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BORAX V E X P O N E N T I A L E X P E R I M E N T 

by 

F . S. K i r n and J . I. Hagen 

I. SUMMARY 

The c a d m i u m r a t i o w a s m e a s u r e d in an e x p o n e n t i a l m o c k u p of 
BORAX V a s a funct ion of the vo id f r ac t i on . The ex ten t of v o i d s , s i m u ­
l a t e d by l e n g t h s of c l o s e d p o l y e t h y l e n e t u b e s , r a n g e d f r o m 0% to 40%. The 
c o r r e s p o n d i n g c a d m i u m r a t i o s r a n g e d f r o m 6.1 to 4 .6 . The exponen t i a l 
w a s a l s o u s e d to d e t e r m i n e the r a d i a l flux p a t t e r n a c r o s s a BORAX- type 
fuel a s s e m b l y and the fine flux de t a i l in and a r o u n d fuel r o d s . F o r a 
n o r m a l load ing the m a x i m u m - t o - a v e r a g e p o w e r g e n e r a t i o n a c r o s s an 
a s s e m b l y w a s 1.24. 

II. INTRODUCTION 

One of the p a r a m e t e r s to be i n v e s t i g a t e d in the BORAX V e x p e r i ­
m e n t a l p r o g r a m i s t ha t of void f o r m a t i o n and i t s effect on r e a c t i v i t y , 
s t a b i l i t y , and p r o b l e m s of h e a t t r a n s f e r . The i m p o r t a n c e of t h i s p a r a m e t e r 
can be j u d g e d by the l a r g e a m o u n t of r e a c t i v i t y h e l d by the vo ids and the 
fac t t ha t vo id f o r m a t i o n (or , m o r e a c c u r a t e l y , f o r m a t i o n of s t e a m bubb les ) 
i s the m e c h a n i s m tha t g i v e s the boi l ing w a t e r r e a c t o r i t s p r i n c i p a l s h u t ­
down m e c h a n i s m . 

Of the v a r i o u s a p p r o a c h e s u s e d by o t h e r s to m e a s u r e v o i d s , the 
t e c h n i q u e p r o p o s e d by S. U n t e r m e y e r and t r i e d by J . A. Thie e t al,v-*-̂  
s e e m e d to be the m o s t s a t i s f a c t o r y for ou r p u r p o s e s . In t h i s m e t h o d , the 
r a t h e r l o c a l i z e d f o r m a t i o n of v o i d s in a p a r t i c u l a r r e g i o n i s a s s o c i a t e d 
w^ith a c h a n g e in the r a t i o of e p i t h e r m a l n e u t r o n flux to t h e r m a l flux in 
tha t r e g i o n . Th i s change in r a t i o can be deduced f r o m a m e a s u r e d change 
in the c a d m i u m r a t i o . 

Th ie u s e d th i s t e chn ique for m e a s u r i n g the d i s t r i b u t i o n of vo ids in 
E B W R . He w a s ab le to show tha t the c a d m i u m r a t i o did change as a func­
t ion of v e r t i c a l d i s t a n c e along a boi l ing channe l and, in g e n e r a l , could be 
c o r r e l a t e d to the v a r i a t i o n in s t e a m f o r m a t i o n . 

T h e r e f o r e , an e x p o n e n t i a l m o c k u p a s s e m b l y of BORAX V w a s bui l t 
to e x p l o r e the c a d m i u m - r a t i o t e c h n i q u e of m e a s u r i n g v o i d s and, by us ing 
known vo id f r a c t i o n s , to p r e p a r e a c a l i b r a t i o n c u r v e for BORAX V. O the r 



w o r t h w h i l e m e a s u r e m e n t s to i m p l e m e n t the BORAX V exper imenta l p r o g r a m 
w e r e p e r f o r m e d . A s u m m a r y of the p r o p o s e d exponen t i a l p r o g r a m fo l lows: 

a. C a l i b r a t e the a c t u a l c a d m i u m r a t i o with a known void f r a c t i o n 
u n d e r the c o n d i t i o n s of m e a s u r e m e n t a c t u a l l y to be u s e d in 
BORAX V and e s t i m a t e how l o c a l i z e d i s the effect of the void 
on the c a d m i u m r a t i o . 

b . Make r a d i a l flux m e a s u r e m e n t s a c r o s s a t y p i c a l BORAX V 
fuel a s s e m b l y , i n v e s t i g a t i n g the f lux- f l a t t en ing effect of poison 
r o d s and of 9-9% U '̂̂ ^ e n r i c h e d fuel r o d s . 

C. I n v e s t i g a t e s o m e of the n u c l e a r p a r a m e t e r s of BORAX V, 
w h e r e a p p l i c a b l e , a s w e l l a s the exponen t i a l . 

d. Check out the d a t a - l o g g i n g e q u i p m e n t p r o p o s e d for use in the 
BORAX V p r o g r a m . Both the m e c h a n i c a l and e l e c t r o n i c s e c ­
t ions w e r e to be t e s t e d and n e c e s s a r y c h a n g e s m a d e be fo re the 
e q u i p m e n t would be i n s t a l l e d at BORAX V. 

III. E X P E R I M E N T A L E Q U I P M E N T 

A. E x p o n e n t i a l A s s e m b l y 

The e x p o n e n t i a l a s s e m b l y w a s bu i l t to m a t c h a s c l o s e l y as p o s s i b l e 
the p h y s i c a l d i m e n s i o n s and m a t e r i a l c o m p o s i t i o n to be found in a c l e a n 
BORAX V.v2) The f u n d a m e n t a l uni t i s the f u e l - e l e m e n t s u b a s s e m b l y , wh ich 
i s e s s e n t i a l l y a 4 in. x 4 in. a l u m i n u m box wi th 49 fuel e l e m e n t s pos i t i oned 
on ^ - i n . c e n t e r s in a s q u a r e a r r a y . G r i d p l a t e s at top and b o t t o m hold the 
e l e m e n t s in pos i t i on . When t h e s e s u b a s s e m b l i e s a r e loaded into BORAX, 
e a c h g r o u p of four is s u r r o u n d e d by a- | -- in. c o n t r o l r o d c h a n n e l which i s 
e i t h e r f i l led wi th c o n t r o l r o d s o r a l u m i n u m f o l l o w e r s of the s a m e d i m e n ­
s i o n s . F o r the e x p o n e n t i a l load ing , the c o n t r o l r o d c h a n n e l s w e r e e l i m i n a t e d , 
bu t the c o m p o s i t i o n of the ind iv idua l s u b a s s e m b l y was r e t a i n e d . 

The e x p o n e n t i a l a s s e m b l y w a s h o r i z o n t a l and m o c k e d up nine of the 
BORAX V s u b a s s e m b l i e s . The nine s u b a s s e m b l y m o c k u p s w e r e d iv ided 
in to t h r e e t r a y s of t h r e e e a c h . The a m o u n t of a l u m i n u m in the t r a y s and 
e n d - s u p p o r t p l a t e s gave the s a m e m e t a l - t o - m o d e r a t o r - t o - f u e l r a t i o s p e r 
s u b a s s e m b l y a s o c c u r s in BORAX V. The t h r e e t r a y s w e r e p l a c e d in an 
a l u m i n u m tank l a r g e enough to give a m i n i m u m of -|- in. of w a t e r a r o u n d 
the e n t i r e a s s e m b l y . 

F r o m t h e o r e t i c a l and e x p e r i m e n t a l w o r k , i t w a s d e c i d e d ( see 
Appendix) to l i m i t the s i z e of the a s s e m b l y to a m a x i m u m of 349 fuel 



e l e m e n t s s u r r o u n d e d b y a l a y e r of 2 0 - m i l c a d m i u m . T h i s w a s a c c o m ­
p l i s h e d b y r i v e t i n g s h e e t s of c a d m i u m on a l u m i n u m f r a m e s a n d f i x i n g 
t h e s e i n t h e a p p r o p r i a t e p o s i t i o n s m e a c h f ue l s u b a s s e m b l y . 

F i l l , d r a i n , a n d o v e r f l o w l i n e s w e r e p r o v i d e d t o t h e t a n k . A l s o , a 
p r o v i s i o n w a s m a d e f o r a c o u n t e r t o b e p l a c e d a d j a c e n t t o t h e p e r i p h e r y 
of t h e a s s e m b l y i n o r d e r t o m o n i t o r n e u t r o n f l u x e s . 

P r o v i s i o n s w e r e m a d e t o l o a d t h e d e t e c t o r s a l o n g t h e a x i s of t h e 
a s s e m b l y in s e v e r a l r a d i a l p o s i t i o n s . T h e d e t e c t o r s c o u l d b e r e m o v e d 
a f t e r a n i r r a d i a t i o n w i t h o u t u n l o a d i n g t h e a s s e m b l y , t h e r e b y r e d u c i n g 
e x p o s u r e of p e r s o n n e l t o r a d i a t i o n , a s w e l l a s t i m e l o s t b e t w e e n i r r a d i a ­
t i o n a n d c o u n t i n g . F i g u r e 1 s h o w s t h e a s s e m b l y l o a d e d w i t h t h e m i d d l e 
a n d l o w e r t r a y of e l e m e n t s . F i g u r e 2 s h o w s t h e t o p t r a y w i t h t h e c a d ­
m i u m s h e e t m p l a c e . F i g u r e 3 i s a v i e w of a s s e m b l y j u s t p r i o r t o i n s e r t ­
i ng t h e e x p o n e n t i a l e x p e r i m e n t i n t o t h e T R E A T a c c e s s h o l e . 

Fig. 1. Assembly View Showing Fig. 2. Assembly View Showing Completed 
Middle Tray of Elements Assembly and Surrounding Cadmium 

Sheath 



Fig. 3. View of Assembly Just Prior to 
Insertion into Source (TREAT) 

B . N e u t r o n S o u r c e : T R E A T 

T h e T R E A T R e a c t o r ( 3 ) w a s 
u s e d t o p r o v i d e t h e n e u t r o n s o u r c e 
f o r t h e e x p o n e n t i a l a s s e m b l y . An a l u ­
m i n u m l i n e r w a s f a b r i c a t e d to f i t i n t o 
o n e of t h e a c c e s s h o l e s a s s h o w n in 
t h e F i g s . 1 t h r o u g h 3. T h e l i n e r b u t t e d 
u p a g a i n s t t h e p e r m a n e n t r e f l e c t o r of 
t h e r e a c t o r . R a i s i n g t h e m o v a b l e r e ­
f l e c t o r b l o c k f o r m e d a t r u n c a t e d n e u ­
t r o n c o l l i m a t o r , 15 in . h i g h b y 4 i n . 
w i d e a t t h e r e a c t o r c o r e a n d 15 i n . 
s q u a r e a t t h e e x p o n e n t i a l a s s e m b l y . 

R a i l s w e r e p r o v i d e d m t h e 
l i n e r a n d o u t s i d e t h e r e a c t o r t o p e r m i t 
r o l l i n g t h e e x p o n e n t i a l a s s e m b l y i n t o 
a n d o u t of p o s i t i o n f o r i r r a d i a t i o n o r 
l o a d i n g c h a n g e s . A p i a n v i e w of t h e r e ­
a c t o r a n d t h e a s s e m b l y i s s h o w n in F i g . 4 . 

C . D e t e c t o r s a n d A s s o c i a t e d 
E q u i p m e n t 

1. D e t e c t o r s 

T h e p r i n c i p a l v a r i a b l e 
t o b e m e a s u r e d w a s n e u t r o n f l u x ; 
t h e d e t e c t o r w a s of U '̂̂ ^ in t h e f o r m 
of a w i r e , c o m p o s e d of a 9 6 . 6 2 w / o Z r 
a n d 3 .38 w / o U " ^ a l l o y . T h i s w i r e 
h a d b e e n q u a l i t y - m a d e f o r u n i f o r m i t y 
a n d h o m o g e n e i t y . F o r m o s t m e a s ­
u r e m e n t s in t h e e x p o n e n t i a l a s s e m ­
b l y , t h e w i r e w a s s n i p p e d i n t o | - i n . 
l e n g t h s a n d w e i g h e d . A f t e r d i s c a r d ­
i n g afe"w b a d s e g m e n t s , t h e d e t e c t o r s 
w e r e of u n i f o r m w e i g h t t o w i t h i n + i % . 

EXPONENTIAL 
ASSEMBLY 

^CONCRETE BLOCKS 
INSERTED TO FILL 

SPACE 

CONCRETE 

ONE REFLECTOR ACCESS 
BLOCK REMOVED 

GRAPHITE 

Fig. 4. Plan View of BORAX V Experiment 
as Installed in TREAT 

F u l l - l e n g t h (~ 32 i n . ) w i r e s of t h e z i r c o n i u m a l l o y a n d u r a n i u m 
w i r e s c o n t a i n i n g 9 3 % U^^^ w e r e a l s o a v a i l a b l e f o r u s e in r u n n i n g t h e t r a v ­
e r s e s . A s w i l l b e e x p l a i n e d l a t e r , t h e y w e r e u s e d a s a c h e c k o u t of t h e w i r e 
c o u n t e r e q u i p m e n t o n l y . 



2. C a d m i u m S h e a t h 

F o r m e a s u r e m e n t of the c a d m i u m r a t i o , t u b e s of 2 0 - m i l - t h i c k 
c a d m i u m w e r e ob t a ined , 35 m i l ID x 75 m i l OD. T h e s e t u b e s w e r e in 
l e n g t h s up to 36 in. long . 

3 . Count ing E q u i p m e n t 

F o r d e t e c t i o n of the ac t i v i t y of the flux d e t e c t o r s , t h r e e i n d e ­
p e n d e n t / 3 - sens i t i ve s c i n t i l l a t i o n c o u n t e r s w e r e u s e d . T h e s e w e r e 3 - m m 
a n t h r a c e n e c r y s t a l s m o u n t e d on RCA p h o t o m u l t i p l i e r t u b e s . S t a n d a r d p r e ­
a m p l i f i e r s , s c a l e r s , and p o w e r supply c o m p l e t e d the b a s i c count ing s y s t e m . 
T h r e e s e t u p s w e r e n e e d e d in o r d e r to count the b a r e and the c a d m i u m -
c o v e r e d w i r e s s i m u l t a n e o u s l y a long w i th a m o n i t o r w i r e wh ich o p e r a t e d a 
p r e s e t c o u n t e r to c o m p e n s a t e a u t o m a t i c a l l y for the ac t i v i t y d e c a y of the 
d e t e c t o r s . It w a s n e c e s s a r y to count a s soon a f te r i r r a d i a t i o n a s p o s s i b l e 
to m a k e u s e of the h igh count ing r a t e w i t h o u t e x c e s s i v e l y h igh i r r a d i a t i o n . 
C a r e h a d to be t aken tha t the t h r e e s e t u p s had the s a m e /3 - sens i t iv i ty so 
tha t one could a s s u m e the s a m e d e c a y s c h e m e r a t e for a l l of t h e m . 

S e p a r a t e h i g h - v o l t a g e and p u l s e - h e i g h t d i s c r i m i n a t o r c u r v e s 
w e r e r u n wi th the t h r e e s e t u p s , u s i n g /3 s o u r c e s of d i f fe ren t e n e r g i e s as 
w e l l a s a Co g a m m a s o u r c e . 

A p p r o p r i a t e s e t t i n g s of the h igh vo l t age and d i s c r i m i n a t o r s 
gave r e a s o n a b l y e q u a l s e n s i t i v i t i e s wi th about 15% of the coun t s coming 
f r o m g a m m a s . It w a s u n f o r t u n a t e tha t , for s e n s i t i v i t y r e a s o n s , it w a s 
n e c e s s a r y to coun t the w i r e s so soon a f t e r i r r a d i a t i o n , du r ing which t i m e 
the d e c a y s p e c t r u m w a s chang ing r a t h e r r a p i d l y . It w a s p o s s i b l e to d e t e c t 
a s m a l l change in the r e l a t i v e s e n s i t i v i t y among the t h r e e s e t u p s dur ing 
the beg inn ing and end of the run . When n e c e s s a r y , c o r r e c t i o n s w e r e m a d e 
to the d a t a . 

The p h o t o m u l t i p l i e r and c r y s t a l w e r e s h i e l d e d by mount ing 
t h e m i n s i d e o p e n - e n d e d l e a d p i g s . 

The w i r e s a m p l e s w e r e p l a c e d in a w i r e h o l d e r a p p r o x i m a t e l y 
ig in. above the c r y s t a l . The r e p r o d u c i b i l i t y of p o s i t i o n w a s we l l wi th in 
n o r m a l count ing s t a t i s t i c s . The l i m i t e d life of the p r o g r a m obv ia ted the 
n e e d of r e m o t e o p e r a t i o n of the e q u i p m e n t , o t h e r than c o n t r o l l i n g the c o u n t ­
ing t i m e wi th the p r e s e t s c a l e r . 

4 . A u t o m a t i c W i r e C o u n t e r 

An a u t o m a t i c w i r e s c a n n e r ( see F i g . 5) had b e e n d e s i g n e d for 
da t a a c q u i s i t i o n on the BORAX V p r o j e c t . I n i t i a l l y , long w i r e s w e r e i r r a ­
d i a t ed in the T R E A T c o r e and a l s o in the e x p o n e n t i a l a s s e m b l y to t r y out 



t h e s y s t e m s a n d t o d e t e r m i n e t h e f e a s i b i l i t y of t h e e x p e r i m e n t . B a s i c a l l y , 
w i t h a f ew m o d i f i c a t i o n s , t h e w i r e c o u n t e r w o r k e d w i t h t h e e x p o n e n t i a l 
a s s e m b l y ; h o w e v e r , t h e g e o m e t r y of t h e s y s t e m w a s s u c h t h a t r a d i a t i o n s 
of t h e o r d e r of 40 t i m e s g r e a t e r w o u l d h a v e b e e n n e e d e d f o r a d e q u a t e 
c o u n t i n g s t a t i s t i c s . T h e i n d i v i d u a l w i r e s e g m e n t s a r r a n g e d in a b e t t e r 
c o u n t i n g g e o m e t r y w e r e u s e d to o v e r c o m e t h i s d e f i c i e n c y . T h e w i r e -
c o u n t i n g e q u i p m e n t i s b e i n g u s e d in t h e r e g u l a r B O R A X p r o g r a m . 

Fig. 5. Wire-counting Equipment 

D . V o i d T u b e s 

T o s i m u l a t e v o i d s , s e a l e d p o l y e t h y l e n e t u b e s of t h e a p p r o p r i a t e 
l e n g t h a n d n u m b e r w e r e p l a c e d b e t w e e n t h e fue l e l e m e n t s of t h e a s s e m b l y . 
V o i d f r a c t i o n s w e r e c a l c u l a t e d on t h e b a s i c c e l l of a 7 - i n . s q u a r e a s 
f o l l o w s : 

% V o i d = N [ . ( l D ) / 2 r 100 

( i ) ^ - (TTR^) 

v/here N is the n u m b e r of void tubes in a channe l , ID the i n s ide d i a m e t e r 
of the po lye thy l ene t u b e s , and R the r a d i u s of fuel rod . F r o m th i s it can 
be s een tha t the e x t r a w a t e r a r o u n d the ou t e r row of fuel r o d s in a s u b ­
a s s e m b l y w a s n e g l e c t e d , s ince it w a s e x p e c t e d that the void effect would 
be f a i r ly l o c a l i z e d a r o u n d the r e g i o n of m e a s u r e m e n t . The po lye thy lene 
tubes a r e of a c o m m e r c i a l p r o d u c t c a l l e d " F l e x i t e . " Tab le I l i s t s the 



s izes used for these exper iments and the void fractions obtainable. Table II 
l i s t s the impur i t i es p re sen t as de termined by a m a s s spectrograph. F o r 
these exper iments , the polyethylene was considered equivalent to water . 

Table I Table II 

POLYETHYLENE TUBE SIZES AND IMPURITIES PRESENT 
VOID FRACTIONS PER TUBE I N POLYETHYLENE 

M e t a l 

A l 

C a 

C r 

F e 

p p m 

100 

4 0 0 

10 

100 

Meta l 

M g 

M n 

Si 

p p m 

4 0 0 

10 

20 

Size 

12 
10 

8 
5 
1 

ID 
(in.) 

0.085 
0.106 
0.133 
0.186 
0.294 

Wal l 
(in.) 

0.016 
0.016 
0.020 
0.020 
0.020 

%Void 

4 ,05 
6 .3 

9 .9 
19.5 
48.0 

The tubes were sealed in appropr ia te lengths by heating the ends to 
the melting point and gently twisting and pulling. A spot check of the ave r ­
age ID of a bundle of these tubes was made by determining the amount of 
liquid n e c e s s a r y to fill the tubes to a known height. This measu remen t 
agreed w^ith the nominal ID as given in Table I. 

E. Associa ted Equipment 

The exponential assembly was filled with water by gravity flow 
through an orifice which l imited the ra te of fill to ~j i n . / m m . A 55-gal 
s ta in less steel d rum was filled with deminera l ized -water and hoisted 
above the level of the exponential a ssembly . F o r draining, the drum was 
set on the floor and the tank emptied at a more rapid ra te than the fill r a t e . 
A water can 'was provided for overflow. Approximate t imes for filling and 
draining -were 30 and 5 min, respec t ive ly . 

A BF3 counter w^as mounted in one corner of the exponential a s s e m ­
bly (inside the cadmium shield, but outside the fuel rods) to monitor change 
in neutron flux resul t ing from changes made in the assembly . It was also 
used to m e a s u r e the changes in neutron multiplication during the initial 
loading. 

F . Fuel 

The assembly used the same fuel rods that were fabricated for 
BORAX V.(2) Of the 6000 e lements made for BORAX V, 349 were b o r ­
rowed for the exponential exper iment . The reca l l of this fuel as BORAX V 
was loaded to i ts full complement of 60 subassembl ies put a t ime l imit on 
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the exponen t i a l p r o g r a n n . E i g h t 9-9% e n r i c h e d u r a n i u m e l e m e n t s , a bo ron -
l o a d e d e l e m e n t , and a ho l low a l u m i n u m e l e m e n t w e r e a l s o ava i l ab l e for 
the e x p e r i m e n t in add i t ion to the r e g u l a r 4 .95% e n r i c h e d u r a n i u m fuel. 

IV. E X P E R I M E N T A L P R O C E D U R E S 

A. In i t i a l Loading of the E x p o n e n t i a l 

Be fo re loading e l e m e n t s in the tank , a ^ - i n . - d i a m e t e r f i s s ion 
c o u n t e r w a s p l a c e d in the c e n t r a l fuel pos i t i on . Th i s w a s in addi t ion to 
the BF3 c o u n t e r m o u n t e d on one c o r n e r of the exponen t i a l a s s e m b l y . The 
t ank w a s f i l led wi th w a t e r and the count r a t e d e t e r m i n e d by the two 
c o u n t e r s as a function of the T R E A T r e a c t o r p o w e r . 

< 10 '(BF3 COUNTER) 

< 10 '(FISSION COUNTER) 

n - FISSION COUNTER AT CENTER 

o - BF COUNTER AT PERIPHERY 

The f i r s t loading w a s 100 e l e m e n t s , the s econd 50 e l e m e n t s , and 
e a c h s u c c e e d i n g loading 25 e l e m e n t s un t i l the a s s e m b l y w a s c o m p l e t e d . 
After e a c h fuel add i t ion and wi th the a s s e m b l y in p l a c e , but be fo re any 

w a t e r w a s added , the T R E A T r e a c ­
to r w a s b r o u g h t to p o w e r to p r o v i d e 
the n e u t r o n s o u r c e . Count r a t e s 
w e r e taken at s e v e r a l w a t e r l e v e l s . 
Dur ing the addi t ion of w a t e r , the 
count r a t e w a s con t inuous ly m o n i ­
t o r e d audib ly . 

The i n v e r s e count r a t e p lo t 
for both c o u n t e r s wi th the full tank 
of w a t e r i s g iven in F i g . 6. By e x ­
t r a p o l a t i o n of the c u r v e , the e s t i ­
m a t e d n u m b e r of e l e m e n t s for a 
c r i t i c a l a s s e m b l y w a s found to be 
s o m e w h e r e be tween 800 and 1000 e l e ­
m e n t s . Th i s is a v e r y l a r g e e x t r a p ­
o la t ion and should be t r e a t e d as such . 

20 160 200 240 
NO OF FUEL ELEMENTS 

Fig. 6. Inverse Count Rate vs Number 
of Fuel Elements 

A f t e r h a v i n g l o a d e d t o a fu l l 348 e l e m e n t s , t he c o u n t e r a t t h e c e n t e r 
w a s r e m o v e d a n d r e p l a c e d w i t h a fue l e l e m e n t , g i v i n g t h e fu l ly l o a d e d e x ­
p o n e n t i a l a s s e m b l y of 349 e l e m e n t s . I t w a s e s t i m a t e d t h a t t h e a s s e m b l y 
r a n a t a po^ve r l e v e l of a b o u t 10"^ w a t t / w a t t of T R E A T p o w e r . 

B . F l u x M e a s u r e m e n t s 

B e c a u s e of t h e l i m i t e d t i m e a v a i l a b l e to c o m p l e t e t h e e x p e r i m e n t s , 
a l l i n v e s t i g a t i o n w a s l i m i t e d t o t h e c e n t r a l f u e l s u b a s s e m b l y a n d to t h e 
r e p r o d u c t i o n of a c t u a l m e a s u r i n g c o n d i t i o n s in B O R A X V , r a t h e r t h a n to 
p e r f o r m w h a t m i g h t h a v e b e e n c l e a n e r e x p e r i m e n t s . 



The w i r e s e g m e n t s w^ere l o a d e d in s equence into the c a d m i u m tube 
p i n c h e d t o g e t h e r a t one end. F r o m 25-50 s e g m e n t s w e r e u s e d . The c a d ­
m i u m t u b e s w e r e then i n s e r t e d into a g - i n . - O D s t a i n l e s s s t e e l t h i m b l e 
wi th a 2 0 - m i l - t h i c k w a l l , the s a m e type a s u s e d in BORAX. The o r i g i n a l 
p l an w a s to load the b a r e w i r e s in a s i m i l a r t h i m b l e to be i r r a d i a t e d a t an 
equa l f lux p o s i t i o n s i m u l t a n e o u s l y wi th the c a d m i u m w i r e , but , when i t b e ­
c a m e n e c e s s a r y to u s e the s e g m e n t e d -wire p i e c e s , it w a s obvious tha t 
they could no t be l oaded into the l a r g e - d i a m e t e r t h i m b l e wi th any hope of 
keep ing t h e m p r o p e r l y p o s i t i o n e d . C o n s e q u e n t l y , they w e r e l oaded f i r s t 
into a 15 -mi l - 'wa l l s t a i n l e s s s t e e l c a p i l l a r y tube v/ith a 3 5 - m i l ID; t h i s 
tube s u b s e q u e n t l y w a s l o a d e d into the t h i m b l e . 

The c a d m i u m - c o v e r e d and u n c o v e r e d d e t e c t o r s w e r e then i r r a d i a t e d 
s i m u l t a n e o u s l y at the equ iva l en t r a d i a l p o s i t i o n s . It should be e m p h a s i z e d 
tha t the c a d m i u m r a t i o and r e s u l t s r e p o r t e d in th i s p a p e r w e r e the r e s u l t 
of e x p e r i m e n t s p e r f o r m e d u n d e r cond i t i ons as d e s c r i b e d and would be a p ­
p l i c a b l e to BORAX V u n d e r the s a m e cond i t ions of m e a s u r e m e n t . 

A p r e l i m i n a r y i r r a d i a t i o n of the w i r e s w a s m a d e and the r e g i o n 
o v e r wh ich the s p e c t r u m w a s s t ab l e d e t e r m i n e d by p lo t t ing the count r a t e 
v s d i s t a n c e on log p a p e r and not ing the r e g i o n of p u r e exponen t i a l fall-off. 
Subsequen t i r r a d i a t i o n s took advan t age of the exponen t i a l r e g i o n only. 

E x t r e m e c a r e w a s t aken whi le loading the t h i m b l e s to a s s u r e 
a c c u r a t e pos i t i on ing of the d e t e c t o r s wi th r e s p e c t to the a s s e m b l y and to 
e a c h o t h e r . The z e r o p o s i t i o n w a s f ixed a t the r e a c t o r s ide of the f ron t 
s u p p o r t p l a t e . The t h i m b l e s t h e m s e l v e s ex tended b a c k t h rough the a s ­
s e m b l y and t h r o u g h r u b b e r - s t o p p e r e d s e a l s at the r e a r of the tank. Th i s 
a l l owed the w i r e s to be r e m o v e d f r o m the a s s e m b l y a l m o s t i m m e d i a t e l y 
a f te r e x p o s u r e . In the c a s e of r a d i a l t r a v e r s e s , the whole a s s e m b l y h a d to 
be un loaded , n e c e s s i t a t i n g l o n g e r wa i t ing p e r i o d s af ter i r r a d i a t i o n and 
s p e c i a l t e c h n i q u e s to r e d u c e p e r s o n n e l e x p o s u r e . 

In m a k i n g r a d i a l t r a v e r s e s , the flux at the c e n t e r of e a c h coo lan t 
channe l u n d e r c o n s i d e r a t i o n w^as m e a s u r e d by mount ing a w i r e s e g m e n t 

in a L u c i t e h o l d e r wh ich a c c u r a t e l y p o s i ­
t ioned the foil be tween the four n e i g h b o r i n g 
fuel r o d s (see F i g . 7). Though c a r e w a s 
e x e r c i s e d in l ining up the w i r e s in a p l a n e 
p e r p e n d i c u l a r to the ax i s of the a s s e m b l y , 
the u n c e r t a i n t y in pos i t i on w a s +5 in. The 
s a m e h o l d e r w a s modi f ied to a c c e p t the 
c a d m i u m - c o v e r e d v / i r e s . In t h i s c a s e , the 
w i r e s w e r e e n c l o s e d in a s h o r t l eng th of 
c a d m i u m tubing p inched a t both e n d s . 

F o r a s t a n d a r d i r r a d i a t i o n , T R E A T 
w a s o p e r a t e d at 67 kw^ for 1200 s e c . Th i s 
c o r r e s p o n d e d to some th ing l ike an e n e r g y 

LUCITE FOIL HOLDER 

FUEL ROD 

Fig. 7. Holder for Detectors Exposed 
in Water Channels 
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r e l e a s e of 800 w a t t - s e c in the c e n t r a l fuel s u b a s s e m b l y of the exponen t i a l a s ­
s e m b l y . Count ing of the fo i ls u s u a l l y b e g a n wi th in 20 m i n of shutdown t i m e . 

W i r e s e g m e n t s w e r e u n l o a d e d f r o m the r o d s in s e q u e n c e . The m o n i t o r 
foil w a s p l a c e d in the t h i r d count ing se tup and o p e r a t e d the p r e s e t c o u n t e r . 
C o r r e s p o n d i n g b a r e and c a d m i u m w i r e s e g m e n t s w e r e counted s i m u l t a n e o u s l y 
in the o t h e r two count ing g e o m e t r i e s . By swi tching foi ls be tween the two g e o m ­
e t r i e s p e r i o d i c a l l y , the r e l a t i v e s e n s i t i v i t y could be d e t e r m i n e d . No a t t e m p t 
w a s m a d e to n o r m a l i z e one run wi th a n o t h e r , s ince only r e l a t i v e c a d m i u m r a t i o s 
w e r e d e s i r e d . 

The count r a t e vs p o s i t i o n w a s p l o t t e d on s e m i - l o g p a p e r over the r e ­
gion w h e r e the e x p e c t e d s t r a i g h t l ine r e l a t i o n s h i p w a s e s t a b l i s h e d , s ince the 
da t a w e r e meaningfu l only for an e q u i l i b r i u m s p e c t r u m . The s l o p e s of the two 
c u r v e s ( c o r r e s p o n d i n g to the c a d m i u m - c o v e r e d a n d b a r e w i r e s ) should be the 
s a m e . 

C. Void P l a c e m e n t 

The m o c k i n g - u p of s t e a m v o i d s in a s t a t i c s y s t e m p o s e s a v a r i e t y 
of q u e s t i o n s ; in t h i s c a s e , h o w e v e r , t h r e e w e r e p a r t i c u l a r l y s igni f icant : 

(1) How l o c a l i z e d i s the void p e r t u r b a t i o n ; o r , s t a t e d in a n o t h e r 
way , how does the p l a c i n g of vo id s o r m a t e r i a l c lo se to the d e t e c t o r affect 
the flux m e a s u r e d by the d e t e c t o r ? ; 

(2) What i s the s t r e a m i n g effect if the vo ids a r e s i m u l a t e d by 
hol low t u b e s 6 to 10 in. l ong? ; and 

(3) Can the m e a s u r e m e n t of a l a r g e voided r e g i o n of known void 
f r a c t i o n be app l i cab l e to a boi l ing w a t e r r e a c t o r when the void f r ac t ion i s 
con t inuous ly chang ing? 

With t h e s e q u e s t i o n s in m i n d , the vo ids 
in Table III and shown in F i g . 8. F o r Runs No 
in 15- in . l e n g t h s . F o r Runs No. 5, 6, and 8, No 
vo ids beginning 1 j in. beh ind the f ront of the a 
r e g i o n a t the f ron t . The ax ia l m e a s u r e m e n t s 

Table IE 

CADMIUM RATIOS FOR VARIOUS VOID FRACTIONS AND VOID ARRANGEMENTS 

Run No. 

1 

2 

3 

4 

5 

6 

7 

8 

Void % 

0 

4 

8 

16 

40 

40 

0-40 

20 

Cadmium Ratio 

61 

5.9 

5.73 

5.38 

6.1/4 64 

5.4/4 25 

6.1/5.48/5.17 

6.28/5.4 

Void 
Arrangement 
(see Fig. 10) 

a 

b 

c 

d 

e 

f 

Remarks 

Void tubes 15 in. long; for full 
lengtti of measuring region 

Void tubes clustered in water channel 

Tubes extend from 72-15 in. only. 
Unvoided region from 0-7i in 

Cadmium ratio measured in central 
fuel position 

Five (5) regions eacti about 3i in. long 
ranging in voids of 0,10,20,30,and40% 

Central fuel position contains an 
aluminum rod filled witti water 

Fig. No. 

10 

11 

12 

13 

14 

15 

16 

17 

w e r e m o c k e d up a s exp la ined 
. 2 -4 , No. 12 tubing w a s u s e d 
. 8 tubing w a s u s e d with the 
s s e m b l y , leaving the unvoided 
then b e g a n 4-2- in. in f ront of 

the void r eg ion and ex tended 
4-|- in. into the vo ided r eg ion . 
Run No. 7 w a s an a t t e m p t to 
m o c k up an ax ia l v a r i a t i o n in 
vo ids going f r o m 0% - 1 0 % -
2 0 % - 3 0 % - 4 0 % ove r l e n g t h s 
of a p p r o x i m a t e l y 3 j i n . e a c h . 
Void t u b e s of 20%and 10%were 
coupled a s shown in F i g . 8f. 
The 10% void began about 5 in. 
beh ind the front of the 
a s s e m b l y . 



AP]o Void 

16% Void AQf^o Void 

o! 

40% Void (Nominal) 
35<7o Void (Effective) 

f 
40% - 30% - 20% - 10% Void 

Void Arrangement and 
Detector Location (X) 

Fig. 8. Void Arrangement and Detector Location 



16 

D. F l u x - f l a t t e n i n g E x p e r i m e n t s 

A l i m i t e d n u m b e r of r u n s w e r e m a d e to i n v e s t i g a t e the p o w e r d i s ­
t r i b u t i o n a c r o s s the s u b a s s e m b l y . In addi t ion to the n o r m a l loading of 
f o r t y - n i n e , 4 .95% e n r i c h e d U^^^ r o d s , r a d i a l p lo t s w e r e m a d e wi th a b o r o n -
loaded r o d in a c o r n e r p o s i t i o n , a v / a t e r - f i l l e d a l u m i n u m r o d a t the c e n t e r , 
and a r ing of e igh t 9.9% U '̂̂ ^ r o d s s u r r o u n d i n g the c e n t e r rod . F i g u r e 9 
shows the conf igu ra t ion of the s p e c i a l r o d s for t h e s e r u n s . 

-BORON ROD 

-WATER ROD 

9 9 % ENRICHED 
U-235 RODS 

Fig. 9 

Configuration for Flux 
Flattening Measuremenc 

V. E X P E R I M E N T A L R E S U L T S 

A. A x i a l T r a v e r s e s 

T h e raw^ d a t a o b t a i n e d on t h e a x i a l t r a v e r s e a s p l o t t e d on a s e m i ­
l o g g r a p h a r e p r e s e n t e d i n F i g s . 1 0 - 1 7 . T h e b e s t e x p o n e n t i a l f i t t o t h e 
d a t a g a v e a n e - f o l d i n g l e n g t h of 1 7 . 9 c m f o r t h e a s s e m b l y . W i t h i n t h e a c ­
c u r a c y of t h e e x p e r i m e n t , t h e s l o p e w a s c o n s i d e r e d c o n s t a n t f o r a l l of t h e 
a x i a l t r a v e r s e s e x c e p t f o r t h e n o n e q u i l i b r i u m s e c t i o n a t t h e i n t e r f a c e b e -
tw^een v o i d r e g i o n s . 
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Fig. 17. Axial Traverse - 0, 20% Void 
with Water Rod at Center 

B. Rad ia l T r a v e r s e s 

The c a d m i u m r a t i o s w e r e 
c a l c u l a t e d by dividing the count r a t e 
for the b a r e d e t e c t o r s by the count 
r a t e of the c a d m i u m - c o v e r e d d e t e c ­
t o r at the s a m e ax ia l pos i t i on and 
mu l t i p ly ing by a f ac to r which a d ­
j u s t e d for the d i f fe rence in s e n s i t i v i t y 
of the count ing e q u i p m e n t . Th i s f a c ­
t o r of 1.08-1.12 w a s d e t e r m i n e d 
i n d e p e n d e n t l y for e a c h run . 

The c a l c u l a t e d c a d m i u m r a t i o 
and d e s c r i p t i o n of the r u n s a r e p r e ­
s e n t e d in Table III. All of the r u n s , 
w i th the excep t ion of No. 6, w e r e in 
s t a n d a r d d e t e c t o r p o s i t i o n s as g iven 
by the c r o s s e s in F i g . 8a t h r o u g h 8d. 
Run No. 6 w a s at the c e n t r a l fuel 
p o s i t i o n ( see F i g . 8e) . 

The r e s u l t s of two of the r a d i a l flux t r a v e r s e s a c r o s s the d i agona l 
a r e g iven in F i g s . 18 and 19. It can be s een tha t the e p i t h e r m a l flux i s 
n e a r l y f la t a c r o s s a s u b a s s e m b l y , w h e r e a s the t h e r m a l flux shows a 
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c o n s i d e r a b l e g r a d i e n t , peak ing s t r o n g l y in the o u t e r w a t e r c h a n n e l s . 
Obv ious ly , the c a d m i u m r a t i o i s a s t r o n g function of pos i t i on . F o r t h i s 
r e a s o n , a l l but one of the ax i a l t r a v e r s e s w e r e m a d e at the s a m e r a d i a l 
p o s i t i o n . The m a g n i t u d e of the da t a f r o m the c a d m i u m - c o v e r e d d e t e c t o r 
have b e e n c o r r e c t e d to ad jus t for the d i f f e r e n c e s in the ax ia l pos i t i on of 
the b a r e and c a d m i u m - c o v e r e d w i r e s . H o w e v e r , the c a d m i u m r a t i o s c a l ­
c u l a t e d a t the s a m e r a d i a l p o s i t i o n a s g iven in Tab le III a r e about 7% h igh . 
T h i s m a y be a c c o u n t e d for by the i n c r e a s e d t h i c k n e s s of s t a i n l e s s s t e e l 
s u r r o u n d i n g the b a r e d e t e c t o r s du r ing the ax ia l m e a s u r e m e n t s . 

/ 

2 1 0 1 2 
DETECTOR POSITION, DIAGONALLY (inches) 

\ ^ " ^ 

Cd COVERED 

3 2 1 0 1 2 3 
DETECTOR POSITION ACROSS DRAWER, DIAGONALLY(mches) 

Fig. 18. Radial Traverse - CPjo Void Fig. 19. Radial Traverse - 16% Void 

R a d i a l d a t a , o b t a i n e d w i t h b a r e d e t e c t o r s o n l y , w e r e a l s o t a k e n f o r 
t h r e e o t h e r c o n f i g u r a t i o n s . T h e s e d a t a i n c l u d e d a d d i t i o n a l d e t e c t o r p o i n t s 
a c r o s s t h e f l a t s a s w e l l a s t h e d i a g o n a l . F r o m s u c h d a t a , t h e r a t i o of 
m a x i m u m - t o - a v e r a g e f i s s i o n r a t e in o n e p l a n e of a s i n g l e s u b a s s e m b l y 
w a s c a l c u l a t e d . T h e a v e r a g e f i s s i o n r a t e w a s o b t a i n e d b y a s s i g n i n g a f l ux 
v a l u e t o e a c h of t h e w a t e r c h a n n e l s b y m e a n s of t h e m e a s u r e d v a l u e s f o r 
t h e s e c h a n n e l s w h e r e a d e t e c t o r h a d b e e n i r r a d i a t e d . B y s y m m e t r y a n d 
i n t e r p o l a t i o n of t h e m e a s u r e d d a t a , f l u x v a l u e s w e r e a s s i g n e d t o t h e o t h e r 
c h a n n e l s . T h e f i s s i o n r a t e in a g i v e n f ue l e l e m e n t w a s t h e n s e t p r o p o r t i o n a l 
t o t h e a v e r a g e of t h e f o u r f l u x e s a s s i g n e d t o t h e s u r r o u n d i n g w a t e r c h a n n e l s 
m u l t i p l i e d b y t h e fue l e n r i c h m e n t a n d d i s a d v a n t a g e f a c t o r ( D F ) . T h e 
m a x i m u m - t o - a v e r a g e f i s s i o n r a t e ( o r p o w e r p r o d u c t i o n ) w a s c a l c u l a t e d b y 



20 

s i m p l e n u m e r i c a l i n t e g r a t i o n : 

( F R ) n i a x ( F m a x ) ( D F ) ( W ) 

(FR) 
a v e m ( 1 / m ) 2 F i (DF)i (w)i 

i = i 

w h e r e 

F i s the a s s i g n e d flux va lue 

D F i s the d i s a d v a n t a g e f a c t o r 

w i s the e n r i c h m e n t 

m i s the n u m b e r of fue led r o d s . 

The v a l u e s of the D F ' s u s e d w e r e 1.17 and 1.29 for the 4 .95% and 
9.9% e n r i c h m e n t s , r e s p e c t i v e l y , a s quo ted in ANL,-6302, BORAX V D e s i g n 
and H a z a r d s S u m m a r y R e p o r t . The r e s u l t s of t h e s e r a t i o s u n d e r the 
v a r i o u s a s s e m b l y c o n d i t i o n s a r e g iven in Table IV. 

T a b l e IV 

M A X I M U M - T O - A V E R A G E FISSION RATES 

Run No. 

1 

3 

4 

9 

10 

Void % 

0 

8 

16 

0 

0 

Max/Ave 

1.23 

1.24 

1.25 

1.12 

1.29 

R e m a r k s 

B o r o n r o d in c o r n e r , w a t e r 
r o d in c e n t e r * 

8 -9 .9% e n r i c h e d r o d s in 
r ing a r o u n d c e n t e r rod 

F i g . No. 

8b 

8c 

9 a 

9b 

*Although only one b o r o n r o d w a s u s e d , the r a t i o w a s c a l c u l a t e d 
to inc lude the effect of a b o r o n rod at e a c h c o r n e r . 

C. C a d m i u m R a t i o s v s Void F r a c t i o n s 

A c c o r d i n g to the a n a l y s i s by Th ie e t a l . , ( l ) a change in void f r a c t i o n s 
p r i n c i p a l l y af fects the r a t i o of the e p i t h e r m a l to t h e r m a l flux. The r a t i o of 
the e p i t h e r m a l (or , m o r e s t r i c t l y s p e a k i n g , the e p i c a d m i u m ) flux for the 
vo ided and unvo ided c a s e i s g iven as (CdR-1) wi th v o i d / ( C d R - l ) wi thout vo id . 
F o l l o w i n g the s u g g e s t i o n s of T h i e , the c a l i b r a t i o n of vo id da t a i s p lo t t ed a s 
t h i s r a t i o v s (1 - vo id f r a c t i o n ) . The r e s u l t of the e ight r u n s i s g iven in 
F i g . 20. 



It c a n b e s e e n tha t the da ta a r e 
c o n s i s t e n t wi th in the e x p e r i m e n t a l u n ­
c e r t a i n t y , but t ha t the m e t h o d does no t 
l end i t se l f to a h igh d e g r e e of a c c u r a c y . 

Two add i t iona l c o m m e n t s should 
be m a d e wi th r e s p e c t to F i g . 20. F i r s t , 
in Run No. 8, in which the c a d m i u m r a t i o 
w a s d e t e r m i n e d wi th 20% void and the 
c e n t r a l fuel p o s i t i o n f i l led wi th w a t e r , 
even though t h e s e f a c t o r s changed the 
va lue of the c a d m i u m r a t i o , the r a t i o 
of (CdR-1) wi th v o i d / ( C d R - l ) wi thout void 
p l o t t e d on th i s g r a p h fa l l s on the c u r v e . 

The second c o m m e n t r e f e r s to Run No. 6, wh ich w a s t aken at the 
c e n t r a l fuel p o s i t i o n s u r r o u n d e d wi th 30% void (see F i g . 8) and i s p lo t t ed 
on F i g . 20 a s a b l a c k s q u a r e . F r o m F i g s . 14 and 17, in wh ich s h a r p d i s ­
c o n t i n u i t i e s v / e re m a d e b e t w e e n vo ided and unvoided r e g i o n s , i t can be 
i n f e r r e d t h a t the effect of the vo ids on the c a d m i u m r a t i o i s l o c a l i z e d to 
wi th in a r e g i o n of +4 in. T h u s , we would expec t f r o m Run No. 6 tha t the 
ef fect ive vo id w a s some 'where b e t w e e n 30% and 40%, i n s t e a d of 40% as 
l i s t e d on the t a b l e . An a t t e m p t w a s m a d e to p r o r a t e the void ove r a 4 - i n . 
r a d i u s , and a c o r r e c t e d effect ive vo id f r ac t i on of 35% w a s ob ta ined , which 
i s p l o t t e d as an open s q u a r e in F i g . 20. 

D. D i s a d v a n t a g e F a c t o r 

The d i s t r i b u t i o n of f i s s i on r a t e a c r o s s the d i a m e t e r of a fuel r o d 
w a s m e a s u r e d to d e t e r m i n e the flux d e p r e s s i o n and to m a k e an e s t i m a t e 
of the d i s a d v a n t a g e f a c t o r for a fuel r o d and m o d e r a t o r ce l l s y s t e m . A 
s p e c i a l fuel rod h a d b e e n m a d e for the p r e v i o u s c r i t i c a l a ,ssembly in 
Z P R - V I I . Th i s r o d w a s modi f i ed to a l low a g " i^ - d e t e c t o r s e g m e n t to be 
m o u n t e d a c r o s s the d i a m e t e r . Addi t ional d e t e c t o r s e g m e n t s w e r e m o u n t e d 
on the s u r f a c e of the fuel e l e m e n t , and the e l e m e n t moun ted in a pos i t i on 
so the m e a s u r e m e n t "would be m a d e along one of the a s s e m b l y d i a g o n a l s . 
After i r r a d i a t i o n , the w i r e w a s a c c u r a t e l y sn ipped into four equa l s e g m e n t s 
for d e t e r m i n a t i o n of the count ing r a t e p e r un i t weight . By a rough n u m e r i c a l 
i n t e g r a t i o n a c r o s s the d i a m e t e r , the r a t i o of the a v e r a g e - t o - e d g e flux w a s 
c a l c u l a t e d to be 0 . 9 1 . 

The flux d i s t r i b u t i o n t h r o u g h o u t a w a t e r channe l w a s a l s o m e a s u r e d 
by m e a n s of a h o l d e r shown in F i g . 7. The r a t i o of the a v e r a g e flux to the 
flux a t the edge of an e l e m e n t w a s c a l c u l a t e d f r o m t h e s e po in t s and found 
to be 1.07. The d i s a d v a n t a g e f a c t o r , wh ich m a y be defined as the r a t i o of 
the a v e r a g e flux in the m o d e r a t o r to the a v e r a g e flux in the fuel rod , w a s 
then d e t e r m i n e d in t h i s a r r a y to be 0 m / 0 f = 1.18. T h i s is in good 

\ \ r 
o (0-40%VOID) 
X (SINGLE VOID t^EASUREMENT) 
• (MEASURED AT CENTER) 
a (CORRECTED FOR LOCAL 

VOID FRACTION) 

0 8 07 
(l-VOID FRACTION) 

Fig. 20. Cd Ratio vs Void Fraction 



agreement with a value of 1.19 as given in ANL-6302. In both of these flux 
determinat ions the data were insufficient for obtaining any rea l degree of 
accuracy, so the resu l t should be taken only as substantiating the calculated 
disadvantage factor. 
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VIII. A P P E N D I X 

C a l c u l a t i o n of kgff 

kef f w a s c a l c u l a t e d f o r c y l i n d r i c a l fue l a r r a y s of t h r e e d i f f e r e n t 
r a d i i i n o r d e r t o e s t a b l i s h a s a f e a n d w o r k a b l e s i z e . F o u r - g r o u p c r o s s 
s e c t i o n s w e r e o b t a i n e d b y u s e of t h e M U F T a n d S O F O C A T E c o d e s . S e p ­
a r a t e M U F T p r o b l e m s w e r e w o r k e d o u t f o r e a c h of t h e t h r e e s i z e s , s i n c e 
t h e h o m o g e n i z e d c o m p o s i t i o n d o e s v a r y s l i g h t l y a s t h e r a d i u s i s c h a n g e d . 
T h e c a l c u l a t e d g e o m e t r i c a l b a c k i n g w a s a l s o g i v e n f o r e a c h s i z e . N u m b e r 
d e n s i t i e s , g i v e n a s i n p u t f o r t h e c r o s s - s e c t i o n c o d e s , a r e a d j u s t e d w i t h 
d i s a d v a n t a g e f a c t o r s i n t h e t h e r m a l g r o u p ( S O F O C A T E ) a n d w i t h s e l f -
s h i e l d i n g in t h e r e s o n a n c e r e g i o n ( M U F T ) . T h e s e f a c t o r s w e r e o b t a i n e d 
in t h e s a m e m a n n e r a s w a s r e p o r t e d f o r t h e r e f e r e n c e d e s i g n . 

F i g u r e 21 g i v e s a c r o s s - s e c t i o n a l v i e w of t h e c o r e a n d i n d i c a t e s 
t h e g e o m e t r y of t h e c a s e s c o n s i d e r e d . T h e s i z e s a n d c o r r e s p o n d i n g kgff 
o b t a i n e d b y t h e u s e of t h e o n e - d i m e n s i o n a l c o d e , R E - 1 2 2 , a r e s u m m a r i z e d 
in T a b l e V. 

Loading Radius No. of Fuel Rods 

A 11.4 cm 185 
B 13.7 cm 277 
C* 15.0 cm 349 

*Fuel loading surrounded with cylinder 
of .020 cadmium. 

Fig. 21. Axial and Transverse Section through BORAX V Experiment 



T a b l e V 

SUMMARY OF R E - 1 2 2 CRITICALITY CALCULATIONS 
F O R BORAX V E X P O N E N T I A L ASSEMBLY 

P r o b l e m 
N u m b e r 

622201 

2 

3 

4 
( c a d m i u m clad) 

Rad ius 
(cm) 

11.4 

13.7 

15.0 

15.0 

Re f l ec to r 
T h i c k n e s s (cm) 

9.02 

6.72 

5.42 

a s for c a d m i u m in 
t h e r m a l g r o u p given 

N u m b e r of 
F u e l Rods 

185 

277 

349 

349 

keff 

0.773 

0.838 

0.857 

0.779 

The w o r t h of the e x p o n e n t i a l c o m p o s i t i o n i s c o m p a r e d wi th tha t of 
the r e f e r e n c e BORAX V a l l - b o i l i n g c o r e in F i g . 22, w h e r e i n kgff vs s i ze i s 
g iven for the two c a s e s . Al though the a v a i l a b l e r a n g e for the exponen t i a l 
i s r e s t r i c t e d , it m a y be e x p e c t e d t h a t a cyc l ing about the BORAX V r e f e r ­
ence l ine should o c c u r , s i nce the c o m p o s i t i o n of the exponen t i a l a s s e m b l y 
i s m o r e a c c u r a t e l y dep ic t ed ( c o m p o s i t i o n a l v a r i a t i o n s o c c u r a s the c r o s s 
r e g i o n s b e t w e e n m o c k e d - u p s u b a s s e m b l i e s a r e added wi th i n c r e a s i n g s i z e ) . 

Keff ^. 

-HOMOGENIZED 
BORAX Y FUEL 

-EXPONENTIAL EXPERIMENT IN TREAT 
CADMIUM SHEET ENCIRCLING CORE 

PLOT OF Keff ws SIZE OF CORE 

20 
CORE RADIUS (centimeters) 

Fig. 22. Reactivity vs Core Size for Exponential (Calculated) 

The v o l u m e f r a c t i o n s , n u m b e r d e n s i t i e s , and c r o s s s e c t i o n s for the 
r e f e r e n c e d e s i g n and a l s o for the 3 4 9 - f u e l - r o d exponen t i a l a s s e m b l y a r e 
c o m p a r e d in Tab le VI. H o m o g e n i z a t i o n of the c o n t r o l r o d fo l l ower s and 
o t h e r s t r u c t u r a l a l u m i n u m in the r e f e r e n c e des ign l e a d to a s l igh t ly d i f fe r ­
en t c o m p o s i t i o n than a c h i e v e d in the exponen t i a l . 



T a b l e VI 

N U C L E A R DATA, BORAX V E X P O N E N T I A L E X P E R I M E N T 
( 1 5 - c m R a d i u s C o r e M a t e r i a l , V o l u m e F r a c t i o n s ) 

M a t e r i a l 

H^O 
Al 

Type 304 SS 
U O 2 

E x p o n e n t i a l 

0 .5979 
0 .05031 
0 .05404 
0 .2978 

BORAX V Ref. D e s i g n 
Cold B o i l e r 

0.5071 
0.2222 
0.04159 
0.2292 

N U M B E R D E N S I T I E S (Adjus ted for S O F O C A T E Input) 

E l e m e n t 

H 
0 
F e 
N i 

Al 
Cd 
U235 

U " 8 

E x p o n e n t i a l * 

4 .218 (-2) 
3.326 (-2) 
2.974 (-3) 
3.909 (-4) 
3.326 (-3) 
8.496 (-4) 
3.037 (-4) 
5.779 (-3) 

BORAX V Ref. Des ign (2 ) 
Cold B o i l e r * 

3.545 (-2) 
2.671 (-2) 
2.237 (-3) 
4 .232 (-4) 
1.385 (-2) 
5.751 (-4) 
2.277 (-4) 
4 .625 (-3) 

*The n u m b e r s in p a r e n t h e s e s i n d i c a t e the p o w e r s of 10 by wh ich 
the t a b u l a t e d v a l u e s a r e to be m u l t i p l i e d to g ive n u c l e i / ( b a r n ) ( c m ) . 

F O U R - G R O U P CORE CROSS SECTIONS F O R THE 
BORAX V E X P O N E N T I A L AND 

C O M P A R A T I V E BORAX V R E F E R E N C E VALUES 

G r o u p 1 
(10 Mev - 0.821 Mev) 

G r o u p 2 
(0.821 M e v - 5.53 kev) 

G r o u p 3 
(5 .53 kev - 0 .625 ev) 

G r o u p 4 
(Below 0 .625 ev) 

E x p . 
ref . 

E x p . 
ref. 

E x p . 
ref. 

E x p . 
ref. 

D 

2 .2403 
2 .3835 

0 .9913 
1.0557 

0 .6555 
0.7681 

0.2747 
0 .3224 

2a 

0 .004689 
0.0037 

0 .002716 
0.0021 

0 .02489 
0 .0193 

0.1607 
0.1259 

Zr 

0.09102 
0.0776 

0 .08795 
0 .0765 

0 .007725 
0.0681 

VZf 

0 .00835 
0 .0063 

0.00137 
0.0011 

0 .01663 
0.0127 

0.2760 
0.2115 


