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ABSTRACT

Mitra's three-body, separablé potential model of deﬁterén stripping
is re—examined and new results are derived; ‘It is shown that beéause a
separable interaction is a oﬁe—dimensional projection operator, a DWBA
amplitude can be formulated which is iﬂEﬂEﬂSﬁl'to the exact stripping
:aﬁplituae. This result validates the general prescription of DWBA to
retain an unpolarized or "unst;etched" deuteron internal wave function, or
equivalently, validates the replacement in the DWBA of a three~-body deuteron
wave functi&n by a product of two-body wave functions, one the ground state
and the other a centér—of-mass wave function. The cehter—of—mass wave
function is not that for élastic (deuteron) scaftering, although it does
obey an equation with a complex potential well which on thelenergy shell
reduces to the complex potentiél well for elastic scatteriﬁg. These results
are in accord with the recent results of Johnson and co-workers who find
that inclusion of continuum states via their.adiabatic method as a means
of iméroving the usual DWBA wave funcfion leads to a one-body equatioh in

wh ich the optical potential is not that for elastic scattering. The work
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of Reiner and Jaffe is used to show that the elastic deuteron wave function
used in the conventional DWBA, is a good approximation to the new-DWBA
center-of-mass wave function for the three-body model, thus justifying

use of the conventional DWBA.



I. Introduction

1)

Ever sincé the .direct reaction concept was introduced by Butler ,
it has played én important role in nuciear physics, both as a tool for
deducing spectroscoﬁic information and as Aotive for developing theories of
nuclear reactionsz? At the present time, the standard method used in the
theoretical analysis of those experiments believed to proceed via a direct

reaction mechanism is the distorted wave Born'approximation (DWBA). A

vast number of calculations using the DWBA have been carried out, and the

-

agreement between theory and experiment is usually good, sometimgs sur-
prisiﬁgly so. One reason for surprise is that the DWBA is an approximation
scheme in which a non;calculable, maﬂy—body amplitude is reduced to manage-
able proportions thrdugh the use of approximations which, becauée of their
manbeqdy'aspect, Have never been quantitatively justified. For this
reason, plus the fact that DWBA calculations use multi-parameter wave.
functions és imput, ﬁWBA can_éossibly be regarded as a taxonomic device,
sophisticated, but never-the—léss more of a bookkeéping scheme than a true
theoretical model fof reactions: Its successes, from tﬁis_point of view
are too good. Criticism of this sort seemS'to'go.in and out‘of vogue, and
attempts to understand or improve DWBA have often begn made. There are two
broad areas into which such attémpts can be grouped. Firsf is fhe sét of
calculations and/or simﬁle physical arguments that have tried either to
validate the assumptidns of DWBA or explain them in terms of notions
seemingly built into the method but generally not explicitly stated. Most
previous three-body studies of direct reactions3)fall into this category,

as does the work of Johnson and co-workersa2 whose general prescription for

carrying out DWBA calculations is quite closely related to the conclusions
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of this paper. The other area includes those attempts to reformulate a
direct reaction theory in such a way s& as to eliminate the more "objection-
able" features of DWBA. Probably the best known works in this area are
those of Butler and co-workerSS)and of Pearson and co—workers6)for (d,p) ‘and
(d,n) reactions. In these works, the notion of the deuteron optical model
wave functionZ)is replaced.by other, supposedly more realistic and less
objectionable concepts, with a resulting physical picture of the reaction
which differs from thag of DWBA. Objections to these new formulations

have been raised7’8)and the status of these worké remains unsettled if not
véry doubtful.

On first glance, the use of‘a deuteron CM wave function'in the DWBA
descfiption of deuteron stripﬁing does seem unreasonable, since the tﬁree—
bodyvnatute'of the deuteron-nucleus wave function is apparently ignored.
Improvements, even if they are not those already attempted, would thus
seem to be needed. The workAof Johnson and co—workersA)is an important
step in this direction since they partially include the effects of continuum
deuteron states (breakup) in their description of the stripping process.
However, as we show here, the partial inclusion of such effects occurs
naturally in our modified DWBA for the separable-potential, three-body model.
The modification allows us to validatg, for this ﬁodel, what we believe
to be one of tbe basic aséumptions of DWBA. The purpose of ;his péper and
otheré that will follow on this topic will be to prove the preceding statement*

and develop its consequences.

1

*A brief outline of some of our results is given in Ref. 9.
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Specifically, we shall show that in the>three;b6dy.model just mentioned
(Mitra's hodel3;, the neglect of the '"stretching" or distortion of the
deﬁteron internal wé&e function can be completely jusﬁified. Fquivalent
to this is the statement thét replacement, as in DWBA, of the three-body
"deuteron' wave function by a prodﬁct of two-body wave functions, one the
deuteron ground state and the other a CM wave function ki.e;, an optical
model type of wave function), is valid. Proof of this follows from the

demonstration that the exact and the reformulated DWBA amplitudes are

identical. Furthermore, we shall see that the old and the new DWBA

amplitudes are very similar. A similar identity between the reformulated
DWBA and the direct reaction stribping amplitudes is found to hold in the

many-body case as well, if Pauli principle exchange amplitudes are ignored and

"if the neutron-proton interaction is assumed to be of separable form, as we

show in a subsequent article.

The remainder of this article is organized as follows. TFirst we discuss
direct.(d,p) reactions and isolate the approxiﬁafions leading to the DWBA
amplitude used‘in calculations. Next we summarize the Mitra model, briefly
redériving some of his results and correcting others. We then prove the
statements made above forthe model and investigate the properties of the

new deuteron CM distorted wave function. Finally we discuss our results, in

‘particular showing that conventional . DWBA is a good approximation to the new

DWBA, which itself is equal to the exact model stripping amplitude.
II. Review of DWBA for Stripping

The direct reaction model is a marriage of relatively simple nuclear

structure properties such as the concept of the single particle state, and
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the assumption that complicated nuclear degrees of freedom such as compound
nuclear states are not éxcited in these reactions. For stripping, the semi-
classical argument described by Sachslo)probably provides the clearest in-
sight into the model. The result of this argument is to predict that érotons
emerging from a-(d,p) reaction* will be observed at unique angles determined
by the relation qR = £, where g =;Ed€5p is the momentum tranéferred to the‘
nucleus by the cabtured neutron andlkd'andvkp are the deuteron and proton
wave vectors, R is the nuclear radius, and %2 is the orbital angular momentum
of the captured neutron. Indeed, the peak values of the proton angular
distributions can be reasonably well predicted this way: as & increases,
so does the primary peak angle.
As wave Qectors are emphasized in this argument, it was natural that
some form of plane wave Born épproximation, evaluated with the aid of
special assumptions and parameters, was first used to fit data.l’z) Poor
agreement with absolute cross-sections magnitudes was qbtained and only
the small anglé data was well fitted, but that was sufficient to yield
values of i, and thus the location of single particle states in nuclei.
Attempts to improve the model and in particular .take account of
the distortion of the motion of the deuteron and proton away from plane
wave behavior due to‘the presence of the target and residual nuclei led

2)

to the present form of the DWBA amplitude”./ Further improvements are

.still being undertaken, such as attempts to understand the role of the

1)

deuteron D—statel , the role of excitation of initial and/or final nuclear

* We take the (d,p) case as our prototype, though our remarks are intended

to hold for the (d, n) case also.
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states other than the tafget ground state and the residual statelgz
.etc. As mentioned above, improvementé that repiace DWBAAby other models
have also been undertaken. The basic question we ask and partially'answer
in this article is, why does the DWBA-work so well? Tolsee that this'is
a non-trivial question, we examine the standard set of assumptions that
reduce the exact amplitude to DWBA form.* Pauli brihciple exchange effects
are ignored, although we hope eventually to examine them in the context of
a simple model.

The exact (d,p) matrix element T

d
T, = (I o (5,) |V 4V |y ), (1)
np P kd :

pAis given by2)

dp

-

where ¢f(€,n) is the residual nuclear state describing the neutron n bound
to the target nucleus collectively denoted &; Vnp is the_binding inter- |
action between the neﬁtron and the proton p 1in the deuteron; Vp is the
interaction of the outgoing proton with the target nucleons £; Jb is the
coordinate of p measured from the CM of the target nucleus, which for
simplicity, is assumed infinitely heavy; and Wk is 'the total scattering
wave function generated by a deuteron of wave :éctor .5d incident on

the target state ¢1(£) and obeying outgoing wave boundary conditions in

all open channels.

The Schrodinger equation which Wkd satisfies is

i

(E—H)%Ed =0

where H is the totai Hamiltonian and E is the total energy, given by

202 .
c/_ﬁ._k_d._ +€ +€

E 4M io a4 ' (2)

* These have often been stated before: see e.g. Levin13)or Johnson
and Soperé.
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with M being the nucleon mass* and €0 and €4 being the binding energies

of the target nucleus and the deuteron.
In terms of operatorsfor n, p, and §, H may be written as

H=h, +K +K +V _ +V +V, (3)
i n P pn P n
where Kn and'Kp are kinetic energy operators for n and p, Vn is the

interaction of n with the target nucleons £, and h, is the internal

i
Hamiltonian for the target nucleus. The sum Kn + Kp may be re-expressed
as the sum of relative and kinetic energy operators Knp +'Kcm’ in terms
of which the deuteron bound state wave function ¢d'obeys

(th + vnp) ¢, = e, ¢

4 e | 4)

d

We assume the existence of a complete set of target states {¢ia(£)},
which obey
B e T €10 P1a

a = 0 denotes the ground state. Since continuum states are included in

{®ia}, we may use.this set to expand_%kd:

wkd = E ¢ia

¥, (n,p), | _ ()

where** wa = (¢ia, Wkd). The wa’ when a corresponds to a bound state,
describe all the events which can occur leaving the target in the state
¢ia’ and as such are three-body wave functions obeying coupled equations.

For example, wo will describe elastic scattering, stripping, and breakup.

* M will be the reduced mass if the target is not assumed to be infinitely
heavy. ‘

**We shall use parentheses for scalar products or matrix elements when
the coordinate dependence of the wave functions 1is displayed, and the
bra-ket notation for state vectors.  In general we shall assume that,
e.g ¢ (€) = <£[iu> or F(P) = <P|F>,_so that |F> is a state vector and
F(P) ig a wave function. ﬁrojed?ions are similarly defined, and wave
functions will not always be written with their arguments displayed.
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We shall use the expansion (5) shortly.

With these preliminaries out of the way, we may now transform and

~reduce po to desired form. The first step is to introduce the effect

of an arbitrary potential‘Up on the final state Qf(g;n) exp [i(kp‘ﬁp)]'

‘Let hg be the internal Hamiltonian for the residual nucleus (including n).

Then we may define a new state =

(E-K -h,_-U 3p¥ ) . 0
p £ p°" k. 7

= (=)
K obeying

generated from p incident on the final nucleus in state ¢f and producing
ingoing waves in all open channels at infinity. For example, if Up is a
one-body potential depending only on the coordinates oflp, then

. () -) |

kK = q’ka D . ‘ (6)

wD . w D

where ¥ =) obeys
kp ,

) _ |
(Ev— Ep = Kp - Up))(i}S = 0

and €¢ is the binding energy of ¢f;

g = ) |
In terms qf CN and Up’ poAmay be written as ‘
LS G : '
T = (=2 + - 7
dp (Js,, lvnp A up)l\{kd), (7)

and it is in this form that we begin introducing the approximations
that lead to ng, the standard DWBA amplitude.
The first and most important approximation consists of replacing

the sum (5) by its first term:

‘“.’,Ba = %10% ' o (®)

in the matrix element (7). This is clearly a many-body approximation

which is unlikely, at least in the near future, to be validated. Never-

theless it is widely believed to embody the basic direct reaction character




-8-

of the process under consideration, and all theories of direct reactions
employ it. We use it here without futher comment except to note that it

12)

may be extended to inclgde several target states in the event thé; they
are stfoﬁgly coupled through inelastic scattering.
The second<aéproximation, and the one we are most concerned with,
| replaces v, in (8) by the.product ¢d<¢d|wo> = 9qu,t
by £ G . ~ EE )
The céefficient‘uo describes elastic scattering of tﬂe deu;eron at the
relevant energy (ﬁzkdzléM) and with‘infinitely good energy resolution.

In the notation of Feshbachla)

uo'is'a wave function in a complex potential

well, which when energy averaged leads to an optical.model wave function.

Use of this product ﬁave function for wo obviopsly replaces a thfee—body

‘wave fgnction by a two-body wave function, and leads to use of what has

sometimes been described as the "barbarism" of a deutéron ppfical model wave
function. Such use, and the ignoring of thrée—body effects in DWBA seem to

| 4,5,6)

have been the principle motives in the search for new direct reaction theories.

ClearlyAuo is to wo in (9) as wo is to V¥ in (8), although its justification

L

(and not its effectiveness) remains much more of a question,:sihce we believe

that 1n_abdirect stripping reaction the target nucleus is usually unaffected whereas
we would strbngiy suspéct that the internal wave function of a weakiy bound
particle such’és the deutéégn would be grassly distorted during the collision.
'However, we shall see that for the three-body model described in the next

section, a form similar ﬁo (9) can be defined which is exact, thus leading

to‘a redefinition of DWBA.

Let us examine the effect of these two approximations on po. Equation

(8) leads to
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« = (=) : -
po 2 (_kp |vnp + -(vp Up)l¢iowo), (10)
while eq. (9), substituted into (10) yields
N o ND_ (=),
Tap = Tap - = (_kb |vnp + (vp‘ Up)|¢io¢d uo). | (11)

The superscript ND appears on the symbol for the matrix element in (11)
to indicate that this 1s a "no distortion" approxiﬁation, i.e., that the
exacf deuteron internal (ground) state appears in (11), in contrast to
(10) where wé contains both ¢d and distorted intefﬂal states described ;s
linear combinations of cﬁntinuum deuteron states. We also note that for

a model involving a structureless core, ¢'o is unity and (10) is exact,

i

as long as the other symbols are;appropriately interpreted.
The two remaining approximations have beeﬁ considered to be of lesser
importance than (8) and (9) and to some extent represent assumptions
introduced 50 as to help simplify caléulations. The first of these deals
with u . Despite the simplifications leading to eq. (11), uo still cannot be
calculated. Furthermore, experiﬁents'are not carried out with infinite
energy résoiution, so that an avérage over the energy range must be per¥
formed. Both of these problem§ are surmounted by replacing u, in (11) by
'xkd(+)’ an optical model wave function describing deuteron elastic scattering
in the usual wayz. .If (9) is valid, then the replacement .
_ hug #.%Ed(f) | | L o (12)

is very likely to be a reasonable approximation, Particplarly since u,
and Xkd(+) can differ‘onlyAhgar and in the nucléus whefe strong absorption
effects should dimiﬂish the importance of a particular choice of wave

function. Furthermore,_frém a practical point‘of'view, a replacement such

as (12) is dictated by the requirement that a calculable wave function is
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needed in order to oﬁtain a calculable amplitude. The ceﬁtral question
here is whether, aséuming use of-uo is valid, an optical éotential, say
Ud,'can be constructed thch will produce a satisfactory approximation to
u - From the many very good fits to data, assuming (9) to be valid, it
wou}d seem that the appropriate Ud can be so constructed. The work of

4)

Johnson and Soper ‘modifies this conclusion but does not alter the fact

that a suitable Ud can be determined; only the interpretation of Ud is
changed, since assumption (12) is changed. They find that u in (11)
should be replaced by a functioﬁ‘whiéh includes effects of deuteron breakup,

(+)

and this in tprn'leads to a replacement of %&d by a similar functionf
Hence their Ud is not an opticél.potential‘for eiastic scattering alone.
Our.résults confirm theirs, and in particular provide a basis for under-
standing why ¢d should be kepﬁ in (9), even though'uo is altered.

The final approximation concerns the difference (V_ - Up). Here again
one faces a two-fold problem: production of a éalculable ?kp(—) and
minimizafiod of Vp - Up to the point'of ignofing it in the‘DWBA matrix

element. The standard assumption has been that if Ué is an optical potential

deséribing elastic scattering of protons of energyzﬁzkzp/ZM, then Vp -U
o= ()

p

.ﬁay be neglected; N will then be given by a product such as (6), in

- D ) . ] .

) 4s indeed calculable. That an elastic scattering wave function
=P ) 5 - |

must be present in E - is evident, but that it is the only important term,

which Xk

“k
: .Mp
or equivalently, that if Up is an optical potential then Vp - U &0, is not at

all obvious. On the other hand it is a method that does work well; whether
one should use elastic scattering from the ;arget'or~the residual nucleuslS)'

seems an unimportant tertiary consideration, particularly as the optical

potentials for these two different processes must be very similar. We therefore
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assume that this approximation is also reasonable, and we use it in the

form

).
Pexy s

il

(13)

Two further remarks concerning (i3) can be made in its.supportq. First,

(13) preserves ¢f és the final nucleér state. If other states were to

bé mixed into Ek ) [excluding states stronglchoupled in inelastic
scattering] th;;pthere would be cases where other values of &, the

stripped neutron orbital ahgulaf momentum, would be present. The presence

of such f-values would tend to smear out the'stripping‘pattérns, at least
near the first.peak, that charécéerize these rééctiéns as f-meters. However,k
there seems to be no evidence for this, implying that only‘<l>f is important

)

in Ek » which in turn supports the assumptibn made in (13). Secondly,
dneu;;ght.tfy to'defiﬁe the DWBA amplitudeAas a particular matrix element_of
Vnp’ the states entéringAthe matr£x element being:tﬁé‘ones that fit data
best. We shall shov later that as long as Vnp,iS"assumed éeparable,-then

any'fiﬁal state can be used and the equality between.DWBA and 'exact"

matrix elements of the form of (10) with V, - Uy = 0 will still hold.

Unless it can be shown that use of a Xy ) which is not the optical model
.‘vp . .
wave function gives better fits to data than such a X ( ), we will con-

o

clude that (13) is the best choice in that it leads to a DWBA which in-

volves only a matrix element of V_ . . There is no a priori reason to expect

p
departures from this, and we therefore assume (13) to be valid.

Putting all these approximations together leads to the result of

interest, viz,
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T ETD=(xk 4>lv

+) )
dp  “dp )

(14)

npI io¢d%5d
On examination of the approximationsused to obtain (14), it is clear that
(9) is the crucial one we must try to understand. Why ehould an apprexima—v
tion that ignores three-bbdy‘effecte.in a.situation where three-body effects
are likely te be important lead to a result that agrees as well as it does

with data? That is, why should we neglect components of w unless we can

show they are negligible,and in particular, when we would expect them to be
non—negligible’ Certainly, as the deuteron approaches the target, it musr
be distorted éway from ¢d’ yet (11) and (14) fail to take this into account.
Thus, on appearance, they shouldAbe poor approximations. The answer to these

|

questions has Been given by some workers, as we noted above,5’6)through a
reformulation of the theory. ‘However, to some extent rhis is begging the
questien. HOne would'stili like to know why (14) does work, assuming that

 its overall agreement with experimentAis not merely a massive coincidence.
New formulations do not answer this fundamental question. It is our con-
tention here that the answer lies in the fact that Vnp may be very well
approximated by a separable interaction. To see why this 1is the answer,
we first examine the three-body model put forward by Mitra, and show that
in this model, with U_p = Vp’ a DWBA can be formulated vhich is identical

to the exact amplitude. In a subsequent paper, we extend this result

to the maﬁy—body case.
I1II. Resume of the Mitra Model.

The model studied by Mitra3)consists of.three spinless partieles inter-

acting via separable S-wave potentlals. For the stripping reaction he
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assumed that one Sf the three particles had infinite mass, éorresponding
to a structureless core or target, denoted A, and that the other two
pérticles, denoted 1 and 2; were identical. We extend the model here by
assuming that'the.masses of (the "nucleons™) 1 and 2 are equal but that
they have different intéragtiéns with the core. This assumption allpﬁs
for inclusion of a knockout cﬁannel, so that'anyninitial state can give
ris; to any one of four final states, as long as all channels are open.

We may thus write for the interaction V, of particle i with A,

i
that
. oty o _ (D) B2 o
~ <PyP v '51 Py'> = | o gi(Pi)gi(P )G(Pj P."),
where'fi is thé momentﬁm of par;icie i,AM is the commonn "nucleon" mass,

NeY)

is the strength of the interaction, and gi(Pi) is the form factor
defining the separable interaction. In addition to these intergctiOns,

particles 'l and 2 also interact with each other via V12:

2
S - n . ' _pt
<PyB, 1V IP1 By'> = Ay F@E(ECE-RD),
where*
2p = PyPys P =Rt Dy

A is the strength of the interaction, and f is the form factor. Since

V12 is an interparticle interaction its matrix elements are diagonal in

3)

the total momentom. Our ndtation is that used by Mitra™.
The quantities A and-A(i)are taken to be positive, so that each
potential supports one bound state. The normalized bound state wave

functions for Vi, denoted ¢;» are given by

gi(q)
4@ =5
q +oy

*In operator form V., may be written as Vi2 = - |f>062k/2N)<f|,

- (15)

(16)

@17)

(18)
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while that for the "deuteron", i.e. the bound state Of-V12’ denoted ¢d, is

¢d(Q) =:~——§£Sl——3r-- B o (19)
2(q" + ey )

Note that the assumption of normalized wave functions places a constraint
on the form factors gy and f. The binding energies are given by
ﬁzaiz/ZM for ¢i and by'ﬁzadZ/M for ¢4 thus accounting for the factor

of 2 in eq. (19). The values of « 2 and a 2 are related to A(i)‘and A via

0 1 d
e R VI S L (20)
and

Lo fd3qf2(q)/4(q2 + adz)z' B (21)

The three-particle Schradingef equation for the state vector |¥> reads
(K-E) |¥> = - (v, +V, + v12)|w> o : (22)

where K = Kl + K2 is the kinetic énergy operator. .In a momentum space
representation, eq. (22) takes the form
d(EMY = [8) (P))G,y(R)) + g5(P))Gy(R))

+ £(p) F(D)], | (23)
where ‘
2 2 2

1 +P2 - kg =
2

E = A2kg2/2M,

2 2

d(E) = P P + 2p2'- kg ,

N

and the Gi and F are the spectator functions introduced by Mitra3, although
we have changed the subscripts on the G1 as compared with Mitra's definitions.
The speétator functions are formallf defined by
6, (@) = AP g (ovea,pp), 1 # 3, - (24)
1wt : 3 - - .
and -
. 3 A
‘ F(&) = Afd p'f(p')W(B',z); SR . (25)

they contain the physicslof the problem to be solved and are discuséed in
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more detail below. We noteihere.the extremely important result that
each interaction is a one-dimensionél projection'operatorl6)wh§sé
projecti;n onto ¥ just yields the product of the form factor and the
spectator functions. This property is tﬁé ke& to our proof of tﬁe
equality of the exact and DWBA amplitudes.
ﬁquations (24) and (25) represent coupled equations fof the
F and Ci' The form of these is made evident by solving (23) for v, viz,
¥ = d_ltglcz + 9,6, + fF], .
and substituting the result into the defimitions of F and Gi' We find
[A(j)_l—hj (P16, () = sa’q By, (P,a5ke")G, (@)
+ 1% By (B, q3kgDIF (D), 141,

and
. L

D2 h(P)JE(P) = §

’fd3qB (q,P;kgz)G (q@).
1=1 e 3

These are identical to Mitra's coupléd equations3)apart from a few
notational changes. The kernals on the right hand sides of these equations

are given by
gi(Pi)gj(q)

P12+q2—kE2-ie
and
qiék—gbfq§— %ﬂ)

2
B (x,y ;kE ) =
PR iy oy kgt te

- 2
kyokgikg )] s

the Born apprbximatiqn amplitude for stripping via the interaction V12’

while [—(ZM/hz)Bij(ki,kdikEz)] is the Bofﬁ approximation aﬁplitude for

(26)

27

(28)

(29)
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knockout via the interaction V,. 1In addition, the function h(P) is the

i
same as the h(P) defined by Mitra3,

h(P) =j.qu f (g)
T2, 2 1,2
4 F q, 2 “E .

and h (P ) is a generalization of Mitra 83 h (Pl)

i 85 @ |
hj(Pi) = rd3 q , A 145,

;Pi +q - kg ~ie

" From the definitions of A, A(J) and thebh's it follows, as shown.by

Mitra3? that

\d

2

(3)-1, -
D ) =y

- ke e = (30)
and

D7 - Fh@] = @Rk, : | -

where the &'s are non—eingular end'reduce to unity on the energylshell
since the bound.sfates (18), (19) are normalized. They are defined by
Mitra3)and are trivial to work out. |
As noted abbve; the: physics of anf problem under ‘consideration is

contained in the spectator-functions;vspecifically'through the boundary
cenditions imposed.on Gi and F. Thfee different cases can be distinguished
.depending on whether particle 1, particle 2, or the bound state of particles
1 and 2, which we shall now refer to as a "deuteron » 1s the projectile
Corresponding to these sitqations are three different forms for kEz:

| 1, 2 2 _ .2 .2 2

*q T2 Tkg Tk -, t=1.2

whereﬁbd and.ki are the wave vectors for a deuteron or for particle 1
incident. The boundary conditions are given in terms of these wave
numbers.

For deuterons incident, we write
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4M 2.2 -1 _ .
FR) = 8(Bky) - 7 IO Pk )] Ty Bk : (32)

and

2

- T . .
SR = - g R @S - - 1017 T (k). (33)

Our notation differs from thét_quMitra3)in thac'first‘we use the pfopaga—
tors of eqs. (30) and (31) since they enter iﬁto a) the defining equations
(27),'5) the derivation of the equation obeyed.by F(E) in the Appendix,
and ¢) allow us to identify the amplitudes directly with those oflLovelace17’18%
second, we have used transition ratﬁer than scattering amplitudes; and third

we have made explicit the dependence on wave vectors. Our model is slightly
more general than Mitra's in that we have assumed'\}1 # VZ’ thus-allowing for

a knockout channel. The notation ﬁsed Here differs from thég of our earlier

9)

work” “in that we now  use the full propagators rather than just‘the

d;ffetences of the squares of the wave numbers; howevef we use .the same

symbols for the amplitudeé,'altriviél;difference and one that cannot affect

the on-shell interpretation of the amplitudes. On the energy shell (P2 = kdz),
T..(P,k.) is the deuteron elastic scattering amplitude, and similarly, T,  (k,,k,)
is the deuteron stripping amplitude.

Alternatively, for particle i incident, we have3)

oy oa(popy M 22 -1
6 (By) = 8(Ryky) g2 17y o) Ty Bk ) /ey (Ry) (34)
and ’ _
F(P) = - 3§~(p2 - kd2~- i)t T, (B.k,)/2(P): (35)
-~ A ‘H - [T .

Iﬁ these equations, Tii is, for Pi2 = kiz, the elastic scattering amplitude
and Tdi(§d,k ) is the pickup amplitude, which, by time reversal invariance,

is egggl to Tidgfi’&d)'
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Substitution of these sets equations into (27) then leads to coupled

)
equations3 for the various amplitudes in Ci and F. By direct comparison

17,18)

with the results of the Faddeev and Lovelace equations method it is
straightforward to show‘thét the amplitudes givén in eqs. (32) - (36) obey the
same integral aquations és do theLovéiace amplitudgs. Hgncg, our stateménts
about the meaning of the various T's uged abové can be verified in detailf It
is evident from the forms used for the spectator functions3)that-they represent
the motion of particle.i (Ci) or of the CM of the bound state of 1 and 2 (F),
relative, respectively, to the bound state of j or to the core, A.

We shall not display here the sets of integralvequations for the am-
plitudes, as they are practically the same as fhose derived by Mitra. Instead
we turn to the qUestioﬁ of the DWBA in this model. If is héré that our results

differ from those of Mitra. Apart from some questions concerning normaliza-

. . . . . 3) : .
tion, Mitra's major error in his derivation™ of the DWBA arises from a no-

‘tational confusion. 1In contrast*to\our eqs. (32) - (35), in which different

amplitudes are differentiated by the use of different symbols, Mitra has,

unintentially, used the same symbol, viz. b, for what we have denoted T

id
and also for our Tii; i.e., the stripping and nucleon elastic scattering
amplitudes. Since his DWBA is defined as the matrix element of V12 taken
between ¢dF anq ¢jGi, but with his Gi contalnlnngid in place of Tii (i.g.

his amplitude’b), he was led to an erroneous result concerning the validity
of DWBA. .Specifically, he concluded that DWBA (in the three-body model)
should be valid when the deuteron elastic scattering amplitude is smaller

than the stripping amplitude, or equivalently, when stripping cross sections

are larger than elastic scattering cross sections. This is, of course, contrary
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to what 1s observed experimentally, thus'implying‘that the model is
unrelated'to eyeryday bhysics. Such a conclusion is, however, not implied
by the works of Aaron and Shanley3)and Reiner and Jaffe3)using similar
thtee—body modeis, since their DWBA angular distributions not only showed
good stripping patterns but aiso were reaeonably good approximations to the
exact (d,p) cross sections. The resolution of this paradox consistsain
correcting Mitra's result and compafing the DWBA and the exact stripping

amplitudes, which we now do.
IV. Distorted Wave Approximation.

We have discussed both DWBA in its generai aspects and the main ideae
of the three-body, separable potential model. - We now examine the DWBA for
'the'model. _ | |
In the model the exact strippingiamplitude is Tid(bi,bd),'while in the

general case, treated in section II, the exact amplitude is T, of eq. (7).

dp
In applying the DWBA approximations to théﬁmodel we noted that eq. (8), the

direct reaction approximation, 1s e=xact, since the core, A, issxructureless,
implying that. ¢i i8 a delta function. If we now use the correspondences

Vnp -> V12, Vp g Vi, and wo + ¥, then Tid of the three-body model is identical

to po of eq. (10), where all quantities are to be evaluated on the energy
sheil. In other words- ‘
- ) .
Tya = G TV + 0 - U |,
f »q
where = ) is*the analog for the three—body model of = ) in the general

o g
cagse. For Ui a one-body operator, then by eq. (6), = 1( 8 = ¢j xk - ).

We shall assume this to be the case, and in particular will take Ui = Vi'

Hence we have

Tiq = (xki(’)<bj [vy,19),
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which 1is thé exact, three-body model amplitude evaiuated on the energy shell.
Were we to follow the procedure of section II, we would introduce appro-
ximation (9), the traditional assumption, followed by approximation (12).
However, this approach would then give us'the tradiational form of DWBA
amplitude, and no particular insight as to why it should work as well as it
has, even though we have a simple model to deal with.. In fact, we mighf find that it
"~ did not work so well at all, as indicated by the calculatioﬁs of Shanley and
Aaron32 which we discuss in section VI, The- reasons for their finding poor
agreement between the exéct threé—bcdy cross-section and the traditional
DWBA cross-section are indicated in that section, and are not obviously
connected with DWBA being a poor approximation - indeed, we believe it to be
a good one - but their results do serve as a necessary reminder that DWBA
may not always be applied straigﬁtforwardly.
The coﬁments of the-preéeding paragraph sﬁgéest that a meahé other than

that of section II to reduce T, , to simpler.form might be useful to explore,

id
if such could be found. One method is to trj to'imprdve DWBA, as in the work
of Johnson and coworkers4? We comment on their procedure later, but do not
: v 3)
follow it here. A different method was proposed by Mitra3, vwhe replaced steps
. . : (<) .
(9) and (13). He used Gi in place of %ki and ¢dF.in place of ¢dub for ¥

(or wo). " In momentum space, G, is given by eq. (34), ¢d by (19), and F is

i
given by eq. (32). As we commented above, Mitra's DWBAvresult was incorrect
because of a notational error. Had this error and a few trivial ones con-
cerning norma}ization not been méde, a resﬂlﬁ 1like eq. (41) below, which is
our main rgsult, could have been obtéined. That is, one can show using
¢dF‘that a DWBA can be formulated‘inAwhich the amplitude is ideﬁtical to

the exact.one.
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Rather than follow Mitra's approach3)of substituting Gi for x =) and
. . : . >
F for u , we take a simpler and more general approach.  We refer back to
egs. (22), (23), and (25), and note that in momentum space,
5 A
A
| Vlzv = -Aiﬁ~f(p)F§£). . (38)
Therefore on introducing a momentum spgce‘fepresentation into T1d and
substitﬁting (38) into (37) we have _ ]
S w2
=B 43043 )L s
Tyq = 2 SEPLR x (z<£,+‘f)¢14%f BPf(p)F(E). ) (39)
Symbolically we write this as
2 .
‘ il N :
Tia = = 20 i b4l P S (40

which is an exact result.
We will prove below that eq. (40)~1s identical to a "no distortion"

form of DWBA in which ¥ is replaced by,¢dF. Therefore we propose a new

'no distortion" DWBA assumption as a replacement for eq. (®) in this model:

¥(p,P) & ¥'"(p,P) = 0, (PIF(R), 9"
w o L b o : ) .
an approximation which in (37) we now show is exact.

Subs;ituﬁion of (9') into (37)'1eads to the "no distortion" amplitude

TidNP given by

N A% .3 .3 ..3 .3

[T v‘ )1 g
Tyg = —z-ﬁ. Jd7pd p'd”Pd’p X}:i )(534-5)¢i¢;—§—3bxf(p)
xf(p')G(E-g')¢d(p')Fﬁg')
AT 03 3 (9,1 :
= (e (51343>¢14§g—j>f<p>t<3>
ey L
Z(p' +a )

But from eq. (21), thelp' integral cancels A in the above equation. Hence
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we find

ND ' ' ’ .
Tia = Tyge (41)

or

. (=) 4 ND )
<Xbi ¢ilv12|w >,= <X)§i ) ¢1|'V12|‘P>9

which is the result we set out to establish and is the major conclusion
of this paper. |

We have thus shown fhat because of the projection operator nature of
4 V12’ the no distortion apﬁroximation of (9') leads to a DWBA matrix elément
which 1siidéntica1 to the eﬁéct result Tid° The basic ingredient in ob~
taining this result is the equality

vlszD = V., | f' . | (42)
hence for any arbitrary final state, say'r, we thus have '

(v, [Py = (v, [¥). S | w3
Wé use this result in our subsequent discussion of the actual (many-body)
nuclear case.

So far we have shown théﬁ a more 6r‘1ess convehfioﬁal DWBA approximation
analogous to (9), ;he standard one, can be formulated éﬁch_that the ﬁo dis-
tortion DWBA matrix element is identical to tﬁe exacf maﬁrixeﬂement. Re-
phrasing this, we have shown that it is correct to keep only the.deuteron
ground state ¢d in the distorted wave WND. In addition, f is, by Yirtue of
its argument‘z, a CM wave function. Hence we justify; in the three-bogy
model, the basic DWBA approximation of replacing a three-body wave function
(viz. wo) by a product of two—bédy wave functions. We have fherefore proved
at least for the model, that a conventional DWBA type of approach to Ehe
description of deuteron stripping is valid, and that in principle, userf a
CHM deuteron wave functibn is quite propér. The new approaches to Stripping

can no longer be claimed to be neéeséary on the grounds that they are
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replacing an incorrect or poorly understoéd method.
Clearly, the most important aspect of this present development of
DWBA is an understanding of the function F(P). We discuss some of its

properties in the next section.
V. Properties of the Spectator Function F.

To.undérstand‘F,'we'go back.to-eq. (26). For incident energiles
beloﬁ ﬁhe three~bodyfbreakup'threshold, F uniquely yields on the énergy
shell, only the elastic amplitude: the stripping amplitudes'are contained
in the Gi' Above threshold, however, F contributes to the breakup ampli-

tude as clearly shown in the discussion of Watson and Nuttalllg)foilowing‘

the arguments of Lovelace17? Off the energy shell F yields both elastic

and breakup a@plitudes, although only a pértion of the latter since the G1
contribute as well. Because of these points, it is clear that F.must obey
an equation in which the one-body potential is not that for elastic scatter-
ing, but is altered due to the off-shell behavior of F. We shall derive this
potential later in this section.
Let us first compare F(g)-with uo(g), the elastic scattering wave
function'in momentum épacé. From section II we know that-ﬁo = <¢d|w°> and
in the three-body model we‘are considering uo(z)‘= (¢d(B)IW(E,£)). Clearly
"uo(g) must have the form |
3@ = 8D - B @iy ek | @)
where Td’gﬁP,k ) is the half-off-shell deuteron ela;ﬁic s;attering amplitude.

wr .
LS

It is straightforward to show that

. Td,el(z’}:d) = <£:¢d|vl+v2|‘y>’ 4 ' (45)
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where ¥ is the total (thfee;body model) scattering wave.function generated
by a deuteréq of momentum‘bd iﬁcident on thé core'A. of cburse, we can also
formuiate.Td;elin terms of a compiex potential well description or as a matrix
element of a T-operator, etc., but all these forms are equivalent.

The function u must have this form sincé it is the coefficiént of ¢d in
= K, ,+V

12 © f12712°
the coefficients of the continuum terms will only contribute to breakup or

wo. That is, we implicitly assume an expansion owao in states of h

sfripping and not to elastic scattering. Let us now re;examine eq. (26) in this
light., The sum of the threg terms in W(=¢o in the model) does not correspond

to an expansion of ¥ in the'states.of hlé; each term can therefore contribute

to breakgp as well to the elastic scattering or stripping processes we assocliate
with the forms of F.or Gi given by eqs. (32) anq (33).

Let us now try to isolate ¢d in eq. (26). To do so, we rewrite the

denominator d_1 as
1,1 ,2 2 2 2. -1
a7 I3 @) + 20" + o))

2. 2,21 %‘Pz'kdz) 1,2, 2 2 2..-1
= [2(p +a, )3 ——— [5 (» -kd )+2 (p +o 1 . (46)
- 2(pTHay) S

Substituting eq. (46) into eq. (26), and rearranging, we find

Y(pP) = g (RIF(RIH [~ 3Bk ") oy (PIF(R)+g, G 8,6 1. @)

It is evident that F(E) is not equal to uo(s), the deuteron elastic scattering
Qave function. In fact, u is not simply idéntifiable in terms of F since the
expression F - %{Pz—kdz)dle, which from (47) would be the natural choice for
u is not a function of P alone: it also'depénds on.p. This follows from the
p-dependence of d. Thus, even though the factor (- %{pz—kdz)F) icself

leads to a simple expression, némely
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2M

ﬁZ dd

1,2, 2
.—5(P—kd)F= (Pk)

[ whicn follows from eq. (32)], the producf - %‘P?_knz)d—1¢d(B)F(E) is
still a three—body‘wave function, and not a product of two¥body wave
‘functions. This, of course, reflects the way tﬁat'breakup occurs
in the three-body model, namel& through scattering of a quasi-bound.
pair followed by decay‘of the pair. Since a range of momenta are now
allowed; f(p) and F(E) must be linked via d_l, or equivalently, the ,‘
correction term to ¢dF above must have the form d—1¢d€B)Tdd(£,5d), represent=
ing off-shell scattering followed by breakup; the latter statement simply
emphasizes the fact that d-1¢d(p) is not tneAdeuteron ground state.

ﬁhat we have seen is that F contains breakup parts as well as elastic

scatfefing portions, with all'amplitudes being half—off-energy shell., To

see how much more F yields, we can compare T (P k ) with Td bfP k ) This
latter term is, from eq. (44), just
TgefBky) = 10" $3") <R, [V 47, v,
where ¢Z(E')‘= <¢d[2'>. In terme of‘f(p') ﬁhis is ,
| Td,eff’gd) = fd3p' _B(p") <P,p' ]v |w> o | (48)

The only off—energy-shell quantity in (48) 1s the momentum P.
The corresponding expression for T d(P k ) can be derived by projecting
| v> onto <f| and using the integral equation formulation for |¥> as in the
Appendix. Equivalently, we can proceed simply by referring to Lovelace's
analysis17’18? The amplitude he defines as XBa(pé,pa) is equal to our Tdd

(P,kd) when B and « each‘correspond to the deuteron channel (incident and

emergent) and we take‘s = pB, 5d - Py- For the case of elastic scattering,

L4
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it is straightforward tobshow, by either approach noted above, that*
2

4a ‘s k Q=" 2— <P f]G v+ )|\y> : g (49)

where Go = (E'*---K)-l is the free particle Green's function and [—Golf,P>] is

the final state, which on the energy shell (Bzékdz) is |¢d,P>. In momentum

space of course G° = - D_l(E). Putting (49) in a form similar to (48) yields

___f(eY ' .
T, (P,k,) = fd> p' . —— <P,p" |v |w> . (50)

The difference between (48) and :(50) is in the denominators, and cannot be put
in such a way that Tdd is a simple multiplicative function of P times Td o1’
Clearly, Td,eland Tdd.are equal on the energy shell, Off the energy shell we
may eapress Tdd as a sum of-Td,elplus a correction term by using eq. . (46)

in (50) to give 4

2
Taa(Brkg) = Tq g(Bok )+—— (p? k4 )<p,¢d|c (V +7,) [ ¥ (51)

The correction term obviously takes on a simplc fctm.

Werc Td,elthe only term on the right hand side of (51), then-Fgg)
would be equal to no. It would obey a one-body eduation containing Feshbach's
complex potential well 42 which would give rise to the exact elastic scatter-
‘ing amplitude Td,elfor infinitely.good energy resolution. However,'the
correction term implies that F # “6' Hence the‘complex potential well which
yieids Tdd is tnereforc not the same as the one which produces‘elastic
scattering, as noted in a somewhat similar context by Johnson and Sopera.

The form of the complex potential well which yields T,, can be obtained

dd

*The correction term Z a;ising in the general equation for xB vanishes
for elastic scattering
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from T,, if we can express (V.+V,)|¥> in terms of V., |¥>, since this
dd 1 2 12
‘latter term, in momentum space, is proportional to £(p)F(RP). We start
by noting that (dﬁZ/ZM)<P,f| = <P,¢d|V12, and therefore that (49) can be
written as '
Taa@skg) = <Bsd,41V1,6, W 7)) | ¥
Next we observe that ¥ of eq. (26) in operator form 1is

|¥>-G v12|w> = G, (v V) ¥,

Multiplying both sides of (53) from the left by (V1+V2), rearranging, and
inverting (E+7K—V1—V ) then gives |

Co(VHV,) [¥> = (B K-V 17Y,)" (v V,)GoV1p]¥>.

On substituting this into (52) we see that Tdd becomes

— + .
Taa(Boky) = <BadglVy, (ET-K-V, V) tyye "12"">

‘%EJfF>, we have

2
ﬁ
TaaBoky) = - 73

Finally, writing VlZIW} = -

+
<£,¢d|v12(3 —K-vl—vz) (v V,)G, |fF>

‘The complex potential well operator, denoted?j: is, from (54) just

Y- -t 5§-<¢d 12(E “K-V, - ) v,)6 | £>

and is a non-local operator acting on |F>. It follows from eq. (32) that

F(P) obeys

3PPk )Q(P)]F(P) sl My

- )
ﬁZ dd w’sd

and from (54) and (55) this is equal to

2 o e '
A D@ 1re + <llip = o,

a form which is perhaps more transpafent for establishing that‘vris indeed.

the complex potential well which produces Tdd'

_ In the definition (55) ofrU‘we have deliberately retained the factor

(52)

(53)

(54)

© (55)

(56)
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<¢d[V12 to emphasize the fact that‘F(E) obeys ae equation in which the
potential is given by the matrix element of an operator taken between |f>
and <¢d|. Clearly we can.just as easily put (4h2/2M)|f> equal to V12]¢d>
and rewrite fU’as

V- §¢d|v12(E+—K—vl—v2) (V49,06 V |62, Y2
thus emphasieing.even more strongly the fact that we are taking a deuteron
ground sFate matrix element to bbtah1mﬂ Nevertheless’y‘is not the complex
potential well for elastic scattering. We can, however, express Iras an "elastic"
portion plus a eorrection, which will evidently contain a factor (Pz—kdz),

as indicated by eq. (51).

It follows from (51) that T P, k ) must be of the form

d, eﬁ

efP k ) = <P|2f|F>
where’bzlis the complex potential well producing the elastic scattering when it
acts on F; it is given by

Vi <oyl W4V [ (E x-v, v, ) L +,) 16 v [0

From eq. (51) we can write the correction tolﬂ . denoted Dp, as
v ' Lo+
’l/;-— <¢ 4| (R4V, =E) (BT =KV, -V,))" (v V,)G v12|¢>d ,

where <_g,¢d|(1<+v -E) -’52 (P -k 2)<P ¢d|

Hence,

V=Vq+ <oyl (K4V ,=E) (E+—K—V1—V2) (V49,06 V.14, -7/' +'V' (58)
and thus we have

S Dy wenE® + <p|lf P> + <p|Uple> = 0. o9

To the extent that the <P|b§|F> term of (59) is small, Fgg) g uo(g). However,
unless’v; = 0, it is clear that F 4 u_, even though F doee obey a complex

equation.
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With these last few results we have achieved our purpose of '
‘charécterizing F and deriving the oné—body equation it obeys. We shall
n;t pursue in greater det#il here the'properties.of F, since our main purpose
has been to discuss tﬁe formal éspeqts'qf the distorted wave approximation
Yy sy as used in the stripping matri# element. Both F and u, are calculable
-in the three-body model, and we postpone to the future a detailed comparison

between them, as well as an investigation ofthe terms]él and although

R’
we do note here that’bg can be put into a form simple enough to allow us to
attempt an analytic study of it. However,Awe needAnot dd’any further cal-
culation to observe that in the model, f and uo'have very similar effedts
in the DWBA matrix element, even though they may differ in their functional

forms. This statement follows from the numerical work of Reiner and Jaffe3)

which we discuss in the next section.

V. Discussion

1. Summary

Our results for the. three-body model may be summarized as follows.
Using the projection operator nature of a geparable potential, we have
reformulated the DWBA.in such a way fhat the DﬁBA amplitude for stripping
is identical to the exact stripping amplitudé. -This justifies, in the model,
the basic DwBA approximation of réplacing a three-body wave function by a
prodqct of two-body wave functions in the matrix élement.

The new DWBA wave function, denoted TND, is given by

ND
A
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where ¢d is the deuteron éround state and
“F = x<fl|y>
is the spectator (CM) wave'function, with the two-body interaction having
the form
V= | £> n2r/2m) <
. We have shown that‘Fgg) obeys a one-body equation which contains a
complex potential well that:yields the'e#act elastic séattering ampiitude
on the energy shell and a more compifcated ‘amplitude off thé energy shell. .
This potential well is the éround state matrix element of an operator
that weAhave shown is a sum of%gj which gives riseto the elastic scattering.
amplitude (on and off shell), and a tenm?(; which vanishes on the energf éhell.
If we were unable to calculate <xki(-)¢j[ViTU11V> we could define the distorted
wave'approximation as that one f;: which the second term in (36) was a minimum,

ND'in the first term is still exact [see eq. (43)]. ‘In

since use of ¥ & ¥

this sense, ﬁWBA is a variational approach; one may infer for fhé many-body

nuclear case, on the basis of good agreement with experimeﬁt; that the choice

of Vi>to be the optical potential producing the elaétic amplitude is the

qptimuﬁ choice. ‘We shall refer to this point again in the following article.
The analysis of section II1I was concerned with a mpdel in which A, the

target or core, was assumed infinitely heavy. The general results of eqs. (41)-

(43) however are independent of this assumption, 'and depend only on the

'seﬁarable character of V12. 'No changes result'if.A is assumed to recoil,

although in that situation the equations obeyed by the G, and F will be slightly

i
different. :Such effects, while they change the kinematics, éannot‘alter

the basic physics inherent in the separable form for V12.
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2; Reformulatipn of DWBA

In terms: of this, we can now reformulate the approximatioms of sectidn
I1 which lead‘to the DWBA aﬁplitude.- The first approximatién, (8), is exact
for the modél, and in general,is one which we retain unquestioned, as in
the succeeding article. fhe second approximation, (9), is to be discarded
in favor of

Y2 ey® e o4F> ‘ : (CAD)

where the three-body wave function is just wo of section II. Use of
(9') in the model stripping matrix element gives an exact result, and
thus use of (9) rather than (9') becomes a quesﬁion of how well u approximates
F. We discuss this point shortly. The fact that repiacemenf of Y by WND
leads to an équality thus justifies reténtiop of an unpolarized or un-
stretched deuteron grbund state wave function in the DWBA matrix element,
at least for the model. Alternatively, this justifies the use of a deuteron
CM wave'function in DWBA, thus allowing us to regard it as 'natural" and
not as a barbar;sm.

The third approximation, (12),'is now to be replaged by

F s xd(+) . : | | | Qa2
(f> is an optical model wave function &ielding the energy-averaged

+)

) where )(d
scattering amplitude arising from F. The function Xg would obey an
equation with an optical model potential which would not ‘yield the elastic
‘ ‘ 4)

amplitdde,_just_as with thglimproved DWBA wave function of Johnson and Soper

The final approximation, (13), is not relevant‘to our work so far
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4 1n the three-body model. We shall discuss

since we have chosen Ui =V
this approximation further in the next paper in the series.

3. Remarks on other calculations

In 1light of these remarks, it is of interest to examine the results

of other calculations dealing with this topic, particularly those of

3)

Reiner and Jaffe3) and of Shanley and Aaron™’, each of whom has berformed
numerical calculations using three—body models similar to Mitra's. Each of
these calculations is‘interesting in its own way: the former for its ability

to relate u, to F; the latter for a comparison of TND'with a DWBA amplitude

using the standard DWBA'assumption noted above. o o |

<

3a. Meaning of the Reiner-Jaffe results.

The calculations of Reiner and Jaffe3)employ'different poténtials V1

and Vz, the difference being an attempt to include coulomb effects on théir
proton (say particle 1) by altering the form factor (our-g,) compared to the

form factor occurring in 8y-. They compute the exact stripping amplitu§93 our

Tid’ and compare it with a particular DWBA amplitude Tgﬁ calculated as follows.

Thelr final state wave function xki'fs computed by setting Ul = Vi’ as in
C TR

sectioh.II. Hence, their in gives rise to real phase shifts. However,
. L

their initial distorted wave corresponds to our u, rather than F, just as is

called for in the standard DWBA prescription (approximaﬁion (9)). Hence,

DW

since use of va is exact as we have explained aBove,.théir comparison of TRJ

with T, is actually a comparison of ™"

RJ with'TND, or equivalently compares the
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effects of using u and F in the stripping matrik-element. This 1is ﬁrecisely
the comparison we need in order to verify if.sténdard DWBA, as repreéehted

by (9), i.e. by use of us is a good approximation to "exact" DWBA, as
repreéented by use of (9'); -

We pote first that'the change in form-factors (V1 Compare§ to VZ),
produces the desired effect of decreasing the (d,p) cross—sectioné compared
to the (d,n) cross-sections. Hence,bthéy ére employing a realistic three-
body model. More important than this, however, is their finding that
replacement of F by-uo (usé of ng rather than-TND) is a valiq approximation:
DW ND

RJ agree quite well with those from T = T

except for forward angles (< 20°) and then only at the lower of the two

the angular distributions from T id
energies investigated. Speéifically, ﬁhe differences in magniﬁude are
roughly of the order of 20% at a '"deuteron" energy of 6.7 MeV (DWBA < exact
for (d,p) and DWBA > exact for (d,n)) and are approximately zero at 11.2 MeV.
Ihis impliéé that the difference between u0 and F (at least in their effect
in the matrix element ). decreases as the energy increases, a point we .are
investigatiné.

The conclusion to be drawn from this, at least for the three-body model,
is not that Y = ¢duo is a good approximation, buf that u, EFis a good

approximation, siﬁce we already know that use of ¥ = WND

= @dF_is exact in
the matrix element. We shall refer to this conclusion in the next paper
where we treat the many-body case of actual nuclear reactions.

3b. Remarks on Johnson's Adiabatic Approximation

Anothef very inﬁeresting connection is with the work of Johnson and

co—workers4? Their improved CM wave function is conceptually very much
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:like our F, although they use optical potentials to calculate their wave
function, so it would probably be nearer quantitatively to xd(+) of @z
;han to F. Hoﬁevér, we shall refér here to F rather than to xd(+). Both
theif improved wave function and F obey one-body equations that do not

give rige to an elastic scattering amplitude, and both contain effects from
continuum or break-up deuteron states. Use of their improved wave function
has led to improved fits to data in all cases but one, and it would seem
likely that their method is in general the correct one ‘to follow for more
accurate results. .The connection between their method of including
continuum effects and the inclusion of such effects in F, i.e., the relation
between the two wave functions:remains to be established. - We conjecture
that they are similar, and will use the three~-body model as a means to compare
the two and so yerify or disprove this conjecture. It is 1nteresting to
note that the exact role played by WND in the separable—potential, three-
body moael was reéognized ﬁy Johnson and.Sopér4)and used to help formulaté

their adiabatic methodlg)

3c. Interpretation of the Shanley-Aaron Calculations.

These authors compafed their.exact (d,p) computatioﬁs‘with a standard
DWBA cross—seétion. The calculations were dong for the case in which only
the interactions Vl and V12 are non-zero: setting V2=0‘means that the
knock-out chéqnel is absent and that only nucleon 1 can be stripped from the
deuteron;A To get optiéal.model wave functions to use in the DWBA matrix ele-
ment (eq. (14)) they matched the elastic proton and deuteron cross sections

as determined from their three-body model with those generated from a Saxon-

Wood type optical potential. Excellent agreement was found for the elastic

\
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| angular distributions at ‘the relevant energies, although the agreement
i was notnso good when considered és a fﬁnction of energy,the deuteron
1 élastic scaﬁtering parameters being fitted better. Their fits of the
DWBA cross-sectioﬁs to the exa;tistripping crogs-section was, ho&ever,
not very good. At best, the peak cross-section was underestimated by
# factor of abouf;1.7, while the first minimum was closef to the origin
by at least 10°, In addition, the secondary peak was alsé undérestimated
and a secondarf dip or diffraction minimum was predictéd,by DWBA althougﬁ
it was not present in the exact result.

Since the standard approximations were used to derive their DWBA it
is~no surprise that Shanley and Aaron failed to get good agreement between

thelir T1d and T DW.‘ Two points are of interest here. First, an elastic

id
deuteron wave function was used in their DWBA, whereas our work.quite
cléatly shows that a different optical model wave function such as xd(+)
should have been used. Second,. they used an elastic scattering 'proton"

‘wave function. But since V2 = 0, they should in fact have used a plane

wave for the proton final state. Or équivalently, since a final state po-

(-)

tential V2 Waé ﬁsed to generaﬁé a xlj2 , ~ then the éecond matrikvelement

in eq. (36) should have been compuéed as well. Oﬁe‘can only conclude that
their obtaining of a DWBA angular distfibution with the same general features
of the exact one demoﬂstrates that use of the neutron-proton interaction
in.the matfix element plus the proper angular momentum coupling are the

main ingrédients in producing a cross-section with the proper shape.
3d. Comment on the Model of Baz', Demin and Kuz'min -

Baz', Demin, and Kuz'min have investigated the properties of a three-body

model in which the interaction V12 is taken to be a point 1nteracg}qg, while
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0)

V1 and V2 aré assumed to ﬁe one;body potential'wells2 . Numerical calculationa
of deuteron elastic scattering and stripping were carried out. 1In pafticular,
exaat and DWﬁA results were compared and it was found fhat DWBA-was a poor
abproximation at an energy of 2.2 MeV (the only energy for which calculations
are repo:ted). The authors state that the reason éof‘pdor agreement is that

the penetrability of the centrifugal barrier ﬁy the deuteron for S-, P-; and
D—waygs is large in this prbblem, and in such cases approximate methods are
inapplicable. dnly for higher partial waves is the penetrability small and

the exact and approximate partial wave amplitudes in close agreement.

These results can be understood on the basis of the foregoing work. First,

we note that the model of point interaction is one that involves a limiting

procéss# a delta function potential as such at r=0 does not have a bound state.
If we keep the limiting process in mind, but write the interaction as a delta
function, then it is straightforwafd to show that the interaction is separable
in the sense used in this article. For example, 1if we are dealing with V(r) =
w
A6(r), then what is really meant is that
~ ;
<£’|V|r> = V(r) §(r-r') = AS(r)s(r-r'),
’ L - - on -~ L
which is equivalent to
<r'|v|e> = AS(r)s(r"),
a gseparable form. A similar result holds for V(r) = b §(r), where n need not
. w
be integral.
Given this, it is obvious that an exact DWBA can be formulated for the
model of Baz' et al. The finding that standard DWBA (i.e.: use of uo) is not a
good approximation at low energles 1s not entirely inconsistent with the lower

3)

energy calculation of Reinér and Jaffe~’; rather, we simply seem to have an
example where replacement of (the appropriate) F byau° is inadequate. Whether

this 1s a result due mainly to the choice of interaction, the very low value of
. - )
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of'fhe enérgy; or‘both, we cannot say. Another possibiiity; that‘replacement
of the_separabie forms for Vl and V2 by locél.potentials also has infiuenced
the resulﬁ,lﬁill be investigated in the futufé.

The result of Baz' gg_gl_should not be confused with a possible'
inapplicability of the zero-range approximation as used in DWBAZ).',This is

an approximat;on applying to the ranges of values of'the»neutfon and proton

spatial coordinates that enter into a spatial coordinate evaluation of the

- usual stripping matrix element, and implies that the relevant integrals can

be accurately evaluated if these two coordinates are taken to be the same.
This 1s not necessarily inconsistent with use of (any form of) a separable
interaction; the form factor occurring in the interaction need only be short-

ranged enough to permit a zero-range approximation to be used.

4, Other Processes

.So far Wé:havé considered the case of (d;p)'reactions in this model.
The equality of the DWBA (as we have formulated 1&) and the exact ampli-
tudes follows from the projectiop operator nature of the separabie interaction.
It is clear that each of the interéctions acting between'the particles pro-
duces the same efkect and thus we can also prove an equality between DWBA
and exact amplitudes for the knock 6ut proceés as well, and of course for
elastic scattering too, although this latter point is of less interest
for the many-body prqblem since elastic scattering is conventionally dis-
cussed in terms of the optical modelz). The (éxact) DWBA in this model for
knock out involves a matrix element of Vi (i incident) and not V12 as one
would expec;‘oﬁ‘the basis of calculations done for actual (p,n) or even
(p,p") réactioﬁs. The significance of this result is currently being investi- '

gated; we hope to report our findings on this point in the future.
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5. Divergence of DWBA Series
The main feature of the present model is the fact that the DWBA and
exact stripping‘amplitudes are identical if DWBA is prbperly defined. Tt

thus allows us to see what the ordinary or standard DWBA is trying to

approximate, at least within the context of the model. However another

interesting‘feature is that by using F in the initial state distorted
wave, we prodﬁce a DWBA series which converges, in contrast to a) the

20)

generally expected behavior of the Born series” ’, and b) the likelihood
that the DWBA series will also diverge in generalzz). We intend to return

to this point elsewhere.

One of us (FSL) wishes to thank A. M. Lane and the Atomic Energy
Rgsearch Establishment,;Harwell, for their hospitality during August, 1971,'
Auring which time mést of the work relating to section V was done and this
paper was written. He also thanks R. C. Johnson for illuminating discussions

4)

concerning his work * on this problem.
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Appendix

We derive here équation (32) obeyed by F(;). We could start with
eq. (53) and project it onto <fl, but it 1s'éimp1er to begin with the

Lippmann-Schwinger equation

+ .
ly> = |§d>|¢d> + (E'-K-V,

-1 :
) (v, | (A1)
where E+ = E + ¢, €>0, and K = Knp+Kcm' ‘Projecting both sides of (Al)

ontoll<f| then gives

-1

A<E|y> = |F> - Alkdb<f|¢d> + A<fl(E+—K—V12)
" : .

x (v1+v2)|w>. (A2)

By definition [eq. (21)}, A<f| ¢4> = 1, so the first term on the right
hand side of (A2) is just Ikd>. We note that (Al) suffers from the usual

: ™ .
problems of an integral equation for more than two particles, but that (A2)

does not since it is a one-particle equation.

The key to solving (A2) is the separable nature of V12'

In detail,

the propagator is 4

, Lok s S o,
-1 + 5P -1
12) E' - K+ 5 l£s<£])™,

3 -
which is easily expressed in terms of (E+-K) 1. Some straightforward

(E'-K-V = (

algebra leads to
: 2
-1 B2 et o)) (ad)

+
A(E K-V 2M

12)

= o+ v, E-0 T as

and on substitution into (A2) we have
E = k> + 2 <f|(E+—K)'1(vl+v2)|w>

+ . -1 + =1
+ ) <£l(E"-K) Vy, (ET=K) " (V +V,)

x}1/11 +-ﬁzx<f|(E*-K)*1|f>/zmﬂ1v>. (a4)
Equation (A4) can be put in more familiar form by examihing its

momentum representat ive:
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, 2
F(P) = <P|F> = §(B-k,) + A<B,£|(E *- ﬁ Knp (V,#V,)
2
x |v> + A<P,f|(E+— ——22— - Knp)_‘l 12(E E'- ’ﬁhg 1<np)'1
_— 2
x%(v +V )/[1 + h )\<f| EN - T—‘m‘fz— - xg‘p]f>/2M]}|‘y>

If the separable form of V12 is used in the last matrix element of (AS),

‘the . result can be combined with the preceding term to give

F(P) = 8(P-k ) + ot -—h(P)] <P £]6 (v +V,) ¥,

where h(P) is the function defined by Mitra3)and also above eq. (30) in the

main text, and where we use the operator form (E"'--K)_1 =G, for the factor

E+ —th-ﬁzEzléM appearing in the matrix element.

On now transforming the propagator via eq. (31), we may put (A6) into
the form .
-1 4M

' ' ‘ : 2 .2
F(P) = §(B-k,) - [2(P)(P “k,"-1e)] 62 TaaE

(p, k 3

where
%2
Taa(Boky) = = 3% <P.flC (v v, ¥
It i8 clear by inspection that (A7) is identical to eq. (32), and that (A8)
is 1dentical to (49),'as claimed in the text. Furthermore, use of eqs. (15)
in (A6) leads to the last equation in (27), similar manipulations provide

the other members of the coupled equations.

(a5)

(46)

(A7)

(a8)
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