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I. Introduction

(1)

As you know, in 1958 Mandelstam, following some simi-
lar but not identical proposals by other people, suggested
that a two-particle strong-interaction amplitude should be
simultaneously analytic in the two independent variables up-
on which it depends, say s and t. He did more than this, in
that he wrote down a double-spectral representation, which of
course is now generally called the Mandelstam representation.

He did this by combining partly %euristic, and partly rigur-
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ous reasoning, as we shall see. The rigorous part was a com-
bination of the elastic unitarity condition in one channel
with a dispersion relation in the crossed channel, while the
nonrigorous part was an Ansatz that respected crossing symme-
"try, without spoiling elastic unitarity in the elastic
region. In this way, he was able to write down an expression
for the double-discontinuity of the amplitude. What I pxo-
pose to do first is to) remind you how he did this, and then
to point out a slight generalization of this wethod.

You will recall that in the years following 1958, people
were very interested in finding solutions of the system of
Mandelstam equations. This is not an easy undertaking, since
the equations are nonlinear, thanks to the guadratic nature
of the unitarity condition. Hideous approximatiocns were made,
divergent series were truncated merrily at their second terms;
and the field was o ‘uscated by unnecessary discussions abocut
bootstraps. The situation is in principle straightforward:
we have a nonlinear, singular equation, and we want to know
if there are solutions; and, if so, how they may be obtained.
This is the question we shall consider in these lectures,
and we shall find at least a partial answer.

To summarize our findings: weidiscover that the Mandel-



stam equations for the wm system have many solutions, consis-
tent with crossing symmetry and elastic unitarity. A subset
of these solutions also satisfy the inelastic constraints
above the inelastic threshold. There are two sources of non-
uniqueness. One source is the freedom to insert inelastic
contributions in the interior of the double-spectral function;
and the other source is the freedom to include CDD poles(z)
in a finite number of partial waves./ We shall follow the
treatment of a number of recentl§/;;blished papers,(3) as we
explain the details of the proofs. For simplicity, I shall
omit isospin, but this can be included without too much extra

complication.(3’



ITI. Elastic Unitarity

Let Pyr Py p3, Py be the: four-momenta of the pions

(Fig. 1). We will use the following two variables:

s = (p, *+ pz)2 = (py + p,,)2
t=(p, -p)° = (B, - . (2.1)
P, P,
§ ————p
Figure 1

Definitions of Kinematic Variables

The two-pion scattering amplitude, A(s,t), is a function of
these two variables. In the so-called elastic region,

4 <8 <16, in which only two pions are allowed in the inter-
mediate state (Fig. 2), the elastic unitarity condition is
exact. It may be written

Im A(s,t) = ;‘%/dﬂ" A*(s,t') A(s,t''), (2.2)



where

_ a\E
q = (5 = 4) . (2.3)

Figure 2

Elastic Unitarity Diagram

Consider the s~-channel center-of-mass frame, defined by
> -+
With p = | Sl |, one finds

s = 4(pZ + 1)

t = -2p%(1 - 2), (2.5)
where z is the cosine of the angle between the initial and
final center-of-mass directions. Analogously,

e = -2p%(1 - 2,

£'' = -2p2(1 - 2'"), (2.6)



which implies, and is implied by
At(s,t) = Au(s,u). (2.10)

Substitute (2.8) into (2.2):

at,,
ImA(st)-—g—fdet t,A(st)ft o A, (s, )
du
_q_ f__._.__?__ .
+ thn_/ﬁ -t' A%(s,tl) uz—u" Au(s,4 = uz)

g !
+ 4“3fd$2'fu vy A (s ,4-s~u )f t" At(s,tz)

1
dul
Let us write
Im A= Im Al + Im A2 + Im A3 + Im A4, (2.12)

corresponding to the four terms of (2.11), and consider Im Al

first. Change from t's to z's, using (2.5), (2.6) and, ana-

logously,

ﬂ
i

—2p2(l - zl)

— coml (1
t, = -2p°(1 - z,). (2.13)

Then we obtain

Im Al(s,t) =

2 > ag’
o [} 4
w 0 0




where tl’ t2 are to be regarded as functions of Zyr Z, (and
s), and Z, = 1 + 2/p2. We will now evaluate the integral
SR e
1 z'-2 ) . 2 2.,k
1 zzl+cos¢ [(1-2 )(l-zl 17=2,. (2.15)

The ¢'~integral can be performed with the help of the formula

27
Jr do’ - 27 (2.16)
| ] [ Y
0 A + B cos ¢ (A? _ Bz)k
This gives
dz ' -3 .
where k is defined by
k(z,2',2,) = 22 + z'2% &+ 222 - 2z2'z, - 1. (2.18)

This kernal has many interesting properties. It will often
be useful to write it as
where z, are the two roots
_ _ .2 _ 2. -%
zi(z,zz) = 2z, t [(1 z ) (1 z, YJ <. (2.20)
The integral (2.17) is a little messy to do, so I will just
state the answer:
]
3 4 zlzz+k (z,zl,zz)

I(z) = 2nk L
z-2.72.-k (z,zl,zz)
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In working through this, remember that

4
zl,zzli 1l + oy >1 > 2z (2.22)

in the physical region of the s-channel.

For reasons that will become clear in a moment, I want
to write a dispersion relation for I(z). To do this, we must
investigate the singularities and the asymptotic behavior of
I(z). At first sight, one might expect logarithmic branch-
points when

- % _
z zlzz + k (z,zl,zz) = 0, (2.23)

but then

2 2_ 2 _ 2 2 2 _
z - Zzzlz2 + z1 22 =z <+ z1 + z2 222122 l. (2.24)

Since z concels out of this equation, it can never be satis-

fied (for z1 # 1, z, # 1), and so (2.23) does not after all
\ .

give branch-points. Since k* can be written in the form

k%(z,zl,zz) = {[z - z+(zl,zz)][z - z_(zl,zz)]}%, (2.25)

we see that z = zi(zl,zz) will in general be branch-points.
However, it-turns out that, on the physical Riemann sheet,

only z = z+(zl,zz) is in fact a branch-point. The physical
sheet is specified uniquely by the requirement that I(z) be

real when -1 < z < 1. Since 2402, > 1, z+(zl,zz) > 1.

Moreover, - 2 )2
1 2

- ’
z+(zl,zz) 1

(z

z_(zl,zz) - 1= (2.26)



and z, z', z'', are connected by the solid geometry relation,
z'' = z2' + cos ¢'[(1 - zz)(l - z'z)]%, (2.7)
where ¢' is an azimuthal angle. The integration in (2.2) is
over all intermediate directions,
dQ' = dz' d¢’',
-1 <2z <1, 0 < @' < 27,
Following Mandelstam, we want to combine (2.2) with a

fixed-s dispersion relation for A(s,t), namely

~ dt' A (s,t')
1 t
A(S,t) = ;‘.- ‘/'4 t' = ¢

<. ] - - L]
1 f du Au(S.4 S u')
MR u' - u ’ (2.8)

where u = 4 - s - t. Uere A.t and Au are the t- and u-channel

absorptive parts, respectively. We will see their physical

significance later.

The variables s, t, u will appear symmetrically in the

Mandelstam representation. They represent, respectively, the

square of the total energy when particles 1 and 2, 1 aha'4}

1 and 3 are incoming, and the other two qutg’oin‘g.~ SinEE_w;'Q
are considering pion scatteiing, in‘which aL1'Ehannels are *
identical, we will have,_in.particula;ﬂ |

A(s,t) = A(s,u), C T (209)



so that z_(z,,z,) > 1. One finds, on continuing I (z) from
the physical region to z_, and then encircling z_ once, that
k% changes gign, but that the argument of the logarithm in
(2.21) stays near zero. Hence I(z) does not change, and so
z 1is not a branch-point. However, when z, is reached, the

logarithm changes by 2mi when 2z circles this point once.

There is a cut from z = z+(zl,22) to z = », the discontinu-

ity across which is
2ni[2nk F(z,2,,2,) 1. ' (2.27)

As far as the asymptotic behavior of I(z) is concerned,

%3

(z,zl,zz) = 2z + 0(l) for large z, from which we see that
~ Jlog z
I(2) e d® - . (2.28)

It follows from the above analysis of I(z) that we may

write it as the dispersion relation

o0

dz' -3
I(z) = 47 - k “(2',z2.,2,). (2.29)
z+(zl,22) z'-2 172
According to (2.14), we will have

Im Al(s,t) =

o0 o0
2
2.[ dzlA;(s,tl)f dzzAt(s.tz)
Y2z z
0 0
z'>z,(21,22)

™ +
-4 dz’ N
- 2_/' z,_zf dz,dz,A%(s,t )A, (8, t,)k
m z+(zo, o) zozO
o (2.30)

dz'
z'-2

k-g(Z‘.zl.zz)
2,(25,2,)

X

(z' '21'-227) °



The expression (2.30) allows us to continue Im Al(s,t) from
-1 < z < 1 into the entire z plane. We should not call it

Im A1 now, but rather Asl’ the first of the four contribu-

tions to the s-channel absorptive part. Eg. (2.12) becomes

A = A + As + A (2.31)

s sl 2 53 4°

The t-discontinuity (or the z~discontinuity) of (2.30) may

+ A
S

be called AS and it may be written down by inspection from

tl’
eq. (2.30):

A (s,t) =
stl z>z+(zl,zz)

_!5 .
;% 6[z-z+(z0,zo)]ff dz,dz,k (2,2, ,2,) Ak(s,t ) A (s,t,).
Z0%0 C(2.32)

We need to analyze the limits in (2.32) in a little greater
detail. Let us write (2.32) as a repeated integral ./Azi}

./;zz. The upper limit of the z, integral is.givén by

2
. _ L, SR ¢
zZ = z+(zl,zz), i.e., by z, = z_(z,zl). The upper limit of

the z, integral is the maximum value of z. for which

1 1

z+(z1,zz) = z, with 2z, > z,. This point corresponds‘to
(see Fig. 3), and so the upper limit is z

22=ZO

The double-spectral function (2.32) wvanishes when

_ 2
z < z+(zo,zo) = 22 1. i
1

LA
O . A N 2 LS h
, . N \ P
[
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Now let me sketch briefly what happens with the other!:

2
s
fea

three terms in (2.31). The term A_,, corresponding to the

4!



gs a+(z| 'zz)
!0
!o ;z
Figure 3
~.
Boundary of zlz2 Integration ..
last term in (2.11), turns out to be just equal to A.s On

l.
the other hand, Asz gives a term like (2.30), but with 2z

replaced by -z. The cut runs from z = -[2202 - 1] to ==,

which corresponds to positive u, so the discontinuity of Asz

is reasonably called As The term As is exactly equal to

u2’ 3

A We will now collect these four terms together, and

s2°

return to the variables t (and u) instead of z:

As(s,t) =

m ‘el 1 Y !
%r-f ;?—E—E P (s,t') + ;f S 0%t (s,u"), (2.33)
16s l6s
s~4 -4



where

peﬂ(s’t) =
g(s;t,4q4) Jf g(s;t.tl)
(2. 34)
with
K(s;t,tl.tz) =

4 2 2 2 4tt1t2 -

— -4 - - - - X

7 (s(s-0) [E54e, %4t %2t -2t -6 £ - ——2))

- o (2. 35)
anda .
g(s;t.tl) =

2tt t
1 _ . t 1,4%
t+ )+ o 2{et, (1L + 2 (1 + =P 17, (2.36)

The equation (2.33) has been demonstrated only for
4 < s <16, the s-channel physical region. 1In this region,

the t-discontinuity of Ab(s,t), for positive t, is of course

l6s
s-4

The expression (2.34) is well-defined for all s and t, but

A, (s,t) = 0t - 10%t(s,0), (2.37)
the eguality (2.37) only holds for 4 < 8 < 16. We could have
done the whole calculation by combining t-channel unitarity
with a fixed t-dispersion relation, and then we could have
obtained the s-~discontinuity of At for positive s. We will

assume that the s-discontinuity of the t-discontinuity of



A(s, t) is the same as the t-dlscontlnulty of the s-discontin-

uity, so we would then have the result

_ _ let
A t(s,t) = 0[s t_4]p t,s) (2.38)

for 4 < t < 16. Since the right-hand side of (2.37) vanishes
for all s > 4 and t < 16, and the right-hand side of (2.33)
vanishes for all t > 4 and 8 < 16, it follows that the func-
tion

16t, el

169‘]9 (s,t)- o[s-g7lp

vis,t) = Ast(s,t) o[t=——r (t,s)

(2.39)
must vanish for 4 < s < 16 and for 4 < t < 16. The Mandel-
stam assumption is that v(s,t) is non-zero only for s > 16
and t > 16, and that there are no complex branch-points in

s x t. So for all s and t, eq. (2.33) is replaced by

A (s,t) =

lf t' t p(s,t’') + "'f du D(S u'), (2.40)

where

p(s,t) =

lé6ét, el

l6s 1
t-4°P

1981024 (s, )+ o[s-

A t(s.t) = 0t (t.s)+v(s,t).(2.41)

The support of p(s,t) is shown in Fig. 4.
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Figure 4

Support of p(s,t)

Lastly, I will derive the Mandelstam representation. A~

fixed~t dispersion relation for A(s,t), analogous to eq. (2.8),

would be
A(s,t) =
1 oods‘ , _];f du" ey

If we substitute
As(s"t) =

1 o at? 1 o . .
Ff tret Pls’.th) + ;;f u.§2+s.+t p(s’,u') (2.43)




and

A (4-t-u',t) =

-f g plu',t’) + lf s'-j:'::-l-u' p(u’,s') (2.44)

into (2.42) we get

A(s,t) =
1 ds'dt'p(s',t’') + 1 du'dt'p(u',t"')
“2 (s'~s) (t'~t) “2 (u'=-u) (t'-t)

1 (F B plu',s') p(u',s')
+ ;ZJC/.dS du’ TSTIg) (u' s '+t-4) | (u'-u) (u'+s'+t-4) (2.45)

where use has been made of the symmetry of p(u',s'). This
reduces easily to
A(s,t) = £(s,t) + £(t,u) + £(u,s), (2.46)

where

1 ds'dt'p(s',t')

fe8) =5 e e

(2.47)



III. Existence Proof

I am now going to show how to demonstrate the existence
of solutions of the nonlinear system of eguations that we
have set up. Let us gather the key equations together. If

we knew A, , we could calculate pel from

t

Lis,t) = e[t-l-“-i]ffdtldtzx(s t,tg b ) AR(s,t,)A (s,t,),

(3.1)
which is eq. (2.34), except that I have chosen to combine
the 0-function into the definition of pet. How do we know
At? I1f we knew peﬂ, we would have, by combining eg. (2.41)

with the t-channel absorptive part of eg. (2.46),

A (s,t) =

-/ ds{ S._u] [pez(s' .t)+pu'(t.8' )+v(s',t)], (3.2)

where v is to be a given function, and where the liower limit
of integration is defined by the 6-function in eq. (3.1). The
support of the double spectral function is sketched in Fig.:4.
Evidently the system (3.1);(3.2) provides a nonlinear- |
integral equation for pe£. Let us summarize it by |

Ysot) = ot s,el. (3.3)

I have suppressed the dependence of the operator, T, on the



function, v(s,t). It may be thought of as a parameter (but
an infinite dimensional one!) Sometimes, I will suppress
also the independent variables, s and t. There is nothing
metaphysical about eq. (3.3): it merely summarizes egs.
(3.1)-(3.2).

I am actually going to apply the Contraction Mapping
Principle(4) to eq. (3.3). This is a rigorous way of dis-

cussing when the iteration,

el

el _
Tlp,

o

converges to some limiting function,
p_ w—p. ", (3.5)

which satisfies eq. (3.3), i.e. for which

o2t = z(p2ty. (3.6)

My discussion of the Contraction Mapping Theorem, or Banach-
Cacéiopoli Principle, will be, for the most part, general;
but it‘may be helpful to consider in particular the equations
(3.1)-(3.2) to concretize our ideas, and of course we are
indeed specifically interested in these equations.

' First of all, we have to define a space of functions in
which we are going to work. The space we use depends on the

nature of the equations, but there is no general way of find-



ing a suitable space in which a given egquation will contract:
this initial step is a work of art. We want to be sure that,
if p§£ (s,t), the zeroth step in the iteration, has the pro-

perties which ensure that it belongs to the space, then

el
Py

and so on, so that the infinite segquence of iterates lies in

(s,t) also has these properties, and likewise pgl(s,t),

the function space. The ecjuation (3.2) contains a Cauchy
singular integral, so we must restrict pet to belong to a
space that ensures the convergence of this singular integral.
It would not be enough actually to require continuity, because,
although the principal-value integral of a continuous function
exists, it is not necessarily continuous. The equations would
kick a function out of a space of merely continuous functions.
However, the principal-value integral of a HOlder-continuous
function is itself Holder-continuous. A function, £(x), is
said to be Holder-continuous on 0 < x < 1, if

l£(x,) = £(x,)] < Alx; - x2|“, (3.7)
for any x

» X, in [0,1], where A and y are constants, the

1 2
latter being called the HO6lder index. We will build HSlder-
continuity into our space; and there are some other fine

points that we will come to later.

Let us imagine that we have a suitable space. That is :



to say, suppose we have the specifications of a space of
functions such that, if pez(s,t) belongs to the space, then

Sez(s,t) also belongs to it, where

Eez(s.t) = T[oet: s,t]. (3.8)

It follows that if pgl belongs to the space, then the infinite

)4

sejuence {pﬁ }, n=0,1, 2, 3,... will also belong to the

space.
In order to demonstrate the éonvergence of this infinite
sequence, we have to show two things, both of which assume
the ex’stence of a suitable distance function, or metric. I
will always be talking about a normed space, i.e. a space in
which a suitable numger, the norm, ||pe£|l, is associated
with each function, pez(s,t). The distance between two func-
ek

. el | . el el
tions, p_~ and p, ", is defined to be ||pa - Py |-

to show firstly that a closed seot in the space is mapped into

We have

itself, and in practice this means showing that if
110411 < b (3.9)
for some particular b, then
11511 < b, (3.10)
where Sel is given by eg. (3.8). Evidently, this means that

if p§£ lies within the ball of radius b, then the whole se-

quence {pﬁt} is trapped within the ball. Secondly, we must



show that, if pgz and pg are any two functions lying in the
ball, and
-el _ el
pa = T[pa 1, (3.11)
-el _ el :
then
-el -el el el
e~ - o, 1 = Blle, = o711 & (3.13)
where P is' some number such that
0 <P < 1. (3.14)
Clearly, if we set pe£ = pﬁz, we shall have 5e£,= pﬁfl, and

el el -2l ez

if we set P = Ppep’ W shall have P, = Pph4a’ SO that (3. 13)

will read

|| el

el el
ot - ot 1l < Bl1e%E, - 02*|

el (3.15)
In other words, successive iterates get closer and closer
together (see Fig. 5).

We can show from eq. (3.15) that the sequence'{pzz} ne-

cessarlily converges, since, if m > n,

el _ ez el_ e£ el
llpm I|<|lp 1||+'|pm_1 m_2l|+"'+|l n+1-pn l'
g'{Pm'-1+Pm 2+...+P }llpez- glll
pP

m=n
1- el el
= pP P llpel el I'

5 ey —eg |1 2 375 ey =94 (3.16)



———— o b

- o/
o ‘pnol
P’l Pz
n
Figure 5

The General Principle of Contraction Mapping

Since P<l, the right-hand side of this inequality can be
made as small as one likes, just by making n large enough.
Hence'{pﬁz} is a Cauchy sequence, in the sense of the norm:
that is, the quantity ||p;£ - pﬁzll can be made arbitrarily
small, just by making m and n large enough. This means that
{pﬁz} converges to some function, piz. S:rictly speaking,
piz lies in the completion of our space; but we shall deal
exclusively with a complete, normed, linear space (a Banach
space), so we can ignore this point.

To say that pie tends to piz as n + », in the sense of



the norm, means that, given any € > 0, we can find an N such
that

11025 - 021 < ¢ | (3.17)

for all m > N. Therefore, from eg. (3.16),

el el el el el el
e, " = ex 11 < ley” = o 71+~ = 04711

n m
P el el ‘ PN
<3 ey =g Il + &, (3.18)

Since the left-hand side of this inequality, and also the
final form of the right-hand side, do nct depend on_m,.;ﬁd/
we can make e as small as we like, it is clear that we;can
drop €, and write simply

el
[ |

n N
P el el :
Sl 25 ey = ey il - (3.19)

163" - 0
This is a useful inequality, since it allows one to estimate
the error that is involved in truncating the interation at
the nﬁh step.
We will now prove something that may seem obvious, but
which actually needs to be proved, namely that piz, which has
now been shown to exist, actually satisfies the equation. We

have

el el el el el el
o™ = T < ey = o "1 + 1le = = Tto |

+ [meth - rethH] . (3.20)



The first term on the right is bounded by (3.19), so if we
are given any € > 0, no matter how small, we can find an n
so large that the term is less than €. The second term in

(3.20) is just

el el
e~ = o 4ql1s (3.21)
because of eq. (3.4), and we can use (3.16), with m replaced
by n + 1, to show that this too can be made smaller than ¢,

by making n large enough. The last term is not greater than
el el
Pllo ™ = pu Il « (3.22)

according to the contraction condition, egqs. (3.11)-(3.13).
So by eqg. (3.19) again, we can make this smaller than €. Fi-
nally, we have shown that, merely by choosing a suitable n, we

can arrange that

11028 - 2% ] < 3e. (3.23)

Since n does not appear here, and € can be as small as one
likes, the only possibility is that the left-hand side is
zero. This means that eqg. (3.6) is satisfied, since the only
function with a zero norm is the null function itself.

This concludes the general discussion of the Contraction
Mapping Theorem. Let us now look at the equations (3.1l)-

(3.2), with a view to applying the theorem to them. We have



already indicated thrat HOolder-continuity will be built into
the specification of the norm. We will be looking for a so-
lution, pel(s,t), in a space of functions, f(s,t), that satis-
fy HOlder-continuity. Set s = 4/x in inequality (3.7), to
transform the interval (0, 1) into (4, »). We would like

then to have

8.8
|£(s,,t) - £(s,,8)] < P (3.24)
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However, in view of the occurrence of pez(t,s') as well as
pez(s',t) in eq. (3.2), it is clear that we should require

double HOlder-continuity, i.e.

8.-8,1u t.~-t, 1
|£(sy,t;) = £(s,,t,)| < Al L 21 I-l——_z_ }, (3.24)
slszt tltzs

where s = min(sl,sz), t = min(tl,tz). If we also impose the
restriction

f(s, ®) = f(», t), (3.26)
upon the functions that belong to our space, then eq. (3.25)

implies

|£(s,t)| < A(st) ". (3.27)

Unfortunately, the bound (3.27) cannot be reproduced in

general by eq. (3.1). 1In fact, if pe£ and v in eq. (3.2).

L

obey (3.25), we cannot show that pe in eq. (3.1) satisfies

a bound t " for large t, as required by eq. (3.27),.but only



t-“log t. Once again, the equations would expel functions
from our space, and the Contraction Mapping Theorem would be

inapplicable. However, we can show that, if

|a_(s,t) | < Bt™® (log t)” 17 (3.28)
e >0, 0 <u<%, in eq. (3.1), then
10%%(s,t)| < ct™(10g t)"17E. (3.29)

This prescribes the final form of our norm, namely

I£] = sup*[f(s,t)l(st)u(log s+log t)l+€

|£(s,,t,) - £(s,,t,)|[log 5+log Tite

- u - 1
S s2 tl t2

where the supremum is to be taken over s, t, SRY tl, tz,

in (4, »). We see from eq. (3.30) that necessarily

|£(s,t)| < ||£]](st) " (log s-1log £)"17%,  (3.31)
and
s - -1-¢
lf(sl,t)-f(sz,t)lillfil 5| t (log s:log t) . (3.32)
152 '

It can be shown that, if p‘,"z and v in eq. (3.2) possess

a norm (3.30), then pel in eg. (3.1) also possesses a finite

norm in this space. We say that the nonlinear operator, T,



of eq. (3.3), maps the Banach space specified by the norm
(3.30) into itself. The detailed proof of this involves a

tie,s)

lot of algebra. I will not prove that, if [pel(s,t)+p¢
+v(s,t)] satisfies an inequality like (3.32), then At(s,t),
eq. (3.2) does so also. The result, that the Cauchy integral
of a H6lder-continuous function is itself Holder-continuous,
is a standard one, and may be found in Muskhelishvili's book.
We need a slight generalization, to carry along the extra
logarithms, and the t-dependence, but this is not hard.

We will concentrate upon the physically more interesting
logarithms. I will show that, if |At(s,t)| satisfies a

bound like (3.31), then pez(s,t), defined by eq. (3.1), will

do so also. Suppose then that

|a_(s,£)| < c(st) ¥ (log s-log £) 7%, (3.33)
then
10%4(s,t) |
2 -2 —2-2¢ dzldzz(tltz)-u(log tlolog tz)-l-e
< C's u(log s) ‘17. %
k (z,zl,zz)
(3. 34)

where I have changed back to the z-variable, eqs. (2.5),

(2.13) and (2.18). Now the zz-integral can be majorized by



z (z,2,) -u ~l=-€
Jf - 1 dz,t, " (log t,)

z ~ X ]
0 {z (z,2,)-2_(z,2;)} {z_(z.zl)-zz}

’ (3.35)

where use has been made of the factorization (2.25), and of

the fact that z, < z_(z,zl) in the integration. Since

tz-u(log tz)-l-e can be certainly majorized by

¢, 154z -1) 1" ¥ [10g Z2(z_~1)) 717

for 1 < z, < z_, so long as y < %, and C

we may majorize (3.35) by

1 is some constant,

277 (z%-1) (22-1) 17%¢, 154 (z_-1) 1% ¥ {10g 22(z_-n17te
z_ dz 3
S, (2_- )2( -1)1" ) - o
z, [(z_-2,) (z,

Now

Z

f i dz, [(z_-zz) (zz-l)]"‘

0
Z_ zZ_o-%
_/ [—(z -l)] % f d 2[(2_-22)"2—]
z /2
z_/2 zZ_
= (-:—-);5 2[(22-1);" - (z —zz)I ]
1 z_/2

Il
B =%
.

(3.37)



So we find

el l-¢

10" (5,8)| < C,(st) " (log s)~

z/2z dz
. -1-
% —F tog(z,-1) 1109 E -1} (3.38)

Z 1l 1
The zl—integral here carn be majorized in two pieces by
X
z° dz.
jf 1 [log(z -1)-109(2*-1)] 1-e
z.—-1 1
2z 1l
0
z/zo dz
3 z ~l-¢
+ [leg(z“-1) *log(= -1) ] .
z.-1 - z
b 1 1
z
With the variable-change zl -+ z/zl in the second piece here,
we find that the sum of both pieces is not more than
3
z° dz
2[1og(z%-l)] 1 i/. ——:l [log(z.-1)] 1-e
z.-1 1l
z 1
0
-€ z%
;i -1l=-g [109(21"1)]
= 2[%log(z~22 “+1) ] s
%17%0
2+¢€ -c -1-c
< =7 [log{z,-1)] "[log(z-1)] . (3.39)

I have written this out in some detail, so that you can see
why we need ¢ > 0. If ¢ were negative, the dominant contri-
bution to the zl-integral would come from the upper limit,

giving us an extra, unacceptable factor of [log(zk-l)]lsl.



Finally, one has the bound

el 1-¢

10 (s,£)| < C5(st) " (log selog ) T, (3.40)

where C3 is a constant. Of course, one still has to show that
pez(s,t) is Holder-continuous in s and t, in order to accommo-
date the second term in the norm (3.30). This involves a lot
more algebra that I do not have time to describe: I can only

refer to the original papers.(3)

The actual application of the Contraction Mapping Theorem
to the equations (3.1)-(3.2) is now almost trivial. Since At
depends linearly on pet and v, . 2! 2pends quadratically
on At' it follows that, if ||v|| is small enough, then the
operator T of eg. (3.8) will map a sufficiently small ball of
the space into itself, i.e. (3.10) follows from (3.9) for b
small enough. Secondly, because of the quadratic structure
of the equations, it is easy to see that we will obtain an
inequality of the form (2.13), with P proportional to

2||pe£|| + ||v]|]. So by making b and ||v|| small enough, we

can ensure that P < 1, and so conclude the contraction proof.



IV. Subtractions

In this section, I want to explain how the treatment can
be generalized to include subtractions. It is certain that
we need subtractions, because the norm of the preceding sec-
tion would only allow a total cross-section behaving like
s-l(log s)-z-e for large s, whereas a constant is perhaps the
most likely asymptotic behaviour (although this is far from
certain).

The unitarity equation, eq. (3.1), is still valid, but
we now entertain the poséibility that the infinite integral
(3.2) might not converge without subtractions. From the

Heine expansion,

[o 0]

Y (22+1)P,(2)Q,(2"), (4.1)
2=0 |

1l
2'-2

which converges if |z +'Jz2-1| < |z +‘Jz'!-l|, we infer that
L

1 2 5!
= - t—_;%_io (22+1)p, (14220, (1422, (4.2)
and
L _ 2 ZL: 20+1) (-1) %p s’
Tom 7 2 e DR ashe, i, (4.3)
-L-1

both behave like s' for large s', and both are orthogon-

al to the first (L+1l) partial waves in the t-channel. Hence

we can replace eq. (3.2) by



t
1 J/P 1 1 s &
= ds'[s'—s + ST T T EZ% (2£+1)P (1+t 4)Q£(l+ ﬂ
£ even
-[pe‘(s',t>+pe£(t,s') + v(s',tﬂ
L 2s

+ ) (28+1)P, (1420 Im a, (), (4.4)
£ even

where the Im az(t) are t-channel partial-wave absorptive parts.
We must envisage a suitably modified version of the norm
(3.30), to aliow p%%(s,t) to grow without limit as t + .
Here, however, a difficulty arises. 1If pez(s,t) behaves like
tN as t » » (apart from possible logarithms), then pez(t,s)
will behave like sN as s+», and so At(s,t) will be at least as
bad as sN as s + », The unitarity conédition (3.1) contains
A guadratically, and one finds, on careful analysis, that
et(s.t) would behave like 82 N-1 at least, which is worse than
s if N> 1.
The trouble is rather artificial, however, since elastic
unitarity is good only for 4 < s < 16, so that we are free to

modify (3.1l) above s = 16, so long as it is left inviolate in

the elastic region. We chocse to replace (3.1) by



z(srt) =

h(s)o[t - lfi]ff dt dt K(sit,t ,t ) A% (s, )A (s,t,), (4.5)

where h(s) is a function that satisfies the following condi-
tions:

(a) h(s) =1, for 4 < s < 16,
so that elastic unitarity is not affected in the elastic
region. !

(b) |h(s) - h(s")| < c|s-s'|¥, for 16 < s < A,
where C and A are ccnstants. In this way Holder-continuity
is not spoiled.

(c) h(s) = 0, for s > A, (4.6)
so that we can forget about the large—~s behaviour of pel(s,t).

A suitable example of a function satisfying (a)-(c) is

n
h(s) = (%) (4.7)

for 16 < s < A, and (a) for s < 16, (c) for s > A.

A suitable generalized norm is

[£l| =
| £(s 'ty )-£(s 'ty ) | - 1\l _\1+e
o[ ] g
A e

(4.8)

This guarantees the bounds



l-¢

1£(s,8)| < |1£] ]t (109 &)~ (4.9)

and
l-¢

L -
lf(sl,t) - f(sz,t)l < |I£]] lsl-szlut (log t) . (4.10)

Notice the complete lack of interest here in the behavior as
s + »: this is effectively mastered by the Holder-continuous
cut-off function, h(s).

If one knew Im at(t), £=0, 2,...L, one could treat egs.
(4.4) and (4.5) as a mapping pez(s,t) -+ pez(s,t), and try to
contract as before. This procedure works, in fact, if
Im az(t) is Holder-continuous and not too big. Precisely,
one needs Im az(t) to belong to a space of functions of one

variable, f(t), for which the following norm exists:

£l =
]
[E(t)-£(t) [0 , = L )
sup’[lf(t)l + 1 2 ] (ttt ) (log t) 1*'5% : (4.11)
Itl-tzl“ 152 :
£t

and one needs ||Im azll, £=0, 2,...L, to be sufficiently
small.

I will sketch now the most straightforward way of deter-
mining the Im az(t), £=0,2,...L, consistent with elastic uni-
tarity, and Mandelstam analyticity. Define the total ampli-

tude as



A(s,t) = £(t,u) + £(u,s) + £(s,t), (4.12)

where
f(t,u) = . , 5"
L +1- © ds'p, (s’
£ 2t. s £
P(t,u) + (2£+1) (s-4) P, (1+——) -
EE% £ s-4 T Jé‘ gt L+l L(s'-s)
L+1 [] ] ]
)/ Bvwessrz: et
(4- t' (t* t)(u -u)

Here P(t,u) is a symmetric, Lth order polynomial of t é;dvu.
The pl(s) are single-spectral-functions, and the p(t,u) is
the double-spectral-function. They are defined by

p(t,u) = pez(t,u) + pez(u,t) + v(t,u), (4.14)
and by the requirement that the t-channel absorptive part,

At(s,t), as in eq. (4.4), is equal to

L L+1
ds'p(s',t)
T (22+1) (t-4) %P (1+ = (t) + 2
£=0 £ T f (4-t-s') Lt (g1 -g)
£ even

+ sL+ljf du'p(u’',t)

™ I (a-tmun) -
(4.15)
Finally, the new value of Im a, is determined by
2
Im a,(s) = q]Az(s)l + u,(s), (4.16)

for £ =0, 2,..., L, where Az(s) is the partial-wave projecﬁion

of eq. (4.12). Here u,(s) is an inelastic function that mus+



vanish for s < 16, and that must have a finite norm of the
type (4.11).

Now egs. (4.4)-(4.16) constitute a set of equations for
p®Y(s,t) and Im a,(s), £ =0, 2,...L.

We may summarize them as

el

0%t (s,t) T, [0%%; s,t] (4.17a)

Im az(s) = T2[Im a; s,4]. (4.17b)
If we call the space defined by the norm (4.8) B; and if we

define the space C by the norm

|| Im allc = sup | | Im azll, (4.18)
£=0,2...L

where the norm on tre right-hand side here is that of eq.
(4.11); then we see that eq. (4.17a) maps B x C + B, while
(4.17b) takes B x C + C. We can combine the two equations
(4.17) into one equation, by inventing the quantity

{pez(s,t), Im az(s)}. which belongs to B x C, with the norm

el
[

ll{pez.lm al{| = max{|]|p pr |l1Im alf }. (4.19)

We write equations (4.17) as

{pel(S.t). Im aL(S)} = T[{pel

» Im a}; s,t,L]. (4.20)
The proof that eq. (4.20) defines a contraction mapping,
if |]{v,u}|] is small enough, now proceeds smoothly. The

essential point, just as in the simpler proof of Section 3,



is that T is quadratic :i.n'{p‘,"e

, Im a}, so that a sufficiently
small ball in B x C will be mapped into itself. Moreover,
the constant P in the contraction condition, egq. (3.13), is

proportional to Il{pel, Im a}|] , so it will be less than u-

nity, if this norm is small enough.



V. The CDD Ambiguity

I come now to the discussion of the CDD ambiguity, which
arises from the presence of Cauchy-singular integrals in the
equations. I will limit myself, in the main, to a descrip-
tion of the new mappings, and an itemization of new difficul-
ties. It should not be necessary by now to spell out all the
details of the contraction proof.

The general idea is to replace the mapping T2 of eq.
(4.17b), for the partial-waves £ = 0, 2,...,L, by a different
mapping, é. that is more general. The greater generality is
possible by observing that it is enough to construct partial

waves, az(s), £L=0, 2,...,L, that satisfy the following pro-

perties:
2 4-s 2t
(a) Im az(s) = Az(s) = -3-2 J{ dtP£(1+;:Z)ReAt(s,t),

(5.1)
for s < 0, in other words, the discontinuity on the left-
hand cut agrees with that from the partial-wave projection of
the Mandelstam representation (4.12)-(4.13).

(b) Im a,(s) = qla,(s)]? + u,(s), (5.2)
for s > 4, so unitarity is satisfied.
(c) The single-spectral-functions are determined, for

s > 4, by



(s-4)£p£(s) = 0

1 Jf 2t
Im az(s) = 521 Yi-s dth(l+;:Z)

L+1 ' '
;{“ﬂ Jf dt ?(t+i8) + (t+u)}, (5.3)
(4-s-t') (t'-t)

This ensures that the discontinuities of the partial waves

agree with the Mandelstam representation.

ch = (gg)? —lZ'J/p ate, (1+=29als,t)| ,  (5.4)
4-s §=2
for n=90,1, 2,...L; £ =0, 2,...,L. This finally ensures
that the real parts agree too.
The conditions (a)-(d) will be observed if az(s) satis-
fies

aL(S) =

L L+1 ds'A,(s')
(s-2) L
> Be-2)® + [
n=o ¢ (s'-2)t* (s -s)

- 2
(s-2) L*1 ,= ds'{q'la,(s"')] +u, (s')}

+ . (5.5)
m °/: (s'-2)L+l(s'-s)

If we simply use this equation as our new mapping'{pez, az}

-+ a'z and make az(s) HOlder-continuous, so that we can get



past the singular integral, we shall reproduce the fixed-

point of Section IV, although at the cost of more labor. It

is to the possibility of finding alternative solutions of

eg. (5.5), belonging to higher CDD classes, that we now turn.
To simplify the writing, we shall now take the simple

case L = 0, so that we discuss separately only the S-wave.

We make an N/D decomposition,

aO(S) = N(s)/D(s), (5.6)
and we define
By =L [0 85, o) (5.7
S} =5 J(; st-s 05 ’° )

The N-function then satisfies the linear equation,
N(s) =

M B(s)-B(s_) ~ " o
Bls) + L d_ “+%f®$m’“”¢myh (5.8)
/|

S-S s'-s
n=1 n

which may be shown to have a solution, if suitable restric-
tions are placed on B(s). Then D(s) is given by
D(s)=

M dn 1 fw ds'
1+ — S5 4'N(s'). (5.9)
n=1 .n 4

Where the poles here are the CDD poles. Finally, to make the

mapping into one for Im ao(s), we set

2
Ima, (s) = LNl (5.10)
0 | D(s) l2



In the above equations, we have dropped the subtraction, and
also assumed elastic unitarity. However, both of these de-
ficiencies can be repaired, and one can show that a fixed
point of the new mapping exists.(3)

In general, each CDD pole is associated with a resonance..
This is because of Levinson's Theorem, which may be proved
for the fixed point solution. It has the form

§ (») = nmw, (5.11)
where §(s) is the phase-shift (6(4) = 0), and where n is the
number of CDD poles. Evidently, the phase-shift must equal
an odd multiple of /2 at least n times, so there will cer-—-
tainly be n resonances. This is the main physical interest
of CDD poles: they allow us to obtain resonances in our sol-
utions.

The formula (5.1l1l) is only correct if D(s) has no physi-
cal-sheet zeros, which would correspond in general to ghosts.
It has been proved, in the case of weak CDD poles, that if
the residues, <%{ of e¢. (5.9), have the correct sign, then

(3)

there are in fact no ghosts.



VI. Positivity

So far, we have completely neglected the inelastic uni-
tarity constraint, namely
2
Im a,(s) -~ qla,(s)|” > 0, (6.1)
4 £ -
for s > 16, £ =0, 2, 4,...
Let us consider the subtraction-free equations of Section

IITI first. The partial waves may be written
[«+]
a,(s) = = [ ar o1+ E as,0) (6.2)
£ T(s-4) A £ s-4 *

for s > 4, £ even. Now Qz(z) is real for real z > 1, so the
imaginary part of az(s) comes entirely from the imaginary

part of At(s,t), which may be obtained by inspection from eq.

(3.3). We find

Im az(s) =

2 2t, [ et el
FTE:ZT'det Qz(l +'§:2) [P (s,t) + p (t,s)+v(s,t0], (6.3)

where the integration extends over the support of the double-

spectral-function. Consider the elastic piece of this inte-
: - . el

gral, i.e. the part involving p (s,t). Insert the expies-

sion (3.1), and interchange orders of integration:

2 | _2t .
e ffdtldtzA;(s,tl)At(s,tz)/dth(1+s_4)K(s,t,tl,t2) .

(6.4)



The integral over t here can be done explicitly. To see how
this is done, let us return to the variable z. It may be
proved, from the addition formula for Legendre functions, and

the Heine expansion, that

o)

4t éé% (2 +1)P£(Z)Q£(21)Q£(ZZ) =J[}z'

an'
-zl)(z"-zz) '

(6.5)

where the right~hand side is precisely the integral I(z) of

eq. (2.15), which we have already calculated. Accordingly,

we must have

2 f dz P,(z) f z?f; k-!!(z',zl,zz)

(zl,z )

o0

il
>

dz'Q (z")k—%(z',z v 2.) . (6.6)
2z (z..,2.) L 1”2
+ 71772

The right-hand side here is the required. integral, to within

an s-dependent factor. The term (6.4) becomes

2t 2t
wzls 4)2 dtldtzA*(s tliA (s,t )Q£(1+———)Q (1+ )

2
= qlaz(s)l . (6.7)
Let us take the term (6.4) to the left-hand side of eq. (6.3),
ocbtaining therefore

2
Im a,(s) - qlaz(s)l =

—2 Jf " 2t, - el
T(s-4) 4 atQ, (1+==7) [p (t,8) + v(s,t)] . (6.8)

s-16




We have to show that this integral is non-negative, for s > 16.
The Legendre function itself is positive, so we shall show how
to constrain th-. term [peﬁ(t,s)+v(s,t)] to be positive also.

We divide the integral intc two pieces:

@ 0o 20
/;s dt... =£0 3t... +_/;s dt... . (6.9)

s-l6 s-4

On the domain (20,») we can require v(s,t) to be such that
er dt v(s, t)Qz(l+—-—) > 0. (6.10)

Since peztt,s) is quadratic in v, we can arrange for the posi-
tive contribution from v(s.t) to dominate that from pez(t.s),
for v small enough. However, for t < 16, v(s,t) vanishes,

and so we must arrange for pel(t,s) itself to be positive here.
This is done by showing that the cone pez(s,t) >0, 4 <8 < 20,
is mapped into itself (under the conditions of the contraction
mipping). The proof of this is worked out by dividing the

integrations over t, and t2 in eq. (3.1) into parts below and

1

above tl' tz = 20. Above this point, the sign of Rzat(s,t)

is controlled by v, and car be made positive. Below this

point, At(s‘t) is real (foxr 4‘:,3'5 20), and positive, since

z(t,s) is positive for 4 < & < 20.



The above argument works also when there is one subtrac-
tion; but it breaks down with two or more subtractions. 1In
fact, there is no known way of accommodating positivity with
more than one subtraction. Let me explain why this is. Sup-
pose that pez(s,t) behaves like ta, o >0, as t + » (except
possibly for logarithms). Then pel(t,s) behaves like sa as
s + », For fixed t, Q£(1+;%%)'~ logs as s + », Hence, unless
there is effective cancellation under the integral (6.8), we
shall have

Im al(s) - qlal(s)l2 ~ %1 log s, (6.11)

which is a flagrant violation of the unitarity bound if o > 1.

el t'8)+

In principle, one could avoid tais behavior if (p
vig,t)] were to oscillate infinitely, as a function of t at
fixed s, in such a way that, although it is not bounded by
s*€ as s + o, t fixed, and s0o would need [a + 1] subtractions,
nevertheless the integral (6.8) is bounded. A class of exam-

ples is furnished by the identity

" 2t, _a(t)
s~& ‘/“o at PL‘].‘P;-:I) s =
-8
A ® 2t. _Rea(t) |
x(s~4) f at Q, (1+==5)s sin{Im a(t) log s],

t
o (6.12)



where we suppose g (t) to be a real analytic function of ¢,
with a cut t, < t < =, and such that a(t) < 1 for t < 0, and
Re aa(t) < L for all t, and a(®) < 0 (in all directions of the
t-plane). Then we must take £ > L to ensure convergence of
the right-hand side of (6.12). Although we can have Re a(t)
much greater than unity for some of the t-values in the in-
tegral (6.12), the oscillations of sin[Im a(t) log s] succeed

in reducing smax[Re a(t)]-1

log s to a constant, asymptotical-
ly, as we can see from the left-hand side of (6.12).

The problem however is two-fold, and appears at present
t> be intractable: how does one set up a Banach space of

functions with this subtle kind of oscillation, and how does

one then show that the integrals (6.8) are non-negative?
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