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ABSTRACT 

The problem of the propagation of a perturbation initially localized 

is considered: in the case of an unstable plasma. ·We use a linearized theory 

(which puts a time limitation for the validity of the theory) and a one­

dimensional geometrY. One finds that the front of the instability propagates 

with a velocity v0• Still the main part of the energy diffuses slowly, 

i.e., is localized in. a zone the dimension of which increases as~· This 

problem is connected with the problem of absolute versus convective instability. 
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I • INTRODUCTION 

In view of the current interest in double stream instability phenomenap 
. I 

it seems interesting to extend a calculation developed in a preceding 

article(l) for stable plasma to an unstable one. The problem is the follow= 

ing: We initiate at time 0, a plane perturbation localized in space. :{In 

(1) the initial perturbation was a B function, but the main results here are 

not sensUive to the precise initial conditions.]; 

Our purpose here is to calculate how the electric field propagates, 

i.e. 1 to obtain E(x,t). ·consequerttiliy:>we<:!have to integra~e the double Fo.urier 

Laplace transform both on frequency [this is the problem solved by Landau( 2 ) 

to get E(k,t)] and on wavelength. New physical insight is brought apoutt:by the 

integration on k. As in the Landau problem exact calculations turned out to 

be very difficult,but asymptotic expressions can be obtained. The problem 

is one dimensional. 

A difficulty arises in the non-stable case. Due to the linear character 

of the theory, our results cannot represent the behavior for very long times 

where obviously the non=linear interactions play an important role-. Still 

if the initial perturbation is small enough we can find a. time interval 

where the asymptotic results of the linear theory are correct. 

The main results are the following: In a double stream type instability, 

we find that the main part of the energy diffuses, i.e., is localized on a 

distance which increases like Jt'. In addition the front of the instability 

propagates with a velocity ±v0• ·In other types of' instability (more 

precisely when the pole of the dispersion has both a real and imaginary part 

for the frequency* (sk = rk+~) }~ this zone is ca~ried with the velocity 

* In the double stream case, rnk = 0 when 7k ~ 0~ 
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vG .,. ~/dk)k ;;;-- k0 where k 0 is the wavenumber for which rk is maximum. This 

result helps to clear up the concept of convective-versus _non-convective 

instability. 

We first review very briefly the results of the dispersion relation, 

then proceed to the k integration and treat in some detail the twq beam 

case. The connection with the criteria of instability(3),( 4 )..,(5) is finally 

established. 

\ 
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II. DISPERSION RELATION AND AS;MPTOTIC BEHAVIOR OF E(k1 t) 

We suppose a velocity distribution as indicated in Fig. 1 (v must be 

understood as x component of the velocity, F(v) is supposed even and normal~ 

ized). The asymptotic behavior of E(k1 t) is given ·by the pole of the disper­

sion relation and is exp skt with sk = yk+Unk (yk > 0). With the distribution 

of Fig. 1 1 the unstable k go from 0 to a maximum value ~· The variation is 

indicated in Fig~ 2. 

~ ___;;=. ___ ---~. ___ ___;==----t .. ~ v . 

Fig. 1 Fig. 2 

In this interval ~ = 01 ~ is given by 

kM2 2JdF /dv d =ro v. 
p v 

For k ... 0 yk ... 0 with yk- k~ with g given by the equation 

co 

1 = J v dF/dv d 
2 2 v. 

g + v 
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III. INTEGRATION ON k 

The problem is to calculate E(x,t) = JE(k,t)exp-ikx dk. We are 

interested in the asymptotic solutions t ... += so the:.only important wave~ 

lengths are the unstable ones and 

~ 
Ea6 (x,t) • I A(k)exp skt exp -ikx dk + C.C. 

0 

(1) 

C.C. (complex conjugate) takes care of the wavelength from -~ to 0. A(k) is 

a function only of the initial conditions. 

To calculate the integral in Eq. (1) we notice that as t ~ = exp skt 

exhibits a sharper and sharper resonance around k ~ k0 (value for which lk 

is maximum). Consequently only the most unstable modes and the neighboring 

modes will play a role in the asymptotic solution which is quite reasonable. 

We then develop around k = k0 

We can write the integral in Eq. (l) taking out; ~ 

For the asymptotic solutions we take the limit -= +=. Still we must be 

careful if x goes to infinity with t. If we write y = (k-k0)~, the 

integral in Eq. (2) can be written 

5 
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2 y . X 
exp - - exp - ~ -- y dy • 

2 J(it 

. . 2 2 
The . profile exp-y /2 can be considered good as long as a( k-k0) << I' 

0
, i.e., 

for y <<. ~ • The limits of the integral are of the order of ±k~ • As 

·t goes to infinity, ·it is perfectly legitimate to replace the limits by _co 

+co provided the neglected zones IYI> ~and lyl> k~ play ~9 role. We 

have to be careful because of the presence in the .integral of the factor 

cos xyj~ • If the frequency x/~ is too high the neglected zones can 

give an important contribution and the results we obtain are wrong. The 

condition is that the frequency must be much smaller than the zone of validity 

of the approximation which means xJiF << ~ ~ So our results are valid 

for x << ~t • (More exactly, xjt must go to zero. We will see the exact 

meaning of x <<~t in the.nextparagraph.) Under this condition {y0t >> l 

x << ~t) one gets 

(3) 

Equation (3) is interesting. It shows how the zone of turbulence is not 

conveyed away and that the zone in which one finds the main part of the 

electrosLatic energy of the inRtability diffuses slowly; i.e., its dimensions 

increase like Jt' . (This is obviol,l,sly a zone where our condition x/t ... 0 

is satisfied1 



IV. GROWTH RATE IN A MOVING SYSTEM 

Propagation of the Front of the Instability 

In Eq. (3) exp[f'0t -: x
2

j2at} is equal to 1 if x = J 2af'~t • But we 

have shown that the expression is no more valid in this condition. Still 

this raises an interesting question: How can an observer movi~g with a 

velocity, v, see the perturbation? We suspect the existence of a critical 

velocity v0• For v < v0 the observer will see a growth rate /', for v > v0 

a decrease of the perturbation. This v0 can be considered as the propagation 

of the "shock front" of the instability( 6). 

The problem can be solved in the following way. In a system moving 

with a velocity, v, the growth rate for a given wavelength is 

s' = s -ikv • 
k k 

In the moving system, what is the nature of the instability: absolute (i.e., 

in every point the electric field grows without limit); or convective (i.e., 

one has . to move in order to always see a growing electric field)? We have 

to calculate 

co 

We follow Polovin( 5) and replace the integration in the k plane by an inte-

gration in the s' plane. (See Fig. 3) 

I [:.;:1 ds' • 

(c) 
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The contour (b) in the ~ plane cor-

responds to the real axis on k plane. 

Fig. 3 

calculate the integral 

Now we can move (c) to the imaginary 

axis in ~ plane if there is no pole 

between (c) and this axis. If there is 

a pole, we have to consider the contri-

bution of the poles. We suppose that 

for a value k = k1, ds'/dk = 0. Around 

ds' ) the point k1 we can write dk = Ai(k~~l, 
A 2 

and. s'.'=·:-si + 2
1 (k-k

1
) • We must 

J exp s't d , 

J -~' J s'-si' 
6 

(c) . 

and the asymptotic behavior will be t-~ exp s]t· If we except the factor 

t-~ the growth will be given by sk-ikv where k is given by the solution of 

the equation 

dsk 
-- = iv. dk 

Case of Double Stream Instability 

( 4) 

In order to make clearer the above results, we are going to treat, in 

detail, the case of two streams of velod,ty -~ and +a. 

frequency corresponding to both streams 

F(v) = ~ {o(v+a) + o(v-a)} • 

w is the plasma 
p 
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We introduce the dimensionless unit S = srn -\ K = kaw-1;, .. V .. = ... vj' a·~. The 
p p . ~. 

pole is given by 

(5) 

Equation (4) is a 4 degree equation, but one can find an obvious root 

and consequently obtain a 3 degree equat.ion which is easily solved. The 

result is 

K-K - 1 S 
.0 

= J :::.=.8 =- = 

The square root has to be taken such that the real value of S is positive 

and the imaginary value of K negative. The growth of the electric field in 

the system of velocity, v' is r .. s +K v. Figure 4 shows the value of I( V). 1 2 

ro corresponds to V ,. O, z = 1, s1 = 1/~, K
2 

= 0 1 and r0 = l/,[8: 

1.0 

r. = y /ru = [1/81 ~ 0 0 p . J 

·., 
\ 

\ 

\ 
.\ 

,___.____.._......___.__, ---'--'-.,d,.----'·'--~+---~ 
Fig. 4 .5 1.0 vja 
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We want to make two comments. 

(1) If v ~ a, r~ 0 which means that the velocity v
0 

is in this 

case a. For v > a, the negative exponent we obtain has no meaning. In 

fact, we know that no signal propagates faster than the fastest velocity 

of the particles and if the perturbation is initially confined in the 

plane x = o, we have E = 0 for fxl >at. This is in agreement with an 

analysis of the problem by Sturrock(3); he found that if two beams 

have velocity v1 and v2, the condition for an absolute instability is 

v1v2 < 0. Here in the system moving with velocity v the two beams 

have the velocity a-v and -a-v, and the condition for absolute instability, 

i •""-h • 2 2 < 0 . <' .e., a grow~ , ~s v -a , ~.e., v a. 

2 2 
(2) If v ~ o, 1/lo ~ 1 and one can show that 1/10 ~ l-(2v /3a ). 

This .is precisely the condition of validity of Eq. ( 3). If one puts 

x = vt in Eq. ( 3 ) with 
. 2 

v << ~, one finds r/l'o = 1-v /'Cnr 0 and 

'2ay0 is, in this case, 3a2j2. So for v << ../ ay 0', Eq. ( 3) gives the 

first term of the correction. 



V. CASE WHERE sk HAS AN IMAGINARY PART 

When the behavior of sk = rk+~ is of the type indicated,in·Fig.,·5·,.·one 

can write 

v = dwk~ 
G dk k 

0 

We have to calculate 

-- -~ ~ --X : , V I I 

- -.-:- -/?.. I '<!;:\1 
~I I : 
t I I i 
i .• 

Fig. 5 

--+------+---~-___.. __ _,... k 
ko 

Prov~ded x-vGt does not go too quickly to infinity with t (more precisely 

~/~vG must go to zero), the last integral can be written 

2 . 2 
(x-vGt) (x-vGt) 

exp- 2(a-i~)t = exp- 2 2 (a+i~) . 
2(a +~ )t . 

This means that in the system moving with velocity vG the instability is 

l:l.lJSulu:te (or non-conveoti ve). 
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In the laboratory system, the instability can be absolute or convective •. 

Still, as long as vG is different from o, the main part of the instability 

is always carried out with velocity vG, .and diffuses arounQ. the position 

vGt. [The diffusio~ constant is a + 13:7/a.] 



V. CONCLUSIONS 

In a two stream type instability (when the pole has no imaginary part)g 

1.) The instability is absolute. The growth rate of the electric 

field in the laboratory system is r
0 

(maximum of rk). 

2.) In a system moving with a velocity v, the growth rate is no 

longer r0, but smaller. For a certain velocity, v
0

, the,growth rate 

is zero. For systems moving with velocity v > v
0

, the instability 

appears as a convective instability. 

3.) The front of the instability moves.with the velocity v
0

. Still 

the main part of the electrostatic energy spreads much more slowly and 

more exactly diffuses. 

When the pole sk has an imaginary part, the instability is absolute in 

the system moving with velocity vG' and in this system the preceding results 

are recovered. 
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