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ABSTRACT 

We discuss the use of two classes of artifcial neural 
networks, multilayer feedforward networks and fully- 
r m e n t  networks, in the development of a closed-loop 
controller for discretetime dynamical systems. We apply 
the neural system to the control of oxides of nitrogen (NO,.) 
emissions for a simplified representation of a furnace of a 
coal-fired fossil plant. Plant data from one of 
Commonwealth Edison's (ComEd) fossil power plants 
were used to build a reanrent neural model of NO, 
formation which is then used in the training of the 
feedforward neural controller. Preliminary simulation 
results demonstrate the feasibility of the approach and 
additional tests with increasingly realistic models should be 
pursued. 

INTRODUCTION 

Recent research (Narendta and Parthasarathy 1990) has 
demonstrated the potential of applying artificial neural 
networks ("s) for the identification (modeling) and 
control of nonlinear dynamical systems. For p m e x  
identification, NNs are valuable when the system is known 
in terms of its inputs and outputs and exact analytical 
models based on physical principles are unavailable or 
difficult to develop. For process control, NNs offer the 
advantage of being able to handle a large class of nonlinear 
control problems without requiring linear approximations 
of the system which often distorts the real problem. 
Because of these advantages NNs are currently b e i g  
considered for modeling and control of NO, emissions from 
fossil power plants. 

Proprietary neural network-based systems, such as 
Gnocis (generic NO, control intelligent system) beiig 
sponsored by the Electric Power Research Institute and 
NeuS1GH.T being developed by Pegasus Technologies 
Corporation of Panesville, Ohio, ~IE currently being tested 
on fossil power plants. Another system that was also 
tested in an actual plant and for which more in-depth 
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technical information is available in the open literature is 
the one developed by Stone & Webster (Reinschmidt and 
Ling 1994). In Reinschmidt and Ling's approach, two 
multilayer feedfornard NNs are used to provide open-loop 
control of NO, emissions for steady-state plant conditions. 
Given a desired NO, emission level, the NN system provides 
the settings of the furnace control variables that achieve the 
d e s i  steady-state NO, emission level after all transitory 
behavior has died out. In addition to providing only steady- 
state relationships with no feedback from the plant to the 
control system, their controller needs to be retrained off-line 
for every desixedN0, level and plant load. 

In this work, we propose the combined use of two 
classes of NNs, multilayer feedforward networks and fully- 
connected recurrent networks, in the development of -a 
closed-loop nonlinear controller for discrete-time dynamical 
systems. A feedforward network is used to represent the 
nonlinear controller and a recurrent network is used to 
represent the dynamical system in the training of the 
controller. We provide results of our initial investigation of 
applying the proposed NNs for modeling and control of NO, 
emissions of a simpXied representation of a coal-fiml fossil 
plant. Unlike previous attempts, the proposed sohare 
performs closed-loop control with feedback fiom the plant to 
the controller and accounts for time-dependent information of 
the plant behavior. 

CLOSED-LOOP CONTROLLER 

The representation of the closed-loop controller used in 
this work is similar to the one proposed by Piche' (1994) in 
which the dynamical system is composed of two basic 
components: a neural network controller and a plant model. 
Figure 1 illustrates the closed-loop representation with one- 
step delay for the simpXied control problem used in this 
initial investigation where the controller and the plant model 
~ I E  serially arranged. The controller is represented by a 
feedfmard multilayer neural network of the type proposed 
by Rumelhart et al. (1986). Given a desired target NO,, 
demanded power, and current NO, levels at time k, the 
controller adjusts the settings of the control variables, e.g., 
excess oxygen and burner tilts, such that the predicted NO, 
at time k+l tracks the desired target NO,. 
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Figure 1. Closed-Loop Controller/Model Representation for Discrete-Time Nonlinear Dynamical Systems. 

For representing the plant model when the dynamical 
system is unknown, Piche’ proposes the use of f a m a  
networks which are capable of approximating the plant 
dynamics through the use of feedback connections. The 
representation in Figure 1 lends itself to this proposition 
because the plant output NOX&) is fed back into the plant 
model with onetime step delay in order to estimate 
NO,(k+l). However, comparison of feedforwad network 
results with fully-recurrent networks, which implicitly 
represent time dependencies, indicated that feedfonvard 
networks may not be as accurate in predicting the dynamics 
of the plant behavior as fullyannected recurrent networks 
(Reifman et al. 1996). Therefore, here we propose the use 
of a fully-connected recurrent network to represent the plant 
model during the training phase and testing phase of the 
controller. When the system of Figure 1 is used for real- 
world control, the plant model is replaced by the actual 
plant. 

NEURAL NETWORK PLANT MODEL 

Unlike feedf‘orward networks in which the present 
outputs depend solely on the present inputs, recurrent 
networks contain recurrent connections or feedback that 
together with rime delays allow for the internal or implicit 
representation of timedependent information. The fully- 
connected recurrent network proposed by Williams and 
Zipser (1989) was used in this study to represent the plant 
model in the closed-loop representation of the dynamical 
system in Figure 1. 

The architecture of the recurrent network is one in 
which there are N external input units and M processing 
units. The processing units are fully connected with a 
unique weight between every pair of units (including itself), 
and also from each input unit to each processing unit. 
While in this architecture there is no distinction between 

hidden units and output units, not all processing units are 
“visible” to the external world. In general, only a subset J 
of the M processing units ( J W  are used as output units for 
which specified target values exist. 

The learning algorithm is based on gradient-descent 
where at each iteration the network weights connecting ea& 
pair of units are updated such that the sum of the squares of 
the differences between the network predictea and target 
values is minimized. At each iteration the weights are 
updatedproportional to their gradient components which are 
recursively calculated forward in time given that the gmdient 
is zero at the first iteration. For a detailed description of the 
algorithm the reader should refer to Williams and Zpser 
(1989). 

NEURAL NETWORK CONTROLLER 

The controller is represented by a feedforward multilayer 
network of the type proposed by Rumelhart et al. (1986). 
However, because the dynamical system in Figure 1 
contains feedback, the calculation of the partial derivatives of 
the dynamical system error E with respect to the fmorwaxl 
network weights w are more difficult to calculate then when 
the fdorward network is a stand-alone module. The 
dynamical system error E is defined as the square of the 
difference between the target NO, given as input to the 
system and the recurrent neural network predicted NO,. By 
taking into account the temporal sequence of the 
calculations, the dynamical system in Figure 1 forms a set 
of ordered equations which need to be properly differentiated. 

To provide the &thematical basis for computing the 
partial derivatives of a set of ordered equations, Werbos 
(1990) introduced the concept of ordered partial derivatives. 
For example, suppose we had a system governed by the 
following set of ordered equations: 



To calculate the “simple” partial derivative of x4 with 
respect to x2, we differentiate the equation for x4 while 
holding x1 and x3 constant. However, when the ordered 
partial derivative of X, with respect to x2 is calculated, x1 is 
still held constant but x3 is not. In the ordered partial 
derivative we also account for the fact that a change in x2 
causes a change in x3 which, in turn, affects x,. In essence, 
the concept of ordered partial derivatives provides a chain 
rule to recursively calculate the components of the gradient 
which are used to update the weights w of the feedforward 
network representing the controller. For a detailed 
description of the algorithm the reader should refer to Piche’ 
(1994) or R e i  and Feldman (1996). 

PLANT DATA 

Plant data from experiments conducted at the ComEd 
Will County Unit 3 (WCU-3) coal-W electric power 
plant were used to develop the recurrent network model for 
NO, emissions. WCU-3 is a 278 W e  Combustion 
Engineering tangentially-fired twin furnace where the 
coolant (waterhteam) in this plant first passes through a 
superheat furnace, a high-pressure turbine, and then through 
a reheat furnace. During an 80-minute experiment, the 
plant was run in a load dispatcher mode where at every two 
minutes the demanded plant load and the furnace control 
variables were measured allowing for the collection of 41 
consecutive sets of equally-spaced data points covering a 
limited range of plant operation. 

The data collected at two-minute intervals include, NO, 
emission, boiler master fuel flow me 0, which 
corresponds to the rate at which a mixture of coal and air is 
provided to the furnace, excess oxygen (OJ, the tilt of the 
bumers in the superheat furnace (ST), and the tilt of the 
burners in the reheat fumace 0. The values of NO,, 
BM, and 0, were measured for both furnaces combined. A 
lack of a more complete set of measured variables required 
that a few approximations be made. BM is used to 
represent demanded plant power and OD ST, and RT are the 
only variables used to control the formation of NO,. These 
approximations are reasonable since fuel flow rate is 
proportional to plant power and out of a dozen or more 
furnace control variables, excess oxygen and burner tilts 

have been found in previous work (Adali et al. 1995; 
Reinschmidt and Ling 1994) to be strongly correlated with 
NO, formation. 

NEURAL NETWORK TRAINING 

Since a model of the plant is required to train the neural 
network controller, we first need to select an architecture and 
train the recurrent network representing the plant. A 10- 
processing unit (M=lO) network with five external inputs 
@=5) was selected and trained to predictNO, (Reifinan et al. 
1996). One of the 10 processing units served as an output 
unit (J=l) corresponding to the predicted NO, at time k+l, 
and the three control variables, 02, ST and RT, plus the 
demanded power, i.e., BM, and NO, at time k were used as 
the five external inputs to the network. During the trainiig 
phase, measured NO, was used as one of the five inputs. 
After training, during operation, calculated NO, at time k 
was fed back and used as input for predicting NO, at time 
k+l. 

By associating the plant input at time k with the plant 
output at time k+l, the 41 sets of data points collected 
formed a set of 40 inpudoutput pairs. Out of the 40 
inpuvoutput pairs, the first 20 were used for training the 
recurrent network and the last 20 for testing. Figure ‘2 
shows the measured NO, (solid line) and the network 
predicted values (circles) for the 40 points, which have a 
maximum difference of about 15%. The first 20 circles have 
plus signs inside them to indicate that these data points were 
used for training. This explains the excellent agreement 
between the measured and calculated values for the first 20 
points. The value of all variables presented in this section 
and subsequent sections have been properly normalized and 
only their nonnalized values are shown. BM was 
nonnaljzed to the [0.2,0.8] interval and all other variables 
were normalized to the [0.0,1.0] interval. 

The less than perfect match between measured and 
network predicted NO, is attributed to the limited amount of 
data available for training and an incomplete set of control 
variables and state variables used to define the plant state. 
Therefore, the developed model should not be considered as a 
high-fidelity model of the actual plant. Instead, it should be 
considered as a model capable of representing the qualitative 
relationships between the repnsented plant inputs and NO, 
formation. It should also be considered as a model q a b l e  
of representing the dynamics of the physical plant since 
simulation results of dynamical tests indicated that the 
neural network model had captured the dynamics of the plant 
(Reifinan et al. 1996). These capabilities of the plant model 
are sufficient (at this initial stage of the investigation) to 
determine the response of the neural network controller. 
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Figure2. NO, Measlrred and Predicted by the Recurrent 
Neural Network Model. 

With the recurrent neural network model for NO, 
emission developed, we then trained the multilayer 
feedforward network with the integrated dynamical system 
depicted in Figure 1 to drive the system from an arbitrarily 
selected initial state NO,(I) to a desired target NO, for a 
given demanded power. In all training sessions, a three- 
layer network with three input units and three output units 
was used. The three inputs correspond to NO,@), target 
NO,, and demanded power and the three outputs cormpond 
to values of the three control variables, O,(k), ST(k), and 
RT(k), at time step k. The number of units in the hidden 
layer was empirically determined and varied for different 
training sessions from five to twenty-five. Except for the 
input units, which were mapped by a linear function, all 
other units were mapped by a sigmoid function (Rumelhart 
et al. 1986). 

In each training session, the feedfcgward network was 
trained to control the plant for specific regions of operation 
in the two-dimensional phase space deJined by target NO, 
.and ‘demanded power. To allow the neural network 
controller to map the entire specified region of operation, 
we first divided the specified region into 16 cells of equal 
size. Then, for each trajectory, Le., for each sequence of 
steps that takes the system from an initial value NO,(l) to 
a final value NO,(k=k,A, we sequentially selected values 
of target NO, and demanded power in each one of the 16 
cells, where the selection within a cell was randomly 
determined. During training, the selected values of target 

NO, and demanded power were held constant for each 
trajectory. After each one of the 16 trajectories we calculated 
the error gradient and accumulated the weight update. After 
the 16 trajectories were calculated we checked if the 
convergence criterion INO,(K) - target N0,110.01 was 
satisfied for each trajectory. If satisfied, the training session 
was terminated. Otherwise, the weights were upaated and a 
new sequence of 16 trajectories was calculated. The weights 
were updated using the conjugate gradient version of 
backpropagation discussed in Reifman and Vitela (1994). 
Since the conjugate gradient method dynamically optimizes 
the learning parameter and the momentum parameter, these 
did not enter as study parameters. In addition, for each 
training session, different sets of initial weights and number 
of units in the hidden layer were used. These degrees of 
fixmiom during the training stage allowed the weights to 
converge to acceptable non-local minimum values and the 
controller to find different control solutions or strategies fat 
a given region of operation. 

SIMULATION RESULTS 

In order to illustrate the behavior of the closed-loop 
control system illustrated in Figure 1, we present the results 
of one of many simulated cases. For this case, the 
operational region was defined by a rectangular area with 
demanded power in the [0.6,0.8] interval and target NO, in 
the [0.3,0.5l interval. For this operational region, 
numerous training sessions produced a few distinct control 
strategies. The strategy found most frequently (80%) was 
one in which only one, RT, out of the three control 
variables, O,, ST and RT, was adjusted. From these results 
it seems that the training algorithm favors the simplest 
solution where only one variable is adjusted and that RT is 
p r e f e r r e d  over the other two control variables. Figure 3 
shows an example of this strategy found by the controller 
(lower graph) for arbitrary simulations of linear changes in 
demanded power and target NO, (upper graph). The 
controller correctly adjusts the setting of reheat tilt RT while 
keeping the other two control variables fixed at 1.0 to allow 
the predicted NO, to accurately track the target NO, during 
the entire simulation. 

Based on simulation tests using the plant model 
(Reifinan and Feldman 1996) and the same operational 
region ([0.6,0.81 for demanded power and [0.3,0.5] for NO,), 
we found that there are other feasible solutions with RT 
fixed and only one of the other two variables being adjusted 
Namely, if 0, is varied in the [0.0,1.0] interval and the two 
burner tilts are fixed at 1.0, the plant can reach any state of 
the operational region. However, the controller was never 
able to find such a control strategy. 
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Figure 3. Typical Control Strategy Found By the Neural 
Network Controller for the Case Where Only 
Reheat Tilt Is Adjusted and Excess Oxygen and 
Superheat Tilt Are Fixed at 1.0. 

In the remaining 20% of the training sessions where a 
solution was found (in many training sessions the weights 
converged to non-acceptable local minima), control 
strategies involving the combined use of RT and one of the 
two other control variables were found. In these cases RT 
was always the key controller with the other variable 
playing an ancillary role. Figure 4 illusaates such a case 
for an arbitrary simulation of linear changes in demanded 
power and target NO, (upper graph) wime the controller 
(lower graph) correctly adjusts RT and O2 and keeps ST 
fmed at 1.0 to allow the predicted NO, to accurately mck 
the target NO,. 

No solutions were found in which the three control 
variables were simultaneously used. The arbitrary way in 
which neural networks find solutions precludes us from 
determining whether there are no such solutions for the 
operational region tried, or that such a solution is 'W 
to obtain and could be found if we increased the number of 
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Figure 4. Typical Control- S-gy Found By the N d  
Network Controller for the Case Where Reheat 
Tilt and Excess Oxygen are Adjusted and 
Superheat Tilt is Fixed at 1.0. 

training sessions. The fact that in 80% of the successful 
training sessions only the simplest solution was found may 
indicate that it is more difficult for the algorithm to find 
control strategies involving a larger number of variables. If 
this is the case, the usefulness of the approach as the 
dimensionality of the control variables is scaled up would be 
compromised. In addition, a laige number of training 
sessions were not successful. Convergence to non- 
acceptable local minima was found to be a more significant 
problem when training dynamical systems than static 
systems. 

SUMMARY AND CONCLUSIONS 

This paper presents the results of our initial 
investigation in the application of two classes of artificial 
neural networks, multilayer feedforward networks and fully- 
c ~ ~ e ~ t e d  recurrent networks, to control and model, 
respectively, discrete-time nonlinear dynamical systems. 

1 



The two networks are integrated into a closed-loop 
dynamical system that is applied to control NO, emissions 
for a simplified representation of the fbmace in a coal-fkd 
fossil plant. With a limited set of plant data fiom one of 
ComEd’s fossil power plants, we first train a recunent 
network to serve as the model for the thedependent 
formation of NO, in the furnade. Then, we train a 
multilayer feedfolward network to serve as the plant 
controller with the process modeled by the trained recurrent 
network. Once trained, the closed-loop dynamical system 
provides the settings of the furnace control variables such 
that the system predicted NO, tracks the desired target leve5 
of NO, for each given plant demanded power. 

Simulation results indicate that timely control 
maneuvers are provided by the neural controller such that 
for arbitrarily changing values of target NO, and denmded 
power within specified regions of operation, the predicted 
NO, tracks the target NO, with a high degtee of accuracy. 
For a given region of operation, distinct control strategies 
are found through different training sessions by changing 
the initial weights and number of units in the hidden layer 
of the neural controller. It was observed that the training 
algorithm tends to favor control strategies in which most of 
the control variables are fixed. Future work involving 
increasingly realistic models, with additional control 
variables represented and extensions made for optimization 
of the plant efficiency, should determine whether there m 
scaleup limitations inherent in the technique. 
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