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ABSTRACT

We discuss the use of two classes of artificial neural
networks, multilayer feedforward networks and fully-
recurrent networks, in the development of a closed-loop
controller for discrete-time dynamical systems. We apply
the neural system to the control of oxides of nitrogen (NO,)
emissions for a simplified representation of a furnace of a -
coal-fired fossil plant, Plant data from one of
Commonwealth Edison’s (ComEd) fossil power plants
were used to build a recurrent neural model of NO,
formation which is then used in the training of the
feedforward neural controller.  Preliminary simulation
results demonstrate the feasibility of the approach and
additional tests with increasingly realistic models should be
pursued.

INTRODUCTION

Recent research (Narendra and Parthasarathy 1990) has
demonstrated the potential of applying artificial neural
networks (NNs) for the identification (modeling) and
control of nonlinear dynamical systems. For process
identification, NNs are valuable when the system is known
in terms of its inputs and outputs and exact analytical
models based on physical principles are unavailable or
difficult to develop. For process control, NNs offer the
advantage of being able to handle a large class of nonlinear
control problems without requiring linear approximations
of the system which often distorts the real problem.
Because of these advantages NNs are currently being
considered for modeling and control of NO, emissions from
fossil power plants.

Proprietary neural network-based systems, such as
Gnocis (generic NO, control intelligent system) being
sponsored by the Electric Power Research Institute and
NeuSIGHT being developed by Pegasus Technologies
Corporation of Panesville, Ohio, are currently being tested
on fossil power plants. Another system that was also
tested in an actual plant and for which more in-depth
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technical information is available in the open literature is
the one developed by Stone & Webster (Reinschmidt and
Ling 1994). In Reinschmidt and Ling’s approach, two
multilayer feedforward NNs are used to provide open-loop
control of NO, emissions for steady-state plant conditions.
Given a desired NO, emission level, the NN system provides
the settings of the furnace control variables that achieve the
desired steady-state NO, emission level after all transitory
behavior has died out. In addition to providing only steady-
state relationships with no feedback from the plant to the
control system, their controller needs to be retrained off-line
for every desired NO, level and plant load.

In this work, we propose the combined use of two
classes of NNs, multilayer feedforward networks and fully-
connected recurrent networks, in the development of “a
closed-loop nonlinear controller for discrete-time dynamical
systems. A feedforward network is used to represent the
nonlinear controller and a recurrent network is used to
represent the dynamical system in the training of the
controller. We provide results of our initial investigation of
applying the proposed NNs for modeling and control of NO,
emissions of a simplified representation of a coal-fired fossil
plant. Unlike previous attempts, the proposed software
performs closed-loop control with feedback from the plant to
the controller and accounts for time-dependent information of
the plant behavior.

CLOSED-LOOP CONTROLLER

The representation of the closed-loop controller used in
this work is similar to the one proposed by Piche’ (1994) in
which the dynamical system is composed of two basic
components: a neural network controller and a plant model.
Figure 1 illustrates the closed-loop representation with one-
step delay for the simplified control problem used in this
initial investigation where the controller and the plant model
are serially arranged. The controller is represented by a
feedforward multilayer neural network of the type proposed
by Rumelhart et al. (1986). Given a desired target NO,,
demanded power, and current NO, levels at time k, the
controller adjusts the settings of the control variables, e.g.,
excess oxygen and burner tilts, such that the predicted NO,
at time k+1 tracks the desired target NO,.
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Figure 1. Closed-Loop Controller/Model Representation for Discrete-Time Nonlinear Dynamical Systems.

For representing the plant model when the dynamical
system is unknown, Piche” proposes the use of feedforward
networks which are capable of approximating the plant
dynamics through the use of feedback connections. The
representation in Figure 1 lends itself to this proposition
because the plant output NO,(k) is fed back into the plant
model with one-time step delay in order to estimate
NO,(k+1). However, comparison of feedforward network
results with fully-recurrent networks, which implicitly
represent time dependencies, indicated that feedforward
networks may not be as accurate in predicting the dynamics
of the plant behavior as fully-connected recurrent networks
(Reifman et al. 1996). Therefore, here we propose the use
of a fully-connected recurrent network to represent the plant
model during the training phase and testing phase of the
controller. When the system of Figure 1 is used for real-
world control, the plant model is replaced by the actual
plant,

NEURAL NETWORK PLANT MODEL

Unlike feedforward networks in which the present
outputs depend solely on the present inputs, recurrent
networks contain recurrent connections or feedback that
together with time delays allow for the internal or implicit
representation of time-dependent information. The fully-
connected recurrent network proposed by Williams and
Zipser (1989) was used in this study to represent the plant
model in the closed-loop representation of the dynamical
system in Figure 1.

The architecture of the recurrent network is ome in
which there are N external input units and M processing
units. The processing units are fully connected with a
unique weight between every pair of units (including itself),
and also from each input unit to each processing unit.
While in this architecture there is no distinction between

hidden units and output units, not all processing units are
“visible” to the external world. In general, only a subset J
of the M processing units (J<M) are used as output units for
which specified target values exist.

The learning algorithm is based on gradient-descent
where at each iteration the network weights connecting each
pair of units are updated such that the sum of the squares of
the differences between the network predicted and target
values is minimized. At each iteration the weights are
updated proportional to their gradient components which are
recursively calculated forward in time given that the gradient
is zero at the first iteration. For a detailed description of the
algorithm the reader should refer to Williams and Zipser
(1989).

NEURAL NETWORK CONTROLLER

The controller is represented by a feedforward multilayer
network of the type proposed by Rumelhart et al. (1986).
However, because the dynamical system in Figure 1
contains feedback, the calculation of the partial derivatives of
the dynamical system error E with respect to the feedforward
network weights w are more difficult to calculate then when
the feedforward network is a stand-alone module. The
dynamical system error E is defined as the square of the
difference between the target NO, given as input to the
system and the recurrent neural network predicted NO,. By
taking into account the temporal sequence of the
calculations, the dynamical system in Figure 1 forms a set
of ordered equations which need to be properly differentiated.

To provide the mathematical basis for computing the
partial derivatives of a set of ordered equations, Werbos
(1990) introduced the concept of ordered partial derivatives.
For example, suppose we had a system governed by the
following set of ordered equations:




X, = f(x)
3= f(xth
X4 = f(xl,X2,X3)

To calculate the “simple” partial derivative of x, with
respect to x,, we differentiate the equation for x, while
holding x, and x; constant. However, when the ordered
partial derivative of x, with respect to x, is calculated, x, i3
still held constant but x; is not. In the ordered partial
derivative we also account for the fact that a change in x,
causes a change in x; which, in turn, affects x,. In essence,
the concept of ordered partial derivatives provides a chain
rule to recursively calculate the components of the gradient
which are used to update the weights w of the feedforward
network representing the controller. For a detailed
description of the algorithm the reader should refer to Piche’
(1994) or Reifman and Feldman (1996).

PLANT DATA

Plant data from experiments conduocted at the ComEd
Will County Unit 3 (WCU-3) coal-fired electric power
plant were used to develop the recurrent network model for
NO, emissions. WCU-3 is a 278 MWe Combustion
Engineering tangentially-fired twin furnace where the
coolant (water/steam) in this plant first passes through a
superheat furnace, a high-pressure turbine, and then through
a reheat furnace. During an 80-minute experiment, the
plant was run in a load dispatcher mode where at every two
minutes the demanded plant load and the furnace control
variables were measured allowing for the collection of 41
consecutive sets of equally-spaced data points covering a
limited range of plant operation.

The data collected at two-minute intervals include, NO,
emission, boiler master fuel flow rate (BM), which
corresponds to the rate at which a mixture of coal and air is
provided to the furnace, excess oxygen (O,), the tilt of the
bumers in the superheat furnace (ST), and the tilt of the
burners in the reheat fumace (RT). The values of NO,,
BM, and O, were measured for both furnaces combined. A

.lack of a more complete set of measured variables required
that a few approximations be made. BM is used to
represent demanded plant power and O,, ST, and RT are the
only variables used to control the formation of NO,.. These
approximations are reasonable since fuel flow rate is
proportional to plant power and out of a dozen or more
furmnace control variables, excess oxygen and burner tilts

have been found in previous work (Adali et al. 1995;
Reinschmidt and Ling 1994) to be strongly correlated with
NO, formation.

NEURAL NETWORK TRAINING

Since a modetl of the plant is required to train the neural
network controller, we first need to select an architecture and
train the recurrent network representing the plant. A 10-
processing unit (M=10) network with five external inputs
(N=5) was selected and trained to predict NO, (Reifman et al.
1996). One of the 10 processing units served as an output
unit (J=1) cormresponding to the predicted NO, at time k+1,
and the three control variables, O,, ST and RT, plus the
demanded power, i.e.,, BM, and NO, at time k were used as
the five external inputs to the network. During the training
phase, measured NO, was used as one of the five inputs.
After training, during operation, calculated NO, at time k
was fed back and used as input for predicting NO, at time
k+1.

By associating the plant input at time k with the plant
output at time k+1, the 41 sets of data points collected
formed a set of 40 input/output pairs. OQut of the 40
input/output pairs, the first 20 were used for training the
recurrent network and the last 20 for testing. Figure 2
shows the measured NO, (solid line) and the network
predicted values (circles) for the 40 points, which have a
maximum difference of about 15%. The first 20 circles have
plus signs inside them to indicate that these data points were
used for training. This explains the excellent agreement
between the measured and calculated values for the first 20
points. The value of all variables presented in this section
and subsequent sections have been properly normalized and
only their normalized values are shown. BM was
normalized to the [0.2,0.8] interval and all other variables
were normalized to the [0.0,1.0] interval.

The less than perfect match between measured and
network predicted NO; is attributed to the limited amount of
data available for training and an incomplete set of control
variables and state variables used to define the plant state.
Therefore, the developed model should not be considered as a
high-fidelity model of the actual plant. Instead, it should be
considered as a model capable of representing the qualitative
relationships between the represented plant inputs and NO,
formation. It should also be considered as a model capable
of representing the dynamics of the physical plant since
simulation results of dynamical tests indicated that the
neural network model had captured the dynamics of the plant
(Reifman et al. 1996). These capabilities of the plant model
are sufficient (at this initial stage of the investigation) to
determine the response of the neural network controller.
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Figure 2. NO, Measured and Predicted by the Recument
Neural Network Model.

With the recurrent neural network model for NO,
emission developed, we then trained the multilayer
feedforward network with the integrated dynamical system
depicted in Figure 1 to drive the system from an arbitrarily
selected initial state NO,(1) to a desired target NO, for a
given demanded power. In all training sessions, a three-
layer network with three input units and three output units
was used. The three inputs comrespond to NO,(k), target
NO,, and demanded power and the three outputs comespond
to values of the three control variables, O,(k), ST(), and
RT(K), at time step k. The number of units in the hidden
layer was empirically determined and varied for different
training sessions from five to twenty-five, Except for the
input units, which were mapped by a linear function, all
other units were mapped by a sigmoid function (Rumelhart
et al, 1986).

In each training session, the feedforward network was
trained to control the plant for specific regions of operation
in the two-dimensional phase space defined by target NO,
and demanded power. To allow the neural network
controller to map the entire specified region of operation,
we first divided the specified region into 16 cells of equal
size. Then, for each trajectory, i.e., for each sequence of
steps that takes the system from an initial value NO,(1) to
a final value NO,(k=K..), we sequentially selected values
of target NO, and demanded power in each one of the 16
cells, where the selection within a cell was randomly
determined, During training, the selected values of target

NO, and demanded power were held constant for each
trajectory. After each one of the 16 trajectories we calculated
the error gradient and accumulated the weight update. After
the 16 trajectories were calculated we checked if the
convergence criterion INO(K) - target NO,I<0.01 was
satisfied for each trajectory. If satisfied, the training session
was terminated. Otherwise, the weights were updated and a
new sequence of 16 trajectories was calculated. The weights
were updated using the conjugate gradient version of
backpropagation discussed in Reifman and Vitela (1994).
Since the conjugate gradient method dynamically optimizes
the learning parameter and the momentum parameter, these
did not enter as study parameters. In addition, for each
training session, different sets of initial weights and number
of units in the hidden layer were used. These degrees of
freedom during the training stage allowed the weights to
converge to acceptable non-local minimum values and the
controller to find different control solutions or strategies for
a given region of operation.

SIMULATION RESULTS

In order to illustrate the behavior of the closed-loop
control system illustrated in Figure 1, we present the results
of one of many simulated cases. For this case, the
operational region was defined by a rectangular area with
demanded power in the [0.6,0.8] interval and target NO, in
the [0.3,0.5] interval. For this operational region,
numerous training sessions produced a few distinct control
strategies. The strategy found most frequently (80%) was
one in which only one, RT, out of the three control
variables, O,, ST and RT, was adjusted. From these results
it seems that the training algorithm favors the simplest
solution where only one variable is adjusted and that RT is
preferred over the other two control variables. Figure 3
shows an example of this strategy found by the controller
(lower graph) for arbitrary simulations of linear changes in
demanded power and target NO, (upper graph). The
controller correctly adjusts the setting of reheat tilt RT while
keeping the qther two control variables fixed at 1.0 to allow
the predicted NO, to accurately track the target NO, during
the entire simulation.

Based on simulation tests using the plant model
(Reifman and Feldman 1996) and the same operational
region ([0.6,0.8] for demanded power and [0.3,0.5] for NO,)),
we found that there are other feasible solutions with RT
fixed and only one of the other two variables being adjusted.
Namely, if O, is varied in the [0.0,1.0] interval and the two
burner tilts are fixed at 1.0, the plant can reach any state of
the operational region. However, the controller was never
able to find such a control strategy.
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Figure 3. Typical Control Strategy Found By the Neural
Network Controller for the Case Where Only
Reheat Tilt Is Adjusted and Excess Oxygen and
Superheat Tilt Are Fixed at 1.0.

In the remaining 20% of the training sessions where a
solution was found (in many training sessions the weights
converged to non-acceptable local minima), control
strategies involving the combined use of RT and one of the
two other control variables were found. In these cases RT
was always the key controller with the other variable
playing an ancillary role. Figure 4 illustrates such a case
for an arbitrary simulation of linear changes in demanded
power and target NO, (upper graph) where the controller
(lower graph) comrectly adjusts RT and O, and keeps ST
fixed at 1.0 to allow the predicted NO, to accurately track
the target NO,.

No solutions were found in which the three control
variables were simultaneously used. The arbitrary way in
which neural networks find solutions precludes us from
determining whether there are no such solutions for the
operational region tried, or that such a solution is “harder”
1o obtain and could be found if we increased the number of
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Figure 4. Typical Control- Strategy Found By the Neural
Network Controller for the Case Where Reheat
Tilt and Excess Oxygen are Adjusted and
Superheat Tilt is Fixed at 1.0.

training sessions. The fact that in 80% of the successful
training sessions only the simplest solution was found may
indicate that it is more difficult for the algorithm to find
control strategies involving a larger number of variables, If
this is the case, the usefulness of the approach as the
dimensionality of the control variables is scaled up would be
compromised. In addition, a large number of training
sessions were not successful. Convergence to non-
acceptable local minima was found to be a more significant
problem when training dynamical systems than static
systems,

SUMMARY AND CONCLUSIONS

This paper presents the results of our initial
investigation in the application of two classes of artificial
neural networks, multilayer feedforward networks and fully-
connected recurrent networks, to control and model,
respectively, discrete-time nonlinear dynamical systems.




The two networks are integrated into a closed-loop
dynamical system that is applied to control NO, emissions
for a simplified representation of the furnace in a coal-fired
fossil plant. With a limited set of plant data from one of
ComEd'’s fossil power plants, we first train a recurrent
network to serve as the model for the time-dependent
formation of NO, in the furnace. Then, we train a
multilayer feedforward network to serve as the plant
controller with the process modeled by the trained recurrent
network. Once trained, the closed-loop dynamical system
provides the settings of the furnace control variables such
that the system predicted NO; tracks the desired target levels
of NO, for each given plant demanded power.

Simulation results indicate that timely control
maneuvers are provided by the neural controller such that
for arbitrarily changing values of target NO, and demanded
power within specified regions of operation, the predicted
NO, tracks the target NO, with a high degree of accuracy.
For a given region of operation, distinct control strategies
are found through different training sessions by changing
the initial weights and number of units in the hidden layer
of the neural controller. It was observed that the training
algorithm tends to favor control strategies in which most of
the control variables are fixed. Future work involving
increasingly realistic models, with additional control
variables represented and extensions made for optimization
of the plant efficiency, should determine whether there are
scale-up limitations inherent in the technique.
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