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ABSTRACT
The. problem bf the propagation of a pertuibation initially localized
is considered: in the case of an unstabi; plasma.  We use a linearizéd theory
(which puts a time limitation for thé validity of the theory) and a one-
dimensional geometry. Qne finds that the front of the instability propagates
with a velocity Vo Still the main part of the energy diffuses slowly,

i.e., is loealized in a zone the dimension of which increases as y@i This

problem is connected with the problem of absolute versus convective insgtabillity.



I. INTRODUCTION

In view of the current intereét in double stream instability phenomena,
it seems interesting to extend a calculation developed in é preceding '
article(l) for stable plasma to an unstable one. The problem is the follow=
ing: We initiate &t time O,'a plane perturbation localized in space. {In
(l) the initial perturbation was a B funétion, but the main results here are
not sensitive to the precise initial conditions,}

Our purpose heré is to calculate how the electric field propagates,
i.e.;, to obtain E(x,t). Consequently wethave to integrate.the double Fourier
Laplace transform both on frequency [this is the problem solved by Landau(e)
to get E(k,t)] and oh wavelength. New physical insight is brought about~by the
integration on k. As in the Landéu problem exact calculations turned out to |
be very difficult,but asymptotic expressions can be obtained. The problem
is one dimensional.

A difficulty arises in the non-stable case. Dué to the linear character
of the theory, our results cannot represent the behavior for very long times
wvhere obviously the non-linear interactions play an important role. Still
if the initial perturbastion is small énough we can find a time interval
where the asymptotic results of the linear theory are correct.

The main results are the following: 1In a'dbuble stream type instebility,
we find that the main part of the energy diffuses, i.e., is localized on a
distance which increases like ./ In'additioﬁ the front of the instability
propagates with a velocity ivoo “In oﬁher typeé of instability [more
precisely when the pole of the dispersion has both a real and imaginary part

for the frequency* (sk = 7k+imk) }, this zone is carried with the velocity

*
In the double stream case,

e = O vhen jo # 0,
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A =_dwk/dk)k ;“ko where k. is the wavenumber for which is maximum. This

0 7k
result helps to clear up the concept of convective: versus non-convective
instability. | .

We fifst review very briefly thefresults of the disPersion relation,
then proceéd to the k integration and treat in some detail the two beam
case. The connection with the criteria of instability(3)’(h)"5) is finally

established.



II. DISPERSION REIATION AND ASYMPTOTIC BEHAVIOR OF E(k,t)

We suppose a velocity distribution as indicated in f‘ig° 1 (v must be
understood as x compoﬁent of the veiocity, F(v) is supposed even and normal-
ized). The asymptotic behavior of E(k,t) iélgi&en‘by the pole'of the disper-
sion relation and is exp s t with ék-a 7#—?1&1{ (7k‘ > 0). Wiﬁh the distribution
of Fig. 1, the unstable k go from 0 to a maximum value kMo The variation is

indicated in Fig. 2.

Y

Fig. 1 Fig.-2

In this interval @, =0, kM_is given by
k_ﬁ = wif—L—ddev dv »

For k= 0 7 = 0 with 7k ~ k€ with € given by the equation
‘w
1= jza_dFA;dv,

E” + v



III. INTEGRATION ON k

The problem is to calculate E(x,t) =J[E(k,t)exp—ikk dk. We are
interested in the asymptotic solutions t - +® so the:only important wave-

lengths are the unstable ones and

Y

B5(x,t) = A(k)exp s

E t exp -ikx dk + C.C. (1)

k

C.C. (complex conjugate) takes care of the wavelength from -ky to 0. A(k) is
a function only of the initial conditions.

To calculate the integral in Eq. (1) we notice that as t = @ exp skt
exhibits a sharper and sharper resonance around k = ko (value for which Yk
is maximum)., Consequently only the most unstable modes and the neighboring
modes will play a role in the asymptotic solution which is quite reasonable.
We then develop around k = k,

5, = - % (k-ko)2 with a = -dQ%K/dka) k, obviously positive.

A

We can write the integral in Eq. (1) taking out A

Y

' ' at 2
Akoexp(yot-ikox) . exp - % (k-ko) exp-i(k-ko)x d(k-ko). (2)

0 N

For the asymptotic solutions we take the limit - 4=, Still we must be
careful if x goes to infinity with t. If we write y = (k-kO)J at',‘the

integral in Eq. (2) can be written



(kW at
2

L exp - &

Jat
-k at

exp -1

y ay .

Jat

Thg_prof;le exp-yg/é can be considered good as long as a(k-ko)2 << 70, i.e.,
for'y {<‘J§6—1. The limits of the integral are of the order of ikdde‘. As
t goes'to infinity,-it is perfectly legitimate to replace the limits by o
+© prévidgd.the'ﬁegleqted zones |y|> 455@ and |y|> kdxip:blay nolrole. We
have to- be careful because of the presence in the integral of the factor

cos - xy/ ot . If the frequency x/JOt is too high the neglected zones can
give an important contribution and the results wé obtain are wrong. The :
condition is that the frequency must be much smaller than the zone of validity
of the approximation which means x/t' << 45351, So our results are valid
for x << v@?St . (More exactly, x/t must go to zero. We will see the exact

meaning of x <<‘V6;8t in the next paragraph.) Under this condition (7ot >> 1

x << A/&yot) one gets

as exp y.t x2
E""(x,t) = A ————— cosk_x exp - ot

. ' (3)
ot 0

Equation (3) is interesting. It shows how the zone of turbulence is not
conveyed away and that the zone in which one finds the main part of the
electroslatic encrgy of the instability diffuses slowly; i.e., its dimensions
increase like &' . (This is obviously a zone where our condition x/t = O

is satisfied.)



IV. GROWTH RATE IN A MOVING SYSTEM

PropaéationAof the Front of the Instability

In Eq. (3) exp[:yot - xe/eat] is equal to 1 if x = 4/ 20yt . But we
ha#e shown that the expression is no more valid in this condition. Still
this raises an interesting question: How can an observer moving with a
velocity,.v, see the perturbation? We suspect tﬁe existence of a critical
velocity Vor For v < o the observgr will see a growth rate y, for v > Yo

a decrease of the perturbation. This v, can be considered as the propagation
of the "shock front" of the instability(6)°
The problem can be solved in the following way. In a system moving

with a velocity, v, the growth rate for a given wavelength is

LI - R
sk sk ikv

In the moving system, what is the nature of the instability: absolute (i.e.,
in every point the electric field grows without limit); or convective (i.e.,
one has . to move in order to always see a growing electric field)? We have

to calculate

. 1
exp skt dk .

-0

We follow_Polovin(S) and replace the integration in the k plane by an inte-

gration in the s' plane. (See Fig. 3)

exp s't

[ds'/dk]

ds' .

(e)



The contour (&) in the plane cor-

4} responds to the real axis on k plane.
(c) Now we can move (c) to the imaginary

axis in plane if there is no pole

. ‘between (c) and this axis. If there is

a pole, we have to consider the contri-

‘bution of the poles. We suppose that

Fig. 3
for a value k = k,, ds'/dk = 0. Around
the point k. we can write as' _ 4. (k-k, )
. 1 2
1 i gt — -
end s’ =:6) + -5 (k kl) . We must
. caleculate the integral
exp s't ds’
1 T oat!
2 W 2A W s'-8]

(
and the asymptotic behavior will be t_% exp s.;t. If we except the factor

t-é the growth will be given by sk-ikv where k 1is given by the solution of

the equation

afé = 1iv. : (%)

Case of Double Stream Instability

In oi‘der to make clearer the above results, we are going to treat, in
detail, the case of two streams of velocity -2 and +a. wp is the plasma

frequency corresponding to both streams

F(v) = % {S(V-o-a) + 6(v—a)} .



We introduce the dimensionless unit S = Sw;l; K = kaw%l;)~v~=gyya;~ The

pole is given by

2 _ o/ 18K - (142K°) : (5)
5

Equation (4) is a U4 degree equation, but one cen find an obvious root
and consequently obtain a 3 degree equation which is easily solved. The

result is

The square root has to be taken such that the reéi value of S 1s positive
and the imaginary value of K negative,. The growth of the electric field in
the system of velocity, V, is [« 84K, V. Figure 4 shows the value of [(V).
[, corresponds to V=0, z = 1, §, = 1//8, K, =0, and [ = 1//8!

o, Mo = 7o/, = [1/8]2

lo O""“\
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We want to make two comments.

(1) If v=a, - 0 which means that the velocity v is in this
case a,” For v > a, the negative exponent we obtain has no meaning. In
fact, we know that no signal propagates faster than the fastest velocity
of the particles and if the perturbation is initially confined in the

pleane x = 0, we have E = O for [x]) > at. This is in agreement with an

analysis of the problem by Sturrock(3); he found that if two beams

have velocity.vl and Vos the condition for an absolute instability is
VlVé < 0., Here in the system moving with velocity v the two beams

have the velocity a-v and -a-v, and the condition for absolute instability,
i.e., a growth, is vg-a.2 <0, i.e., v<a,

(2) 1£v=-o0, [“/I’(‘) —~ 1 and one can show that F/FO & l-(2v2/3a2),
This is precisely the condition of validity of Eq. (3). If one puts
'x = vt in BEq. (3) with v << JTy()'y one finds f“/Po = 1=-v2/aa70. and

20y, is, in this case, 3&2/2° So for v << .,/ ayoL, Eq. (3) gives the

0

first term of the correction.



V. CASE WHERE 8y HAS AN IMAGINARY PART

When the behavior of 8y = 7k+mnk is of the type indicated,in Fig..5;. -one

can write

@y = wgH(k-k )V, + g (k-ko)2

' 2
"_“’_k> 5
G dk 2
kO

dx
%o

We have to calculate

[ {exP-i(x-th)(k-ko)} exp - ic—”-'%ﬁ—)ff (k-ko)ed(k-ko)‘

Dy
7k b - “
e /
- i
y . L ; |
or-- - - A e
l / | i
/ | j
k x k
0

Fig. 5

Provided x-vct does not go too quickly to infinity with t (more precisely

@/ﬁ}vc must go to zero), the last integral can be written

(x-th)2 (%-v t)2
S CR T e 2(a2+32)t (a+iB) .

This means that in the system moving with velocity Ya the instability is

absoulute (or non-convective).

11
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In the laboratory system, the instabllity can be absolute or convective..

Still, as long as Yo is different from O, the main part of the instability

is slways carried out with velocity D and diffuses around the position

vct.' [The diffusion constant is o + agﬁzi



V. CONCLUSIONS

In a two stream type instability (when the pole has no imaginary part):
1.) The instability is absolute. The growth rate of the electric
field in the laboratory system is 70 (maximum of 7k)°.
2.) In a system moving with a velocity v, the growth rate is no
longer 7o but smaller. For a certain velocity, vo, the: growth rate
is zero. For systems moving with vélocity v > Vor the instability

appears as & convective instability.

3.) The front of the instability moves.with the velocity Vo Still
the main part of the electrostatic energy spreads much more slowly and
more exactly diffuses.

When the pole s, has an imaginary part, the instability is absolute in

k
the system moving with velocity L and in this system the preceding results

are recovered.
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