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Introduction 

As you know, in 1958 Mandelstam, ̂  following some simi-
lar but not identical proposals by other people, suggested 
that a two-particle strong-interaction amplitude should be 
simultaneously analytic in the two independent variables up-
on which it depends, say s and t. He did more than this, in 
that he wrote down a double-spectral representation, which of 
course is now generally called the Mandelstam representation. 
He did this by combining partly heuristic, and partly rigor-
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ous reasoning, as we shall see. The rigorous part was a com-
bination of the elastic unitarity condition in one channel 
with a dispersion relation in the crossed channel, while the 
nonrigorous part was an Ansatz that respected crossing symme-
try, without spoiling elastic unitarity in the elastic 
region. In this way, he was able to write down an expression 
for the double-discontinuity of the amplitude. What I pro-
pose to do first is to") remind you how he did this, and then 
to point out a slight generalization of this kiethod. 

You will recall that in the years following 1958, people 
were very interested in finding solutions of the system of 
Mandelstam equations. This is not an easy undertaking, since 
the equations are nonlinear, thanks to the quadratic nature 
of the unitarity condition. Hideous approximations were made, 
divergent series were truncated merrily at their second terms; 
said the field was ol :uscated by unnecessary discussions about 
bootstraps. The situation is in principle straightforward: 
we have a nonlinear, singular equation, and we want to know 
if there are solutions; and, if so, how they may be obtained. 
This is the question we shall consider in these lectures, 
and we shall find at least a partial answer. 

To summarize our findings: we)discover that the Mandel-



stam equations for the irir system have many solutions, consis-

tent with crossing symmetry and elastic unitarity. A subset 

of these solutions also satisfy the inelastic constraints 

above the inelastic threshold. There are two sources of non-

uniqueness. One source is the freedom to insert inelastic 

contributions in the interior of the double-spectral function; 
(2) and the other source is the freedom to include CDD poles 

in a finite number of partial waves./ We shall follow the 
J 

- — " ( 3 ) treatment of a number of recently published papers, as we 
explain the details of the proofs. For simplicity, I shall 

omit isospin, but this can be included without too much extra 

complication. ^ 



II. Elastic Unitarity 
Xjet p^, p2/ p3, p4 be the; four-momenta of the pions 

(Fig. 1). We will use the following two variables: 

s = <px + P2)2 = (P3 + P4)2 

t = (Px - P4)2 = (p2 - P3)2. (2.1) 

Figure 1 
Definitions of Kinematic Variables 

The two-pion scattering amplitude, A(s,t), is a function of 
these two variables. In the so-called elastic regioi, 
4 £ s £ 16, in which only two pions are allowed in the inter 
mediate state (Fig. 2), the elastic unitarity condition is 
exact. It may be written 

Im A(s,t) - -J f A*(s,t') A(s,t"), (2.2) 



where 

- M -
(2.3) 

P. k 

Figure 2 
Elastic Unitarity Diagram 

Consider the s-channel center-of-mass frame, defined by 

P X + P 2 - 0 . (2.4) 
With p = | p̂ ^ |, one finds 

s - 4(p2 + 1) 

t = -2p2(I - z) , (2.5) 

where z is the cosine of the angle between the initial and 
final center-of-mass directions. Analogously, 

f - -2p2(l - z'), 

t " - -2p2(l - z1 1) , (2.6) 



which implies, and is implied by 

At(s,t) = Au(s,u). (2.10) 

Substitute (2.8) into (2.2): 

dt, - dt. 
Im A(s,t) = - 3 ^ / d S J ' / ^ ^ A*(s,t1)/ip|7,At(s,t2) 

+ FLJ*A'J A*(s,4-s-Ul)y At(s,t2) 47T 
du, y du, 

s.. . 3 4tv 
Let us write 

Im A = Im A^ + Im A2 + Im A3 + Im A4, (2.12) 
corresponding to the four terms of (2.11), and consider Im A1 

first. Change from t's to z's, using (2.5), (2.6) and, ana-
logously, 

tx = -2p2(l - zx) 

t2 = -2p2(l - z2). (2.13) 

Then we obtain 
im A^Sjt) = 

OO 00 

/dZlA*(s,tl) f dz2At(s,t2)f ( ,• t>(a.i«) 
2 Z - ± ~ 



where t^, t^ are to be regarded as functions of z^, z^ (and 
2 s), and Zq = 1 + 2/p . We will now evaluate the integral 

zz^costj)' [ (1-z2) (1-z2, . (2.15) 

The (j> • -integral can be performed with the help of the formula 
2TT x d<j>' 2tt 

A + B cos 4)' (2.16) 
f0 v (A - B ) 

This gives 

I(z) = 2tt y . (2.17) -J. z - z 1 ^ 

where k is defined by 

k(z,zf
rz2) = z2 + z12 + z2

2 - 2zz'z2 - 1. (2.18) 

This kemal has many interesting properties. It will often 

be useful to write it as 

k(z,z',z2) = [z' - z+(zfz2)][zf - z_(z,z2)], (2.19) 

where z+ are the two roots 

z±(z,z2) = zz2 ± [(1 - z2)(l - Z22)]H. (2.20) 

The integral (2.17) is a little messy to do, so I will just 

state the answer: 
h 

, z-z z +k (z,z.,z ) 
I(z) = 2nk (z,z_ ,z2) log ' h • (2.21) 

w i V k < « ' V * 2 } 



In working through this, remember that 
z.,z- > 1 + > 1 > z (2.22) 1 2 — s-4 — 

in the physical region of the s-channel. 
For reasons that will become clear in a moment, I want 

to write a dispersion relation for I(z). To do this, we must 
investigate the singularities and the asymptotic behavior of 
I(z). At first sight, one might expect logarithmic branch-
points when 

k z - zxz2 ± k (z,z^,z2) = 0, (2.23) 

but then 
2 2 2 2 2 2 
z - 2zz^2

 + zi z2 " z + zl + z2 ~ 2zziz2-1' 
Since z concels out of this equation, it can never be satis-
fied (for z^ / 1, z^ 1) t and so (2.23) does not after all 

% 

give branch-points. Since k can be written in the form 
k^(z,z1,z2) = {[z - z+(zx,z2)][z - z-(z1,z2)]}* , (2.25) 

we see that z = z ^ z j will in general be branch-points. 
However, it turns out that, on the physical Riemann sheet, 
only z = z+(z1#z2) is in fact a branch-point. The physical 
sheet is specified uniquely by the requirement that I(z) be 
real when -1 _< z < 1. Since z 1#z

2 > z+^zi'z2^ > 

Moreover, , x 2 (z - z ) 
Z-(Z1,Z2) " 1 s z^(z^,z2) - 1 ' (2-26) 



and z, z', z1', are connected by the solid geometry relation, 
z " = zz' + cos - z2) (1 - z'2)]^, (2.7) 

where (J)' is an azimuthal angle. The integration in (2.2) is 
over all intermediate directions, 

dfl' = dz1 d<J>* , 
-1 < z < 1, 0 <_ <j)' < 2IT . 

Following Mandelstam, we want to combine (2.2) with a 
fixed-s dispersion relation for A(s,t), namely 

dt' A (s,t1) 
A(s 

1 r at' Atts,l 
'tJ = 7 -M t' - t 

00 du1 A (s,4 - s - u1) u i _ IT 4 u' - u (2.8) 

where u = 4 - s - t. Here A. and A are the t- and u~channel t u 
absorptive parts, respectively. We will see their physical 
significance later. 

The variables s, t, u will appear symmetrically in the 
Mandelstam representation. They represent, respectively, the 
square of the total energy when particles 1 and 2, 1 and 4, 
1 and 3 are incoming, and the other two outgoing. Since we 
are considering pion scattering, in which all channels are 
identical, we will have, in.particular 

' • " r . . . _ v *• „ 

A(s,t) - A(s,u), (2~9) 



so that z_(zirz2) 1. One finds, on continuing i (z) from 
the physical region to z_, and then encircling z_ once, that 
k 

k changes sign, but that the argument of the logarithm in 
(2.21) stays near zero. Hence I(z) does not change, and so 
z_ is not a branch-point. However, when z+ is reached, the 
logarithm changes by 27ri when z circles this point once. 
There is a cut from z = to z = », the discontinu-
ity across which is 

27ri[2irk"35(z,z1,z2) ]. (2.27) 
As far as the asymptotic behavior of I(z) is concerned, 
k 

k (z,z^,z2) = z + 0(1) for large z, from which we see that 
I(z) - . (2.28) 

It follows from the above analysis of I(z) that we may 
write it as the dispersion relation 

00 
*<«> = X+(Z1.Z2) FFE V 2 > . (2-29) 

According to (2.14), we will have 
Im A^ (s,t) «s 

.CO ^ CO _ 00 dz' ,-h. , . 

2 
H I a V ^ ' V / ^ V - ' V / , * \ ZQ V V 

= - F / , j ^ f f az1dz2A*(8,t1)At(8,t2)k-%(Z-,Z1,Z2). u z U0,zQ) z z 
(2.30) 



The expression (2.30) allows us to continue Im A1(s,t) from 

-1 1 25 1 1 i n t o t h e entire z plane. We should not call it 

Im A- now, but rather A ., the first of the four contribu-1 S JL 
tions to the s-channel absorptive part. Eq. (2.12) becomes 

As - Asl + AS2 + AS3 + AS4- <2-31) 

The t-discontinuity (or the Z-discontinuity) of (2.30) may 

be called A s t l ' ^ ^ it n^Y b e written down by inspection from 

eq. (2.30): 
A (s,t) = 

z>z+(z!,z2) 
e[z-z+(zQ,z Q ) ] f f dz1dz2k~3s(z,z1,z2)A*(s,t1)At(s,t2). 

IT J 
z0z0 (2.32) 

We need to analyze the limits in (2.32) in a little greater 

detail. Let us write (2.32) as a repeated integral 

The upper limit of the z2 integral is given by 

z = z+(zlfz2), i.e., by z2 = z_(z,z^). The upper limit of 

the z^ integral is the maximum value of z^ for which 

Z + ( 2 I , Z 2 ) = z, with z2 Z q . This point corresponds to 

z0 « zA (see Fig. 3), and so the upper limit is z_ = z,(z,z.) Z U 1 + 0 
The double-spectral function (2.32) vanishes when 

,+ <«o'mo) s 2zo: 

v. } 

2 z < z,(ZN,Z N) = 2ZN - 1. ^ 
; - • ' \ 

Now let me sketch briefly what happens with the other^L 

three terms in (2.31). The term Ag4, corresponding to the 



Figure 3 
Boundary of Integration 

last term in (2.11), turns out to be just equal to On 
the other hand, Ag2 gives a term like (2.30), but with z 

2 

replaced by -z. The cut runs from z = -[2Zq - 1] to -«>, 
which corresponds to positive u, so the discontinuity of Ag2 

is reasonably called Agu2. The term A ^ is exactly equal to 
Ag2. We will now collect these four terms together, and 
return to the variables t (and u) instead of zs 
Ag(s,t) = 

1 °° dt1 zl. . . 1 f °° du* <Llt (2.33) 
16 s 
s-4 

16s 
s-4 



where 

p (s,t) = 
g(s?t,4) ^ gCsyt,^) 

J DT^ DT2K(S?TFT1,T2)A*(S#T1)AT(SRT2) 
4 4 

(2.34) 
with 

K(s;t,t1#t2) = 
4 2 2 2 4tt-t_ , - {s(s-4)[t +t^+t/-2tt1-2tt2-2t1t2- i-l]}"* 

ana (2.35) 

g(s;tft1) = 
2 t tl t h J, 

+ + ^T " 2 { t t i ( 1 + (1 + • (2-36) 

The equation (2.33) has been demonstrated only for 

4 £ s 16, the s-channel physical region. In this region, 

the t-discontinuity of As(s,t), for positive t, is of course 

Agt(s,t) = 8[t - ]p
e*(s,t), (2.37) 

The expression (2.34) is well-defined for all s and t, but 

the equality (2.37) only holds for 4 s £ 16. We could have 

done the whole calculation by combining t-channel unitarity 

with a fixed t-dispersion relation, and then we could have 

obtained the s-discontinuity of for positive s. We will 

assume that the s-discontinuity of the t-discontinuity of 



A(s,t) is the same as the t-discontinuity of the s-discontin-

uity, so we would then have the result 

Agt<s,t) « 6[s - (2.38) 

for 4 £ t < 16. Since the right-hand side of (2.37) vanishes 
for all s 4 and t ̂  16, and the right-hand side of (2.38) 
vanishes for all t 4 and s < 16, it follows that the func-
tion 

v(s,t) = Ast(s,t)- e[t-i§|]pe*(s,t)- e[s-i?-|]pe£(tfs) 
(2.39) 

must vanish for 4 jc s £ 16 and for 4 t £ 16. The Mandel-
stam assumption is that v(s,t) is non-zero only for s > 16 
and t > 16, and that there are no complex branch-points in 
s x t. So for all s and t, eq. (2.33) is replaced by 

Ag(s,t) = 

i / ^ P(s,f) + \ J ^ p(s,u'), (2.40) 
where 

p(s,t) = 

Ast(s#t) * 9[s-|!j]pet(t,s)+v(s,t).(2.41) 

The support of p(s,t) is shown in Fig. 4. 



t 

8 
4 

Figure 4 

Support of p(s,t) 

Lastly, I will derive the Mandelstam representation. A 

fixed-t dispersion relation for A(s,t), analogous to eq. (2.8), 

would be 

A(s, t) = 

V ' ' * * + i jf S s Au(4-t-u.,t) . (2.42) 
4 4 

If we substitute 

As(s',t) = 



and 

A (4-t-u*,t) = u 00 ^ 00 

into (2.42) we get 

A(s,t) -

1 ff ds1dt'p(s',t1) . 1 / 7 * du'dt' p (u' ,t') 
2JJ (s1 —s) (t'-t) J.JJ (u'-u) (t'-t) TT IT 

1 /Y , , - ( P(U' /S*) p(u' >s') . . 
+ ~2 // d s d U (s'-s)(u'+s'+t-4) + (u'-u) (u,+s,+t-4) U ' 4 5 ) 

IT ^ 

where use has been made of the symmetry of p ( u ' , s ' ) * This 
reduces easily to 

A(s,t) = f(s/t) + f(t,u) + f(U/S), (2.46) 

where 
ff.. to - i / Y ds'dt' p (s1 # t1) f ( s # t ) - - y y (s,.s) (t.:t) • (2.47) 



III. Existence Proof 

I am novr going to show how to demonstrate the existence 

of solutions of the nonlinear system of equations that we 

have set up. Let us gather the key equations together. If 

we knew A^, we could calculate p from 

pe£(s,t) = 0[t-^]^ydt1dt2K(s?t,tlft2)A*(s,t1)At(sft2), 

(3.1) 

which is eq. (2.34), except that I have chosen to combine 
ZL the e-function into the definition of p . How do we know 

TIT 

At? If we knew p , we would have, by combining eq. (2.41) 

with the t-channel absorptive part of eq. (2.46), 
At(s,t) -

k f d s ^T-T + TTTr] [pe^(s' ,t)+pe^(t,s' )+v(s* ,t) ], (3.2) T\*/ s — S S "* U 

where v is to be a given function, and where the lower limit 

of integration is defined by the 0-function in eq. (3.1). The 

support of the double spectral function is sketched in Fig. 4. 

Evidently the system (3.1)-(3.2) provides a nonlinear 

integral equation for p . Let us summarize it by 

pe^(s,t) - T[pe^; s,t]. (3.3) 

I have suppressed the dependence of the operator, T, on the 



function, v(s,t). It may be thought of as a parameter (but 
an infinite dimensional one!) Sometimes, I will suppress 
also the independent variables, s and t. There is nothing 
metaphysical about eg. (3.3): it merely summarizes eqs. 
(3.1) - (3. 2) . 

I am actually going to apply the Contraction Mapping 
(4) 

Principle to eq. (3.3). This is a rigorous way of dis-
cussing when the iteration, 

converges to some limiting function, 

which satisfies eq. (3.3), i.e. for which 

P**=T[p^]. (3.6) 

My discussion of the Contraction Mapping Theorem, or Banach-
Cacciopoli Principle, will be, for the most part, general; 
but it may be helpful to consider in particular the equations 
(3.1)-(3.2) to concretize our ideas, and of course we are 
indeed specifically interested in these equations. 

First of all, we have to define a space of functions in 
which we cure going to work. The space we use depends on the 
nature of the equations, but there is no general way of find-



ing a suitable space in which a given equation will contract: 

this initial step is a work of art. We want to be sure that, 
ZL 

if PQ (s,t), the zeroth step in the iteration, has the pro-

perties which ensure that it belongs to the space, then oP 

Pĵ  (s,t) also has these properties, and likewise p2 (s,t), 
and so on, so that the infinite sequence of iterates lies in 
the function space. The equation (3.2) contains a Cauchy 0.JL 

singular integral, so we must restrict p to belong to a 

space that ensures the convergence of this singular integral. 

It would not be enough actually to require continuity, because 

although the principal-value integral of a continuous function 

exists, it is not necessarily continuous. The equations would 

kick a function out of a space of merely continuous functions. 

However, the principal-value integral of a Holder-continuous 

function is itself Holder-continuous. A function, f(x), is 

said to be Holder-continuous on 0 < x < 1, if 

jf(Xl) - f(fc2)| < A|x^ - x2|y, (3.7) 

for any x^, x2 in [0,1], where A and \x are constants, the 

latter being called the Holder index. We will build Holder-

continuity into our space; and there are some other fine 

points that we will come to later. 

Let us imagine that we have a suitable space. That is 



to say, suppose we have the specifications of a space of 
Zl 

functions such that, if p (s,t) belongs to the space, then 
p (s,t) also belongs to it, where 

p^(s,t) = T[pe*; s,t], (3.8) 
zl It follows that if pQ belongs to the space, then the infinite 

zl> 

sequence }, n = 0, 1, 2, 3,... will also belong to the 
space. 

In order to demonstrate the convergence of this infinite 
sequence, we have to show two things, both of which assume 
the existence of a suitable distance function, or metric. I 
will always be talking about a normed space, i.e. a space in zl which a suitable number, the norm, lip II, is associated 

zl 
with each function, p (s,t). The distance between two func-
tions. and p^, is defined to be I I - p^l I. We have 

a b 1 1 a b 1 1 

to show firstly that a closed set in the space is mapped into 
itself, and in practice this means showing that if 

l l p ^ l U b (3.9) 
for some particular b, then 

||pe*||<b, (3.10) 
where p is given by eq. (3.8). Evidently, this means that 

zl if pg lies within the ball of radius b, then the whole se-
zt quence {pn } is trapped within the ball. Secondly, we must 



oP oP show that, if p and p, are any two functions lying in the a D 

ball, and 

then 

fit1 - T[p^], (3.11) a a 

= (3.12) 

llpf - p ^ M < pllpf " Pb£H ' (3-13) 

where P is some number such that 
0 < P < 1. (3.14) 

zZ zZ —zZ zZ Clearly, if we set p^ " pn ' w e have p& = pn+l' ^ ^ 
zZ zZ —zZ zZ if we set p. = p . -, we shall have p. = p so that (3.13) D n+I D n+2 

will read 

In other words, successive iterates get closer and closer 

together (see Fig. 5). 
zZ 

We can show from eq. (3.15) that the sequence "Cpn 3" ne-
cessarily converges, since, if m > n, 
. zZ e£ iiA.iir,^ ^ 11-i. , i i^zZ zZ, , 
l pm - pn U ^ l p m "pm-l' ' + ' I pm-rpm-2' I''• + ' I"pa+l"pn 11 

< {Pm"1+Pm"2+.. .+pn> | | p££-Pq£| I 

_n l-pm~n , t zZ zZ, , ̂  Pn , I JiZ zZ, , = p i Z p — I IPx "P0 I I 1 lip I I Pi 1 <3-16> 



Figure 5 

The General Principle of Contraction Mapping 

Since P<1/ the right-hand side of this inequality can be 

made as small as one likes, just by making n large enough. 
Hence {p^} is a Cauchy sequence, in the sense of the norm: 

I I zl eli i that is, the quantity I IPm ~ Pn I I can be made arbitrarily 
small, just by making m and n large enough. This means that 

zl zl {p } converges to some function, p* • Strictly speaking, n -
zl 

lies in the completion of our space; but we shall deal 
exclusively with a complete, normed, linear space (a Banach 
space), so we can ignore this point. 

zl zl To say that p tends to as n + «, in the sense of 



the norm, means that, given any e > 0, we can find an N such 

that 

for all m > N. Therefore, from eq. (3.16), 
.. dl dlii |i dl dlii ,,, dl dl\i I|Pn " P* I I < IlPn - Pm I I +1|Pm " P* I! 

H p f " + e • (3.18) 
Since the left-hand side of this inequality, and also the 

final form of the right-hand side, do not depend on m, and 

we can make e as small as we like, it is clear that we can 

drop e, and write simply 

l l p f - P f l l < l S l l p f - P f l l • (3.19) 

This is a useful inequality, since it allows one to estimate 

the error that is involved in truncating the interation at 

the nth step. 

We will now prove something that may seem obvious, but 
dl 

which actually needs to be proved, namely that p^ , which has 

now been shown to exist, actually satisfies the equation. We 

have 
llpf - T(p^)|| < ||pf - pf|| + ||pf " T(pf)|| 

+ I " T(p^) | | . (3.20) 



The first term on the right is bounded by (3.19), so if we 
are given any e > 0, no matter how small, we can find an n 
so large that the term is less than e. The second term in 
(3.20) is just 

l l p f - p ^ l l . (3.21) 

because of eq. (3.4), and we can use (3.16), with m replaced 
by n + 1, to show that this too can be made smaller than e, 
by making n large enough. The last term is not greater than 

P l l P ^ - p f l l , (3-22) 

according to the contraction condition, eqs. (3.11)-(3.13). 
So by eq. (3.19) again, we can make this smaller than e. Fi-
nally, we have shown that, merely by choosing a suitable n, we 
can arrange that 

\\ptZ - T(p^)| | < 3e. (3.23) 

Since n does not appear here, and e can be as small as one 
likes, the only possibility is that the left-hand side is 
zero. This means that eq. (3.6) is satisfied, since the only 
function with a zero norm is the null function itself. 

This concludes the general discussion of the Contraction 
Mapping Theorem. Let us now look at the equations (3.1)-
(3.2), with a view to applying the theorem to them. We have 



already indicated that Holder-continuity will be built into 

the specification of the norm. We will be looking for a so-
2.1 

lution, p (s,t), in a space of functions, f(s,t), that satis* 
fy Holder-continuity. Set s = 4/x in inequality (3.7), to 
transform the interval (0, 1) into (4, <»)• We would like 
then to have s.-s-f(s.,t) - f(s,,t)| < (3.24) 

o9 However, in view of the occurrence of p (t,s') as well as 
2.1 p (s',t) in eq. (3.2), it is clear that we should require 

double Holder-continuity, i.e. 

If(sl'tl) " f(s2't2)I - A { 
s r s

2 p + I V ^ 

• l V V 2 S 

y 
>, (3.24) 

where s = min (s^s^ , t • min(t1,t2). If we also impose the 

restriction 

f(s, «) = f(«>, t), (3.26) 

upon the functions that belong to our space, then eq. (3.25) 

implies 

f(s,t)| < A(st)*11. (3.27) 
Unfortunately, the bound (3.27) cannot be reproduced in 

2.1 general by eq. (3.1). In fact, i f p and v in eq. (3.2) . 
2.JL 

obey (3.25), we cannot show that p in eq. (3.1) satisfies 

a bound t w for large t, as required by eq. (3.27), but only 



t~vloer t. Once again, the equations would expel functions 
from our space, and the Contraction Mapping Theorem would be 
inapplicable. However, we can show that, if 

|At(s,t)| < Bt~y (log t)"1"® 
e > 0, 0 < y < h, in eq. (3.1), then 

|pe*(s,t)| < Ct~W(log t)"1"6. 
This prescribes the final form of our norm, namely 

||f||= sup |f(s,t)|(st)y(log s-log t)1+e 

|f(s1,t1) - f(s2,t2)|[log s*log t]1+e 

s r s 2 
als2l 

tl"t2 
txt2s 

(3.28) 

(3.29) 

(3.30) 

where the supremum is to be taken over s, t, s^, s2, t^, t2, 
in (4, »). We see from eq. (3.30) that necessarily 

f(s,t)| < | |f| | (st)(log s*log t) -1-e (3.31) 

and 

|f(Sl,t)-f(s2,t)|<| |fj | 
s r s 2 
sls2 

t"y(log s-log t)~X~e (3.32) 

zl It can be shown that, if p and v in eq. (3.2) possess 
zl a norm (3.30), then p in eq. (3.1) also possesses a finite 

norm in this space. We say that the nonlinear operator, T, 



of eq. (3.3), maps the Banach space specified by the norm 

(3.30) into itself. The detailed proof of this involves a 
o P OjP 

lot of algebra. I will not prove that, if [p (s,t)+p (t,s) 
+v(s,t)] satisfies an inequality like (3.32), then Afc(s,t), 
eq. (3.2) does so also. The result, that the Cauchy integral 
of a Holder-continuous function is itself Holder-continuous, 
is a standard one, and may be found in Muskhelishvili's book. 
We need a slight generalization, to carry along the extra 
logarithms, and the t-dependence, but this is not hard. 

We will concentrate upon the physically more interesting 
logarithms. I will show that, if |A^(s,t)| satisfies a 
bound like (3.31), then p (s,t), defined by eq. (3.1), will 
do so also. Suppose then that 

|At(s,t)| < C(st)"y(log s-log t)"1*8, (3.33) 
then 

|pe£(s,t)| 

. p2 -2un .-2-2c/rd,ld,2(tlta>"|ici°g V 1 0 * V " * " ' < C s (log s) JJ r 
k^(z,zx,z2) 

(3.34) 
where I have changed back to the z-variable, eqs. (2.5), 

(2.13) and (2.18). Now the z0-integral can be majorized by 



/••-^'•l* dz t "^(log t,)"1^ 
J — C = T , (3.35) 
0 (z+(z,z1)-z-(z,z1)} {z_(z,Z1)-Z2J 

where use has been made of the factorization (2.25), and of 
the fact that z2 < z_(z,z^) in the integration. Since 
tj| ̂ (log t2) ^ E can be certainly majorized by 

C ^ U . - U l ^ l l o g Szit^-l,]"1^ 

for 1 < z2 £ z_, so long as y < h, and C^ is some constant, 
we may majorize (3.35) by 

2"Ss[(z2-1) lz2-l>r*C1[^i(Z_-l)]J'-,JLlog 5|l(z.-l) f 1 " 6 

r z - d z 2 / 2 
f 5 (izr) • (3.36) [(z_-z2) <z 2-ur V s 4 / 

Now 
z 

/ dz2[(z_-z2)(z2-l)]-,s 
zo 

</B_/2««2[r(Z2-1>]"'S + / " dZ2 [(z-"z2)T:] 
1 z_/2 

(
z_/2 " z_ 

- C».-«a) J 

1 z_/2 
- 4 . (3.37) 



So we find 
<Ll p^(s,t)| < C (st)~P(log s) -1-e 

z/z0 d zl z -1-e 0 — T {log(z.-l) *log(~ -1)} X E 
Z _ — JL J. Z -z0 1 1 

(3.38) 

The z^-integral here can be majorized in two pieces by 

/ 
h z dz_ . _ 
j-Hj- [log(z^-l) *log(z -1) ]"A~e 

Z0 1 

z/z 0 dz- . . 
[log(z*-l).log(| -l)]~L~e 

With the variable-change z^ z/z^ in the second piece here, 

we find that the sum of both pieces is not more than 

2[log(z3s-l)]~1"£/Z ^ [logt^-l)]"1"6 
z0 1 

[log(z.-l) ] 
- 2[%log(z-2z +1)] 

-G 
-e 

,2+e 
< [log(z0-l)]"e[log(z-l)]*'L"e 

zl5=z0 

(3.39) 

I have written this out in some detail, so that you can see 
why we need e > 0. If e were negative, the dominant contri-
bution to the z^-integral would come from the upper limit. 

h e giving us an extra, unacceptable factor of [log(z -l)]1 



Finally, one has the bound 
|pe£(s,t)| < C3(st)*^(log s-log t)"1"8, (3.40) 

where C^ is a constant. Of course, one still has to show that 
zZ 

p (s,t) is Holder-continuous in s and t, in order to accommo-
date the second term in the norm (3.30). This involves a lot 
more algebra that I do not have time to describe: I can only (3) 
refer to the original papers. 

The actual application of the Contraction Mapping Theorem 
to the equations (3.1)-(3.2) is now almost trivial. Since 

zZ Q 
depends linearly on p and v, " spends quadratically 
on it follows that, if ||v|| is small enough, then the 
operator T of eq. (3.8) will map a sufficiently small ball of 
the space into itself, i.e. (3.10) follows from (3.9) for b 
small enough. Secondly, because of the quadratic structure 
of the equations, it is easy to see that we will obtain an 
inequality of the form (3.13), with P proportional to 

qO 

21 |p || + | | v| |. So by making b and | | v| | small enough, we 
can ensure that P < 1, and so conclude the contraction proof. 



IV. Subtractions 

In this section, I want to explain how the treatment can 
be generalized to include subtractions. It is certain that 
we need s ubtract ions, because the norm of the preceding sec-
tion would only allow a total cross-section behaving like 
-1 -2-£ 

s (log s) for large s, whereas a constant is perhaps the 
most likely asymptotic behaviour (although this is far from 
certain). 

The unitarity equation, eq. (3.1), is still valid, but 
we now entertain the possibility that the infinite integral 
(3.2) might not converge without subtractions. From the 
Heine expansion, 

00 

^TI^ = £ (2l+l)P£(z)Q£(zf) , (4.1) 
1=0 

which converges if |z + Vz2-l| < |z' + Vz ,2-l| , we infer that 

£ 0 <"+l)Pt(l4t=£)Qt(l+gl,. (4-2) 
and 

r ^ - t i j S ( 2 £ + 1 ) < - « V 1 + t = r > V 1 + S T > ' <4-3> 

both behave like s1 ^ ̂  for large s1, and both are orthogon-
al to the first (L+l) partial waves in the t-channel. Hence 
we can replace eq. (3.2) by 



At(s,t) = 

I even 

• jpe*(s' ̂ tj+p^lt^') + v(s',t)J 
1 2s + p (2£+l)P£(l+~|)Im a£(t), (4.4) 
even 

where the Im &£<t) are t-channel partial-wave absorptive parts. 
We must envisage a suitably modified version of the norm 

0.1 (3.30), to allow p (s,t) to grow without limit as t + 
nl Here, however, a difficulty arises. If p (s,t) behaves like 

N e£ t as t + ® (apart from possible logarithms), then p (t,s) 
N 

will behave like s as s-»-«>, and so Afc(s,t) will be at least as 
N bad as s as s + The unitarity condition (3.1) contains 

quadratically, and one finds, on careful analysis, that 
2N-1 

p (s,t) would behave like s at least, which is worse than 
sM if N > 1. 

The trouble is rather artificial, however, since elastic 
unitarity is good only for 4 £ s £ 16, so that we are free to 
modify (3.1) above s » 16, so long as it is left inviolate in 
the elastic region. We choose to replace (3.1) by 



pe*(s,t) = 

h (s) 6 [t - ]jy dt1dt2K(s?t,t1,t2)A*(s/t1)At(sft2) ,(4.5) 

where Ms) is a function that satisfies the following condi-
tions : 

(a) Ms) = 1, for 4 < s < 16, 
so that elastic unitarity is not affected in the elastic 
region. 

(b) |Ms) - Ms') | < c|s-s' |u, for 16 < s < A, 
where C and A are constants. In this way Holder-continuity 
is not spoiled. 

(c) Ms) - 0, for s > A, (4.6) 
zl so that we can forget about the large-s behaviour of p (s,t) 

A suitable example of a function satisfying (a)-(c) is 

Ms) = (4^hr) <4.7) 

for 16 £ s <_ A, and (a) for s £ 16, (c) for s >_ A. 

A suitable generalized norm is 

llfll = 
|f(sJL,t1)-f(s2,t2)| / - \L / JIL+E, 

sup ( r l£(s.,t is ,t ) / - \L / _\l+e) 

l - i - a l ^ t S 1 2 (4.8) 
This guarantees the bounds 



|f(s,t>| < I |f| |tL(log t)"1"5 (4.9) 

and 
y.L .. ,.-1-e f(3vt) - f(s2,t)| < 1 I f I 1 |s1-s2rtL(log t)~ . (4.10) 

Notice the complete lack of interest here in the behavior as 
s this is effectively mastered by the Holder-continuous 
cut-off function, Ms) . 

If one knew Im a^(t), £®0, 2,...L, one could treat egs. 
(4.4) and (4.5) as a mapping p (s,t) + p (s,t), and try to 
contract as before. This procedure works, in fact, if 
Im a^(t) is Holder-continuous and not too big. Precisely, 
one needs Im a^(t) to belong to a space of functions of one 
variable, f(t), for which the following norm exists: 
ii*ii = 

H [ | f ( t ) l + ' T ^ T * " ] ( i o 9 1) 1 +1 f <4-ii) 
1 2 
tlt2 

and one needs ||lm |, £=0, 2,...L, to be sufficiently 
small. 

I will sketch now the most straightforward way of deter-
mining the Im a^(t), £=G,2,...t, consistent with elastic uni-
tarity, and Mandelstam analyticity. Define the total ampli-
tude as 



A(s,t) = f(t,u) + f (u,s) + f (s, t) / (4.12) 

where 

f(t,u) = 
L+l-l «> ds1 p^ (s 1) L p 74- tiL+1"t r° as 

P(t,u) + £ (2^+1) ( 3 - 4 ) ^ ( 1 + ^ ) ^ J _ ^ ^.„ „ , L+l-/ £=0 " ^4 s , L + ± (s1 —s) 

+ £ ± [ f dt'du'p(t',u') ^ ( 4 > 1 3 ) 
IT J J (4-t'-u') (t'-t) (u'-u) 

Here P(t,u) is a symmetric, Lth order polynomial of t and u. 

The p^(s) are single-spectral-functions, and the p(t,u) is 

the double-spectral-function. They are defined by 

p(t,u) = pe£(t,u) + pU(u,t) + v(t,u), (4.14) 

and by the requirement that the t-channel absorptive part, 

A (s,t), as in eq. (4.4), is equal to L 

0 (4-t-s1) (s1 -s) 
Z even 

L+l 
+ s / du'p(u',t) 

(4-t-u1) (u'-u) 

(4.15) 

Finally, the new value of Im a^ is determined by 
i 12 ^(s) = q| A^(s) | + Mt 

2 Im a„(s) = q| A» (s)| + u,(s), (4.16) 

for t - 0, 2,..., L, where A^(s) is the partial-wave projection 

of eq. (4.12). Here u^(s) is an inelastic function that must 



vanish for s £ 16, and that must have a finite norm of the 

type (4.11). 

Now eqs. (4.4)-(4.16) constitute a set of equations for 
n p 

p (s/t) and Im a^(s), I = 0, 2,...L. 
We may summarize them as 

pe£(s,t) = T.Jp^; S/t] (4.17a) 
Im a^(s) = T2[Im a; s,£]. (4.17b) 

If we call the space defined by the norm (4.8) Bj and if we 
define the space C by the norm 

II Im a|| = sup I | Im a J | , (4.18) 
0,2...L * 

where the norm on the right-hand side here is that of eq. 
(4.11); then we see that eq. (4.17a) maps B x C -*• B, while 
(4.17b) takes B x C C. We can combine the two equations 
(4.17) into one equation, by inventing the quantity 
(pe^(s,t), Im a^(s)}, which belongs to B x C, with the norm 

||{pe£,lm a}|| E max{||pe£||B, ||lma||c>. (4.19) 
We write equations (4.17) as 

{pe£(s,t), Im a£(s)} = T[{pe^, Im a}? s,t,£]. (4.20) 
The proof that eq. (4.20) defines a contraction mapping, 

if ||{v,u}|| is small enough, now proceeds smoothly. The 
essential point, just as in the simpler proof of Section 3, 



el 
is that T is quadratic in {p , Im a}, so that a sufficiently 

small ball in B x C will be mapped into itself. Moreover, 

the constant P in the contraction condition, eq. (3.13), is el 
proportional to ||{p , Im a}|| , so it will be less than u-
nity, if this norm is small enough. 



V. The CDP Ambiguity 
I come now to the discussion of the CDD ambiguity, which 

arises from the presence of Cauchy-singular integrals in the 
equations. I will limit myself, in the main, to a descrip-
tion of the new mappings, and an itemization of new difficul-
ties. It should not be necessary by now to spell out all the 
details of the contraction proof. 

The general idea is to replace the mapping T^ of eq. 
(4.17b), for the partial-waves £ = 0, 2 , L , by a different 
mapping, that is more general. The greater generality is 
possible by observing that it is enough to construct partial 
waves, a^(s), I - 0, 2,...,L, that satisfy the following pro-
perties s 

4-s 
(a) Im a^(s) = A£(s) = f dtP£(1+~|)ReAt(s,t) , 

(5.1) 
for s <_ 0, in other words, the discontinuity on the left-
hand cut agrees with that from the partial-wave projection of 
the Mandelstam representation (4.12)-(4.13). 
(b) Im a£(s) - q|a£(s)|2 + u^(s) , (5.2) 
for s _> 4, so unitarity is satisfied. 

(c) The single-spectral-functions are determined, for 

s > 4, by 



(s-4)£p£(s) = 

im a Js) - -ij / dtP^l+rrr) 
2t, 

\£w# s-4 ^4-s 

• | 4 ~ / + (t+u) t, (5.3) 
( w J (4-s-t1) (t'-t) ( 

This ensures that the discontinuities of the partial waves 
agree with the Mandelstam representation. 

w (d) l^T 1 a£(s) I s~" 2 

5 s-4 / dtP^l+i!|)A(s,t, 
4-s 

(5.4) 
s=2 

for n = 0, 1, 2, ...L? £ = 0, 2,...,(,. This finally ensures 

that the real parts agree too. 
The conditions (a)-(d) will be observed if a^(s) satis-

fies 

a£(s) = 

S C^ (s-2) + IsziL— £ ^ 
n=0 (s'-2) (s'-s) 

(s.2)t+l ds'{q'|a^(s') |2+u^(s')} 

* A (s,-2)l+1(s,-s) 
. (5.5) 

If we simply use this equation as our new mapping {p , a^} 
+ a1 and make Holder-continuous, so that we can get 



past the singular integral, we shall reproduce the fixed-
point of Section IV, although at the cost of more labor. It 
is to the possibility of finding alternative solutions of 
eq. (5.5), belonging to higher CDD classes, that we now turn, 

To simplify the writing, we shall now take the simple 
case L = 0, so that we discuss separately only the S-wave. 
We make an N/D decomposition, 

and we define 

aQ(s) - N(s)/D(s) , (5.6) 

1 ds1 B(s) = 7 / rr~r A„(s'). (5.7) 
•'—a s' -s 0 •oo 

The N-function then satisfies the linear equation, 

N(s) = oo M B(B)-B(8J , , ,B(s')-B(s) M BISJ-B1SJ , r 
B (s) + E d — — £ + i / 

n-1 n 8 Bn * i S "S 
ds' q'N(s'), (5.8) 

which may be shown to have a solution, if suitable restric-
tions are placed on B(s). Then D(s) is given by 
D (s) = 

M d .. /•» _ , 
1 + J i^q'N(s'). (5.9) 

n=l . n 4 
Where the poles here are the CDD poles. Finally, to make the 
mapping into one for Im a^(s), we set 

2 
im art(s) - . (5.10) 

° |D(s)| 



In the above equations, we have dropped the subtraction, and 

also assumed elastic unitarity. However, both of these de-

ficiencies can be repaired, and one can show that a fixed 
(3) 

point of the new mapping exists. 
In general, each ODD pole is associated with a resonance. 

This is because of Levinson's Theorem, which may be proved 
for the fixed point solution. It has the form 

6(00) = nir, (5.11) 

where 6(s) is the phase-shift (6(4) =0), and where n is the 

number of CDD poles. Evidently, the phase-shift must equal 

an odd multiple of TT/2 at least n times, so there will cer-

tainly be n resonances. This is the main physical interest 

of CDD poles: they allow us to obtain resonances in our sol-

utions. 

The formula (5.11) is only correct if D(s) has no physi-

cal-sheet zeros, which would correspond in general to ghosts. 

It has been proved, in the case of weak CDD poles, that if 

the residues, d , of ec. (5.9), have the correct sign, then n (3) there are in fact no ghosts. 



VI. Positivity 
So far, we have completely neglected the inelastic uni-

tarity constraint, namely 
2 

Im a^(s) - q|a^(s) | >_ 0, (6.1) 
f dr s >_ 16, I = 0,2,4,... 

Let us consider the subtraction-free equations of Section 
III first. The partial waves may be written 

a£(s) = FTi^r { d t V 1 + V 3 ' ^ ' (6-2) 

for s >_ 4, £ even. Now Q^(z) is real for real z > 1, so the 
imaginary part of a^(s) comes entirely from the imaginary 
part of A (s,t), which may be obtained by inspection from eq. 
(3.3). We find 
Im a^(s) = 

(s-4) f a t Q i + + pe£(t,s)+v(s,t)J , (6.3) 
where the integration extends over the support of the double-
spectral-function. Consider the elastic piece of this inte-
gral, i.e. the part involving p (s,t). Insert the expres-
sion (3.1), and interchange orders of integration: 

f f d ti a t
2K'(•'V\< 8' t2)/d t Q/ ( 1 +i=T) K<"t'tl't2) • 

(6.4) 



The integral over t here can be done explicitly. To see how 

this is done, let us return to the variable z. It may be 

proved, from the addition formula for Legendre functions, and 

the Heine expansion, that 

4w Z (2 +1)P£(2)Qz(z1)Q^(Z2) . (6-5) 

where the right-hand side is precisely the integral I(z) of 
eq. (2.15), which we have already calculated. Accordingly, 
we must have 

1 -CO 

V W V =2 f a * ttw J p i ^ C ' - V j 1 

-1 •+("l's2> 

= 4 f dz'Q,(z')k"%(z',z ,z ). (6.6) 
z+(zlfz2) 

The right-hand side here is the required-integral, to within 
an s-dependent factor. The term (6.4) becomes 

r r 2t 2t 
J J dtldt2A* (S , t At (S, t2) (14^) Q (l+iZf) 

=q|a£(s)|2. (6.7) 

is. 
2/ A\2 ir (s-4) 

Let us take the term (6.4) to the left-hand side of eq. (6.3), 
obtaining therefore 

2 Im a^(s) - q|a^(s)| = 

/

OO 

21 ok dtQ^(l+^) [p^(t,s) +v(s,t)] . (6.8) 
4S 

s-16 



We have to show that this integral is non-negative, for s 16. 

The Legendre function itself is positive, so we shall show how 
2.1 

to constrain th-\ term [p (t,s)+v(s,t) ] to be positive also. 

We divide the integral into two pieces: 00 r °° r 20 
dt... =y2Q dt... . (6.9) 

s-16 s-4 
On the domain (20,») we can require v(s,t) to be such that 

f2Q dt v(s,t)Q£(l+^|) > 0. (6.10) 
2.1 Since p (t,s) is quadratic in v, we can arrange for the posi-

oi tive contribution from v(s,-t) to dominate that from p (t,s), 
for v small enough. However, for t < 16, v(s,t) vanishes, 

2.1 and so we must arrange for p (t,s) itself to be positive here. 
of 

This is done by showing that the cone p (s,t) >0, 4 < s < 20, 

is mapped into itself (under the conditions of the contraction 

supping). The proof of this is worked out by dividing the 

integrations over t^ and t^ in eq. (3.1) into parts below and 

above t^, t2 * 20. Above this point, the sign of ReA^ (s,t) 

is controlled by v, and can be made positive. Below this 

point, A^Csrt) is real (for 4 < e jc 20), and positive# sines At pit,s) is positive for 4 < t < 20. 



The above argument works also when there is one subtrac-
tion; but it breaks down with two or more subtractions. In 
fact, there is no known way of accommodating positivity with 
more than one subtraction. Let me explain why this is. Sup-

<il a pose that p (sft) behaves like t , a > 0, as t + ® (except 
cX a possibly for logarithms). Then p (t,s) behaves like s as 

2t 
s -*» For fixed t, Q ^ ( l i ^ logs as s «>. Hence, unless 
there is effective cancellation under the integral (6.8), we 
shall have 

Im a£(s) - q|a^(s)|2^ s01"1 log s, (6.11) 

which is a flagrant violation of the unitarity bound if o > 1. of 

In principle, one could avoid this behavior if [p (t,s)+ 
v(o,t)] were to oscillate infinitely, as a function of t at 
fixed s, in such a way that, although it is not bounded by 
sa"e as s + t fixed, and so would need [a + 1] subtractions, 
nevertheless the integral (6.8) is bounded* A class of exam-
ples is furnished by the identity 

.a(t) _ if Cs d t 

- J — f W (s-4) Jt 
dt Q^l*^!)**®®*** sin[Im a(t) log s]. 

(6.12) 



where we suppose a(t) to be a real analytic function of t, 
with a cut tQ <_ t < and such that a(t) < 1 for t £ 0, and 
Re a(t) <_ L for all t, and a(«>) < 0 (in all directions of the 
t-plane). Then we must take £ > L to ensure convergence of 
the right-hand side of (6.12). Although we can have Re a(t) 
much greater than unity for some of the t-values in the in-
tegral (6.12), the oscillations of sin[Im a(t) log s] succeed 
in reducing s m a x [ R e a ( t ) ] " 1 log s to a constant, asymptotical-
ly, as we can see from the left-hand side of (6.12). 

The problem however is two-fold, and appears at present 
to be intractable: how does one set up a Banach space of 
functions with this subtle kind of oscillation, and how does 
one then show that the integrals (6.8) are non-negative? 

Acknowledgments: 
It is my pleasure to thank Professors E. c . 6. Sudarshan 

and A. M. Gleeson for the hospitality extended to me at the 
Center for Particle Theory at Austin, Texas. 



REFERENCES 

S. Mandelstam, Phys. Rev. 112, 1344 (1958); lJJj., 1741 
(1959); 115, 1752 (1959). 
L. Castillejo, R. H. Dalitz, and F. J. Dyson, Phys. Rev. 
101, 453 (1956). 

D. Atkinson, Nucl. Phys. B7, 375 (1968); B8, 375 (1968); 
B13, 415 (1969); B23, 397 (1970). 
J. Kupsch, Nucl. Phys. Bll, 573 (1969); B12, 155 (1969); 
Nuovo Cim. 66A, 202 (1970). 

D. Atkinson and R. L. Warnock, Phys. Rev« 188, 2098 (1969). 
A very good treetment of nonlinear methods may be found in 
M. A. Krasnosel' skii, Topological Methods in the Theory of 
Nonlinear Integral Equations, Macmillan, 1964. 


