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THE NOTION OF COMPLEXITY

by

W. A. Beyer, M. L. Stein, and S. M. Ulam

ABSTKACT

The notion of the arithmetic complexity |[n| of an integer n

is defined in terms of the minimum number of additions,

multiplications,
1's to form n.

n is called complicated if |n| >

Of the first 19
jecture about a
proposed. Some

and exponentiations required to combine
The value of |[n| 1is calculated for n < 27

njJ for every n-* < n.

complicated numbers, 14 are prime. A con-
relation between complexity and entropy is
computations are presented to support this

conjecture.

I. INTRODUCTION

In this report we discuss notions of complex-
ity in some algebraic structures. These notions
are also applicable to more general combinatorial
situations that perhaps lack any algebraic pattern
in the classical sense. We concentrate on a few
special cases for which we studied and calculated
a special notion of complexity. Essentially, we
examined a special notion of complexity for ordinary
integers with a little excursion on such a notion
for integers modulo a prime

The notion of complexity, in our view, 1is
separate, though associated with the idea of the
amount of information or entropy of a system. We
mention briefly a possible axiomatic approach to
defining a real number called complexity for ele-
ments of a set or of a class on which certain oper-
ations are performed. These could be binary opera-
tions; our set could be a set of integers, and the
operations could be addition, multiplication, and
exponentiation, for example. It is this case that
was examined on a computing machine and to which
most of this report is devoted.

Another case would be a class of subsets of a
given set, with allowed operations being the

Boolean operations of union and intersection or

union and complementation. One could add other
operations, for example, the direct product of sets
and also projection. This would correspond to
allowing quantifiers in our theory. One can study
a notion of complexity for vectors in a countable
space or even in the continuum. An important study
would be that of a relative complexity; that is to
say, complexity of elements or "expressions" when
the complexity of certain symbols is normalized to
1. In what has been sometimes called "speculation"
on constants in physical theories, for example, the
whole art seems to depend on the success of at-
tempts to define some known important numbers, e.g.

the dimensionless ratios

Mproton/Melectron 1836.11..

and

e /he - 137.1..

by use of only a few artificially introduced con-
stants which should be as "simple" as possible.
(cf. the attempts by Eddington'*' and some very re-
cent ones by Good2 and Wyler.3)

Considered "genetically," a mathematical
theory resembles a tree in that one obtains from a

given number of symbols corresponding to "variables'



and from a number of allowed operations, expressions
that elongate by branching. The simplifications
and abbreviations may then reduce the length of the
expressions.

One could try to define complexity in a math-
ematical structure by postulating certain of its
properties, somewhat like postulating properties of
a measure

Let the structure, S, consist of elements x,
...... It may be finite or infinite. We have in

the set S a number of, say, binary operations R",

R Rh. We want to assign a number c(x) > 0 to

"

each element x of S and to each R® (1 = 1 ... n) so

that the following properties should hold.

a. If z = R"(x,y), then c(z) = c(R"(x,Yy)
< c(x) + cly) + c(R") i=1 ... n.
b. For each element z, if z = R"(x,y), we

should have for one case at least

c(z) = c(x) + c(y) + c(Rj).
c. z(xQ) = z(x*) = ... z(xn) f°r some pre-
assigned elements x 5 X .

Needless to say, one can define analogous desiderata
for the case in which the operations are more gen-
eral than binary ones.

Obviously, in the case to which our exercise
is devoted, these postulates are satisfied. More-
over, they define the complexity uniquely 1if, as
must be the case in general, the complexity was
normalized for some elements. (In our case, we as-—
sume the complexity of the integer 0 to be equal to
I. We hope to study this notion more thoroughly
for the more general case and also to perform ex-
periments to determine complexity functions for the
case in which S is a class of sets” Ultimately,
one would wish to discuss the complexity of genetic
codes and biological organisms quantitatively.

("Integer" always means a positive integer.)

II. ARITHMETIC COMPLEXITY OF INTEGERS

The arithmetic complexity [n) of an integer n
is defined as the fewest number of operators: +, x,
xx (addition, multiplication, and exponentiation)
which combine I's to form n. Thus, [1] =0; 2] =
1 since 2=1+1; and |5/ =4 since 5 = (1 + 1)xx

(1 + 1) + 1 and not fewer than four operators with

1's will form five. Obviously, for a and b inte-
gers, la + bl|, labl, and [a*3] are each not more than

la] + [b| + 1. For an infinity of integers n, the
relation |n + 1| = |n| + 1 holds.

For the purpose of calculating the complexity
of some integers, all correct formulas (up to some
number of operators) involving +, x, xx, and the
number 1 were enumerated using parenthesis-free
notation on a computer. It required one hour of
computer time to enumerate the integers with com-
plexity < 6. Ralph Cooper made the following ob-
servation. Each correct formula involving n (> 0)
operators is the composition of two formulas, one
formula with n” operators and one formula with n”
operators such that n = n® + n™ + 1. One generates
the integers of complexity n by first generating
tables of integers of complexity < n. One parti-
tions n - 1 into n® + in all ways and combines
the integers of complexity n” with the integers of
complexity n” to produce integers of complexity not
larger than n. This method is considerably more

efficient than the previous method. Table I lists

the complexity of all integers < 2'".

From the above construction, one sees that
an upper bound f."*'(k) to £(k), the number of inte-

gers of complexity k, 1is given by the solution of

sk + 1) =>" xU) -9
'j:O

with ~(0) = 1. The solution to this equation is

given by

which implies that

Y00 < °(2k k-5/2

Two additional forms of complexity have been
considered and calculated.
a. Complement complexity. To make complexity sym-
metric in 0's and 1's, we introduce a slightly
different complexity, the complement complexity
K(yln). Define the complement operation C by
C(x|n) = 2n - 1 - x. K(yln) 1is defined as the
fewest operations of addition, multiplication,
exponentiation, and complementation that combine

1's to form y. In the count of operations, the
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Integer
1
3
U
5 6 8
7 10 16
i 12 17
i3 1b 15
513 729 i02b
21 22 30
25* 269 32b
23 31 35
127 130 ibS
Itse 515 5786
LI b2 bb
Tttt 112 123
251 252 260
576 627 6*6
b1 b7 61
1to 1 bft 150
23U 261 262
bo2 b05 b35
<51 67ft 607
7 92 93
17* 175 176
272 260 203
356 377 379
b9t b92 501
ft5b 656 675
ft1to  ftbb fte5
Ok 107 13ft
233 235 2bo
337 3bt 3b2
bi5 Lift b25
500 510 523
<02 603 ftuS
70b 720 725
003 60b 000
977 976 900
139 1b3 179
310 312 315
bt17 b20 b2ft
532 53ft 53ft
ft10 613 632
705 70? 715
79 795 605
885 ftéft 692
1010 ion 1016
211 213 21b
b21 b23 b2b
5b3 5bft 551
fth7 659 661
7bb  7b9 760
037 ftbO  ftlift
911 912 913
990 996 1011
215 350 *19
565 571 572
767 797 799
915 916 917
997 996 1013
bJi 553 55b

956

959 99b

3«
3b3

39
1<3
626

bo
131
280
677

62
153
26b
b3«*
600

95
1 fti
293
3<1
502
679
066

1h2
267
3b6
h 39
52b
606
726
611
999

1«3
316
kb5
5b1
635
721

006
097

239
b2?
555
662
763
651
919
1012

b22
573
010
921
1019

623
995

25

20

3ft
51b

bo

16b
676

53
132
291
666

69
160
265
bb2
722

105
165
29b
366
50b
609
06ft

155
260
3b9
bbo
531
612
736
620
1005

10b
319
b 56
5b2
637
727
009
90b

277
b 29
562
663
76b
05b
920
1015

k20
590
019
922
1021

710

TABLE I.
20 32
2b 26
b0 50

625 730
bS 51
169 192
731 760

59 60
135 1b6
300 326
732 769
70 77
167 160
270 292
b50  b05
733 770
106 115
190 199
296 297
300 390
507 519
690 723
070 602
157 150
273 27b
351 352
bbb  bb9
537 5bO
<30 631
739 7b5
* 069
1006 1000
160 210
323 335
b61 b62
505 5b9
6b2 6Db6
720 7bO
«12 615
910 918
270 257
bué hb7
570 596
667 66ft
766 702
655 «57
926 927
1017 1016
k30 b67
617 619
623 027
930 932
1022 1023
719  «39

36

29

55
75b

52
196
785

63
1 k7
3b5
771

79
171
301
bog
772

117
205
302
393
522
72b
902

159
275
365
b53
5bb
633
7b7
071
1009

212
350
b 65
550
656
7b1
016
92b

311
b 57
597
670
796
656
929
1020

b71
620
020
936

060

6b

33

56
1000

57
200
Obi

165
362
706

66
100
303
b90
77b

110
206
30b
39
520
73b
962

173
201
367
b5b
5b5
63b
751
672

230
353

560
660
7b6
021

925

313
b55
599
673
796
077
931

b7b
622
635
9kb

662

61

37

66

56
216
1001

76
166
375
6b2

66
169
320
500
767

119
206
306
b03
530
735
960

177
20b
369
b55
566
6b 1
752
673

236
356
b72
561

665
7b6
625
926

31b
b63
611
67U
007
070
935

b79
639
030
9b6

695

256

b9

72

67
225

3®k
900

69
19b
327
517
600

120
221

321

bob
539
737
973

176
295
370
160
57b
6k5
753
675

237
359
k75
566
666
75k
630
936

317
k66
61k
663
»i3
679
937

k»2
669
652
951

923

512

5k

63

73
2k5

bOi
1002

91
196
326
518
ekJ

137
222
329
k06
567
736
97k

162
296
380
k6k
563
653
757
863

236
366
K77
569
672
755
632
960

316
b69
615
695
61k
661

9k5

535
671

«53
953

933

10
COMPLEXITY OF INTEGERS < 2

65

101

7k
250

k33

10k
203
336
520
60k

1kt

226
330
bio
561

750
975

106
305
362
b76
50k
655
776
00k

2k 1
371
bOO
575
661
75»
«33
96b

35b
b70
616
696
ft17
07
950

5k7
697
656
95b

939

62

121

75
259

67
197
b3k

113
20k
3be
521

667

1k9
232
332
b37
562
756
976

167
307
369
b93
506
657
776
691

269
372
b96
567
662
759
6b6
971

355
b73
616
696
022
066
952

552
699
659
956

9kO

100

126

6k
290

90
201
bki

11U
220
363
529
901

151
23b
333
b30
565
773
100b

191

300
391

b9b
509
66b
760
696

276
363
k99
590
66k
761

6k7
979

357
k76
621

706
62A
009
957

556
709
661

966

9k1

125

129

96
325

97
202
kek

116
22k
376
579
961

152
2ks
339
kk3
586
775

207
309
395
k95
591

660
763
903

279
397
509
595
605
762
6b9
981

373
k6i
62b
700
026
693
965

557
711
690

967

9b2

126

1 kb

96
3kk

99
219
k»7

12k
227
376
560
972

15b
255
3bO
bb 6
600
777

209
322
396
b98
592
691

769
909

202
396
511
60k
693
765
650
902

37k
k03
636
71k
029
Oyo
963

550
712
09b
909

9b7

216

162

102
361

103
226
bOO

133
2b7
355
620
1003

156
263
3b7
b 51
629
78ft

223
331

b07
503
593
692
790
963

285
399
525
607
69k
779
07k
yok

k13
h 97
630
716
031
905
906

559
713
699
991

9k0

2k3

217

100
kOO

109
2k2
516

13k
2i9
387
6k9

161
266
360
k52
610
601

229
33b
kOO
505
59k
700
792
969

206
k09
526
606
701

701

076
905

k1k
533
6k3
7b2
03k
906
907

563
717
907
992

9b 9

257

2kb

122
k32

110
2b6
577

136
253
392
650

172
271
36k
k 59
652
002

231
336
k11
506
601
702
793
970

299
k12
527
609
703
791
060
1007

bio
53b
6kb
7k3
036
900
906

56b
710
91b
993

955



first three are given the value 1 and the last
is given the value zero. Thus K(yln) =

K(2 -1 - yln).
K(yln) for y < 2" and n = 10.

Table II gives the values of

b. Modulo prime p complexity. In addition to
the operations of +, x, and xx, the operation
of mod is allowed and is defined by mod (x) |
X - p[i}p] where p is a fixed prime and [? de-
notes the greatest integer. Table III gives
the modulo prime p = 137 complexity for inte-
gers < 137. Table IV gives the modulo prime

p = 1009 complexity for integers < 1009.

III. COMPLICATED NUMBERS

One defines n to be a complicated number if
[n| > |n*| for every n” < n. The complicated num-
bers < 210 are 1, 2, 3, 4, 5 2. ii. 12* 21> 22~*
41, 43, n» 94, 139, 211, 215, 431, and 863.
(Those underlined are also prime.) Obviously,
there are an infinity of complicated numbers. We
propose the following conjectures.
a. There exists K such that all complicated

numbers > K are prime.

b. Every sufficiently large integer n 1is the

sum of k < log n complicated integers.

c. There exists c¢ such that every sufficiently

large n satisfies |n| < ¢ + /log n

IV. COMPLEXITY AND ENTROPY

Kolmogorov4’5 has introduced the notion of com-
plexity of a finite string over a given alphabet.
For simplicity, suppose the alphabet to be {0,1}.
Let A be an algorithm that transforms finite binary
sequences into binary sequences. By an algorithm
is meant any of the various equivalent concepts
used in logic. For a binary string x, one defines

the complexity by

KA(X) min Z(p)
A(p)=x

00

w if no p exists such that A(p) = x.

where £ (p) denotes the length of the binary string

p. Analogously, one defines conditional complexity.

Let A(p,x) be an algorithm defined from pairs of

binary strings to binary strings. Put
K (ylx)= min  «.(p)

00

_if no p exists such that A(p,x) “ y.

KA(ylx) 1is called the conditional complexity of y
with respect to x. Kolmogorov regards complexity
as analogous to entropy. We make the following con-
jecture.

Conjeeture. Let a discrete binary informa-
tion source S in the sense of Shannon6 be given
with entropy H = -p log p—-(l-p) log (1l-p) where
probability (0) = p and probability (1) = 1 -p;
0< p< 1. Let {x., %2, .... x2n) be the set of
all binary strings of length n arranged in order

of decreasing probability.
k (n)

Let k(n) be the least

prob (x ) > r where 1/2 <

i-1
r < 1. Then asymptotically for large n,

1 v="k(n) |

H~ kooZ-*i kiln)- (1)

~In Eq. (1), should be normalized so that when

p=1/2,

KA (xi|n)

In other words, the most likely sequences from A
have complexity approximately equal to the entropy
of s.

In order to test the conjecture expressed in
Eq. (1), we replaced K"Cx”"jn) by AK(y|n), where A

is selected so that when p = 1/2,

AK (x1i|n) 1.
Graphs of = -p logp - (l-p) log (1 - p) and
2 = KW JICH=t XK(xiin)

when n = 10 and r = .75 are shown in Fig. 1



Complement
Complexity

0

1

1"
995

13
966

21
12k
396
69k
993

39

2k0
k32
727
659
953

ki
107
163
260
k33
53@
67k
60k
677
936

k3

261

339
k2®
k95
5kk
6k0
696
603
667

115
210
265
379
k59
567
652
739
61k

173
357
k63
601

709

311
60k

1031
1020

1019

13
997

Ik
255
966

22
126
509
696

1000

ko
122
2k1
k35
731
660
956

k2
109
189
267
k3k
539
676
610
661
936

66
167
262
3kO
k29
500
5k6
6k2
702
611
869

"7
211

302
380
U7k
569
65k
7U0
616

177
366
k6k
602
71

313
609

6

15
996

19
257
990

23
127
51k
897
001

k5
123
2k 5
kk7
733
662
962

kk
110
191
291
k36
5k5
602
821
662
9k6

86
171
26k
350
k3«
502
5h7
615
703
815
690

137
221
30k
362
k75
570
656
7k 1
617

178
370
k65
603
713

kl 2
610

TABLE II.
10231033
9 101k 1015
37 996 1007
17 16 25
1005 1006 1006
20 2k 39
29k 510 513
992 99k 999
30 3k 36
129 1tkk 162
625 676 660
699 902 922
1002
k7 51 57
130 1k3 1k5
250 *53 259
k66 506 515
735 76k 770
663 676 660
965 966 972
k6 59 60
11 112 119
193 195 197
297 300 322
k37 kkl kk5
573 575 577
666 69k 697
622 62k 625
866 891 892
9k7 95k 955
89 91 92
160 1ek 166
26% 270 266
359 363 36k
k39 kkO kk2
503 50k 505
571 572 57k
6k6 6k7 6k9
717 720 722
819 620 629
905 907 909
139 1k9 151
230 231 232
305 307 309
386 386 390
k6! u9t k92
596 597 600
657 658 665
7k3 7kk 750
618 636 636
266 27k 275
369 ko7 k06
h68 k72 k73
60S 606 606
715 7k2 7k5
k13 klk KklI9
611 710 713

COMPLEMENT
1017 1016
1013 1016
36 26
1011 1012
31 33
729 766
1003 100k
k6 50
215 217
699 726
92k 9kO
56 61
160 161
266 390
537 576
773 776
693 900
976 976
66 69
131 132
196 199
326 329
kk6  kk6
576 562
701 723
626 626
90" 911
963 96k
9%k 113
188 190
296 299
372 373
kit3d kkk
506 517
579 560
650 651
72k 725
633 635
910 929
162 15k
233 235
315 316
391 393
k96 k98
607 613
672 669
751 752
6kk  6k7
276 277
k09 Kl !
k97 526
612 61k
7k6  7k7
k6l k62

COMPLEXITY OF INTEGERS < 21

33

35
T«
1005

53
325
730
9kk

<7
153
232
sit
7«2
901
963

71

135
201

337
>50
586
728
=30
912
977

11k
19k
301

37k
kk9
518
581

659
737
837
931

155
363
318
39k
k99
617
690
75k
8k6

378
U]
550

615
7k8

k46

36

37
760
1010

53
239
73k
951

70
16k
296
591
763
903
96k

77
Tkl
202
3ki
k78
587
732
632
913
979

116
203
303
376
k51

519
563
660
753
639
932

172
266
319
k03
501

619
691

756
6k9

26l
kl'7
551
616
7k9

k6?

6k

k9
607

55
2k3
765
957

71
169
323
623
785
915

85
1k2
213
3kS
k6 k
589
736
83k
91k
981

118
20k
306
377
k52
520
58k
66k
758
6k3
93k

17k
367
332
kOk
522
620
70k
757
851

308
kil 8
555
63k
755

5*9

81

5k
695

56
2kk
769
961

73
182
325
62k
797
921

87
1k6
219
359
565
590
763
850
916
962

133
206
320
376
576
521

585
673
759
652
935

175
269
333
506
52k
629
70S
740
866

310
520
556
653
8k5

570

856

63
696

61
25k
779
967

7k
192
3k2
6*6
799
925

90
1k7
223
360
k67
592
771
61t2
917

13k
212
321

361

K77
523
59k
665
761

656
937

176
271
33k
kIl 0
525
630
707
786
669

312
Kk2i
559
655
6k6

k71

511

65
923

64
256
781
968

75
19*
3kk
662
805
927

93
158
227
362
568
593
772
853
916

136
220
327
363
579
526
595
68k
762
666
960

179
272
351

k16
527
632
708
790
671

31k
522
560
666
650

552

0

518

80
951

72
269
76k
970

78
200
3k6
675
609
939

95
159
237
375
595
622
77k
655
919

138
222
326
385
560
530
618
665
776
867

185
273
356
523
531

633
71k
791

672

317
k2k
563
667

553

767

82
9k3

79
293
796
971

6k
21k
3*6
677
623
9it5

97
165
2k6
36k
507
627
775
657
920

1 kO
226
330
367
k6™
533
621

667
76?
670

187
279
365
u26
532
635
716
792
67k

352
k25
565
666

55k

952

100
958

63
895
806
973

96
218
361
479
627
9k6

103
166
256
396
516
639
777
856
926

1 k6
229
331

392
563
53k
626
668
789
873

205
260
366
k27
552
637
718
793
66k

353
555
566
669

55

959

125
960

99
32k
606
975

96
22k
397
6S!
631
9it9

10k
166
2k9
kOi
529
6k6
766
66k
926

150
23k
335
395
k 89
5kO
631

692
79k
675

206
262
367
k53
5k6
6k1

719
602
666

35k
k57
566
670

557

967

126
969

101
3k3
661
985

102
226
399
698
8kt
950

105
170
251

k30
535
661

796
665
930

153
236
336
kO 2
k90
Ski
636
693
795
663

207
263
369
k5k
5k9
6k3
721

612
906

355
k56
596
671

561

991

216
97k
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3k7
679
969

106
238
kOO
700
65k
952

106
161
252
k 31
536
663
800
876
933
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2k7
336
k05
k93
5k3
636
695
601

66$
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26k
371
k56
56 k
6kk
736
613
906

356
k60
599
706
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TABLE III. MODULO PRIME p =
Complexity Integer

0 1

1 2

2 3

i it

u 5 6 A 9

b 7 10 16 27

6 11 12 17 16 25 2A 32 36 61t
7 13 Th 15 19 20 21t 26 29 33

102 106 120 122 125 126

21 22 30 3k 38 ill kS liA 51

63 A8 93 99 103 107 109 117 {1

9 23 31 35 39 uo U2 li6 it7 52
Alt A7 09 9it 96 98 10l 10A 110
10 0 H3 71 85 66 920 95 97 105

V. COMPLEXITY OF N-TUPLES OF INTEGERS

Matijasevic” has proved the following

theorem. There exists a fifth-degree polynomial
Q(y*, ..., v, i z) with integer coefficients such
that any enumerable set m of natural numbers (for
example, the set of prime numbers) coincides with
the set of natural values of the polynomial

..... B h
Q(y, ﬁ<) where a

i%1a certain number ef-
1

fectively constructed for the set m. From the
result, it follows that if one could discuss complex-
ity of n-tuples of integers, then one could discuss
the complexity of enumerable sets of natural numbers
by equating such complexity to the complexity of the

associated polynomial Q
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