 11 12 22 21
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CHAPTER 1III. FIXED PRECISION ESTIMATION OF THE

BINOMIAL PARAMETER 9

3.1 Derivation and Evaluation of Estimates

In this chapter, estimators of the binomial parameter 9 will be de-

veloped for the binary loss function

10 if 0(x) - A/2 < 0 < 0(x) + A/2
(3.1)
1 if 9 > 9(x) + A/2 or if 9 < 9(x) - Aa/2
A A
where 0 ~ A ~# That is, the estimate 9 is considered "right" if 9 is
sufficiently close to 9 (i-e., if |0-0| *~ A/2) and "wrong" otherwise.
For this loss function, the risk (expected loss) is given by
R(0,0) = £ L(9(x),0) p(x]|0)
x=0
= J L(0(x),0) (x) 0X (1 - 0)n‘X
x=0
= E (x) ex (1 - e)n'x (3.2)
D

where D = {x]|9(x) > 0 + Aan/2 or 0(x) < 0 - A/2}. Note that this is simply

A
the probability that the estimate 0 is "wrong."

As in Chapter I, the object of this chapter is to determine the '"best"
SBP estimates for 9, for the following three definitions of "best" esti-
mates :
(1) Those estimates that minimize the maximum risk;
(ii) Those estimates that minimize the maximum weighted risk;

70
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(1iii) Those estimates that are derived from the "least favorable"

symmetric beta prior.
3.1.1 Derivation of Bayes Estimates

For the problem of finding point estimates of 9 that are optimal,

in some sense, for the risk function defined by (3*2), the class of esti-

mates considered was the class C of Bayes estimates derived from symmetric

beta prior (SBP) distributions on 0 defined by

o>-1. (3-3)

The conditional distribution of the random variable X is binomial with

parameters n and 9; i.e.,
p(x19) = (x) €X (1 - e)n"x (33)

The Bayes estimator for 9, when the prior distribution of 9 is

1 (9), was defined in Section 1.2 to be the estimator that minimizes the

weighted risk, when the risk function is weighted by the prior | (9):

Since the risk function can be expressed as

R(e’ e) Yr L(9(x),9 p(x]9)

x=0

the weighted risk is equal to

/70 LE1L(5(x),9 p(xle)l [(9) 49 (3.5)
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But this may also be written as

Zi L(e(x),e) i(e|x) deq p(x) (3-6)
x=0 0

p(x) = / £(x,9) doO

/ p(x|9) |1(0) de. Hence,
where

i~f£ / R(0,0) |(0) do i$f 23 / L(0(x),9) | (0|x) dO p(x)
0 J0 0 x=01Iro -I

n
x"oLeW 7@1(5(x)'0) 6(9|x) do6Jp(x] >

and the Bayes estimator, 9%, when the prior distribution of 9 is | (9), is

equal to the set of estimates that minimize the posterior expected loss;

9, (x) |0\ (%) “nf / L(9(x),0) |(O|x) 4O ,
0(xx) J0
(3-7)
When the prior distribution of 9 is the symmetric beta function

given in (3.3) and the conditional distribution of X is binomial, as in

(j.t), then the posterior distribution of 9, ~(O|x), is defined as
1(6]x) = q.10...£(.x10J
j_ ~(0) p(x[0) 40
el

9atxXx (1 - 8)gl-n~X

(3.8)
B(a+x+ l1l,a+n - x + 1)
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For the loss function defined in (3-1)j, the posterior expected loss for

an estimate, 9(x), is given by

"Bltlfche)d = v LEAIT LT ST

e(x)-A/2
0a+X (1 e)atn-xde + r eatx(l e)atn-xde
B(a+x+1l,a+n-x+1)
e(x)+A/2
:3.9)
The posterior expected loss in (3-9) may also be written as
9 (x)=kA/2
<S(ejx)CL (e(x) ,e)] i J £(e|x) de (3.10)
6(x)-A/2
where | (9]|x) is the posterior density in (3.8). Because the general
shape of the posterior density, |(9|x), changes if either (a + x) or

(a+ n - x) is negative, minimization of the posterior expected loss with

A.
respect to 9(x) must be conducted separately for the following two cases.

Case 1. a+x>0, at+tn—=x>0. This condition is fulfilled

if 1 ~ x < n-1 or if a > 0. The beta density with parameters (a + x,

a + n - X) increases from zero at 9 = 0 to a maximum at 9 = (x+a)/(2a+n)
(Bindley [IT], p- 173), and decreases again to zero at 9 = 1. This
curve is shown in Figure 3.1; where the posterior expected loss (3.9)

A.
is represented by the shaded area. Clearly, the wvalue of 9(x) that
minimizes the posterior expected loss is the midpoint of the interval
of width A containing the most probability in the posterior density,

I(9 |x). This wvalue of 9%(x) can be ..ound by setting the derivative of

(3.9)j with respect to 9(x), equal to zero.



223 POSTERIOR EXPECTED
LOSS

e

Figure 3-1. Posterior Density of 0: Case 1



75

~(0(x) - A/2|x) - |(e(x) + A/2|x)
B 0(x)

Setting this equal to zero, we arrive at the equation

i(0(x) - A/2|x) = “(e(x) + a/2|x) (3.11)

For this case, then, the Bayes estimate of 8, when the binomial obser-
vation is x, is the midpoint of the interval of width A whose endpoints
are the values of 8 having equal ordinates in the posterior density func-
tion. This is represented graphically in Figure 3*2. It is interesting
to note that the same interval can be derived as the shortest interval

containing a fixed probability in the posterior density (see [15], p. 237).

Case 2. x = 0 or n and a ~ 0. For this case, one of the parameters
of the beta function in expression (3-9) for the posterior expected loss
is negative, and the beta density is either monotone increasing or de-
creasing. For example, if x = 0 and a * 0> then the posterior density
in (3.8) decreases as 0 increases. If a < 0, then the maximum at 8 = 0
is infinitely large. Figure 3-3 shows the graphical representation of

the posterior expected loss for this situation.

If x = n and a * 0, then the posterior density increases from zero
at 0 = 0 to a maximum at 0 = 1, that maximum being infinitely large if
a < 0. The graphical representation of the posterior expected loss for

this situation is presented in Figure 3-l+.
In these two situations, the value of 0(x) that minimizes the pos-
terior expected loss is again equal to the midpoint of the interval of

width A that contains the most probability in the posterior density. If



Figure 3.2,

£ (01x)

Posterior

“A2) = £ (£(x) + A/2)

MINIMUM POSTERTOR
EXPECTED LOSS

0

of Bayes Estimate
+ Case 1; Location
Density of ¢

=3



POSTERIOR EXPECTED
LOSS

Figure 3.3- Posterior Density of 9: Case 2 (x = 0)



POSTERIOR EXPECTED
LOSS

Figure jA. Posterior Density of 9: Case 2 (x = n)
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x =0 and a * 0, this interval is [0,A]- If x = n and a ?* 0, the interval
containing the most posterior probability is [1-A,!].
Therefore, the Bayes estimates under the conditions of Case 2 are

given by the rule:

(1) =x 0 , then 0~(0) a/2 ;
If a ~ 0 and (3-12)

1 - a/2

(ii) =x n , then 9*(n)

The Bayes estimator, 9%, when the prior distribution of 0 is £(0),

is given by the set of estimates

= ("(x) > x=20,1 .. .,n}

where 0£(x) is found from (j.11]) or (3.12), depending on which case applies.

3.1.2 Numerical Evaluation of Bayes Estimates

When the conditions of Case 2 in 3*1.1 hold, the value of the

Bayes estimate, 97(x), can be determined directly from the rule (3*12)
for any value of n and A. However, when the conditions for Case 1 hold,
94 (x), which is the solution to equation (3*11l)* must be found by an
iterative procedure. For the purposes of this study, equation (3.11)
was solved using the technique described in this section.

It is obvious that a/2 ~ 0%(x) ~ 1 - A/2, since 0%(x) represents
the midpoint of an interval of width A, located in the interval [0, 1]
Initially, let 9% = a/2, and 0 = 1 - A/2, so that [0%,9"] represents
an interval (initially of width 1 - A) that is known to contain 9% (x).

The purpose of this iterative technique is to reduce the width of this

A
interval containing 9% (x) until 9~ = 0.
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Starting with 0L = a/2 and ~ =

for every iteration:

1 -

A/2~ the procedure is the same

(a) Let IM = (el + 97/2;

(b) Evaluate - A/2|x) and i(9M + A/2|x) from (3>8) ;

(c) If £(9M - A/2|x) > ~(M + A/2|x)* then it must be true that
0T < 0,(x) < 0,,. Therefore, leave 0T at its present value, but
L £ M L
let 0y - 0M and iterate again ;

(d) If |(OM + A/2 |x) > ~(6M - A/2|x), then 0M < 0~(x) < Oy. Leave
0~ at its present value, but let 9 = 0~ and iterate again.

After k iterations,

tains 9%(x), is equal to (1-A)/2k,

(oL + 9[3)/2. Thus, the maximum error

0~ (x), is (1-A)/2*+1,

the width of the interval

and the value used for 0*(x)

[0~,07], which con-

is

involved in finding the solution,

and this error can be reduced to a satisfactory

level by performing the appropriate number of iterations.

3-2

For fixed values of n and A,

estimates of (0 may be obtained from (3.11)

is solved numerically as in Section 3.

mates is determined,

and for a fixed prior £(0),

Estimates Which Minimize the Maximum Risk

the Bayes

and/or (3-12), where (3-12

1-2. Once the set of Bayes esti-

the risk function for that set of estimates may be

evaluated, using expression (3.2), at any value of 0. The maximum value
A

of the risk function, R(07~,0), over © may then be obtained by numerical

search.

The search for the maximum value

by the fact that the risk function is

with discontinuities occurring at the

However, the search can be simplified

of the risk over 0 is complicated

a discontinuous function of 0,

points 9%(x) + A/2, x = 0,1,...,n

as a result of the following theorem.
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Theorem 3-1- Let {GCx)* x = 0,1, be a set of Bayes estimates

of 9, defined by equations (3-11) and/or (3.12), with risk function equal

to R(8,8 in (3-2). Then the maximum of the risk function occurs at one

or more of the 2n + 2 points.

9 8(x) + a/2 , for x = 0,1,...,n

The proof of Theorem 3-1 will be deferred until Lemma 3-1, below,

has been proved. To introduce the lemma, first note that for any set
of estimates of 8, {8(i)}, i = 1,2,...,n, there is an associated set of
intervals in ®, {(8(i) - A/2, 8(i) + A/2)}. Denote these intervals by

'
{Io*Jliv' oo 'I;J'

Lemma 3-1» I nicCxX , === 1,2,...,n-1; i.e., any 8 that

is covered by I_. . and I . is also covered by I .
x-i x+i x

Proof: 8e1_, =">8(x - 1) - A/2 % 6~ 8(x - 1) +a/2,
Gel , =>9(x+1) - 2/2 % 8§~ 8(x+1) +a/2
Now suppose 8(x + 1) > 9(x) for x = 0,1,...,n-1. Then
8 e l1=">9 s 9(x;) + A/2 , and

1
>
S~
N
]
o

9 e Ix+l=> 9 £ 8(x)

9 e Ix_l H Ix+1=">9(x) - a/2 ~ 9 ~ 8(x) + A/2=">9 e Ix

That is, a sufficient condition for Lemma 3-1 to hold is that

9(x + 1) > 9(x) , for x = 0,1,..., n-1 . (3*13)
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To show (3.13) is true, consider the definition of 8(x) given in
Section 3.1.1. Assume a + x >0 and a + n - x > 1. Then the estimates
9(x) must satisfy equation (3«1l), i.e., | (8(x) - A/=ZIx) = *(e(x) + A/=|x),
where | (e|x) is the posterior density of 8, given by

fla+tx h flra+n"x
-%?5-"n

i(e X) = [ ai
B(a+ x+ l1l,a+n- x + 1)
Thus,
5(8(x) - A/21x) = ¢€(x) - A/2h+x [« - e(x)
) l(e(x) + A/2|x) _e(x) + s/aj [1 - e(x) - a/sT

Consider now the ratio of the values of the posterior density based on
X = x + 1, evaluated at the endpoints of the interval defined by the Bayes
estimate for X = x. (Again equation (3-11]) can be used since a + (x + 1)

>0 and a+ n - (x+ 1) >0.)

e(8(x)-A/2|x+]) = 8(x)-a/2 CIERH [ -8 (x)+a/21latn- (x+i)

| (9(x)+a/2|x+1) 8(x)+a/2 I-e(x)-A/2J

8 (x) -A/21la+Xj~1- 9(x)+A/2]a+n"X ( 8(x)-a/2) (1- 8(x)-aA/2)

J Li-
_8(x)+a/2 : 9(x)-A/23 (e (x)+A/2) (1-8(x)+A/2)

r8 (x) -A/2+ |~1- 8 (x) -A/2+]

Le (x)+A/2J LI-0(xX)+Aa/2J

, <1 and IV

o A >0 8(x)-a/2 that

ince > < 1, so a
L9 (x)+A/2J Ll- ¢ (x) +A/2_

I(8(x)-a/2]|x+l)

1(8C)+A/Z|X+1)

I(e(x) - a/2|x+1) < Ie(x) + a/2|x+1I) . (3.1*0
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Because the function | (0)x+l) increases monotonically from 0 at 8 = 0 to
a single mode (at 9 = and then decreases monotonically to 0
at 9 = 1, the difference D = | (0 + A/2|x+1l) - |(8 - A/2|x+1l) is positive
for 8 < 8(x + 1) and negative for all 0 > 0(x + 1). (When 0 = 9(x + 1)

D is 0, by (3-11)-) Thus, (3-1”*) implies that 9(x) < O(x + 1). This

is illustrated in Figure 3*5

It is still necessary to show that 9(x) < 0(x + 1) when

(1) a+x<0, ie., ===0, a~o0O, and when

(ii) a+n-x21, ie., x=n-1 a~0
In case (i), 9(0) = A/2, from (3*12). Equation (3-11) gives

1(0(1) - A/2|x=1) = 1 (0(1) + A/2|x=1)

Now if 0(l1) = a/2, then |(Aa|x=l) = 0, since 5(0|x=1) = 0* But £(a|x=1l) >
0 for 0 < A < 1, so the assumption 9(1) = A/2 leads to a contradiction,
and is therefore false. Since A/2 is the minimum value 0(x) can assume,
9(1) > Aa/2 = 9(0). In case (ii), an analogous argument shows 9(n) >

9(n - 1), when a ~ 0. This completes the proof of (3-13), and Lemma 3-1

is proved.

Proof of Theorem 3-1t% Consider first the nontrivial case, in

n

which H I =0, i.e., every value of 9 is covered by at least one I

X
[

The parameter space © = [0,1] is then the union of mutually exclusive sub-

X

intervals S”, each of which is covered by a nonempty subset of

[lo,1”,...,1"}. For example, if n = 2, the interval © = [0,1] may be
broken up into the five subintervals shown in Figure 3-6. By virtue of

Lemma 3>1, each S. covered by more than one interval from flo,l 'l

is defined by the intersection of consecutive intervals, i.e.,



x+o+1
2a+n

Figure 3.5" Posterior Density of 9 for X = x + 1



CD
VJI

Figure 3-6. Decomposition of 0 Into Sut)intervals (n = 2)
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S. where k. is the number of intervals which intersect to
i

form and r* the smallest value of X that defines an interval covering

Si. Delete the subscript i, and consider a general subinterval,

k-1
s = fl 1 0 The behavior of the risk function over S will now be con-
3=0

sidered for several cases, depending on the value of r.

Case 1: r = 0. When S is covered by the first k intervals, the
risk function over S from (3-2) is
k-1
x=0

It will be convenient to define Rb(9,9) (abbreviated Rf) over 0 = [0,1],

although it coincides with the risk function RQB,Qf only over S.

The partial derivative of b with respect to 9 is

-(n - x) 9X (1 - 9)n-x-i 4 x ox"1(1 - n-x
x=
so that
n-x-i fc(x;n-1,9) xi(n-x-1)!
(n-1):
Similarly,
x-i .n-x 3(x-1;n-1,9) (x-1): (n-x):
] U - = (n-1)!

Then
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-i
: n! (-1) (n-x) &(x;n-1, 8 xJ(n-x
n(l e)n_l x!'(n-x)I L (n-1):
x=1
k-1 l x £(x-1;n-1,9) (x-1)! (n-x):
E x! (n-x)! . (n-1):
x=1

n(l-9)n 1 - n Y5 [-*(x;n-1"9) + £(x-1;n-1, 9]

x=1
= n £(k-1;n-1, 9)
SRs
n-1). . k-1 . n-k
ys-= P Tk"{Iln—kT. (l - e)
This derivative is positive over © = [0,1], except at the points 9=0

and 9 = 1, where it is =zero. This indicates that, for 0 < 9 < 1, Rs (9, 9)
X
is an increasing function of 9. In particular, Ro /(3,9) is an increasing

function of 9 over the interval S, where it coincides with the risk

R(9,9). Thus, the maximum risk over S must occur at its right end point.
Case 2: r=n-%k+ 1 This occurs when the last k intervals
cover S. The risk function, over S, is
R (9,9 = 1 - J (£) ex (1 - e)n"x
b x=n-k+1

I "J (D) %X O0- 9nX ¢

x=0
Again, R is defined over 0, although it coincides with the risk R(9,9)
0
only over S. Now differentiate and collect terms just as in Case 1. The

result is
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BRS
(n-1): “n-k

k-i
Te (n-k): (k-1): ¢)

(i-

This derivative is negative for 0 < 9 < 1, and zero at 9 = 0 and 9=1,

indicating the risk is a decreasing function of 9 for 0 < 9 < 1. In

particular, RO (9, 9) is a decreasing function of 9 over the interval S,

where it coincides with the risk R/(é,Qf. Thus, the maximum risk over S

must occur at its left end point.

Case 3: 1 ~ r < n-k. For this case the risk, over S, is
= 1- J1 (r*) 9™ (1 - 9)n-rn
Rs(e, 0)
3=0
aRs 0 " S — A_ 0
~ (x+j) ["Or+r(n-r-3j) (1-9)n_r *-1 + (r+)) 0r+j—i (1_0)n—r—j
ST =0 L
Again, 1let fc(r+j;n-1, 9) = *r+j)"'n(Hr—3jTTT ~ " e)n"r';5~1* and
£(r+j-1;n-1, 0) = (r+j.p**jn-r-j): Or+J"l (1 " e)n"r‘~ 80 that
SRs kel 5(r+3 ;n-1, 9) (r+,3)! (n-r-,3-1)!
n-1):
15 (n-1)
4 h(r+j-1;n-1,9) (r+j-1): (n-r-j)
+ n
(n+3) (n-1)
k-1
= - n [&(r+3-1;n-1, 0) - &(r+j ;n-1, 0)]

j=0
SR
33-= - n [&(r-1;n-1, 0) - h(r+k-1;n-1, 9)] (3.15)

This derivative is zero when £ (r-1;n-1,9) = &(r+k-1;n-1, 0), or
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(n-1)i gt ) A\ner (n-1) : L Atme
(z-1)! (n-z)! ° (1 —0) (r+k-1)1 (n-r-k): COrFK'l (i - e)n-r-k
SRs
Equivalently, 89 is zero when
mnr
e
(r-1)! (n-r) 1- €]
[*T

increases from 0 to 00 as 9 goes from 0 to 1, indicating that it
(r+k-1)1 f£n-r-k).
is equal to the constant -~ only one point in 0. This

one stationary point can be diagnosed to be a minimum by studying expres-

sion (3.15). For 9 sufficiently close to 0, &(r-1;n-1,9) > &(r+k-1;n-1, 9),

8rs
so -9-g- 1is negative. For 9 sufficiently close to 1, £(r-1;n-1, 9) <
RS .
£ (r+k-1;n-1,9) and -%g- 1is positive. Thus the derivative of the risk

is negative to the left of the stationary point and positive to the right
of it, so the stationary point must be a minimum. This implies that
Rg(9, 9) decreases monotonically to a minimum and then increases mono-

A
tonically as 9 goes from 0 to 1. As a result, the maximum of Ro(% 9)

over any interval in [0,ij must occur at one of the endpoints of the

interval. In particular, this is true for the interval S, where Rg&& #
coincides with the risk function RQ@,Q}. Thus the maximum risk over S

must occur at one of the endpoints of S.
For the three cases considered, it has been demonstrated that,

for any subinterval S covered by a specific nonempty subset of

the intervals [1 ,1 ,...,!' }, the maximum risk over that subinterval

n
occurs at one or both of its endpoints. But since S is of the form
k-1
n endpoint of S is the left endpoint of and the
right endpoint of S is the right endpoint of I . The endpoints of

r+k-i
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any such subinterval S must therefore coincide with two of the 2n + 2

points 9 = 9(x) + A/2, x = ©O , A _, Since the union of all possible

subintervals, S*, is equal to [0,1], the search over the parameter space
©® = [0,1] for the maximum risk may be restricted to the 2n + 2 points
9 = 9%(x) + A/2 , x =0,1, ...,n

Theorem 3-1 has now been proved for the nontrivial case, in which

n
I = ®. In the trivial case, there are some intervals in [0,l1] which

LoJ =

are not included in any IX. Denote any such interval by S. Then, from

(3.2), the risk R(9,9) attains its maximum (one) at all 9 in S. In

particular, the maximum risk occurs at both endpoints of S, each of which

must coincide with an endpoint of one of the intervals {1 }. That is,
X

each endpoint of S must be from the set {9(x) + A/2], x = 0,1,...,n, and

Theorem 3-1 holds for the trivial case.

The symmetric beta prior density in (3.3) is a function of only
one parameter, a- Thus, the search for the set of SBP estimates that
minimize the maximum risk is equivalent to the search over its range
for that value of the parameter a (and the prior indexed by it) whose
Bayes estimates are minimax.

In order for the beta function to be a true density, it is neces-
sary that a > -1. Moreover, if a > 0, the maximum risk is 1. This can
be seen by noting that if x = 0 or n and a > 0, then 9(0) > a/2, and
9(n) < 1 - A/2, since the posterior density of 9 takes the form shown
in Figure 3-2. This means that, for sufficiently small e, values of 9
such that 9 < e and 9 > 1 - e are not covered by any of the intervals

9(x) + a/2, so the risk at these values of 9 is equal to one, the maximum
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possible. Therefore, if a is to minimize the maximum risk, it cannot
exceed 0, and the search for optimal a can be restricted to -1 < a ~ 0.

The numerical search was conducted for the 21 combinations of the
following values of n and A in which A > 1/ (n+l):

A: .05, .10, .15;

n: 9, 16, 25, 36, 49, 64, 81, 100.

The condition A > 1/(n+l) is necessary because, if A < 1/(n+l), any n+l
intervals defined by x = 0,1,...,n would not cover all points in ®, and
the maximum risk would always be equal to one. If A = 1/(n+l), there
is only one set of estimates with maximum risk less than one, that set
defining n+l intervals that are adjacent but nonoverlapping.

For all 21 cases considered it was determined that a = 0 corresponded
to the symmetric beta prior whose Bayes estimates produced the minimax
risk. The results of the 21 numerical searches are summarized in Table II.

The 21 cases studied covered a fairly wide range of values for n
and A, and in all 21 cases the maximum risk was a decreasing function of
a, for -1 < a ~ 0. Because of these numerical results, it is conjectured

that, for general n and A, the uniform prior (i.e., a = 0) gives Bayes

estimates that produce minimax risk among the class of SBP estimates.

3-3 Estimates Which Minimize the Maximum Weighted Risk

In this section, the optimum estimator will be defined to be the
one that minimizes the maximum possible weighted risk, where the class
of weighting functions is the set of symmetric beta functions on ® =
[0,1]. The estimates 9(x) are again restricted to the class of SBP
estimates, i.e., Bayes estimates derived from symmetric beta prior dis-

tributions on ®. The risk function is given in (3.2).
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Table II

Fixed Precision Estimation of 9

C-Minimax SBP Estimates

C-Minimax Risk

A n a
*05 25 0 .84365
.05 36 0 .86800
.05 49 0 *77611
«05 64 0 +70935
05 81 0 .65875
*05 100 0 .61902
.10 16 0 .80453
.10 25 0 .69140
.10 36 0 .61850
.10 49 0 .56819
.10 64 0 .45459
.10 81 0 +37625
.10 100 0 131971
115 9 0 .74560
' 15 16 0 .62160
*15 25 0 .54947
15 36 0 .40672
*15 49 0 .31872
115 64 0 .26066
*15 81 0 118325
15 100 0 *13437
a* = value of a in (3.3) whose corresponding Bayes estimates

found by (3.11) and (3-12) are minimax in the class C
of SBP estimates.
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If 0) (9) denotes the weighting function in fi that produces the maxi-

mum weighted risk for the set of SBP estimates based on the prior | (0),

and if R(*uu) is the weighted risk, then the objective of this section

is to find 5 such that

= inf R(

Since the function U)(0) is specified by the single parameter b and | (9)
is specified by the single parameter &, it is convenient to consider
the weighted risk R as a function of a and b, so the objective is to
determine a such that R(a ,b )| = inf si%p R(a,f>)e

For fixed values of n and A, the search for a% was conducted numeri-

cally. For given aj the estimates {0(x), x = 0,1,...,n] based on | (0)

were obtained from (3-11) and (3-12) as before. For that set of estimates

if the risk function is weighted by u)(9), then the weighted risk is, by

definition,
lrn
R(a,£) =
(2,%) r L(0(x),0) px{®)] 00 a0
8 1x=0
E A L(9(x)”%6) («(e|lx) d01 p(x) , (3-i6)
x=oL”* 0 J
where

p(x) » fp(xIO) 0,(0) de - O (5.17)

and

= p(xIQ »(8 = e~x (1 - e)*n-x

w( 91x) p (%) B(3+x+1, Z>fn-x+1)
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By analogy to (3-9),

[9(x)-A/2
/ £(9) d9 +
x)y 0) w(9]x) d9 B(Zu-x+1, J+n-x+1) v J f(g) dg

(3.18)
where £(9) = 9 (1 - 9)>fn"X
For fixed values of (a,b) the corresponding weighted risk, R(a, £),
was obtained from (3-16), wusing (3.17), (3-18), and an algorithm by
Amos [l] for evaluating the complete and incomplete beta functions.

For SBP estimates based on the prior |(9) with parameter o, the

maximum weighted risk was found by numerical search through the class
"of symmetric beta weighting functions indexed by b, for -.99 ~ b < 100.
That is, b was determined such that R(a, £ ) = sup R(a,b). Then the

b

interval --99 ~ (I ~ 100 was searched to find a* such that R(a*,£>*) =

inf R(a, b ). Thus, a indexes the prior | (9) that gives SBP estimates
a

that minimize the maximum weighted risk, and b indexes the symmetric
beta function w (9) that maximizes the weighted risk for the estimator

"k
based on a

The results, for the same combinations of n and A studied in the

previous section, are given in Table III. Note that in every case the
uniform prior (a = 0) is the one whose Bayes estimates produce the mini-
max weighted risk. The same estimates were found, in the previous section,
to be optimal for the C-minimax criterion. Thus, in the cases con-
sidered, the set of Bayes estimates based on the uniform prior are the

SBP estimates which minimize both the maximum risk and the maximum

weighted risk. Figure 3-7 is a graph of the maximum risk and maximum
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Table III

Fixed Precision Estimation of 0

Minimax Weighted Risk SBP Estimators

A n a* b Minimax Weighted Risk

*05 25 0 14 .80052

*05 36 0 14 .76109

.05 k9 ] 14 .72229

.05 6k 1] 14 .68392

.05 8l 0 14 .64641

.05 100 0 14 .61033

.10 16 0 16 .68636

.10 25 0 15 .61134

.10 36 0 15 .54085

10 49 0 15 .47498

.10 64 0 15 .41336

.10 81 0 15 *35612

.10 100 0 14 .30391

e15 0 17 .65030

o15 16 0 17 *54043

°15 25 0 16 .44102

e15 36 0 16 *35358

e15 49 0 16 .27887

15 64 o 16 ¢21595

115 81 0 16 16312

e15 100 0 15 .11905

a = value of a in (3-3) whose corresponding Bayes estimates
found by (3-11) and (3-12) have minimax weighted risk

* in the class C of SBP estimates.

b = value of b defining the symmetric beta weighting function

which, when used to weight the risk function for the SBP
estimator based on a = a* (as in (3*16)), maximizes the

weighted risk.
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weighted risk as a function of n. Note that, as n gets large, there is

very little difference between the minimax risk and minimax weighted risk.

3e4 Estimates Based on the Least Favorable Prior

When the weighting function in Section 3.3 coincides with the prior
from which the estimates are derived, then the weighted risk, R(£,£), is
called the Bayes risk. The prior that produces the maximum Bayes risk
is designated the "least favorable" prior.

Since | is completely specified by the parameter a, where -1 < a < "D

it is convenient to consider the Bayes risk R(|,|) simply as R'(a)- R'(a)

can be determined from (3-16), (3.17)> and (3-18) by replacing b with a-

Thus,

where £ (8) = 0a+X (1 - G) ~ll X Again, 8(x) is obtained using (3.12) or
the numerical solution of (3-11).

For fixed values of n and A, a numerical search was conducted over
the interval - .99 ~ (I ~ 100, in order to find the value of a corresponding
to the "least favorable" prior. Numerical evaluation of (3.19) was again
achieved by using the algorithm by Amos [1].

The results are presented in Table TV. Comparisons of the risk
functions for the set of estimates suggested in Sections 3*2 and 3.3
(a = 0), and the set of Bayes estimates corresponding to the "least
favorable" symmetric beta prior are given in Figures 3-8, 3-9, and 3.10

for particular values of n and A. The exact behavior of the risk is
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Table IV

Fixed Precision Estimation of 9

SBP Estimator Corresponding to the Least Favorable Prior

*

A n a Bayes Risk
05 25 2.22 +76403
*05 36 2.72 .72625
«05 k9 3.16 .68909
*05 6k 3-70 .65266
*05 8i 4.20 .61705
*05 100 4.69 .58231
.10 16 1.70 . 61649
.10 25 2.16 .57813
.10 36 2.61 .48368
.10 k9 3-08 .42354
.10 64 3-52 .36801
10 81 3-95 *31725
.10 100 4.44 .27136
*15 9 1.20 .54657
.15 16 1.62 .45213
*15 25 2.02 .36742
15 36 2.45 .29325
' 15 49 2.86 .22982
115 64 3-25 .17680
115 81 3-61 *13351
115 100 3-95 .09901

a* = value of a in (3-3) having maximum Bayes risk.
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difficult to determine in these three figures, because the risk was
evaluated at a finite number of points for equal intervals in 0. How-
ever, it appears that the risk for the "least favorable" estimator may

be smaller than the risk for the estimator based on a = 0 for intervals
near 9 = 1/2. This advantage, though, is somewhat overshadowed by the
behavior near 0 equal to 0 and 1, where the risk for the "least favorable"

estimator is 1.

3-5 Fixed Width Confidence Intervals for 9

Although this chapter is concerned with fixed precision estimation

of the binomial parameter 9, the set of estimates 9(x), x = 0,...,n,
immediately gives a set of fixed width confidence intervals for 0. The
interval corresponding to the outcome x is simply [9(x) - A/2, 9(X) +

A/2] and the confidence C(0) is simply 1 - R(9,0), where R(0, 0) is the
risk function (3*2).

The traditional confidence interval for 9 has width that is dependent
on the value of the sample observation obtained from the binomial distri-
bution. Various methods are available for obtaining such confidence
intervals. For references, the reader should consult Greenwood and
Hartley's Guide to Tables in Mathematical Statistics [11], Section 3-32
on "Confidence Limits for Binomial Distribution."

The importance of being able to obtain a confidence interval for 0
whose width is independent of the outcome of the experiment was discussed
by Steinhaus [20]. On the other hand, an argument against considering
fixed-width confidence intervals is that certain outcomes of a binomial

experiment may well carry more "information" about 0 than others.
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Intuitively it seems that those confidence intervals which are associ-
ated with the more "informative" outcomes should be narrower.

The object of this section is not to argue the merits of fixed-width
confidence intervals, but to compare the intervals derived from the
"optimal" fixed precision estimates of the previous sections with those
given in the literature by Naddeo [18]. Naddeo suggests using the maxi-

mum likelihood estimate, x/n, as the midpoint of the interval. This

leads to the interval

x/n - a/2 ~ 0 ~ x/n + a/2 (3-20)

where A is the fixed interval width. For a fixed value of 9, the confi-

dence level of this set of intervals is

cle) = Y (X) ex (1 - e)n ™ (3.21)
E
where E = [x|x/n - A/2 ~ 0 *~ x/n + A/2}. In order to determine the wvalue

of n necessary to make min C(0) sufficiently large, Naddeo gave the fol-
9

lowing approximation:

N

T 22/2 (3.22]

3
>
I

where i-s defined by

-its a
dt = (3-23)

V2rr “z

al/2

and YI is the minimum n necessary to insure the

Pr [x/n - A/2 ~ 0 ~ x/n + A/2] £ 1 - a . (3-24)
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These results were based on the asymptotic distribution of Pearson's
Xs goodness of fit statistic and the relationship between the x* distri-
bution and the standard normal distribution. In this section, the accuracy
of Naddeo's approximation (3.22) will be examined. At the same time, a
comparison will be made with the Bayes-suggested intervals based on the
uniform prior, which were found to be optimal with respect to the cri-

teria of Sections 3>2 and 3*3

Notice that, when a = 0 in (3*3) (i.e., the beta prior is simply the
uniform density) the posterior density, |(9|x) in (3.8), is Jjust the
likelihood function, p(x]|9). Thus the Bayes-suggested fixed-width confi-
dence intervals based on the uniform prior are such that every value of 9
in an interval has a greater likelihood than every point outside the
interval. Naddeo's intervals do not have this property, since they are
centered on the maximum values of the likelihood functions, which are
not generally symmetric.

Another apparent disadvantage of Naddeo's intervals stems from the

fact that, when x = 0 or n, they include values outside the range of 9

If x = 0, Naddeo's method gives the interval [-A/2,A/2], whereas the
interval defined in (3-12) for a = 0 is [0,A]. A similar comparison
holds if x = n. For 1 ~ x ~ n-1, the two sets of interval estimates
differ only slightly, and they become almost identical as n gets large.
A comparison of the two sets of interval estimates and a study of
the accuracy of the approximate relationship (3-22) in predicting the
minimum confidence level for Naddeo's set of interval estimates were
carried out simultaneously. The exact minimum confidence level was

plotted as a function of n for both sets of estimates, along with the
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predicted minimum confidence level for Naddeo's estimates” 1 - (l, where
a is determined by (3-22). These graphs are given in Figures 3-11> 3*12,
and 3-13 for 1 < n < 100 and interval widths A = .05, -10, and '15., re-
spectively.

In no case is the minimum confidence greater for Naddeo's intervals
than for the Bayes-suggested intervals based on the uniform prior, indi-
cating that the fixed-width intervals with x/n as midpoints are inadmis-
sible. The gain in confidence achieved by using the intervals with mid-
points obtained from the solutions of (3-11) and (3-12), instead of the
intervals with midpoints equal to x/n, for x = 0,1,...,n, may or may not
be worth the extra effort involved. The amount of improvement depends
on the values of A and n, as indicated in Figures 3*11> 3*12, and 3"13%*

The degree of inaccuracy of the approximation (3*22) for the minimum
confidence level for Naddeo's estimates is also indicated in these three
figures. This inaccuracy is probably due to the continuous xs approxi-
mation for the Pearson goodness of fit statistic, which is discrete.
Unfortunately, Naddeo's approximation overestimates the minimum confi-
dence for given n. Equivalently, if (3>22) is to be used to select n to
achieve a specified confidence, the value of n obtained is too small. A
rule-of-thumb for correcting this error can be formulated by inspecting
Figures 3-H> 3-12, and 3* 13, where it is noted that the "jumps" in the

confidence level for Naddeo's estimates occur when n is the smallest

integer greater than or equal to J/A, J = 1,2,3,... + Denote each such
n by n . For a specified confidence 1 - a, use (3*22) to find n. Then
let the sample size n be the smallest n which is greater than or equal

to n. An added advantage of choosing n at one of these "jump points"
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is that the minimum confidence for Naddeo's intervals then appears to he
very close to that of the "optimal" Bayes-suggested (a = 0) intervals,
which are difficult to construct without the aid of a computer.

Figures J.11], 3-IS, and 3-13 indicate that, between "jumps," the
confidence level for both sets of intervals decreases as n increases.
This unusual behavior can perhaps be best understood by looking at a
simple example.

Consider the estimation of 9 with intervals of fixed width equal to

0.4. For n = 2, the Bayes-suggested intervals of width 0.4 derived froir

the uniform prior are given in Figure 3-14.

For this case, the minimum confidence level occurs at 0 = .3 - e,
covered only by Io, and at 9 = .7 + e, covered only by I , where e is
some arbitrarily small positive number. The confidence level at both

of these points is 0.48.
Now consider the set of intervals for n =3, A= 0.4, given in
Figure 3-15¢ The minimum confidence level for this case shifts to
9 = .446 - e, covered only by =, and at 0 = .554 +e, covered only by
I ,where the probability of coverage is 0.41.
For n = 4, the set of Bayes-suggested intervals for the uniform prior

are given in Figure 3*16. Here the minimum confidence occurs at 9 = .48 +

e and .52 - e, both covered only by 1%, with probability of coverage
equal to 0.374.

In each case (n = 2,3*4), the value of 0 at which the minimum confi-

dence occurs is covered by an interval corresponding to only one outcome.
As shown above, the probability of this particular outcome happens to

decrease from .48 to .41 to .374 as n increases.



[

Figure

Iro

3.14-.

I !
CD h~
d ll <>
Bayes-Suggested Intervals: n =

OTT



it r~ | |
| | | l
- . |
| Il ] 1 |
ST Q0 D o
c ' B*® 0
(o) @) (@)

11T



Figure 3*16.

" " 00 og c5 )
o 'sT 10
O o
6

Bayes-Suggested Intervals:

n =

oJ
CD

AN



113

For n = the Bayes-suggested intervals are as shown in Figure
3.17, where the minimum confidence occurs at 9 = .5 + e and .5%9 - &
and is equal to 0.613- The sudden increase in confidence level from .37*-

to .613 is due to the fact that the values of 9 at which the minimum
confidence occurs are now covered by two intervals, rather than one.
In general, the point of minimum confidence is covered by k intervals
for several consecutive values of n and then is suddenly covered by
k + 1 intervals, resulting in the "decline and jump" appearance of

Figures 3-11, 3.12, and 3-13*

3-6 Summary and Conclusions

In the search for optimum fixed precision estimates of 9, the
binomial probability of "success," the class C of estimates derived from
symmetric beta prior distributions was considered. The estimates were
compared by three criteria, and the optimum set of estimates obtained
for each criterion.

In Section 3-b, the sets of estimates which maximize the Bayes risk
are given for several values of n and A* These estimates have risk
functions which, in Figures 3>8, 3-9, and 3.10, indicate that they are
fairly good when 9 is in a reasonably wide interval around 9 = 1/2.
However, if 9 is near zero or one, this set of estimates has risk equal
to one, so their use requires some prior knowledge of the location of 9

In Sections 3>2 and 3.3, one set of estimates is found that minimizes
both the maximum risk and the maximum weighted risk. These optimum esti-

mates are the Bayes estimates derived from the uniform symmetric beta

prior.



0.05

*2

A

Figure J.17-

CT) <3- LO LO CD )

ro . Ap 7.0 CD- i3

) - . a
o

9

Bayes-Suggested Intervals:

CT)

0.95



115

Estimation with fixed precision may also be interpreted as interval
estimation with intervals of fixed width. Using this approach, fixed-
width confidence intervals with midpoints equal to Bayes-suggested esti-
mates derived from the uniform beta prior are compared with fixed-width
confidence intervals defined by midpoints x/n, x = 0,1,...,n. This com-
parison, in Section 3-5> indicates that the Bayes-suggested intervals
have a higher confidence level, but the amount of improvement is often
not worth the extra trouble involved in finding the Bayes-suggested

intervals.



CHAPTER 1IV. ESTIMATION OF THE LOGIT

The logit of the binomial probability 9 is defined to be the natural
logarithm of the ratio 9/(1-8). This transformation was introduced by
Berkson [3] for application to quantal bioassay, where the response of
each experimental unit may be regarded as "0" or "1." Use of the logit
transformation has been extended to multidimensional contingency tables
(Woolf [23]) and factorial experiments with proportions as observations
(Dyke and Patterson [6]). Under the logit transformation, the interval
[0,1] is transformed to the real line [-00,03], which makes it especially
suitable for expressing binomial data in terms of a response surface.

Various modifications of the original estimator for the logit pro-

posed by Berkson have been suggested (see, for example, Anscombe [2],
Haldane [12], and Hitchcock [13])- Almost all modifications proposed
have had as their objective a reduction in bias for special situations.
Once an estimator is suggested, its performance is often measured by its
bias or variance, and it is usually compared with other estimators

using one of these two criteria (see Gart and Zweifel [?])- This sug-
gests that an estimator's overall performance should perhaps be measured
by mean squared error = bias2 + variance. This chapter is concerned
with the search for estimators of the logit that are optimum for the
squared error loss function. Throughout the chapter, the logit of 9

will be designated by X , i.e.,

xe - f,1(er) (4.1)

116
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1 Modified Squared Logit Error

The purpose of this study is to find good estimators of | when

loss is measured by squared error, 1i.e

L4

L(l(x)ae = (X(x) - Xo)2 for x = 0,1,.. .,n

, (4.2)
A,
where X(x) is the estimate of \gQ when x is the observed value of the
binomial random variable, X. Using this "squared logit error" loss
function, the risk function is defined as
R(x,X0) = J L(x(x),\6) p(x|e)
x=0
= E - xe)2 (x) ex (i - e)n"x (*-3)
x=0

As in Chapters II and III, the first goal is to find an estimator that
minimizes the maximum risk. However, close inspection of (4.3) re-

veals that every estimator for XQ is minimax, since the maximum risk is
always infinitely large. This can be seen by looking at two complemen-

tary classes of estimators for 0

The first class is the set of estimators for which the estimate of
X0, when x = 0, is defined to be -«. This is not an unreasonable esti-
mate to use, since, when 9 = 0, Xo = £n(o) = -°°. However, if X(o) = -00,
consider what happens to the risk function in (4.3) at any positive
value of 0.
R(x, x) = (-« - xQ)s p(o]e) + ' (x(x) - x0)2 p(x]|e)
X=

c© + p(o]l0) + (positive constant) (4.4)
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since P(0]9) >0 if Y > 0* then R () = ».
The alternative class of estimators is composed of those estimators
for which \(0) = ¢ (any finite number). At 9=0, the risk function in

(k.j) for this class of estimators has value

R(x,ko) = (¢ - \0o)2 Pp(olo) = T (*x) - *0)2 p(xI°
x=1
= (c+»)2 (1) + t (X(x) - X0)a + (0)
X=1
= co
A
The same problem occurs at 9 = 1 when X(n) is finite, and when
\(n) = co. We see, then, that the maximum of the risk function in (4.3)

is infinity, no matter what estimator is used.

The problem of estimating \ when x = 0 or n was encountered by
Berkson in his development of the minimum logit x2 estimates for the
parameters of the logistic model in bioassay. For x = 1,2,...,n-1,

Berkson uses the logit transformation of the observed proportion of

response, x/n, as his estimate of the true logit. This is just the
maximum likelihood estimator of However, if x = 0 or n, then the
logit of the observed response is +™ This does not affect the calcu-

lation of Berkson's "logit x2" statistic, which essentially ignores ob-

servations of x = 0 and x = n. In order to retain data points at which
the response is "all or nothing, " Berkson devised his "2n rule" for
x = 0 and x = n. This rule defines \(o) = £n(po/(1 - PO)) and X(n) =
in(p /(1 - p )), where p = 1/2n and p =1 - 1/2n. For a more de-

n n o n

tailed discussion of the development of minimum logit xS estimates and

Berkson's "2n rule" see DeRouen [5]-
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In order to estimate using the squared logit error loss function
and, at the same time, avoid the problems caused by a risk function with
infinjitely large maximum value, the estimation of X was studied using

the following modified form of the squared logit error loss function:

(x(x) - Xe)s for X 1,2, ...,n-1 ,

(4-6)

O,n

0 for x

This may be viewed as a refusal by the statistician to make a point esti-
mate of |\ when x is 0 or n. By assigning zero loss to estimates based
on x = 0 or x = n, the problem of an infinitely large risk is avoided.
The loss for estimates based on any other value of x is still squared
error, so that useful properties of the squared error loss function may
still be applied in deriving the appropriate Bayes-suggested estimator.
The study of the estimation of XQ, using the "modified squared
logit error" loss function in (4.6), was undertaken with several ob-
jectives in mind. First of all, it was desired to find the estimators
that were optimum with respect to the same three criteria used in pre-
vious chapters; namely, minimax risk, minimax weighted risk, and maximum
Bayes risk (corresponding to the least favorable prior). Once these
optimum estimators had been obtained, the next objective was to compare
their risk functions with that of the maximum likelihood estimator of
\ . This comparison can be made, not only for the modified squared logit
error loss function, but also for the conventional squared logit error
loss function (4.3), with two alternatives for the estimation of XD when
x = 0 or n. One alternative is to replace estimates based on x = 0 or n,

for both the maximum likelihood and Bayes-suggested estimates, with
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estimates using Berkson's "2n rule." The other alternative is to use

the "2n rule" for the maximum likelihood estimator, and to use the Bayes-

suggested estimates for x = 0,1,2,...,n for the other estimator, since
the Bayes-suggested estimator does define estimates of | when x = 0
and n.

As in previous chapters, the estimators under consideration were
restricted to those in the class of Bayes estimators of 1 , derived from
symmetric beta prior distributions defined on ® = [0,1j (i.e., the class

C of SBP estimators). This approach produced a new and interesting
class of estimators which can be evaluated rather easily. From this
class, optimum estimators were chosen for each of the three criteria pro-
posed in Chapter I.
t.2 The Form of an SBP Estimator for \0
A
The risk function for any estimator, X, of the logit \0, and for

any loss function, is defined to be

R(X, \e) = Y5y L(x(x),X0) p(x]|9)
x=0
For the modified squared logit error loss function defined in (4.6), the

corresponding risk function is

R(lxe] = 7~ (X(x) - Xe)2 (x) ex (L - e)n x . (4.7

x=1

To obtain SBP estimates, the prior distribution of 9 is defined to be

the symmetric beta function
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(i - e)a
- 4.8
1(e) B((3+1~ O+1) a>-1 (4.8)
Then | , the Bayes estimator for \9 corresponding to |(9), is defined to
I
be that set of estimates which minimizes the expected or weighted risk,
when the risk function is weighted by the prior, £(9), i.e.,

For any estimator \ = {*(0),*(l),..., \(n)}, and for the modified
squared logit error risk function in (4.7), the weighted risk may be
written

Y5 (*(x) - *g)2 p(xle) |(9) 49
But this may also be written as
\Q)2 | (9]x) d9 P(x) (*9)

so that

n-1
i*F J Y (X(x) - X )2 p(x19) | (9) de
\ Jo x=1

= & sng /  (*(x) - x)2 1(9Ix) d9 b (x)
X(x) JO 9 .

x=1

a
Therefore, the SBP estimator, is defined by
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Xt = {Xt(x) , x=1,2, '.,n-1} (4.10)

where %("/(x)\ is the estimate that minimizes the posterior risk, i.e.,

v (x) minimizes

(X(x) - Xg)s 1(0|x) dO , for x = 1,2, ..., n-1. (4.11)

Thus, even though a modified squared logit error loss function is
being used, the individual estimates for x = 1,2,...,n-1, are those esti-
mates which minimize the posterior expected squared logit error. From
the properties of squared error loss functions, it is known (see Lehmann
[16], Chapter 4, p. 31) that the mean of the posterior distribution is
the value of the estimate which minimizes the posterior expected squared

error, so that

XA (x) = Xe £(e|x) do (4.12)

If the prior distribution is |(0) as given in (4.8), and the con-
ditional distribution of the random variable X is binomial with parameters
n and 0, then the posterior distribution, |(e|x), is given by

fia+x
sfoU') =J 11 ~ 9)
| B(a+x+1l,a+n-x+i

(%13)

The posterior expectation of X (ITe) can be found by first ob-

taining the characteristic function corresponding to the posterior dis-

tribution of \ . If y = |\, then

e (A) -
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and the posterior characteristic function of y is

fee it e~x (1 _ e)a+n-x de

1
" < (e|x) (elyt - !
(elx) (elyt) (b.1k)
0 B( a+x+1l, c*-n-x+1)
B(g+x+it+l,g+n-x-it+l)
B(a+x+1l, a+n-x+1)
r(a+x+it+i) + r(g+n-x-it+l) N
r (2a+n+2) + B(atx+l, a+n-x+i) ! (%15)
where r(p) is the gamma function of p.
The cumulant generating function of y (= TA(t)* is equal to
the natural logarithm of the characteristic function, ¢ (t). Expressing
cp (t) as in (4.15),
((y
in r(a+x+it+l) + in r(a+n-x-it+l)
- in r(2a+n+2) - in B(a+x+1l,a+n-x+1) (4.16)

The Bayes estimates of Xg are equal to the posterior expectations of Xg,

for x = 1,2,...,n-1 These posterior expectations, in turn, are equal

to dt |t—0' for x = 1,2, ,n-1. The Bayes estimates may then be

expressed as

i(x) = '4' [i ilt(o+x+it+l)| b_0 - i \);(atn-x-it+l) |t=0| (4.1?)
= i|;(atx+l) - \|r(atn-x+l) , (4.18)
where *(p) = |~ ?(p) as defined in | 9], p. 943* Since all estimates

of Xn considered in this chapter are Bayes (SBP) estimates, for nota-

tional convenience the subscript | will not be included in future ex-

pressions for estimates of \9, i.e., X(x) = ~M(x).
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Evaluation of the Bayes estimates given in (4.18) may be accom-

plished by using the following recursive relation” given on p. 95

[9]:
Ap+ 1) = *p) +—~ (4.19)
Thus,
a+x+1l) - i|r(a+n-x+l) = *(<*!) t(*1) 1
ad-n-x
and, for 1 ~ x ~ n-1,
X (x) = \|i(atx+l) - \l{a+n-x+1)
E 1 VA 1 (4.20)
J= a+j jIi a + 0
Although estimates based on x = 0 and x = n are not of interest

for the modified squared logit error loss function, if the unmodified
squared logit error loss function is employed, the estimates based on
all values of x, including x = 0 and x = n, may be given by (4.18).

In this case, evaluation of the estimates based on x = 0 and x = n may

he evaluated using

X(0) = - Ka+n+1l)
i
Z 1 (4.21)
a+ j !
j=1
\(n) = i|;(atn+l) - \|Ka+l)

Li

Z (4.22)
. s

=1 =7
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Expressions (4.21) and (4.22) may be considered as Bayes-suggested alter-

natives to Berkson's "2n rule."

4.J Estimates Which Minimize the Maximum Risk

For prior distributions of the form (4.8), let a* denote the wvalue

of its parameter defining the distribution whose Bayes estimates of XD
are C-minimax. In other words, the SBP estimates based on a = a are
those estimates in the class C of SBP estimates that minimize the
maximum value of the modified squared logit risk function in (4.7)%*
For selected values of the sample size, n, a numerical search was con-
ducted to determine a ' At fixed wvalues of n, estimates based on a
specified value of a were calculated using (4.20), and the corresponding
risk as a function of 9 was calculated using (4.7)°

The maximum risk, for fixed values of n and 4, was obtained by
a direct search, in which the risk function (4.7) was evaluated from

9 =0 to 0-5 in steps of 1 X 10"3. The risk function is symmetric about

©
[

«5> allowing the search for maximum to be restricted to the interval
[0,.5]- The risk was not always found to be a unimodal function of 9,
and, for several combinations of n and a, two or more local maxima
were located. However, the maximum risk, as a function of the parameter
d for fixed n, was found to have a single minimum. This optimum value
of a, which yields the minimax risk, was calculated to three decimal
pPlaces

Table V gives the results of this numerical search for a , the
value of the parameter yielding C-minimax SBP estimates. Also given is
the maximum value of the modified squared logit error risk function when

maximum likelihood estimates are used for x = 1,2,...,n-1.
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Table V

Loss: Modified Squared Logit Error

Criterion: Minimax Risk

. Maximum Risk for

n a C-Minimax Risk Maximum Likelihood Estimator
3 -*936 .6626 17983
4 -.64i . 6727 .7098
5 -+512 - 6799 17033
6 -.473 .6702 ¢7109
7 -.487 . 6466 .6719
8 -+532 .6138 16148
9 -.592 » 5759 .5988

10 -.640 .5447 *5916

11 -. 668 .5253 *5859

12 -.686 15114 .5812

13 -.699 .5008 .5772

14 -.708 .4924 ¢5740

15 -e715 .4857 5712

16 -.721 -4804 .5687

25 -.747 .4541 *5557

36 -.756 .4418 5492

49 -.760 .4338 «5449

64 -.765 .4306 15423

81 -.766 .4280 *5372

100 -.767 .4260 » 5326
a = value of a corresponding to the set of SBP estimates of

the form in (4.18) having minimax risk.
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Note in Table V that the maximum risks for both the C-minimax SBP
estimator and the maximum likelihood estimator decrease only slightly
for n > 25- Although the risk functions for both estimators tend to
decrease substantially over a wide range of © as n gets large, the
maximum risk evidently decreases very little for n greater than 25- Thus
far, a reason for this behavior has not been found.

The behavior of a and the maximum risk as a function of n, for
2 < n <6, is also very strange. First of all, a increases to a maxi-
mum of -.473 at n = 6, and decreases from then on. What is really dis-
turbing is that the minimax risk, for both the C-minimax SBP estimator
and the maximum likelihood estimator, actually increases as n increases
for some values of n in this range. The only explanation for this
erratic behavior is that it must be due to the modification performed

on the squared error loss function.

4.4 Estimates Which Minimize the Maximum Weighted Risk

In this section, weighted risk is the criterion by which an esti-
mator is judged. The risk function is again modified squared logit
error, and the class of estimators considered is again the class C of

SBP estimates (the class of Bayes estimators for | derived from sym-
0

metric beta priors). The class of weighting functions, as before, is
also restricted to the class of symmetric beta functions, cu(8), defined
on 0 = [0,1], where

B( 1, &£1j » b>-1,0¢0¢1. (4.23)

'
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If an estimator is based on the prior, £(9), it is made up of the

set of estimates

where

— . 4-24’

This expression differs slightly from that in (4.12) in that the super-
script (a) is included to show that the expectation of Xo is taken over
the posterior distribution of 0, derived when £ (0) (with parameter a)
is the prior. Similarly, the variance of X¢o in the posterior distri-

bution based on £(0) will be denoted

',ar(e)|x) (x9)

This extra notation is necessary because, in deriving the weighted risk
for a set of estimates based on £(0) whose risk function is weighted

by ®(0), expressions will be encountered which can be viewed as the

mean and variance of for a distribution that could be called a
posterior distribution, if w(9) were considered a prior distribution.

The mean and variance of X”* for a posterior distribution derived by
treating u)(0) (with parameter b) as a prior will be denoted by : \ (Xo
and WVaxr ™ (XQ), respectively.

The risk function for an SBP estimator, X> is given in (4-7)-° The

weighted risk, when the risk function is weighted by U)(0), is given by
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% 1 -
. s & e*¥ (i1 - e)b de

. L
(x(x) - \0)2 (s) ex (i - e)nx (4'25)

x=1

T Sy \\M - X)3 07 (1 - e)*n-x ae
0

(4.26)

Now, add and subtract the constant, (s|Q|x”*(XQ), inside the paren-

theses of the squared logit error term in (4.26), yielding

n—e)

£(x) - ~1X) (V] + £clx)(,) - x] W a2

Since

Jfl eDfx(l - e)~1-1* de = B(Qux+I, z>fn-x+i)
0

= Xe ei+Z(l - e)**lI'l 40 = B(E4a-x+1, iH-n-x+1) + «(j|x) (Xe)
J0
and
7= . .
e*+x(i - xe - *(01x) OV dG = B(ZH-x+1, in-n-x+1) Var(‘a‘b,"" \0),
J0

expression (4.27) reduces to

n-1
= S *x) B( 2>fx+l, Zn-n-x+1)

M) - “slj"e'] + Varfelg) (V- @2
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This expression for the weighted risk, when estimates are based on

the prior | (9), and the risk function is weighted by the function 0)(9),

is now relatively easy to evaluate. It involves the evaluation of com-

plete beta functions, the estimates {x(x), x = 1,2,...,n-1}, and the

mean and variance of \0 from the posterior distribution of 9, when the

prior is taken to be u)(9) (with parameter b). The beta functions were

again evaluated using the algorithm suggested by Amos [l], and the esti-

mates were calculated using (4.20).

Expressions for the posterior mean and variance of \ , based on

the prior density tu(9), were obtained as follows. If T (t) denotes

y

the posterior cumulant generating function of y = | when o(9) is the

0

prior, then, from (4.16),

Ty (t) = In r(Zn-x+it+l) + £n r(2)+n-x-it+l)

- in r(2h+n+2) - in B(ZH-xX+1, 2>fn-x+1)

By definition of the cumulant generating function,

(b) i dr (t)
1 >
(9 x) 48 = at
=0
and
n d2 T (t)
Vax’ib.)if(vl = vs B-dJ-
(91x)v =0
Again employing the function i|f(p) = — in P(p),
(*) . . .
5(9|x)*X9* = ~i~ Il t(frfx+it+l) t 0 " 1 '1'(*n-x-it+l) |t

\lt(i+x+l) - i)(Z>En-x+1)

ol

(4.29)

(4.30)

(~+31)

(4.32)
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Var (e]x) (“e) {i2 £ (ZH-x+it+l) o+ i2 f1' (£+n-x-it+l

= \Jt'@Hx+1) + \|I' (&+n-x+1) (~¢33)

where i (p) = — t(p).

Kumerical evaluation of (4-.32) is accomplished using (4.19), so that

(%) % - ! 1 n 1
Badio) = E , jz‘ s (4.34)

(61x) b+ j

To obtain a similar expression for the posterior variance, first differ-

entiate both sides of (4.19):

rpEP+1) = £(@E - (4.35)
The application of this recursive relation to (4-33) yields the expres-
sion:

var {€]x) (xe) = 1" .2 TEFTIP' TH~w ' (4-36)
From p. 944 of [9]

+ b (6 + 1+ ms (4-37)
m=0 v

Evaluation of \|;'(¢ + 1) was accomplished by truncating the infinite

series in (4.37) at some finite value, M. Observe that

JM (& + 1 + m)2 > (6 + 1 + m)2

X > Z . 1 (4.38)
&+ 1+M (i + 1 + m)2
m=M+1
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where the right-hand term in (4.38) is the error involved in evaluating

\|[i'(f£ + 1) by the infinite series in (4.37)> truncated at M. Since

b > -1, accuracy to three decimal places was obtained by truncating the

series at M = 1500.

The weighted risk, for prior |(9) and weighting function u)(9), was
evaluated using (4.28), in conjunction with (4.20), (4.34, (4.36), and
(~e37).

For every prior £(9) (indexed by the value of its parameter, a),
the weighting function U)*(9) (indexed by its parameter, fe*) that maxi-
mizes the weighted risk, R*%cu) was obtained numerically, using a direct

search method. From this set of maximum weighted risks, [R(£,uu*)}, the
value of 4 that minimizes R(|,U)*), was selected, again by direct search.
If we denote this optimum value of a by a and the corresponding sym-
metric beta prior by £*(9), then R(|*,w*) is the minimax weighted risk.
Table VI contains the results of the search for the estimates
having minimax weighted risk for several values of n. For each n, the

following are given:

(1) a , the optimum value of the parameter of the symmetric beta
prior;
(ii) I) , the value of the parameter in the symmetric beta weighting

function that produces the maximum weighted risk for the set

of estimates based on the prior with parameter a4 ;

(iii) the minimax weighted risk, R(£*,uu¥).

Note that, as n increases, the minimax weighted risk decreases at

a faster rate than the minimax risk in Table V. Since the optimum

values of a(a*) for minimax weighted risk appear to approach the optimum
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Table VI

Loss: Modified Squared Logit Error

Criterion: Minimax Weighted Risk

n a* b* Minimax Weighted Risk
4 -e31 —e31 5~35
9 -.16 -e5 .450166
16 -5 -5 .349908
25 -.6 -.6 .291609
36 -.66 -.66 .254163
49 -70 -.70 .228572
64 -e73 -e73 .210063
81 —e75 -e75 .196065
100 -.76 -.76 .185063

ct = value of a in (k.18) yielding minimax

weighted risk SBP estimates.
£>* = value of & defining the weighting function

in (k.23) that maximizes the weighte” risk
for the SBP estimator based on a = a
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values of a for minimax risk as n gets large, the discrepancy between
the values of the minimax risk and minimax weighted risk and the dif-
ference in their rates of decrease suggest a peculiar behavior for the
risk functions. These differences in minimax risk and minimax weighted
risk indicate that, as n gets large, the risk functions for the esti-
mators based on a (optimum a for minimax risk or weighted risk) de-
crease substantially over a wide range of ® but, in some small interval,
the risk increases to a maximum value that changes very little for
n > 25 This observation was noted at the end of Section 4.3, but the
explanation of its origin was omitted. As indicated before, the cause
of this somewhat unusual behavior is not known.

It was also pointed out in Section 4.3 that the optimum value of a
for minimax risk, as a function of n, increased to a maximum value at

n = 6 and decreased from then on. It is interesting to note from Table VI

that a* as a function of n has maximum value at n = 9; and that n = 9

is the only case where a* b*  This unusual behavior again has not

been linked with any known cause, except that it is probably due to the
use of the modified loss function. Because of this unusual behavior the
values of a and b for all values of n between 2 and lo would be of

interest. However, because of the amount of additional computer time

required to obtain these values of a* and £*, it was decided that the

question would not be pursued further.

4.5 Estimates Based on the Least Favorable Prior

In order to find the least favorable prior, | (9), in the class of

symmetric beta priors, it is necessary to find the prior that has maximum
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~ S

-1
Bayes risk, R(* ). For any prior, £(9), the Bayes risk, R(|,£), is
just the weighted risk, when the weighting function is the prior.

The Bayes risk for a prior |(0) (indexed By parameter a) may be

determined from expression (4.28) by replacing the parameter of the

weighting function (b) with that of the prior (a)- Thus,

_1 . /nv B(o*-x+l, atn—-x+1)
B(a+i, cd-i)

+ Var
(4.39)
But, from equation (4.24)
X (x)
so that
= B*+'ia+i) ~t (5) B(a+x+l,a+n-x+1) Var”]x) (x0) . (4.40)
X— L

This expression for the Bayes risk can be evaluated numerically, for

a)

given 3) using expressions (4.36) and (4.37) for Var§e|x) (Xe); i.e.

(a) . _
Var e|x (xe) 2f(@+ N j=fi 1 hti (a i h)s (4.41)

where

f(a+ 1) N~ (a+ 1+ m)2 (4.42)

m=0 !

evaluated to 1500 terms.
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The value of 4 that maximizes (4.h0) was determined by direct search
for several values of n. In each case, the solution 4 = 4 identifies
the least favorable symmetric beta prior for the estimation of Xo- The

results are given in Table VII.

4.6 Comparisons With Maximum Likelihood Estimator

The purpose of this section is to present a brief comparison of
the "optimum" estimates derived in Sections 4.2 and 4.3 with the maximum
likelihood (m.l.) estimator in The risk functions of these
estimators will be examined for two cases: n = 16 and n = 100

In Figure 4.1 the risk functions of the estimators, from the class
C of SBP estimators, that minimize the maximum risk and maximum weighted
risk, are plotted for the case n = 16. Also plotted is the risk function
for the m.1l. estimator. In this figure, the loss function is modified
squared logit error, for which the optimum SBP estimators were developed.
Note the relative proximity of the risk functions of the m.l. estimator
and the SBP estimator based on a = -.5 (minimax weighted risk).

In subsequent comparisons, conventional squared logit error will

be the loss function employed. Since this loss function assigns non-
zero loss to estimates based on x = 0 and x = n, these estimates are
of key importance. For the m.l. estimator, the "2n rule" will be used

to determine these estimates, as suggested by Berkson and discussed
earlier in this chapter. When the "2n rule" is also used for the "optimum"
SBP estimates, the risk functions are as shown in Fig. 4.2. The three

risk functions are very close, especially the m.l1l. and minimax weighted

risk (a = --5) SBP estimators. It seems, then, that this attempt to
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Table VII

Loss: Modified Squared Logit Error

Criterion: Least Favorable Prior
n a* Maximum Bayes Risk
4 —e31 .545435
9 - .36 .4424695
16 -50 .349908
25 -.60 .291609
36 -.66 .254163
49 -.70 .228572
64 —e73 .210063
81 -+75 .196065
100 -.76 .185063
a* = value of g in (4.18) giving SBP estimates

from least favorable prior.
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C-MINIMAX (a =-0.721)
MINIMAX WEIGHTED RISK (a=-0.500)
MAXIMUM LIKELIHOOD

RISK

Figure 4.1. Risk Functions for Modified Squared Logit Error: n = 16
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—— C-MINIMAX (a =-0.721

— MINIMAX WEIGHTED RISK (a=-0.500)
—— MAXIMUM LIKELIHOOD

RISK

Figure b./. Risk Functions for Squared Logit Error (Using 2n Rule
for all 3 Estimators): n = 16



find an estimator "better" than the m.l. estimator has led to two esti-
mators whose risk functions are approximately the same as that of the
m.l. estimator.

An alternative method of defining estimates based on x = 0 and n for
the SEP estimators is to use those estimates suggested by the corre-
sponding values of a (the Bayes estimates for that prior given in (4.21)
and (4.22)). These SEP estimators are compared with the m.1l. estimator
(using the "2n rule") in Figure 4.3. It is obvious from this graph
that the optimum SEP estimators are better than the m.l1l. estimator only-
in some tiny region near 9=O0O and 9=1. However, it should be noted
that Figure 4.3 gives the risk functions evaluated from .01 to -99 in
9 scale. Since the logit is the parameter being estimated, the risk
functions are also presented in logit scale, in Figures 4.4 and 4.5.
Although a somewhat different picture is presented in these two figures,
it is still clear that the SEP estimators are superior to the maximum
likelihood estimator only when 9 is extremely close to 0 or 1. More-
over, the range of 9 over which the m.l1l. estimator is superior increases
with n. In practice, it is likely that the sample size will be sufficient
to ensure the superiority of the maximum likelihood estimator.

Much of the credit for the performance of the m.l. estimator should
go to Berkson's "2n rule," as can be seen by comparing Figure 4.2,

in which all estimators used the "2n rule," with Figure 4.3, in which

only the m.l. estimator used the "2n rule."



RISK

Figure 4.3

1Al

Risk Functions for Squared Logit Error

n

16
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C-MINIMAX (0=-0.721)
MINIMAX WEIGHTED RISK (o =-0.500)
MAXIMUM  LIKELIHOOD

RISK

0.01 0.03 0.10 0.32 1.00 3.15 9.90 30.65 90.91 240.26 500
SMO3

Figure 4.4. Risk Functions for Squared Logit Error (Logit Scale):

n = 16



RISK

0.01

Figure
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C-MINIMAX (a=-0.767)
MINIMAX WEIGHTED RISK (a=-0.760)
MAXIMUM  LIKELIHOOD

0.10 0.32 1.00 3.15 9.90 30.65
fix 104

Risk Functions for Squared Logit Error

n = 100

90.91 240.26 500

(Logit Scale):



b. 7 Summary and Conclusions

From the class C of SBP estimators of the form

\ = {\|r(ctH-x+l) - “~(at-n-x+1), x = 0,1,...,n}

those estimators were found that minimized the maximum risk and weighted
risk, for a modified form of the squared logit error loss function.
These optimum SBP estimators were then compared with the m.1l. estimator
using the conventional squared logit error loss function.

Generally the maximum likelihood estimator appears to be the best
of the three, although there is very little difference between them
when the "2n rule" is used in all cases. When the Bayes-suggested
alternative for the "2n rule" is used for the optimum SBP estimators,
the maximum likelihood estimator is clearly superior (as is illustrated
in the comparison of Figures b.2 and ~-3), implying that the "2n rule"
contributes a great deal to the good performance of the maximum likeli-

hood estimator.
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