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PROJECT STATEMENT 
. . 

The Un i ted  Sta tes  and the  European Atomic Energy Gomnun i t y  (EURATOM) , 
. .. 

on May 29 and June 18, 1958, signed an agreement which provides a bas is  

f o r  cooperat ion i n  programs-for  t h e  advancement o f  t he  peaceful a p p l i -  

ca t i ons  of atomic energy. Th is  agreement, i n  pa r t ,  prov ides f o r  t h e  

establ ishment o f  a J o i n t  U.S-Euratom research and development program 
r" 

which i s  aimed a t  reac to rs  t o  be constructed i n  Europe under t h e  J o i n t  

Program. 

The work described i n  t h i s  r e p o r t  represents the  J o i n t  U.S.-Euratom 

e f f o r t  which i s  i n  keeping w i t h  t h e  s p i r i t  o f  cooperat ion i n  c o n t r i -  

b u t i n g  t o  the  cormon good by the  shar ing o f  s c i e n t i f i c  and techn ica l  

in format ion and min imiz ing  the  d u p l i c a t i o n  of e f f o r t  by t h e  l i m i t e d  

poo l  o f  technica l t a l e n t  ava i lab l e  i n  Western Europe and t h e  Un i ted  

States.  



I .O ABSTRACT 

Techn i ca I Proqress Dur i nq Report Per i od 

The a c t i v i t i e s  t h i s  quar ter  have centered about the  f o l l o w i n g  areas: 

1.  Development o f  C e n t r i f u g a l  Type Downflow Separators 

For  purposes of ana lys i s  and experiment t h e  separator has been d i v ided  

i n t o  the  i n  l e t  nozz le, separat ing zone, and o u t  l e t  nozz le. The ana lys i s  

and experiments performed has resu l t e d  i n  a new o a t  l e t  design, a method 

o f  determining separat ing length, and a more e f f e c t i v e  i n l e t  nozzle. The 

r e s u l t s ,  gathered from the  above, have caused a reduct ion  i n  pressure loss 

from 5 f t  o f  water f o r  t h e  reference design t o  1.5 f t  o f  water f o r  the  

new design a t  a f low r a t e  of 1400 gpm. 

Th is  quar ter  h3as brought about complet ion o f  o u t l e t  and separator  zone 

inves t iga t i ons  and con t inua t ion  o f  t h e  i n l e t  nozzle i nves t iga t i ons .  

2. I n v e s t i g a t i o n  o f  Carryunder i n  a Natura l  Separat ion System 

A reac tor  core  r i s e r  and downcomer reg ion  has been mocked-up i n  the  large 

a i r -water  tank. Void f r a c t i o n  i n  t h e  downcomer reg ion has been measured 

as a f u n c t i o n  of water ve loc i t y ,  water temperature, i n l e t  gas f low ra te ,  

and r i s e r  geometry. Resul ts  show t h a t  t h e  vo id  f r a c t i o n  i n  t h e  downcomer 

i s  e s s e n t i a l l y  zero u n t i l  a th resho ld  downcomer v e l o c i t y  i s  reached. The 

vo id  f r a c t i o n  then r i s e s  r a p i d l y  w i t h  increasing water v e l o c i t y  to approxi-  

mately I I  per  cen t  and then appears t o  remain constant .  Tes t  data f r o m  t h i s  

experiment i s  being c o r r e l a t e d  using a dimensional ana lys i s  technique. An 



in  i t  i a  l predict  ion equation has been deve loped and i s  reported t h i s  quar- 

t e r .  

3.  Steam-Water Fac i l i t y  

The steam-water f a c i l i t y  i s  scheduled for  operation Apr i l  15, 1963 



Frank Cur r ie r  

Rona Id Grenda 

W i  l l iam L i t t  leton 
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3.0 STATEPENT OF M E  PROBLEM 

Program a c t i v i t i e s  t h i s  quar ter  have been d i v ided  i n t o  the  f o l l o w i n g  

ca tegor ies :  

3. I A i r-Water .Tank Tests 

The purpose o f  t h i s  s e r i e s  o f  t e s t s  i s  t o  prov ide  data on a number o f  

above-core methods o f  reducing carryunder. To date t h i s  e f f o r t  has been 

concentrated on ob ta in ing  the  e f f e c t s  o f  r i s e r  geometry. 

3. I. 1 Reduced F low Area R ise r  

A r e  l a t i v e  l y  simp l e  method o f  reduci  ng steam carryunder may be 

accomp l i shed by reducing the  f low area o f  t he  r i s e r ,  which resu I t s  

i n  an increased downcomer f l ow  area. Test ing  t h i s  quar ter  has been 

aimed a t  eva luat ing  t h e  e f f e c t  o f  c e r t a i n  system var iab les .  These 

inc lude s t r a i g h t  length of r i s e r ,  s t a t i c  h e i g h t  o f  water above the  

r i s e r ,  water r e c i r c u l a t i o n  r a t e  (downcomer v e l o c i t y ) ,  q u a n t i t y  o f  

a i r  introduced i n t o  t h e  system, and the  system temperature. 

Computer programs have been developed t o  reduce t h e  data and t o  

c o r r e  l a t e  t h e  data i n terms of dimension less groups c o n s i s t i n g  o f  

system var  iab les. The resu I t s  o f  t h  i s e f f o r t  a re  descr i bed i n 

Sect ion 4.1. 

3.2 Centr  i f uaa 1 Separator Tests 

The purpose o f  these t e s t s  i s  t o  improve t h e  pressure drop, f low capac i t y ,  

and e f f i c i e n c y  o f  t h e  c e n t r i f u g a l  steam separator.  Tes t ing  o f  t h e  o u t l e t  

nozzle i s  d i rec ted  toward developing an o u t l e t  which w i l l  terminate t h e  



t he  separat ing vor tex  w i thou t  excessive carryunder o r  pressure drop. 

I 
.v 

Analys is  o f  the  o u t l e t  nozzle has been f a c i l i t a t e d  through t h e  use o f  

a computer program descr ib ing  the  water f low pat te rns .  

Test ing  o f  t he  i n l e t  nozzle has commenced. T h i s  t e s t i n g  i s  d i r e c t e d  

toward improving t h e  i n  l e t  nozz le  performance through reduct ion  o f  

pressure drop and i nci-ease o f  nozz le coef f i c i ent .  

The requ i red  minimum separat ing length f o r  t he  separator depends on t h e  

separator i n l e t  v e l o c i t y  and o the r  f l u i d  parameters. A computer program 

f o r  ana lys i s  o f  t h e  separat ing zone was r e f i n e d  t o  g i ve  a b e t t e r  p r e d i c t i o n  

o f  a i r -water  t e s t  r e s u l t s  as w e l l  as f o r  steam water t e s t i n g  i n  t h e  fu ture .  

3.3 Loop Desiqn and Const ruc t ion  

3.3.1 A i r  Water Fac i  l i t y  

The work o u t l i n e d  f o r  t h i s  quar ter  were mod i f i ca t i ons  t o  t h e  necked- 

down r i s e r  c o n f i g u r a t i o n  i n  the a i r -water  tank t e s t  equipment, and 

the  cons t ruc t i on  o f  discharge nozzles, o f  var ious  lengths and f low 

areas, f o r  t he  c e n t r i f u g a l  separator t e s t .  

The r e s u l t s  o f  t h i s  e f f o r t  are described i n  Sect ion 4.3.1. 

3.3.2 Steam-Water Faci  l i ty 

The work o u t  l i ned f6r t h  i s quar ter  i nc l uded exp i d  i ti ng pressure 

vessel f a b r i c a t i o n ,  complet ing s t r u c t u r a l  changes necessary f o r  

vessel i n s t a l l a t i o n ,  and i n s t a l l a t i o n  o f  t h e  vessel.  Inc luded 

a l s o  i n  t h i s  quar te r  was t h e  acqu i r i ng  o f  c o n t r o l  and t e s t  equipment 

f o r  opera t ion  of t h e  loop. 

The r e s u l t s  o f  t h i s  e f f o r t  a re  described i n  Sect ion 4.3.2. 
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4.0 DESCRIPTION OF WORK AND ANALYSIS OF TEST RESULTS 

Th is  sec t i on  w i l l  present  t h e  scope o f  t he  experimental prcigram, and t h e  

design o f  t he  t e s t  f a c i l i t i e s .  

4.1 Air-Water Tank Tests 

4.1.1 Test  Ob jec t i ve  

The main o b j e c t i v e  o f  t h i s  t e s t  i s  t o  determine what e f f e c t  a  necked- 

down r i s e r  above a  s imulated core  w i l l  have on the  amount o f  ca r ry -  

under.. Refer t o  F i gure I .  

4.1.2 Desc r ip t i on  o f  t he  Test  Apparatus 

F igu re  I-A g ives  a  general view o f  t he  a i  r-water tank  f a c i  l i t y .  Water 

before en te r ing  the  a i r -water  tank  i s  pumped through an o r i f i c e  p la te ,  

located i n  t h e  discharge l i ne .  The o r i f i c e  p l a t e  i s  used t o  measure 

t h e  r e c i r c u  l a t i n g  f low ra te .  A i r  i s  i n j e c t e d  i n t o  t h e  water  downstream 

o f  the  o r i f i c e  p l a t e  forming an a i r -water  mix ture .  Th is  mix ture  then 

passes i n t o  t h e  a i r - v a t e r  tank, and r i s e s  through the  t e s t  sec t i on  t o  

t h e  in ter face.  A t  t h e  i n t e r f a c e  the  g rea tes t  p a r t  o f  t h e  a i r  i s  

r e  leased. The remain ing  m ix tu re  then en te rs  t h e  downcomer area, where 

d i f f e r e n t i a l  pressure readings determine t h e  percentage by volume o f  

the voids. From the  downcomer area t h e  mix ture  f lows i n t o  t h e  la rger  

ou te r  tank, and again a  p o r t i o n  o f  a i r  t h a t  has been c a r r i e d  under i s  

separated from the  water. Leaving t h e  tank by way o f  the  pump suc t ion  

l ine,  t h e  mix ture  enters  the  a i r  c o l l e c t o r  tank, where t h e  remaining 

a i r  i s  removed from the  water. The water then r e t u r n s  t o  t h e  pump 

comp l e t i n g  the o i r c u i t .  



Flow d e f l e c t o r s  made from per fo ra ted  p l a t e  are  p laced a t  t h e  top  

o f  t he  r i s e r .  Th is  minimizes any steam channel ing and g ives a 

more even d i s t r i b u t i o n  o f  t he  bubbles emanating from t h e  top o f  

the  r i s e r .  The locat  ion o f  these p l a tes  above the  r i ser  can a lso 

be adjusted t o  determine t h e  e f f e c t  ( i f  any) upon the  carryunder. 

D i f f e r e n t i a l  pressure measurements made t o  determine t h e  v o i d  f r a c t i o n  

a t  t h e  d i f f e r e n t  p o i n t s  i n  the  system are  made w i t h  D.P. c e l l s  having 

a range o f  0 t o  20 in. o r  0 t o  25 in .  o f  water. The ce l I s  when s e t  

a t  20 per c a n t  of f u l l  scale, oan accura te ly  measure d i f f e r e n t i a l  

pressure from 0 t o  4 in .  and 0 t o  5 i m .  of water. The corresponding 

d e f l e c t i o n  o f  t h e  manometers connected t o  the  a i r  s ide  of t h e  c e l l s  

i s  6.1 t o  31 inches o f  mercury. 

4.1.3 Var ia t i ons  i n  Test  Parameters 

I n order t o  estab I i sh a comp l e t e  understanding o f  t h e  prob lern, it i s  

necessary to vary  geometric parameters as w e l l  as f l u i d  and gas proper- 

t i e s  i n  t h e  i nves t iga t i on .  A schematic diagram o f  t h e  t e s t  sec t i on  

dep ic t  i.ng t h e  t e s t  parameters i s  shown i n  F igu re  I. 

Present ly ,  diameters Dl,  02, and D3 (Fig.  I )  a re  32.0 in., 15.5 in., 

and 29.5 in., respect ive  ly .  The t e s t s  on t h e  02 r i s e r  have been 

comp leted. These t e s t s  inc lude v a r i a t i o n s  i n  r i  ser h e i g h t  (M I  1 from 
-.. . ?. 

6.0 in .  t o  24.0 I n .  i n  s i x  inch increments, o r  H I  t o  D2  r a t i o s  from 

approximately 0.4 t o  1.5. 

A t  each r i s e r  he igh t  the  f o l l o w i n g  parameters were var ied :  



A. Lopp Temperature 

1.  Test run a t  85 + ' l O  F 

2. Test run a t  1 5 0 2  10 F 

B.  S t a t i c  water leve l (H3) : 
" .  - 

I. Test run a t  0 in .  

2 .  Test run a t  6 in. 

r, 3. Test ran a t  I2  in. 

4. Test run a t  18 in. 

5. Test run a t  24 in.  (With the r i s e r  (H I )  extended t o  24.0 in., 
. - 

t h i s  run was no t  possib le due t o  reaching he ight  l im i t a t i ons  

o f  the system. 1 

C. A i r  Flow: 

~ r o m  30 cfm t o  200 afm through the o r i f  ice. 

The a i r  expands when it contacts the water, and the t e s t  range f o r  

a i r  f low becomes 45 cfm t o  approximate l y  300 cfm through the r i s e r .  

D. Water F low : 

A t  each a i r  f low the water f low i s  var ied from approximate ly  

400 gpm t o  2000 gpm. The maximum rec i r cu la t i on  r a t e  i s  somewhat 

determined by physical  l im i t a t i ons  o f  the loop. Th is  r e s u l t s  i n  

s u p e r f i c i a l  water ve loc i t i es ,  i n  the necked down po r t i on  o f  the 

downcomer, o f  0.214 i t / s e c  t o  1.07 f t /sec.  

'4.1.4 Typical  Test Run 

4.1.4.1 . ~ r s - ~ u n  Procedure and Checks 

Since the diameters D l ,  D2, and D3 (Fig. I) are f i x e d  f o r  t h i s  

system it i s  on ly  necessary t o  s e t  the r i s e r  length M I  t o  t he  



desired length. A f t e r  t h i s  has been accomplished t h e  t e s t  

sec t i on  i s  f i l led t o  the  predetermi ned s t a t i c  water  leve l 043). 

A i r  pressure i s  then app l i ed  t o  the  d i f f e r e n t i a l  pressure c e l l s  

and a l l  manometer l i n e s  purged t o  remove any a i r  t h a t  may be 

trapped i n  t h e  l ines.  

A t  s t a r t u p  a f r i c t i o n  r u n  i s  made t o  determine t h e  s i n g l e  phase 
I 

pressure drop across the  vo id  f r a c t i o n  manometers located i n  t h e  

lower region. The water f l ow  ( w i t h  no a i r  added t o  the  system) 

i s  p rogress ive ly  increased and t h e  appropr ia te  manometer readings 

recorded f o r  each. f low.  By s u b t r a c t i n g  these manometer readings 

from t h e  readings recorded when a i r  i s  added t o  t h e  system, t h e  

t r u e  v o i d  f r a c t i o n  f o r  each p o i n t  i s  establ ished.  Th is  i s  auto- 

m a t i c a l l y  accomplished by t h e  data reduct ion  program a t  t h e  t ime 

t h e  data i s  processed. 

4.1.4.2 Star tup  and Data Recording 

L- 
A f t e r  complet ion o f  t h e  f r i c t i o n  run, t h e  water f l ow  i s  s e t  a t  

approximately 400 gpm. A i r  i s  introduced t o  t h e  system a l l o w i n g  

approximately 30 o r  40 cfm t o  proceed i n t o  t h e  feed l i n e  and 

hence t o  t h e  r i s e r .  The f o l l o w i n g  data i s  then recorded: 

A.  Ran number 

B. Water f low manometer, inches o f  mercury 

C. A i r  pressure upstream of t he  a i r-f low or i f ioe p la te ,  p s i  

D . .  A i r - f l o w  manometer, inches o f  water 

0 
E. System temperatare, F 

F .  Void f r a c t i o n  manometers, inches o f  mercury 



G. Dynamic head ( t r u e  water leve I )  (M2), inches 
?. - .  - 

H. R ise r  Length (HI ) , inches 
- .  . - 

I. S t a t i c  water level ,  inches 

The water f low i s  then increased t o  maximum f low (approximate ly 

2000 gpm) by increments o f  approximately 150 gpm. A f t e r  t h e  

maximum f low readings have been taken, t h e  water f low i s  again 

reduced t o  approximately 4.00 gpm, and t h e  a i r  f low i s  increased 

f o r  t h e  next  run. The above c y c l e  i s  cont inued u n t i l  maximum a i r  

and water f l o w  condit ions have heen reached. 

4.1.4.3 Shutdown and Geometry Change 

A f t e r  t he  maximum f low cond i t i ons  have been reached t h e  a i r  and 

water f l ows  t o  t h e  t e s t  sec t i on  a r e  terminated. Water may now 

be added t o  o r  dra ined from t h e  loop depending upon the  next  

s t a t i c  leve l (M3) and/or r i s e r  length (H I) t o  be t e s t e d  (Fig.  1)  . 
*--- - -  _ - - - - - .  .. 

4. 1.4.4 E levated Temperature Test  

I n  o r d e r  t o  i nves t i ga te  t h e  e f f e c t s  o f  f l u i d  and gas p r o p e r t i e s  

i t  i s  necessary t o  va ry  t h e  temperature o f  the  system. The t e s t  

data f o r  t he  heated c o n d i t i o n  (Temp. m 150 F) are  taken i n  t h e  
. - 

same way as f o r  the coo l  c o n d i t i o n  (Temp. 85 F) .  
, - 

The loop i s  heated by th ree  sources. One, a smal l steam generator  

t h a t  i n j e c t s  sa tura ted steam a t  270 F i n t o  t h e  ma i n tank. The 

second source i s  e l e c t r i c a l  s t r i p  heaters located on t h e  

suc t i on  I i ne. One o r  both of these sources o f  heat  may be needed 

f o r  any p a r t i c u l a r  run. The t h i r d  source o f  heat  i s  pump work 



which i s  small i n  comparison t o  the two main sources. 

To heat the loop a f low o f  approximate I y 1000 gpm i s a I lowed t o  

c i r c u l a t e  through the loop w i t h  a l  I heat sources operating. To 

reach a t e s t  temperature o f  150 F may requ i re  as much as 5 hours o f  

heat ing time, depending on the i n i t i a l  loop temperature. It has 

been found t h a t  once the t e s t  temperature i s  a t ta ined  it becomes 

qu i t e  s tab le  even wi th  the  add i t i on  of ra ther  large quan t i t i es  

o f  75 F a i r .  

A f t e r  the  loop i s  heated, the manometer l ines are purged and 

t e s t  parameters checked before commencing the t e s t  run. 

4. 1.5 Test Resu I t s  and .D i  scuss ion 

4.1.5.1 Computer Programs f o r  Data Reduction 

F i gure 2 i l I ust ra tes the ISM 1620 FORTRAN STATEMENT p r  i nt-out  

o f  the computer program used t o  reduce the t e s t  data. Actual 

readings, such as manometer de f lec t ion  and temperatures, taken 

dur ing a run are the input  f o r  the program which has as an output  

the meaningful t e s t  var iab les  under invest igat ion.  F igure 3 shows 

the f low diagram f o r  t h i s  program. 

Figures 2 and 3 show t h a t  a dimensional analysis I s  a lso incor- 

- iorated i n t o  the program. A thorough discussion o f  t h i s  p a r t  o f  

the program i s  presented i n  Section'4.1.5.5. 



4.1.5.2 E f f ec t  o f  A i r  Flow and Temperature on Carryunder 

Figures 5 and 6 typ ica I runs ind ica t ing  the e f f e c t  o f  

a i r  f low and loop temperature on the vo id  f r ac t i on .  Dov~ncomer 

vo id  f r ac t i on  ,($ by vo lum)  i s  p l o t t e d  as a func t ion  o f  r e e i r -  

cu l a t i on  rat'e. The downcomer ve loc i t y  i s  the s u p e r f i c i a l  water 

ve loc i t y  t h a t  e x i s t s  i n  the upper region o f  the downcomer (Fig. I ) .  
. . 

Curves o f  Figures 5 and 6 both show a sharp increase i n  the vo id  

f r a c t i o n  a f t e r  a c r i t i c a l  downcomer ve loc i t y  has been reached. 

A t  v e l o c i t i e s  lower than c r i t i c a  I, the vo id  f r a c t i o n  remains 

essen t i a l l y  zero. For the t e s t  run taken a t  a water temperature 

o f  90 F, the vo i  d f ;action i s  somewhat a func t ion  o f  the a i r  f low 

through the r i s e r .  However, t h i s  dependency on a i r  f low seems 

t o  van i sh once a ce r t a i n  a i  r f low i s  reached. Thus, it appears 

t h a t  there has been a change i n  f low regime, and f o r  the higher 

a i r  f lows the mixture does indeed ac t  more as a two phase m i  x tu re  . 

As the temperature o f  the  system i s  increased tp 150 F changes 

o f  some magnitude o c c u r  im the . I iqwid d i d  vapor prope;ties, 

f u r t he r  complicat ing the problem. By canparing Figure 5 t o  

F igure 6, the f o  I low ing observations may be made : 

I. It appears t h a t  the carryunder i s  no t  now as strong a 

funct ion o f  a i r  f low. Since the v i scos i t y  o f  the water has 

decreased by approxi mate l y  40 per cent, a two phase f low 

reg i ma has been reached even f o r  t h e  low a i r  f low. 

2. The carryunder, i n  genera I, i s  lower than the 90 F t e s t  run 

f o r  a given a i r  and water flow. The change i n  a number o f  



t he  mix ture  p r o p e r t i e s  r e s u l t i n g  i n  h igher  I i f t  fo rces  
l 

and lower drag fo rces  on t h e  bubble a re  probably res-  

pons ib le  f o r  t h i s .  

3 The v e l o c i t y  a t  which carryunder s t a r t s  i s  lower f o r  t h e  

heated cond i t ion .  Th is  a lso  appears t o  be t h e  resu It o f  a 

change i n  f l ow  regime. However, s ince a reac to r  designed 

t o  operate be low t h  i s ve loc i t y  wou Id requ i r e  excessive l y  

large downcomer areas the  l oca t  i\on o f '  t h i s  po i  n t  does n o t  

seem t o  be o f  f u r t h e r  i n t e r e s t .  

4. 1.5.3 E f f e c t  o f  R ise r  Length on Carryunder 

F igures  7 and 8 present  t y p i c a l  c rossp lo : fs  t o  show the  e f f e c t  
. . 
o f  r i s e r ,  length (H I i n  F i gure I )  on t h e  carryunder. Once agai n 

t he  downcomer v e l o c i t y  i s  t he  s u p e r f i c i a l  water ve lec i  t y  t h a t  

e x i s t s  i n  t h e  upper reg ion o f  t h e  downcomer. Tests us ing the  

s t r a i g h t  length o f  t h e  r i s e r  equal t o  zero have n o t  been conducted 

as of t h i s  r e p o r t ' s  p u b l i c a t i o n  date. However, F igu re  7 shows 

t h a t  t he re  i s  l i t t l e  e f f e c t  f o r  a r i s e r  length ( H I )  less than t h e  
- " 

r i s e r  diameter D2 (15.5 inches f o r  these tes ts ) .  Th is  f i g u r e  

a l s o  shows no measurable e f f e c t  f o r  an increase i n  r i s e r  length 

once the  r a t i o  of length t o  d iarneter o f  t h e  r i s e r  has become 

greater  than one. F igu re  8 a l s o  shows t h i s  e f f e c t .  

Once again it i s  poss ib le  t h a t  because o f  a change i n  f l ow  regime 

the  ve ry  sharp decrease i n  vo ids  a t  a length t o  diameter r a t i o  o f  

one i s  n o t  as no t  iceab le as i n  F igure  7. However, f o r  runs w i t h  

H l ( 18 inches and 23 inches) t h e  p o i n t s  a re  q u i t e  close, i n d i c a t i n g  



r t h a t  the e f f ec t  o f  r i s e r  length has been maximizgd. Curves f o r  

other constant a i r  f lows exhi b i t  these same tendencies. 

- . 
4.1.5.4 E f f ec t  of I n i t i a l  Water Level 

Figure 9 presents a cross p l o t  of data ind ica t ing  the  e f f e c t  o f  

i n  i t i a l water leve l i n  the system. Data are f o r  a constant r i s e r  

length o f  6 in. and a constant a i r  f low of 123 cfm. I n  a l l cases 

H3 i s  measured from the t op  o f  the  r i ser (Figure I). 
- , 

Once again the curve (Figure 9) exh ib i t s  the charac te r i s t i c  break 

i n  the vo id  f rac f ion .  I t  appears t h a t  the i n i t i a l , .wa te r  level i n  

the system has essen t i a l l y  no e f f e c t  on the voids. However, the 

t r u e  water leve l i n  the system i s  proport iona l t o  i n i t i  a l water 

leve I, and therefore, it must be cads i dered from other standpoi n t s  

i n  the overal 1 reactor design conce.pt. 

4.1.5.5 Corre la t ion Procedure 

One of the u l t imate goals of t h i s  invest igat ion i s  t o  cor re la te  

steam-water and a i r-water downcomer voi d charac te r i s t i cs  i n terms 

o f  bas i c  f l a i d  and geometr i c  parameters. 

4. 1.5.5.1 Parameters 

The fo l lowing var iables (16) have been considered in 
. - 

a dimensional analysis of the present air-water .tank 

t e s t  fac i  l . i ty :  



Var i ab le 

D i ameter 

D i ameter 

D i ameter 

Length o f  R iser  

Dynamic Head 

S t a t i c  Head 

Svmbol U n i t  Basic Dimension 

D I Ff L 

D2 F t  L 

D3 F t L 

H I F t L 

H2 . F t  L 

H3 F t  L 

Q u a n t i t y  A i r  QG 3 F t / s e c  L ~ / T  

Quan* i t y  Wator Q F ~ ? / s e c  L ~ / T  

Densi ty  o f  A i r  Pg I b /F t  bl/L3 

Densi ty  o f  Water P f . lb/Ft3 M / L ~  

V i s c o s i t y  A i r  I b/Ft-sec M/LT 

v i scos i t y  Water IJ f I b/sec M/L+: 

Surf ace Tension (5 I b/sec M/T' 

Grav i t a t  i ona l Acce l e r a t  ion g Ft /sec L / T ~  

. Dow ncomer Ve l oc i t g  V F t /sec L/T 

Void F r a c t i o n  a ------ ----- 

According t o  the Buckingham P I  theorem, t h e  above 16 

var  i ab les resu l t i n 13 i ndependent d imens ion less para- 

meters. The dimensionless parameters which a re  pre-  

s e n t l y  being used f o r  ana lys i s  are  those shown i n  t h e  

Program 23, of F igu re  2 and -Section:'4.. l  .,5-.8;.2.. 1- :- 
. ...... . '  ..,. . 

F igure  10 i l l us t ra tes  the  bas ic  l ine o f  a t t a c k  which i s  

present  l y  being used t o  c o r r e  l a t e  the  data i n t o  a genera 1 

p r e d i c t i o n  equation. 



The present  thought  i s  t h a t  t h i s  p red ic t i on ,equa t ion  i s  

o f  t h e  general form: 

However, there  i s some reason t o  be l i eve t h a t  t h e  genera l 

form o f  t h e  equat ion i s  semi-log, e.g. 

A thorough i n v e s t i g a t i o n  o f  t h e  above two p r e d i c t i o n  

equations has n o t  as g e t  been cornp leted. T h i s  w i  l l be a 

gradual development depending upon the  at ta inment  o f  s u i t -  

ab le  data. The computer programs have been developed and 

a pre l iminary ana lys i s  of the a i r -water  tank data above 

1200 gpm has been made according t o  Equation I. Some o f  

these resu l t s  and t h e  mathemat i ca l techn i que i nvo lved i s  

expla ined i n  the  next  two sect ions.  

4. 1.5.5.2 Mathematical Formulat ion 

The input  t o  computer program 029(Figures 10, 1 1 ,  and 12) 

i s  the  dimensionless parameters as ca l cu la ted  and punched 

i n  program 023. Bas ica l l y ,  program 029 i s  designed t o  do 

two opera t  ions; 

I .  Formw l a t e  equations from parameters ( log- log 

o r  semi - log ana l ys i s) 
:< 

2 .  Ca lcu l a t e  a l eas t  squ'ar6 f i t  f o r  a l l data 

po in ts ,  r e s u l t i n g  i n  a system o f  l i nea r  equations. 



For log- log ana l y s i  s (Eq. I ) ,  t h e  equations are formu- 

la ted  as: 

where from Program 023: 

P ( I )  = (a), Void F r a c t i o n  

P(2) = ( ~ g / ~ f - p g 3 ,  Dens i ty  Ra t io  

~ ( 3 )  = ( F T ~ - H ~ / H Z ) ,  Dynamic and S t a t i c  Head Re la t i on  

P (4) = (H l / ~ 2 ) ,  ~i ser  Length/Dynamic Head 

P(5) = ( D I / H ~ )  

P(6) = ( D 2 / ~ 2 )  ~iameters/Dynamic Head 

P(7) = ( ~ 3 / ~ 2 )  

P(8) = (pf/pg), V i s c o s i t y  R a t i o  

P(9) = (p f%yD~/p f  Reyno Ids Number (F l u i d )  

P( 10) = v ~ / ~  H I), Froude Number 

2 
P( I I) = (p f  V H l , Weber Number 

P( 12) = ( p g ~ g / ~  lPg) , Reyno Ids Number (gas) 
I 

P( 13) = ( ~ f / ~ g ) ,  Q u a n t i t y  F low R a t i o  

E (N) = Ca l cu l ated Exponents 

k = Constant 

These parameters are  ,subject  t o  change, f o r  'some i n t e r -  

relat ion'ship's and/or . s I n g u l a r i t i e s  may be found. As y e t  

they have o n l y  been p r e l i m i n a r i l y  t es ted  t o  the  ex ten t  

shown i n  Sect ion 4. 1.5.5.3. 



For semi-log ana lys is ,  the equations are formulated as: 

From Eq. 2 

which leads t o  

E(2) lnP(2)+€(3) lnP(3)+. . .+E( 13) lnP( 13) = In ( l na - Ink )  (5) 

Equation No. 5 has n o t  as y e t  been tested,  b u t  t he  program 

(029) i s  ready f o r  use. The main drawback which i s  encountered 

i s  the  computer t ime necessary f o r  a comp l e t e  ana l y s i s .  

To c o n t i  nue, the  above equations e i t h e r  log- log o r  semi - 
log are then processed i n  a leas t  square method as exp la i ned 

i n  Reference 2. Having many more equations than unknowns, 

the  over-determined system i s  reduced t o  a s e t  o f  l i nea r  

equations which when solved y i e l d  the  bes t  exponents. The 

r e s u l t i n g  s e t  o f  l i nea r  equations punched o u t  from 029 i s  

so lved as a determinant i n program 0 17 (F i g; .I3 , - ,.cz2-.- a:fid.:,!4?->:;;. ... . 
. .* - . ,. , /ii: . . . .., .- - .. 

,- - 
by the  :J.ordan method of  e l i m i  nat ion.  Program 0 17 i s  t h e  

on ly  program which was n o t  w r i t t e n  by the  authors. I t  i s  

a standardized determinant Program w r i t t e n  by IBM personnel. 

I f  an exponent i s  predetermined; f o r  example, i f  a value i s  

assigned t o  it before the  leas t 'sqaare  f i t  is computed, 

Program 029 w i l l  m u l t i p l y  t h e  exponent by the  corresponding 

logar i thm and a d j u s t  t h e  constant  vec to r  on the  r i g h t  hand 



s ide  o f  Equation 3 o r  5. Also o f  i n t e r e s t  i s  t h e  f a c t  t h a t  

Program 029 i s  capable o f  hand l ing  5 separate constants (k) 

f o r  each run. 

A f t e r  program 017 has solved the  determinant y i e l d i n g  5 ' 

so l w t i  ons f o r  the  f i ve constant  vectors,  t h e  resu l t i ng 

s o l u t i o n s  (exponents) are manually punched and app l ied  

t o  the  corresponding parameters i n  the, v e r i f i c a t i o n  program 

025, F igures  15, 16, and 17. Th is  program i s  e s s e n t i a l l y  

Equation I o r  2 depending upon which one i s  app l icab le .  

4. 1.5.5.3 P re l im ina ry  Resul ts  

F igu re  14 i l l u s t r a t e s  the  f i v e  s o l u t i o n s  as p r i n t e d  from 

Program 0 17 f o r  the  f i ve  constants tested.  The f i r s t  

constant  ( k  = 0.00005) was chosen f o r  the  v e r i f i c a t i o n .  

Consequently, s o l v i n g  from Program 029 



where : 

0.52 = €10 

-0.73 = E l l  

P(N) - See Section 4.1.5.5.2 

Parameters 5, 6, 7, i n  the diameter ra t ios ,  were llforcedn 

t o  zero i n  Program 029 because the diameters have not  as 

y e t  been varied. As can be seen, some o f  the parameters 

have near ly  the same exponents o r  on ly  vary by a sign. 

Th is  may lead t o  some cancel l a t ions  o r  rev is ions i n  para- 

meters a f t e r  f u r t he r  invest igat ion.  

The above exponents and parameters are involuted and 

mu I t  i p  l ied I n Program 025 resu I t  i ng i n an e r r o r  curve, 

Figure 18. The res idua ls  o r  standard dev ia t ion o f  the  
m 

least  square analysis has not  as y e t  been programmed. 



Th is  w i  1 l be a necessary step i n  o rde r  t h a t  t h e  r e l a t i v e  

worth o f  t h e  p r e d i c t i o n  can be measured and w i l l  be added 
<'# 

t o  Program 025 i n  the  near fu tu re .  

The p r i n t - o u t  from Program 025 i s  shown i n  F igu re  17. The 

f i r s t  column, the  run number, i s  made up o f  a number and a 

l e t t e r ( s ) .  The d i f f e r e n t  l e t t e r s  designate a change i n  
. - 

i ndependent var  i ab les, e. g . , s t a t  i c water leve l (H3) and/or 

r i s e r  length (H I). The numbers are  i n  order  o f  increasing 

a i r  and water f low. Co lumns 2 and 3 are se I f-exp lanatory 

and column 4 i s  t h e  fo l l ow ing  equation: 

The above analys is ,  as s ta ted  previously,  i s  p re l im ina ry  

and i s  s igh ted main ly  as an example o f  t h e  c o r r e l a t i o n  

procedure t o  be f o  l lowed. The present  c o r r e  l a t i o n  i s  

I i m i  t e d  because the  d i ameter terms were n o t  cons i dered. 

As more t e s t  data becomes a v a i l a b l e  both  from t h e  a i r -water  

f a c i l i t y  and t h e  steam-water f a c i l i t y ,  t h i s  ana lys i s  w i l l  

become more usefu l  t o  reac tor  design. 

4.2 C e n t r i f u a a l  Separator Proaram 

Dur ing t h i s  quarter,  a l l  separator t e s t i n g  has been done us ing the  same 

10 in. diameter separator chassis described i n  the  previous q u a r t e r l y  r e p o r t  

and as shown i n  F igu re  19. The g rea tes t  p a r t  o f  the  t e s t i n g  has been d i reo ted  



toward improving the  o u t l e t  nozzle performance. As a r e s u l t  of t h i s  work, 

it i s  f e l t  t h a t  knowledge o f  o u t l e t  performance has been advanced t o  t h e  

p o i n t  where t e s t i n g  o f  it should be suspended, and f u t u r e  a t t e n t i o n  

d i rec ted  toward i n v e s t i g a t i o n  o f  t h e  i n l e t  nozzle. 

Toward t h e  end o f  t h i s  quarter,  t e s t i n g  commenced on a s e r i e s  of i n l e t  

nozzles. These t e s t s  have a lready led t o  a reduct ion  i n  i n  l e t  nozz I s  

pressure drop through r e f  inement o f  the  i n  l e t .  These t e s l s l w i  I I a l s o  

increase our knowledge o f  t h e  mechanics o f  v o i d  separat ion.  Th is  i s  t r u e  

s inae t h e  i n l e t  f low pa t te rns  have considerable e f f e c t  on the  separat ing 
/ 

zone of t he  c e n t r i f u g a l  separator.  Fu r the r  work on t h e  i n l e t  nozzle may 

reduce even f u r t h e r  the  pressure drop i n  the  separator.  

4.2.1 . . .  0qt.le-t. Nozt.I'e @ev,e,I.opmen,t 

Tes t ing 'and ref inernent .of  t h e  o u t l e t  nozzle i s  d i r e c t e d  toward 

developing an o u t l e t  which w i l l  terminate t h e  separat ing vor tex  

w i thou t  excessive carryunder o r  excessive pressure drop. Test ing  

o f  t he  c o n i c a l l y  shaped o u t l e t s  was cont inued. The t e s t i n g  was 

cont inued u n t i l  an improvement i n  pressure drop reached a p o i n t  o f  

d imin ish ing r e t u r n s  and f u r t h e r  ref inement was judged t o  be u n p r o f i t -  

ab le  u n t i  l b e t t e r  i n  l e t  nozz les cou Id  be deve loped. 

I n  a d d i t i o n  t o  t h e  con ica l  o u t l e t s ,  two o ther  designs were tes ted  

b r i e f l y .  The f i r s t  u t i  l i z e d  annular discharge opening wh i l e  the  

second used t u r n i n g  vanes i n  an attempted recovery o f  t h e  r o t a t i o n a l  

ve l o c i  t y  component. Both o f  these o u t  l e t s  exh i b i t e d  good nozz le  

c o e f f i c i e n t s ,  b u t t h e  o v e r a l l  performance cou ld  n o t  be ra i sed  t o  a 



p o i n t  where they were comparable t o  t h a t  o f  t h e  cone shaped o u t l e t  

nozzles. These nozzles are  described i n  more d e t a i l  i n  Sect ions 4.2.1.2 

and 4.2. 1.3. 

The o u t  l e t  nozz le  se r ies  o f  mode I s  17 through 20 (Ref. I) operated 

as predicted,  al though pressure drop was h igher than t h a t  f o r  

mode I s  o f  s  i m i  l a r  open area i n  t h e  mode l se r ies  I I through 14. 

For  the  opera t ing  range o f  2000 t o  2400 GPM, Phe pressure drop 

was 5 t o  10 per  c e n t  h igher  f o r  t h e  s e r i e s  17 through 20. Water 

f l ow  pa t te rns  determined w i t h  t h e  p i t o t - s t a t i c  yaw tube v e r i f i e d  

t h e  water f l ow  pi't'ch angles p red ic ted  i n  t h e  computer ana lys i s  o f  

t he  cone-type o u t l e t .  

I n  order  t o  f u.rther reduce o u t  l e t  nozzle pressure drop, another . 

o u t l e t  was fabr ica ted.  Th is  o u t l e t  again had s i x  t rapezo ida l  

o u t l e t  openings. The opening s i z e  was increased so the  new 

s e r i e s  had approximately 1.5 t imes t h e  open area as t h e  previous 

se r ies  o f  mode I s  17 through 20. The new o u t l e t  open i ngs were 

shaped t o  produce constant  a x i a l  v e l o c i t y ,  as described i n  t h e  

computer program o f  F i g  . 48 (Ref. I) when equ i pped w i t h  t h e  

7 i n .  diameter o u t l e t  d isk .  Th is  d i sk  g ives o u t l e t  openings, 

t rapezo ida l  i n  shape, 24  in.  long, w i t h  upper base length o f  

3.00 in .  and a lower base length o f  2.00 in .  See F igures  20 

and 21. The se r ies  was t e s t e d  w i t h  5, 6, 7, and 8 in .  o u t l e t  

d isks  being described as models 25 through 28, respec t i ve l y .  



Th i s  ser ies  o f  o u t l e t s  was tes ted  w i th  the mode I  2 i n  l e t .  The 

o u t l e t s  showed an improvement i n  pressure drop over both o f  ti-re 

previous.series. See Figure 22. The greatest  improvement was 

i n  the cases w i t h  200 CFM a i r  added t o  the loop. Here, the  

se r ies  o f  models 25 through 28 showed an improvemeni of 20 per 

cent  over se r ies  17 - 20 and an improvement of 10 per  cent  over 

ser ies  'I I - 14. A t  lower a i r f low ra tes the pressure drop was 

improved by 10 t o  15 per cent  over the two ser ies  o f  con ica l  

ou t  l e t s  prev io t~s l y  tested. 

Carryunder i s  essent ia  l l y  the same f o r  a I l three ser ies  of out-  

l e ts .  Th is  i s  added proof t h a t  a l l  vo id  separation i s  occurr ing 

i n  the separator chassis and t h a t  any o u t l e t  o f  t h i s  type t h a t  

does no t  d is tu rb  the vortex pat tern  w i l l exh i b it s i m i l a r  carry-  

under propert ies.  

Traverses o f  the  o u t l e t  ser ies  25 through 28 w i th  the p i t o t - s t a t i c  

yaw tube shewed reasonable agreement between t e s t  and predicted 

p i t c h  angles. However, a large dead-zone was d iscwered  above 

the o u t l e t  d isk.  Visual observation o f  the dead-zone confirmed 

yaw-tube indicat ions.  I n  the case of o u t l e t  model 27, w i th  the 

7 in. disk, the zone was cone-shaped w i th  a base of 5 in .  diameter 

a t  the disk, taper ing t o  2 in .  diameter a t  a po in t  I I  in. higher. 

See Figure 23. Wi th in  t h i s  region a x i a l  v e l o c i t i e s  were neg l ig ib le ,  

a l though r o t a t  ioma I ve loc it ies con t i  need. The zone a lso ex is ted 

f o r  smaller o u t l e t  d isks o f  t h i s  ser iesp being roughly proportional 



t o  t h e  o u t l e t  d i s k  diameter. I t  apparent ly  ex is ted,  t o  a much 

lesser degree i n  the  o u t l e t  se r ies  o f  models 17 through 20. 

Th is  zone o f  low a x i a l  v e l o c i t i e s  i s  thought t o  be simi l a r  t o  

the hydrocone e f f e c t  common t o  cond i t i ons  o f  water f low a t  

r i g h t  angles t o  a f l a t  p l a t e .  

With the .d iscovery  o f  t h i s  dead zone, the  computer program 

descr ib ing  t h e  o u t l e t  nozzle was re-evaluated. The term 'arern' 

wh ich approximates t h e  c ross  sec t iona l area o f  fhe nozz l e  was 

modi f ied  t o  g i ve  a b e t t e r  desc r ip t i on  i n  view o f  the  known f low, 

p a t t e r n  and was changed t o  

As.a  r e s u l t  o f  t h i s  change t h e  ca l cu la ted  a x i a l  v e l o c i t y  f o r  

t h i s  o u t l e t  w i t h  the  7 in .  d i sk  now shows a 40 per cen t  decrease 

a long the  length o f  t he  o u t l e t .  P i t c h  angles were a l s a  brought 

t o  even c loser  agreement w i t h  t he  t e s t  data. 

As mentioned previous ly, t h e  hydrocone e f  f'ect was more obvious 

i n  the 25 - 28 o u t l e t  se r ies  than the  17 - 20 ser ies .  Higher 

a x i a l  v e l o c i t i e s  and h igher o u t l e t  e x i t  v e l o c i t i e s  i n  the  e a r l i e r  

se r ies  are probably responsib le. f o r  t h e  smal l e r  dead zone .in those 

models. Although the  hydrocone d i d  n o t  appear t o  be d i s t u r b i n g  

the  func t i on  o f  the  o u t l e t ,  an at tempt was made t o  break it up. 

Th is  was done by removing t h e  o u t l e t  d i s k  and rep lac ing  i t  w i t h  

a hoop o f  the  same diameter. Resul ts  w i t h  t h e  f i r s t  such model 

were encouraging, so a se r ies  o f  3 hoops were made having diameters 



o f  8, 7, and 6 in .  The opening a t  t h e  bottom o f  t h e  o u t l e t  cone 

increases o u t l e t  area s l i g h t l y ,  b u t  major e f f e c t  desi red i s  t h e  

d i s r u p t i o n  o f  t he  dead zone. 

Below a re  l i s t e d  the  models'and dimensions o f  t h e  24 In. o u t l e t s .  

24 In.  OUTLETS 
MODEL DISK DIAMESFR OUTLET AREA 

26 6qin. 2.25 ft2 

Pressure drop f o r  the  new se r ies  o f  mode I s  29 through 3 I 

showed an o v e r a l l  improvement o f  15 per  cen t  over  the  s e r i e s  

o f  mode Is  25 through 28. See F igu re  24. Th i s  i s  p ropor t iona l l y  

g rea te r  than t h e  o u t l e t  area increase f o r  these models. The 

improvement i s  a t t r i b u t e d  t o  t h e  improved f low p a t t e r n  as much as 

t h e  o u t l e t  area increase. Carryunder was improved s l i g h t l y  through 

the  opera t ing  range and carryunder break p o i n t s  were extended 

100 GPM. 

Visual  inspect ion and a s e r i e s  o f  t raverses  w i t h  t h e  p i t o t - s t a t i c  

yqw tube showed t h a t  t h e  dead zone i n  t h e  lower p a r t  o f  t h e  o u t  l e t  

had been dispersed. See F igu re  25. Ana lys is  o f  t h e  yaw tube data 



shows t h a t  t h e  t a n g e n t i a l  v e l o c i t y  components are h igher  than 

f o r  t he  d i sk  type o u t l e t s ,  a t  t he  same t i m e i  t h e  a x i a l  v e l o c i t i e s  

do n o t  d i e  o u t  i n  the  lower p a r t  o f  the  nozzle as they d i d  

prev ious ly .  The improved f low p a t t s r n s  a l l ow  more e f f i c i e n t  

u.se o f  t he  o u t  l e t  area ' in  t h e  lower sec t i on  o f  t h e  o u t  l e t  no i z  le 

and. the  pressure drop across the  o u t l e t  i s  reduced. 

The computer ana lys i s  o f  the o u t l e t  was modi f ied  again t o  des- 

c r  ibe t h e  f low p a t t e r n  through t h e  o u t l e t s  o f  s e r i e s  29 - 3 1 .  

The change was made i n  t h e  'arem' term which describes the  

cross s e c t  iona l area of the  o u t  l e t .  and was changed t o  

0 
Calculated values and yaw tube t e s t  data are  w i t h i n  5 o f  agree- 

ment f o r  The 0 i n .  and 15 i n .  probe locat ions.  Probe readings a t  

t h e  6 i n .  l oca t ion  are c o n s i s t e n t l y  10 t o  . I4 degrees h igher  than 

ca lcu la ted  values. Cause o f  t h e  discrepancy has n o t  been esta-  

b l  ished. 

A f t e r  t h e  hoops were t e s t e d  a t  t h e  bottom o f  t h e  24 in. o u t l e t ,  

it was decided t o  t e s t  sho r te r  o u t l e t  nozzles and f i n d  t h e i r  

e f f e c t  on separator  performance. The poss ib i l i t y  o f  using shor ter  

o u t  l e t s  wou Id  be o f  considerab l e  value i n  reac to rs  where a x i a l  space 

i s  a t  a premium. To begin t h i s  t e s t ,  an 18 in. o u t  l e t  nozzle was 

fabr icated.  Th is  nozzle had s ix  t rapezo ida l  openings. I n  order  t o  

ease comparison t o  models t e s t e d  prev ious ly ,  t he  t rapezo ida l  bases 



were made t o  t h e  same dimensions as the  se r ies  29 through 31. 

Thus, t h e  7 i n .  hoop gave an upper base o f  3 in .  and a lower 

base o f  2 i n .  A s e r i e s  o f  hoops vary ing  i n  diameter from 8 i n .  

t o  5 in .  was used i n  con junc t ion  w i t h  t h e  model 2 i n l e t .  Th is  

s e r i e s  o f  o u t l e t s  i s  i d e n t i f i e d  as models 35 through 38. 

Be low are I i s t e d  the  mode I s  and dimensions of t he  18 in .  o u t  l e t s .  

18 I n  OUTLETS 
. .  . 

Mode I D isk  Diameter Out l e t  Area 

35 8 in.  2.41 ft2 

I n  genera I, the  pressure drop across the  18 i n .  o u t  l e t  nozzles 

was s l i g h t l y  lower than t h a t  f o r  t h e  24 in. o u t  l e t  nozzle f o r  

t h e  equ i va  l e n t  o u t  l e t  area. However, t h e  pressure drop break 

p o i n t  and t h e  maximum f low f o r  the  18 i n .  nozzle was reduced 

by approximately 100 GPM. See F igu re  27; The carryunder 

c h a r a c t e r i s t i c s  f o r  both o u t l e t  nozzles were approximately t h e  

same. The p i t o t - s t a t i c  yaw tube t raverse angles showed very  

c lose agreement w i t h  those from t h e  computer program. The major i ty 

o f  the  ang les were w i t h  I n  huo degrees o f  the computer ana lys is .  

BeGause of t h e  sucaess w i t h  t h e  18 in .  long o u t  l e t  nozz l,e, a 12 in .  

long o u t l e t  was fabr ica ted.  Once again t h e  o u t l e t  openings were 

s ized t o  be 3 in .  a t  t h e  upper base and 2 in .  a t  t h e  lower base 



when using t h e  7 in .  hoop. The same s e r i e s  o f  hoops was used 

a t  t h e  bottom o f  the  o u t l e t .  Th is  s e r i e s  i s  i d e n t i f i e d  as models 

39 through 42 (Fig. 2 I! and 26). Be low are l i s ted  t h e  mode Is  and 

dimensions o f  the" I2 in: o u t l e t s .  

12 I n. OUTLETS 

Mode l D isk  Diameter Out lot Area 

39 8: in .  1.72 f t2  

The pressure drop across t h i s  nozzle shows a s l  i g h t  improvement 

over  the  18 i n .  and 24 in.  o u t l e t  nozzles. See F igu re  28. The 

break p o i n t  and t h e  maximum f low were approximately t h e  same as 

f o r  t he  18 in .  o u t l e t .  The p i t o t - s t a t i c  yaw tube t rave rse  angles 

are  f a i r l y  c lose  t o  those from the  computer program. However, 

they do n o t  agree as we I l as those from the 18 in .  o u t l e t  as 

the  usual dev ia t i on  i s  3 t o  6 degrees, w i t h  some variances as 

h igh  as 13 degrees from the  pred ic ted angle. The carryuader 

c h a r a c t e r i s t i c s  o f  t h i s  nozzle were comparable t o  those o f  t h e  

18 and 24 in. models. 

I n  genera I, t h e  sho r te r  o u t  l e t  appears t o  have s l  i g h t l y  b e t t e r  , 

pressure drop when compared t o  a long o u t l e t  o f  s i m i l a r  o u t l e t  area. 

However, t h i s  comparison usua l l y  compares\the s h o r t  nozzle w i t h  7 in. 

o r  8 i n .  hoop w i t h  t h e  long nozz l e  w i t h  t h e  5 o r  6 in .  hoop. When 



t he  longer o u t  l e t  i s  equipped w i t h  t h e  same hoop as t h e  s h o r t  

o u t l e t  t he  longer o u t l e t  has more open area and thus a lower 

o v e r a l l  pressure drop. The maximum f l ow  f o r  the  24 in .  o u t l e t  

was a l s o  100 GPM h igher  than f o r  t h e  shor ter  o u t  l e t s .  S t i  l l a 

pressure drop f o r  t he  sho r te r  o u t l e t  i s  by no means p r o h i b i t i v e  

s ince it d i d  n o t  exceed 2.1 f t  o f  water f o r  an opera t ing  range 

The f u n c t i o n  o f  any o u t l e t  nozzle i s  t o  con ta in  t h e  separat ing 

vortex, prevent ing it from becoming unstable and causing large 

amounts o f  carryunder. A t  t h e  same t ime the  o u t l e t  should have 

as low a pressure drop as poss i b  le. The con ica l  l y  shaped o u t  l e t s  

w i t h  long, narrow openings can be bui I t  w i t h  enough o u t  l e t  area 

t o  reduce pressure drop t o  acceptable levels, b u t  so f a r  they 

have a lways had a low o u t  l e t  coef f i c i  ents. Presumab l y  t h  i s  low 

o u t l e t  o o e f f i c i e n t  I s  caused by t h e  r o t a t i o n a l  component o f  f low 

which causes the  f l u i d  t o  'see' a smal ler  o u t l e t  area than e x i s t s .  

That  is ,  t h e  p ro jec ted  area o f  t h e  o u t  l e t  opening i s  less than the  

t r u e  area. 

It i s  assumed . t h a t  an annular o r  c y l i n d r i c a l  shaped opening would 

. . 
have a b e t t e r  p ro jec ted  area than t h e  s 1 i t s  iised i w  ith:.:+h-& ' ' . .  - 

con ica l  o u t l e t s .  An o u t  l e t  was f a b r i c a t e d  t o  t e s t  t h  i s  assumption. 

The o u t  l e t  was formed by suspend i ng a f t a t  d i s k  on hangars be low 

t h e  separatbr chassis. The resu l t a n t  opening was cy  l i nd r  i c a  l i n 



shape. The cross  sec t i ona l  area cou ld  be changed by r a i s i n g  

and lowering the  p  la te .  Below are  l i s t e d  t h e  mode Is  and dimen- 

s ions  o f  t h e  d i s k  type o u t l e t s .  

D isk  Type O u t l e t  Nozzle Dimensions 

Mode l - 
2 1 

22 

23 

Out l e t  Area 

1.00 ft2 
1.50 

.50 

The th ree  mode I s  o f  the  o u t  l e t  were tes ted  f o r  va ry ing  a i r  and 

water f low ra tes .  These o u t l e t s  had lower pressure drops and 

h igher  o u t l e t  c o e f f i c i e n t s  than the  con ica l  o u t l e t s  o f  comparable 

o u t l e t  area. Model 22 had pressure drop roughly equ iva lent  t o  

t h a t  f o r  t h e  con i ca  I  mode I 29 wh ich had tw ice  the  o u t  l e t  opening . 
However-, t h e  d i sk  type o u t l e t s  d i d  no t  have good carryander pro-  

p e r t i e s .  The vo r tex  whipped around above t h e  disk, c o l  lapsing 

a t  t imes and t rapp ing  pockets o f  carryunder. A t  f l ow  r a t e s  o f  

2000 GPM and above, where the  vor tex  entered the  o u t l e t ,  ca r ry -  

under was approximately tw ice  t h a t  f o r  t h e  c o n i c a l  o u t  le ts .  The 

d i s k  type o u t  l e t  was r e j e c t e d  as unsu i tab l e  f o r  a  h i  gh capac ity 

separator because o f  t he  h igh  carryunder. 

4.2.1.3 ,Turn iqg  vane Out I,ej 
. . -  

Another type o f  o u t l e t  model was b u i l t  t o  use t u r n i n g  vanes t o  r e -  

cover the  tangent  i a  l ve loc i t y  component of f low (F i g. 29) .  Th i s  
. . 

o u t  l e t  had t h e  same cross-sect iona l area as t h e  10 in .  diameter 



separator, approx iinate ly 0.50 sq. f t .  The leading edges of.  t h e  

t u r n i n g  vanes were i n c l i n e d  a t . 4 5  degrees as i nd i ca ted  by yaw 

) tube data 'on p i t c h  ang les f o r  the  lower p o r t  ion o f  t h e  separa t ing  

length. The o u t  l e t  .coef f i c  i e n t  f o r  t h  i s mode l was h i gher than 
/. 

, 0.50 sq. f t ;  However,. because t h e  open area.was o n l y  0.50 sq. 

.ft:, t h e  pressure drop was p r o h i b i t i v e .  There i s  no w a y . t o  

increase t h e  o u t  l e t  area f o r  $h is  t y p e  of nozz le  w i thou t  , \ 

- increasing the  d iametsr ..' That approach wou Id  lead t o  an unga i n l y  
I 

I separator  which wou Id  be d i  f f i c u  I t  t o  i ns ta  l l i n  a reac to r  down- 
. . 

i comer,, so no f u r t h e r  models o f  t h i s  type were tes ted.  - 
4.2.2 ,%parat i ng Le,ngth Ana l ys  i s . . 

\r- . ' T h e  separa f ing  zone i s  the  p o r t i o n  o f  t he  separator  betyeen t h e  bottom 
.- . . 

. . 

o f  t h e  i n  l e t  nozzle and t h e  top o f  t h e  o u t l e t  nozzle. I n  t h i . s  region, 
. , 

t he  l a s t  o f  t h e  gas bubb les a re  fo rced by c e n t r  i fuga l force.  from t h e  

per iphery  o f  the separator i n t o  the  c e n t r a l  vo r tex  (F ig .  19). A 

computer. program was developed l a s t  qua r te r  t o  determine t h e  a x i a l  
. . 

/ distance t r a v e  led by a bubb le i n  mov i ng from the  wa l I t o  the  vo r tex  .; 
The .equations used in,-the program are based on basic f l u i d ,  gas and. . , 

geometric parameters so t h e  ca l cu  l'a-kiona l technique can be app l ied t o  

... var ious  d'iarneter separators as we1 l as t o  gases and f . l u ids .  having.  . '  

.. 
d i f f e r e n t  The pr imary ou tpu t  o f  t h i s  i s  t h e  

minimum' length o f  separat ing zone recju i r e d  i n  order  t o  be assured 

t h a t  bubb les ' a t  t h e  .per iphery are  fo rced i n t o  t h e  vor tex .  . . 
. . 

-.z . . 

,a The separat ing length ca l cu  l a t i  on' deve loped -. for t h e  prev ious  tquarter ly 

(Ref. I ), was deve loped us:i n g  equations fo r .  Peeb les Reg ion - 



4 (Ref. 31 where: 

The lower l i m i t  f o r  reg ion  4 i s  described by t h e  equation: 

A t  bubb le ve l o c i t i e s  be low t h e  reg ion 4 minimum the  equat ion f o r  

reg ion  3 prevai  I s :  

y = Surface tens ion ( l b F / ~ t )  
- .  - 3  

PI  
Densi ty  o f  Water ( I bm/Ft 1 

3 - 
P2 = Densi ty  o f  Vapor ( Ibm/Ft  1 

. - 
r = Bubble Radius (F t )  
b 

V = Radial  v e l o c i t y  of bwbb le  ~ t / s e c  

The l i m i t i n g  minimum v e l o c i t y  f o r  reg ion 4 i s  inverse ly  p ropor t i ona l  

t o  the  bubb l e  radius.  -The sma 1 l e r  t h e  bubb l e  radius,  t h e  h igher  t h e  

minimum l i m i t  f o r  reg ion 4 cond i t ions .  

Thus, w i t h  a l l o the r  va r iab les  unchanged, t h e  bubble s i z e  w i  l l determine 

whether t h e  bubble v e l o c i t y  i s  described by equations f o r  reg ion 3 o r  
1 

reg ion 4. An equat ion t o  describe the  bubble diameter was der ived 



prev ious ly  and i s  described i n  ACNP-62006. The equat ion i s :  

The f a c t o r  0.30 i n  t h e  equation i s  an a r b i t r a r y  s i z e  reduct ion  f a c t o r  

i n d i c a t i n g  t h e  reduct ion  i n  s i z e  from s t a t i o n a r y  f l u i d  cond i t i ons  t o  

t h e  moving f l u  i d  cond i t i ons  i n  t h e  separator.  

Th is  equat ion p r e d i c t s  a bubble diametqr o f  w . I 0  in .  a t  175 F 
-. 

water temperature. 

Fu r the r  i n v e s t i g a t i o n  o f  the  bubble v e l o c i t y  equat ion us ing  t h e  p red ic ted  

bubb le  s i z e  ind ica ted t h a t  t h e  ca l cu la ted  bubble v e l o c i  ly o f t e n  f e  I I 

below t h e  minimum f o r  reg ion  4, and was more exac t l y  described by the  

v e l o c i t y  equat ion f o r  reg ion 3.  The computer program was rev ised t o  

ca,lcu l a t e  t h e  r e g  ion 4 ve l o c i t y ,  t h e  reg ion  3 ve loc i t y ,  and t h e  lower 

l i m i t  o f  region; and then t o  choose t h e  reg ion  governing the  p a r t i -  

c u l a r  case and p r i n t  t he  proper v e l o c i t y ,  no t ing  whether it i s  i n  reg ion  

3 o r  reg ion 4 (F ig .  30-A and 8). 

The ca lcu la ted  bubble v e l o c i t y  i n  reg ion 3 i s  s e n s i t i v e  t o  bubble 

size, wh i l e  reg ion  4 i s  not, except f o r  t he  c a l c u l a t i o n  o f  t h e  reg ion  

4 minimum v e l o c i t y .  To demonstrate t h i s  f a c t  t h e  separat ing length 

program was run f o r  a se r ies  o f  bubble diameters ranging by 0.033 in.  t o  

e i t h e r  s ide  o f  t h e  pred ic ted 0. 100 bubb l e  f o r  175 F water. (See F i g .  3 1-A 

and 8) .  The smal le r  bubble s i zes  f a l l  i n t o  reg ion 3 and t h e  la rger  i n t o  



reg ion 4 as shown in' t he  f o l l o w i n g :  

TABLE 1 ' .  

1 -. 10 1 ". D i ameter - SePa.rato.r,. 2000-.WM, 'I n 1.eZ-e loc i t y  9.75 F t / ~ e = .  

Bubb IG-,Diam. Bubb l e  Ve l o c i  t y  Region Separat ing Length 
I n .  ~ t / S e c  Number F t .  . . 

0.117 , 1.46 ., 4 1.79 
.. . 

0. I33 . . 1.46 4 1.79 

, . 

I f the i n ' l e t  ve l o c i  t y  i s  reduced, the  separat ing fo rces  are  a lso. 

reduced,. and bubb l e  be loc i t y  decreases. As a resu l t, , t he  requ i r e d  ' . 

separat ing length i s  i ncreased as shown i n  the  f o  l low ing tab-le-. ,: 

TABLE 2. . . 

10 I.n, Diameter Separator, 2000 GPM, l n l e t  Ve 1oc.i ty 8 . 0 0  F~ /SBC. .  

Bubble Diam. 
In .  

Q.066 

0.083' 

Bubb le  Ve loc i t y  
~ t / ~ e c  

Reg i on 
Number 

Separat ing F t  Length 

For comp l e t e  p r  i n t  ' o u t  o f  separa t ing  .length ca lcu  l a t  ions; ,see 

F i g u r e s  3 I-A and. B-. 



I n  cases where t h e  f l ow  regime was changed from reg ion  4 t o  region 

3, the  ca l cu la ted  bubb l e  ve l o c i t y  increased s l i g h t l y .  For  t h e  9.75 

f t /sec. ,  i n l e t  v e l o c i t y  o f  t h e  model. 2 i n l e t  a t  176 F, the ca l cu la ted  

-. bobb'ie ve loc i  t y  increased from 1.46 f t / s e c  t o  1.57 f t / sec .  Th i s  

reduces the  ca Icy la ted  separat ing length from 1.79 f t  t o  1.66 f t ,  

o r  by less than 8 per  cent .  

The I  i s t i n g s  show t h a t  by doub l ing the  bubb le s i z e  i n  the  ca l cu la t i on ,  

t h e  separat ing length i s  increased by a f a c t o r  of approximately 40 per  

c e n t  from t h a t  f o r  the  0.066 in .  bubble. The change i n  separat ing 

length i s  thus approximately 20 per  cen t  f o r  a bubble s i z e  change o f  

0.033 i n .  larger  o r  smal ler  than t h e  p red ic ted  0.100 in .  bubble. Th is  

20 per  cent  variance represents a change i n  p red ic ted  separat ing 

length o f  3 in .  o r  less f o r  t he  i n  l e t  v e l o c i t i e s  considered. A 

var iance of t h i s  magnitude i s  d i f f i c u l t  t o  de tec t  w i t h  the  s h o r t  

separa-fing length o f  t h e  present  separator.  

The present  separator  w i t h  t h e  model 2 i n l e t  shows good agreement 

b elween ca lcu  la ted  and actua I separat ing length. We wou Id  then assume 

t h a t  t h i s  agreement a t  leas t  p a r t i a l l y  v e r i f i e s  t h e  present  bubble 

s i ze  est imate.  I f  f u t u r e  i n l e t  nozzles g ive  lower i n l e t  v e l o c i t i e s  

than those a t  present, the  separat i ng length shou Id be i ncreased. ,I n 

t h  i s  case, d i s p a r i t i e s  between ca lcu lated and actua l separat i ng length 

would be more obvious i f  they do e x i s t .  

4.2.3 I ,, ,zw.v.:,2L.. n l.e,$ ..N.ozz <<. :-?;=, l e Deve A ~ . ~ ~ ~ + <  I  . op,me.n.t . 
rui. ..-.- 2.. 

The func t i on  o f  t h e  i n l e t  n o z z 1 e . i ~  t o  in t roduce t h e  voided m ix tu re  to , 

t h e  separator.  The i n l e t  mix ture  must en te r  t h e  separator a t  a r a t e  



of  speed great  enough t o  form the separating vortex a t  the operat ing 

range of the separator. I f  the i n l e t  ve l oc i t y  i s  too low the vortex 

w i l l  no t  form. I f  the i n l e t  ve l oc i t y  i s  unnecessarily high, a very 

strong vortex w i l l  form, bu t  at the expense o f  a h igh pressure drop 

across the i n l e t .  Thus the  s i z i n g  o f  the i n l e t  nozzle i s  a compromise 

between pressure drop and requ i red i n l e t  ve loc i t y  . 

Testing o f  i n l e t s  commenced i n  mid-February. To date, four  s c r o l l  

shaped i n l e t  conf igurat ions have been tes ted and analyzed. While 

none o f  these models can be considered t o  have optimum performance, 

the pressure drop, nozzle coe f f i c ien ts ,  and ve loc i t y  p r o f i l e s  serve 

as guides t o  be used i n  improving the i n l e t .  

4.2.3.1 I n l e t  Nozzle.Experiments .. . 

The air-water t e s t  procedure f o r  a given i n l e t  nozzle was the 

same as t h a t  used f o r  t e s t i n g  ou t le ts .  The separator was tes ted 

a t  i n l e t  submergences o f  0.75 f t  and 2.75 f t  o f  water. The 

separator was tested f o r  the f low range from no f low t o  the 

maximum flow as d ic ta ted  by pressure drop o r  carryunder. The 

separator was tes ted a t  the a i r  f low ra tes of 60, 120, and 200 

cfm f ree a i r .  During the air-water tes t ing,  the  loop temperature 

was maintained a t  temperatures above 165 F. For brev i ty ,  ana lys is  

o f  air-water t e s t  data w i l l  be confined t o  the cond i t i on  o f  200 cfm 

a i r  added t o  the loop. A h igh l y  voided i n l e t  mixture gives the 

most severe cond i t i on  of operation. 

The computer program f o r  data reduct ion was essen t i a l l y  unchanged 



from the procedure used f o r  t e s t i n g  o u t l e t  nozzles., However, 

emphasis now switched t o  i n l e t  pressure drop, i n  l e t  coef f i c  ismt, 

and the p o s i t i o n  o f  the vortex i n  the separator. 

I n  add i t i on  t o  air-water test ing,  the i n l e t  nozzle area was 

extens ive I y ;)robed a t  severa 1 leve Is w i t h  the p i t o t - s t a t  i c  yaw 

tube. Th is  informat ion was very useful  i n  determining the 

ve loc i t y  p r o f i l e s  i n  the  separator and determining the e f f e c t  
1 

o f  design changes t o  the I n l e t .  I 
I 

I n order t o  show the i n te r re  l a t i  on o f  the  i n l e t  and the ou t  l e t  

nozz le, a l I o f  the i n l e t s  were tes ted w i th  the  same ou t  l e t .  , 
I 

Out l e t  mode l 40 was one o f  the be t t e r  perform i ng out  l e t  shapes- 

and has been used i n  the t e s t i n g  o f  a l l  i n l e t s .  

A I  I  o f  the i n l e t  nozz les tes ted were of  the scro I I s!aped type. 

The var iab les  from model t o  model were the width a t  the nozzle 

throat ,  and a t  the mouth. As the  t h r o a t  width was varied, the 

length from mouth t o  t h roa t  var ied i n  soma cases as d i d  the 

i n  l e t  length t o  w i dth r a t i o  as shown i n the tab l e  be low. 

Tab le  o f  l n l e t  Dimensions 

Model No. Mouth Throat Length : W i dth Throat Area 
I (ho r i zon ta l  p lane) 

2 1.50 in. 1.25 in. 4 : I 0.83 pf2 



4.2.3.2 l n l e t  Nozzle Ana lys is  

The' f i r s t  1 n l e t  extens i vs ly  tes ted was made 1 2 .  wh l$h was ,used 

throughout the t e s t  i ng o f  ou t  l e t  nozz les <F i g . 32) . Wh i le  the 

performancs o f  t h i s  i n l e t  was considered adequate, the pressure 
\ 

drop was excessive, arid tha i n l e t  c o e f f i c i e n t  was no t  p a r t i c u l a r l y  

good. 

I n l e t  c o e f f i c i e n t  i s  defined by the  fo l lowing expression: 

C = + + Q + g b  Q' 
Where: 

Q 1  = (CFM water + CFM vapor carryunder + CFM vapor 

exhaust f low) /60 

A = l n l e t  cross sect iona l  area 

h . = l n l e t  drop i n  f t  o f  f lowing f l u i d  

g = Accelerat ion due t o  g rav i t y  

Performance of Mode l 2 l n l e t  . . Nozz . .  12 

Run Water Vapor Tota l  *Ef fec t ive  Pressure Nozzle Coef . "CW 
F low F low CF S , . Length Drop-Ft Corrected f o r .  E f  f . 
GPM CFM Water Lenath 

567 2500 351 11.40 58% 6.2 - 
Ave. 0.60 

+Ef fec t i ve  Lensth: A t  h igh water f low rates, the i n l e t  nozz le  
pressure drop ' i s  great  enough t h a t  the water level i n  the separator 
i s  lower than the top of the i n l e t  nozzle. During these condit ions, 
the  e f f e c t i v e  i n l e t  area i s  r e s t r i c t e d  t o  t h a t  p a r t  o f  the l n l e t  
below the water '  level i n  the separator. For the purpose of analysis,  
the i n l e t  c o e f f i c i e n t  i s  corrected t o  g i ve  the c o e f f i c i e n t  f o r  t h i s  
reduced i 3 l e t  araa. The cor rec t  ion i s  no t  app I1 ed t o  t he  i n  l e t  nozz le 
pressure drop, as t h a t  reading i s  ind ica t i ve  of  the  t r u e  seps.rator 
performance. 



The i n l e t  nozzle was probed w i t h  the  p l t o t - s t a t i c  yaw tube on 

both s ides  o f  t h e  vor tex  core  a t  t h ree  e leva t ions  along t h e  

a x i a l  length o f  the  i n l e t .  These eleGations were I  f t ,  3 f t ,  

and 5 f t  above the  bottom o f  the  i n l e t ,  which was 8 f t  from 

top t o  bottom. The tangen t ia l  v e l o c i t i e s  recorded w i t h  t h e  

probe show a v e l o c i t y  increase toward the  center  o f  t h e  separator 

0.3 
r o u g h l y e q u i v a l e n t t o t h e e q u a t i o n V r  = C  ( F i g . 3 3 ) .  I nd i ca ted  

we l o c i t y  a t  t h e  5 f t  lave l i s  considerab l y  l e s i  than a t  the  o ther  

two leve Is, Th is effer; 1, we3 most prons~j~nced for t h e  i n  l e t s  

tes ted  which had r e l a t i v e l y  low nozz le  c o e f f i c i e n t .  

As l i s t e d  previously,  t he  model 2 i n l e t  had a length t o  w id th  

r a t i o  o f  4 : l  and a cvnvergence o f  0.25 in .  over t h e  length o f  t h e  

i n  l e t .  It was assumed t h a t  t h e  i n  l e t  c o e f f i c i e n t  and pressure 

drop cou ld  be reduced f o r  t h e  same wid th  o f  t h r o a t  by increasing 

the  mouth dimension o f  t h e  i n l e t .  The model 3 i n l e t  was f a b r i c a t e d  

w i t h  t h e  same 1.25 i n .  t h r o a t  and a mouth of 3.25 i n .  (F ig.  34). 
- .  

The i n l e t  was tes ted  f o r  t h e  same range o f  cond i t i ons  as t h e  

model 2 i n l e t .  

Performance of Mode l 3 I n  l e t  Nozz l e  
. ' 

Run Water Vapor Tota I E f f e c t i v e  Pressure Nozzle Coef. flCn 1 
F low F low GFS Length Drop-Ft Cor r .  f o r  E f  f . , 

GPM CFM Water . Length 



The l i s t i n g  shows t h a t  t h e  increase i n  t h e  mouth area of t h e  

i n l e t  d i d  cause an improvement i n  i n l e t  c o e f f i c i e n t ,  o f  0.06, 

b u t  t h e  increase i s  by no ... means large. 

Th i s i n  l e t  was probed w i t h  t h e  p i t o t - s t a t  i c  yaw tube f o r  The 

same th ree  e leva t ions .as  t h e  model 2 i n l e t .  The i n l e t  v e l o c i t i e s  

i n  mode l 3 were much c loser t o  a common va lue than those f o r  t h e  

model 2 i n l e t .  A t  t h e  same time, the  p a t t e r n  o f  v e l o c i t y  increase 

toward t h e  center  o f  t he  separator  was improved over those f o r  

t h e  model 2 i n l e t  f o r  t he  I and 3 f t  leve ls  o f  t he  i n l e t  (F ig .  35). 

One wou Id  expect improved f low t o  lead t o  a s l i g h t  ly 

shor te r  separat ing length f o r  t h e  model 3 i n  l e t  than t h e  model 2. 

The model 2 and model 3 i n l e t s  both had length t o  w id th  r a t i o s  o f  

approximately 4:1, and produced almost equ iva len t  pressure drops. 

It was deo ided t h a t  an i n  l e t  shou Id  be tes ted wh i ch had a greater  

L/w r a t i o .  To determi ne the  e f f e c t  o f  t h  i s  parameter, t h e  mode l 

4 i n  l e t  was fabrie,ated w i t h  a 0.75 i n .  t h r o a t  and t h e  same 3.25 i n .  

mouth (Fig. 2%). The i n l e t  had a length i n  the  h o r i z o n t a l  plane o f  
. . 

approximately 7.5 i n .  which has a L/W r a t i o  o f  10: 1 .  It was 

expected t h a t  t h  i s  i n  l e t  wow Id have a h i gher p. essure brop, because 

o f  t h e  reduced cross-sect ional  area., b u t  t h a t  it would have an 

improved i n l e t  c o e f f i c i e n t  because o f  t he  L/w r a t i o .  



Performance o f  Model 4 I n l e t  Nozzle 

Run Water Vapor Tota I E f f e c t i v e  Pressure Nozz le Coef . 'lCl1 1 
F low F low CFS Length Drop-Ft Corrected f o r  E f f .  ' 

GPM CFM Water Length 

1003 2000 373 10.69 85% 4.1 0.99 

1004 2200 356 10.83 69% 6.7 1 .O 1 

Ave. .95 

The increased length t o  width r a t i o  o f  the model 4 i n l e t  nozzle 

produces a considerable increase i n  the nozzle coe f f i c i en t .  The 

c o e f f i c i e n t  values above 0.95 appear op t im i s t i c .  However, small 

e r ro r s  i n  pressure drop o r  vortex he igh t  readings would be the  

most l i k e l y  source o f  e r ro r  i n  data. Nevertheless, it appears 

t h a t  the increase i n L/w i s the best  means o f  improving the i n  l e t  

coe f f i c i en t .  

The mode l 4 i n  l e t  was probed w i t h  the p i t o t - s t a t  i c  yaw tube a t  

the same elevat ions as the previous i n l e t s .  The i n l e t  v e l o c i t i e s  

were higher than f o r  previous i n l e t s  because o f  the reduced i n l e t  

area. This increase i n  ve loe i t y  d i d  not  reduce the pa t te rn  o f  

0.3 
ve loc i t y  increasewhich r e m a i n e d a t a p p r o x i m a t e l y v r  = C  f o r  I 

I 

t he  I and 3 f t  levels. The i n  l e t  ve l oc i t y  a t  the 5 f t  leve l was 

proport iooa I1 y be t t e r  than f o r  the mode l 2 i n  le t ,  though, ax ia  l 

ve loc i  t g  d i s t r i b u t i o n  was not  so compact as for  the model 3 i n  l e t  I . . 

(F ig.  37). 



The . i n  l e t  o f  mode I 4 produced-h i gher ve loc i t  ies  i n  the  vo r tex  f o r  a 

g iven. water f low r a t e  and thus  formed .a '  la rger  vo r tex  core, w i t h  

I. a reduced' separat  i ng length. Because o f  t h e  reduced c ross  s e c t  i ona I 

I area a t  t he  t h r o a t ,  the  i n  l e t  nozz l e  pressure drop was h i gh, and 

judged t o  be excessive f o r  any separa to r  mode l except perhaps one 

I designed f o r '  less than 1500 gpm. Nevertheless, the  h igh  i n l e t  

c o e f f i c i e n t  i s  a t W a c t i v e .  

. . 

The .mode l 5  . i n  l e t  nozz l e  .was f a b r i c a t e d  t o  t e s t  the  e f f e c t  o f  a 

r e  l a t  i ve  l y  low ' length t o  'w id th  r a t i o  i n the  h o r i  zonta l p lane. 

Th i s  nozz le  'had 'a 1.75 in .  t h r o a t  and the  3.25 i n .  mouth (F ig .  3 8 ) .  

The length o f  t h e  nozz le  was approximate l y  5.5 i n .  g i v i n g  a L/w 

r a t i o  o f  appiox imate ly  3 : l .  Th i s  nozz le  was expected t o  g i ve  a .: 

r e  l a t i v e  l y  low pressure drop because o f  t h e  large i n  l e t  area, 

b u t  t o  have a poor, i n  l e t .  coef f i c i e n t  because o f  the low L/w r a t i o .  

Performance o f  Model 5 I n  l e t  Nozzle 

Run water '  vapor T'ota1 E f f e c t i v e  Pressure Nozz le  Coe f f .  "C'; 
F low F low . CFS Length Drop-Ft Corrected f o r  E f f .  
GPM CFM Water Lensth 

1045 1000. ' '. 105 3.98 , 100% . 0.5  0.44 

Ave. 0.51 



As expected, the c o e f f i c i e n t  f o r  the model 5 i n l e t  nozzle was 

the lowest o f  the  present ser ies  o f  i n l e t s .  The low coe f f i c i en t  

i s  a t t r i b u t e d  t o  the  low L/w r a t i o .  Pressure drop f o r  t h  is f 

i n  l e t  was the lowest o f  the ser ies  because o f  the r e l a t i v e  l y  
I 

h igh cross sect iona l  area o f  the  t h roa t  section. 

The separator was traversed w i th  the yaw tube a t  the same 

elevat ions as the previous l n l e t s  (Fig.  34).  While the f l u i d  

v e l o c i t i e s  a t *  the I f t  and 3 f t  levels were almost equal .# The. 

v e l o c i t i e s  a t  the 5 f t  leve I were reduced considerab l y  as i n  the  I 

i 
case o f  the model 2 i n l e t .  The water f low pa t te rn  a lso  showed 

a much lower r a t e  o f  ve loc i  t y  increase toward the center o f  t he  

separator. For t h  i s i n  l e t  the express ion V r  O *  l5 = C describes 

the pa t te rn  a t  the I f t  and 3 f t  leve Is.  

The reduced pressure drop o f  t h i s  i n l e t  a l lows an extension 

o f  the operating range of the separator o f  approximately 200 gpm 

over t he  mode l 2 and 3 i n l e t s  previous l y  tested. However, the 

poor i n l e t  c o e f f i c i e n t  and water f low pat terns ind icate  t h a t  

the i n l e t  performance should be improved. An ove ra l l  graph o f  

pressure drop i s  shown i n  F igure 40. 

4.2.4 Separator Performance 

During the present quarter, the separator chassis has been tes ted using 

s i x  ser ies  o f  o u t l e t s  and four i n l e t  nozzles. The ser ies  o f  24 in .  long 

o u t l e t  models 29 through 31 showed the best  pressure drop and carryunder 



c h a r a c t e r i s t i c s  o f  t h e  nozzles t e s t e d  w i t h  t h e  model 2 i n l e t .  The 

model 30 o u t l e t ,  w i t h  a 7 i n .  o u t l e t  hoop was chosen f o r  t e s t i n g  w i t h  

the  se r  ies  o f  i n  l e t  noaz les. 

Pressure drop and aarryunder curves a re  shown f o r  the i n  l e t  mode I s  

3, 4, and 5 equipped w i t h  t h e  model 30 o u t l e t  nozzle. See Figwr& 41 

through 44.. The curves i n  F igures  36 - 39 are  shown f o r  an a i r  flow 

r a t e  o f  200 cfm a i r  t o  t h e  t e s t  loop. Th is  produces approximately 

400 cfm vo ids  when t h e  a i r  has become saturated.  The pressure drop 

curves f o r  the i n  l e t  nozz les  show the  e f f e c t  o f  chang i ng the  cross 

sec t i ona l  area from one model t o  another. The o u t l e t  drop curve3 

show t h e  e f f e c t  o f  t h e  tangent ia  1 ve loc i t y  component on o u t  l e t  nomz le  

pressure drop. Model 5-30 w i t h  the  lowest i n  l e t  v e l o c i t y  had t h e  

lowest o u t  l e t  drop, wh i l e  model 4-30 w i-th t h e  h i ghest i n  l e t  ve l o c i  t y  

a l so  had t h e  h ighest  pressure drop across the  o u t l e t  nozzle. 

The model 5 i n  l e t  nozzle extends the  capac i ty  o f  t h e  separator by 

approximately 200 gpm w i t h  no unfavorable e f f e c t  on carryunder. It 

i s  assumed t h a t  f u r t h e r  mod i f i ca t i on  t o  improve t h e  i n l e t  c o e f f i c i e n t  

w i l l  lower the  pressure drop w i t h o u t  increasing carryunder. 

4.3 Loop Desian and Const ruc t ion  

4.3. 1 Air-Water Faci  l i t y  , . -. 

The a i r -water  f a c i  l i t y  was modi f ied  t o  ob ta in  proper opera t ion  by 

l oca t ing  the  a i r - i n j e c t i o n  p o i n t  and i n s t a l l i n g  a pe r fo ra ted  p ipe  t o  

d i s t r i b u t e  t h e  a i r  e n t e r i n g  aaross t h e  diameter o f  t h e  p ipe.  



A valve 'was i n s t a l  led i n  t he  discharge l i ne  t o  f ac i  l i f a t e  the i s o l a t i o n . '  

o f  the a i  r-water .tank t e s t  from the cen t r  i f uga l separator t e s t .  . . 

A f i l t e r  system was i n s t a l l e d  t o  remo,ve cor ros ion impur i t i es  from . 

the c i r c u l a t i n g  water. 

. . 

A' f lartged extension . . sec t ion 3' f t . h i g h  was added t o  the outer tank o f  

the t e s t  ' sec t i on  t o  permi t  t e s t  i ng w i t h  deeper submergence and h i gher 

a.ir f lows. 

The c e n t r i  f uga I separator .  was modi f i ed t o  a I low t e s t i n g  w i t h  ve loc i t y  

probes. . . 

. . 

The cen t r  i f  uga l separator -  was equ i pped w i t h  d i scharge n'ozz les of  18 i n . 
. . 

and 12 in. lengths w'i.thout bottom pbate. The i l i l e t  nozzle was modi f ied . 

t o  .a l low the t h roa t  a r e a  t o  vary from 1 -3/4 t o  3/4 in; 

4.3.2 ,Steam-Water F a c i l i t y  

The h i gh pressure 'vesse l was fabr icated and hydrostatics l ' l y  tes ted.  i n  

the A-C West A l I . i s  Works. I't was comple'ted on March 7; 1963 and shipped, 

'to the ins ta  I l a t i o n  s i t e  on March 8, 1963. The s t ruc tu ra  l stee l work 

was completed before the a r h a  l of the.  vesse I. The vesse l e rec t  ion was 

completed March 12, 1963 (Fig. 45). 

I ns taJ l a t i on  - o f  the  p i p i ng  and con t ro l s  .is proceeding. 
. . . . 

The con t ro l  instrument pane l has been comp leted and w i l l be' de l ivered t o  
. . .  

the  s i t e .  The e n t i r e  f a c i l i t y  should be completely fabricated,, insulated . 

and ready f o r  use A p r i l  15, 1963. 



phase of t e s t i n g  

opera t i  on of  the  

has been cornp l e ted  

t e s t  loop has been 



5.0 PLANS FOR FUTURE WORK 
, . 

5.1 Ai  r-Water Tank Test  , 

The t e s t i n g  o f  t h e  necked-down r i s e r  w i l l  cont inue w i t h  a considerable 

amount o f  t ime devoted t o  the  c o r r s  l a t  ion procedure as exp la ined i n  

Sect ion 4.1.5.5.2. 

There are p lans t o  t e s t  t h e  c h a r a c t e r i s t i c s  of a sp i r a  l vane i n the  

s t r a i g h t  sec t i on  ?f t h e  necked-down r i s e r .  There a re  a l s o  p lans t o  c u t  t he  

r i set- down as shown i n  Figure 46, and t o  t e s t  a d i f f e r e n t  d i  arneter necked- 

down r i s e r .  Th is  w i l l  r e s u l t  i n  v e l o c i t i e s ,  i n  t h e  upper reg ion o f  t h e  

downcomer, g reater  than 2.0 f t  per second. 

I n  a d d i t i o n  t o  t h e  above, t h e  system w i l l  be converted so t h a t  t h e  amount 

o f  carryunder can be c o l l e c t e d  and measured. T h i s  w i l l  then mean t h a t  

t h e  downcomer s l i p  r a t i o  ( r a t i o  o f  gas v e l o c i t y  t o  f l u i d  v e l o c i t y )  can be 

ca lcu lated. Since t h e  s l i p  r a t i o  i s  independent o f  geometry, the  amount 

of carryunder (cfm o f  a i r )  can then be ca l cu la ted  f o r  a1 I previous t e s t  

runs. 

5.2 Air-Water Column 

Test ing  o f  t he  c e n t r i f u g a l  separator w i l l  cont inue. The s c r o l l  shaped 

i n l e t s  w i l l  be r e f i n e d  t o  improve pressure drop and nozzle c o e f f i c i e n t .  

Fo l lowing these improvements, t h e  separator w i  I1 be t e s t e d  w i t h  m u l t i p l e  

i n  l e t  nozzles. Another separator i s  being f a b r i c a t e d  which w i  l I use a 

s e r i e s  o f  louvers instead of t h e  usua l i n  l e t  nozz le, and i s  schedu led 

f o r  t e s t i n g  i n  t h e  coming quarter .  Th is  should complete t h e  t e s t  schedule 



on t h e  10 i n .  diam downcomer separators. Follow.ing the  t e s t i n g  of t h e  

10 in .  diam models, an 8 in .  diam separator  w i  l l  be tes ted  t o  determine 

the  e f f e c t  o f  separator  diameter on separator capac i ty  and performance. 

(Fur ther  t e s t s  o f  downcomer separators w i l l  be made i n  t h e  Steam-Water 

Loop as r e f e r r e d  t o  i n  Ref. I). Test ing o f  upcomer type separators 

w i l 1 a l so  commence dur ing  the  coming quar ter  as .schedn led. 



6.0 SUMMARY AND CONCLUSIONS 

?- 
6.1 Deve l o ~ m e n t  o f  Centr  i f uaa l T v ~ e  Downf low Type Separators 

9' 

For  the  purpose o f  analys is ,  the  separator has been d i v ided  i n t o  t h e  

i n l e t  nozzle, separat ing zone and o u t l e t  nozzle as shown i n  F igu re  19. 

Ana lys is  and t e s t i n g  o f  t h e  o u t l e t  nozzle and separat ing zone has been 

completed. The o u t l e t  nozzle f low c h a r a c t e r i s t i c s  were analyzed by 

two methods. The f i r s t  method used a computer program to  determine 

t h e  v e l o c i t i e s  and f low d i r e c t i o n  o f  t he  mix ture  w i t h i n  t h e  nozzle. 

The second method was the  ana lys i s  o f  t he  o v e r a l l  performance, which 
! 

consisted o f  measuring pressure drop and carryunder i n  the  a i r -water  

loop. The resu I t  o f  both methods of i n v e s t i g a t i o n  have led t o  what 

appears t o  be an optimum o u t  l e t  nozz le  des i gn . I 
i 
I 

The separat ing zone has a l s o  been analyzed by w r i t i n g  a computer program 

t o  determine the  a x i a l  d is tance t r a v e l e d  by a gas bubble whi l e  moving 

from the w a l l  o f  t he  separator t o  the  c e n t r a l  vor tex.  The a n a l y t i c a l  
I 

'5 approach was confirmed by experiment. The r e s u l t s  o f  t h i s  e f f o r t  i s  a 

.ca l ' cu la t iona l  technique, which a l though i s  more amenable t o  computer 

s o l u t i o n  can be accomplished by hand ca lcu la t i ons ,  t o  determine the  

length o f  t h e  separat ion zone required.  Tables I and 2 o f  t h i s  r e p o r t  

. . show. values t o  be app l i ed  t o  an a i r -water  system. 

An. i n v e s t i g a t i o n  o f  t h e  improved i n  l e t  nozz les  i s  underway. Resu I t s  so 

f a r  have led t o  cons i derab le  reduct  i on  i n  pressure drop i n  t h  i s  reg  ion. 

App l y  i.ng the  resu l t s  ob ta  i ned t o  date under t h  i s  program has resu l t e d  

i n  reduct ion  o f  t o t a  l pressure drop through t h e  separator a t  I400 gpm from 



m .  
5 f t  o f  water f o r  t h e  reference design t o  1.5 f t  o f  water f o r  t h e  best  

model t o  date. Performance c h a r a c t e r i s t i c s  f o r  t h e  best  separator  d 8 ~ 8 -  

loped t o  date i s  shown i n  F igures  43 and 44. 

6.2 I nvest  i q a t  ion o f  Carrvunder i n  a Natura l Separat ion System 

Th is  i n v e s t i g a t i o n  i s  being c a r r i e d  o u t  i n  the  a i r -water  tank. A reac to r  

core r i s e r  and downcomer reg ion have been mocked up, and t h e  v o i d  f r i c t i o n  

i n  t h e  downcomer was measured as a func t i on  o f  water ve loc i t y ,  water 

temperature, i n  l e t  gas f low ra te ,  and r i se r  geometry. Resu I t s  show t h a t  

the  v o i d  f r a c t i o n  i n  t h e  downcomer i s  essen t ia l  zero u n t i l  a th resho ld  

water v e l o c i t y  i s  reached i n  t h e  downcomer. The v o i d  f r a c t i o n  then r i s e s  
r. 

r a p i d l y  w i t h  increasing water v e l o c i t y  t o  approximate I I  per  c e n t  and then 

appears t o  remain constant;  see F igu re  5. I n i t i a l  i n v e s t i g a t i o n  o f  t he  

e f f e c t  o f  r i s e r  geometry upon carryunder shows t h a t  t h e  h e i g h t  o f  t h e  r i s e r s  

s t r a i g h t  sec t i on  above the  cone has considerable e f f e c t  upon carryunder. 

A semi-empir ical c o r r e l a t i o n  o f  t h e  400 pieces o f  data obta ined thus  f a r  

i s  underway using a dimensional ana lys i s  technique. The constant  and ex- 

ponents app l ied  t o  t h e  va r ious  dimensionless terms a re  determined b y .  

computer ana lys i s  of t he  data. Th is  technique w i l l  be extended t o  inc lude 

data from t h e  steam-water loop when it i s  ava i lab le .  Equation 6 represents 

t h i s  work i n  i t s  present  form. 

6.3 Steam-Water LOOP Desiqn Construct ion 

The pressure vessel f a b r i c a t i o n  and t e s t i n g  was completed and t h e  vessel 

i s  now i n s t a l l e d .  Pre fabr ica ted p i p i n g  i s  being i n s t a l l e d  t o  connect t h e  



vesse 1 t o  the W i scons i n E l ec t r  i c  Power Company's bo i l e r  and condenser. 

The loop shou Id be ready for  operation Apri l 15, 1963. 

6.4 Proposal 

Figure 47 shows progress t o  date as compared t o  proposed progress. 
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a8300 C BASIC AIR-WATER TANK ANALYSIS CURRIER.- GRENDA 
6 8 3 0 0  C 
8 8 3 0 0  C SWITCH'NO. 1-BN, SKIP PRINT 
38300 C SWITCH NO, 2-ON,SKIP PUNCH 
8 8 3 0 0  C SWITCH NO, 3-ON,GO TO 60 
8 8 3 0 0  C SW l TCH NO. 4-ON, FORCE EXPON. 
68300 c 
8 8 3 0 0  - DIMENSION E ( ~ ~ ) , P ( ~ ~ ) , T E M P ( ~ ~ ) , D E ( ~ ~ ) , F M U ( ~ ~ ) , G M U ( ~ ~ )  
0 8 3 0 0  ' READ 38, SLOPE,B INT 
8 8 3 3 6  DO 5 0  1s1,16 
8 8 3 4 8  ~ ~ R E A D ~ ~ , T E M P ( I ) , D F ( I ) , F M U ( I ) , G M U ( I )  
8 8 5 4 0  READ 38, D I STY 
i58 5 64 READ 38, D2, D l ,  D3 
b 8 6 1 2  HYD I ~=4.*(01**2.-D2**2.)/(DI+D2) 
887 68 DO 01 1=1,13 
88780 01 READ 38, E( I ) 
a8864 T EM=O . 
a8888 60 lF(SENSE SWITCH 1)56,11 
88908 11 CONTINUE 
68908 PRINT 400 
8 8 9 3 2  PRINT 401 
a 0 9 5 6  56 CONTINUE 
'68956 DO 1 7  JJ-1.12 
88968 READ 39,PSTAT,AI R 
89004 READ 38,ALPHA, VELO, HI ,  H2,TEMPO, H3 
89088 I F(TEMP0-TEM) 04,06,04 
891 5 6  04 TEM=TEMPO 
891 80 . DO 51 N01.16 
8 9 1 9 2  TTUTEM-TEMP (N) 
a 9 2 5 2  I F(TT)  52,52,51 
09308 51 CONTINUE 
3 9 3 4 4  5 2  RHOF=DF(N)+(TT*(DF(N)-DF(N-1 ))./lo.) 
759488 FFMU=FMU(N)+(TT*(FMU(N)-FMu(N-1 ) )  /lo.) 
8 9 6 3 2  GGMUPGMU(N)+(TT*(GMU(N)-GMU(N~ ))/ lo.) 
3977 6 ~APPR=0;203454+1.038372E-8*(TEM**3.922951). 
6 9 8 3  6 R H O ~ E ( ~ . ~ ~ ~ * ( ~ ~ , ~ ~ ~ - V A P P R ) + ~ . ~ ~ ~ * V A P P R ) / ( T E M + ~ ~ O . )  
69980 w = o . ~ ~ ~ * V A P P R ~  (1 4.696-VAPPR) 
To064 C=(TEM-32.j/1.8 
To1 1 2 '  S =(75.68-.138*~-(3.56E-4)*C**2+(4.7€-7)*C**3)*2.205E-3 
1 0 2 9 2  06 CONTINUE 
7 0 2 9 2  DCVEL=l.460*VELO*. 5 

ALPHA=ALPHA-SLOPE*VELO-0 1 NT 
ALPHA=(ALPHA-6.0)/5.000 
ALPHB=ALPHA*~~.~ / (D ISTY*(RHOF-RHOG))+O.OOOO~ 
A L P H b A t P H B  
GPM=533.00*(VELO w.5) 
QF=GPM/9 .481 
DDVEt=O.l955*DCVEL . 
Q G ~  .78*(((PSTAT+l4.696)*Al R)**.5) 
~G=(0 .0764* (1  .+W)*QG)/RHOG 
lF(SENSE .SWITCH 2)57,58 

58 CONTINUE 
I F(ALPHB)05,05,07 

0 5  ALPHAP0.0001 
70956  07 CONTINUE 
70956 P (1 )=ALPHA 

F igure  2 - F o r t r a n  Statement f o r  Air-Water Tank' Data Reduction (Sheet I of 3) 



P (~)=RHoG/(RHOF-RHOG) 
P (3)=(  H2-H3 /H2 
P (4)=H1 /H2 
P( 5)=D1 /H2 

P. 8 =FFMU/GGMU 
P I9{=(RHOF*HYD I A*DDVEL/FFMU)*300. 
~ ( l o ) = ( ~ ~ ~ E L * 2 e / ( 3 2 e 2 * H 1 ) ) * 1 2 e  
P(11  ) = ( R H O F * D D V E L * * ~ ~ ) * H ~ / ( S * I ~ ~ )  
P ( ~ ~ ) = ( ( R H O ' G * Q G ) / ( H ~  *GGMU))*720. 
P (1 3 )=QF/QG 
lF(SENSE SWITCH 41200.57 

200  DO 201 KKK=1 13 
P ( KKK)=PCKKK!**E(KKK) 

201 CONTINUE 
57 CONT INUE 

IF(SENSE SWITCH 1)12,13 
1 3  CONTINUE 

PRl  NT 39,GPM, DCVEL,ALPHB,QG,H3,H2,TEM 
PRl  NT 403, DDVEL 
PRINT 41 

1 2  CONTINUE 
IF(SENSE SWITCH 2)14,15 

1 5  CONTINUE 
PUNCH 39 
PUNCH 40,P(1 ),P 2),P(3),P(4),P 5 )  
PUNCH 40,P(6) P I 7),P(8),P(g),P 10) 
PUNCH 4 0 , ~ ( 1 1 ! , ~ ( 1 2 ) , ~ ( 1 3 )  

I 
PUNCH 41 

'2264  14 CONT 1 NUE 
'2264 IF(SENSE SWITCH 9)10,17 
12284 .17  CONT l NUE 
'2320  IF(SENSE SWITCH 1)60,799 
'2340  7 9 9  PRl  NT 798 
'23 64 GO TO 60 
'2372 1 0  PAUSE 
'2384  . IF(SENSE SWITCH 3)60,65 
'2h04 65 STOP 
,2452 400  FORMAT(^ SX32HDOWNCOMER CARRYUNDER CALCULAT 1 . 0 ~ ~  11) 
' 2 5 8 8 . 4 0 1  FoRMAT(7X3HRUN, 7X3HGPM,7X3HVEL, ~ x ~ H A L , ~ x ~ H C F M , ~ X ~ H H ~ , ~ X ~ H H ~ , ~ X ~ ~ T ~ *  1) 

"878 '2948 "4 
'3006  39 
'3086  40 
'3128 41 
'3168 , 798 
r3 2 4 6  END 

F i g u r e  2 - F o r t r a n  Statement  f o r  A i r -Water  Tank Data Reduct ion (Sheet 2 o f  3) 



0 
Temp ( I )  - Temperature (From Tab le) F 
DF (I . - Densi ty  o f  Water (From Tab le) l b / f t 3  
FMU. (I) - V i s c o s i t y  o f  Water (From Tabje) I b / h r - f t  
GMU (I - V i s c o s i t y  o f  A i r  (From Table) I b / h r - f t  
S lope-S lope of F r i c t i o n  Cor rec t i  on Line 
B l NT - I n t e r c e p t  o f  Cor rec t i on  Line 
D l S N  - Distance Between A lpha Taps 
D2 - Diameter o f  Necked-Down Riser,  I n .  
D I - Diameter o f  Outside Tank, In .  
D3 - Diameter of Upcomer, In.  . 
HYDl A - Hydrau l i c  Diameter i n  Upper Region, I n .  
E ( 1 )  - Exponents 
TEM . - l nterna l Parameter 
PSTAT - A i r  L ine  Pressure, p s i g  
A1 R - O r i  f i ce  Meter Reading, l nches o f  Water 
ALPHA - Downcomer Voids Reading from D i f f e r e n t i a l  Pressure Ce l l ,  

Inches of Water 
VE LO - Water F low O r  i f  ice Reading, l nches o f  Mercury 
H I  - Riser  Length, l nches 
Hz - Dynamic Head, l nches 
TEMPO - Bu I k Temperature o f  Water, F' 
H3 - S t a t i c  Head, Inches 
TT - l nterna l Parameter Use i n  Temperature Tab l e  Search 
RHOF - Densi ty  o f  F l u i d  In te rpo la ted  from Table, lb / f$  
F FMU - V iscos i t y  o f  F l u i d  In te rpo la ted  from Table, I b / h r - f t  
GGMU - V iscos i t y  o f  Gas l n terpo la ted from Tab le, I b / h r - f t  
VAPP R - Vapor Pressure o f  Water a t  Tempo, p s i  
RHOG - Densi ty  o f  Saturated A i r  i n  Loop, 1 b / f t 3  
W - Spec i f i c  Humidity,  Ib vapor per  Ib a i r  
C - Temperature, CO 

- Surface Tension of L iqu id ,  lb/sec 2 
s- 
DCVE L - Downcomer Ve loc i t y  , Lower Region f t / s e c  
A LPHB - Void F r a c t i o n  
GPM - Water f low, Ga l Ions per  Minute 
QF - Water F low, f t3/mi 1 1  
DDV L - Downcomer Ve loc i ty ,  Upper Region, f t / s e c  
QG - ( F i r s t )  A i r  Flow Through O r i f i c e ,  cfm 
QG 

- (Second) A i r  F low Through Upcomer A f t e r  Saturat ion,  cfm 
P (1) - D imens i gn less Parameters 

F IGURE 2 - FORTRAN STATEMENT FOR AI R-WATER TANK .DATA REDUCTI OM 
(SHEET 3 o f  3) 



Figure 3 - Air-water Tank Data Reduction Logic Program 
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DOWNCOMER CARRYUNDER CALCULATION 
g ,= 12.0 

RUN G PM VEL AL CFM H3 HZ TE 

1 AA 595.91 2 1.,632 .OOOOO 33 0757 .130000 18.500 93.000 
.319 

F igure 4 - Typ ica l Data Reduction Pr  i n t - O u t  For a COmP let0 Run (Sheet I of 5 )  



DOWNCOMER CARRYUNDER CALCULATION 
-A,= 1z;c.l . . 

RU i\I G PM VEL  A L  CFM H3 H 2 TE 

~ i g u r e  4 - Typ ica l  Data Reduction P r i n t - O u t  Fo r  a Complete Run (Sheet 2 o f  5) 



DOWNCOMER CARRYUNDER CALCULATION 
.H,= 1'2.0 

RUN GPM VEL AL CFM H 3 H2 . .  TE . 
i l  

,. 25AA 1415.212 3;876 .05736 71.611 13.000 38.500 96,000 
0757 

4 Figure 4 - Typica l Data Reduction Pr  int-Out For a Comp le te  Run (Sheet 3 of 5).  



DOWNCOMER CARRYUNDER CALCULATION 
!-I,= 12'6 

RUN GPM - V E L  A L  CFM ' H3 H2 TE 

b. F igu re  4 - Typ ica l  Data Reduct ion  Pr in t -Out  For a  Comp l e t e  Run (Sheet 4 o f  5). 



DOWNCOMER CARRYUNDER CALCULATION 
,)-),= lz.0 

I 
RUN GPM V E L  AL CFM H3 H2 TE 

b ~ i g u r e  4 - Typ ica 1 Data Reduct ion Pr  i nt-Out For , a  Comp le te  Run (Sheet .5 of  5 )  
- 



F i gure 5 - Ef fec t  of A i r F low ' on Downcorner Vo i ds (Loop Temp. 9 0 O ~  2 6') 
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0 
F igure  6 - Ef  f a c t  of  A i r  F low on Downcomer Voids (Loop Temp. 150'~ 2 3 ) 
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0 
Figure 7 - E f f e c t  o f  R i  sar Length on Downcomer Voids (Loop Temp. 90 F 2 5O) 
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Figure  8 - E f f e c t  o f  ~ i s e r '  Length on Downcomer Voids (Loop Temp. 150'~ 2 10') 
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. . 0 
.F i gure  9 - Ef fec t  -of l,ni t i a I Water . Leve I on Downcomer vo i d s  { LOOP Temp.. 90 + 50) . . , . !  
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LABORATORY-2I'WO CARDS 

I 

I 
I 

t 
/ PROGRAM 023 

B A S I C  DATA 
R E D U C T I O N  

I 
J 

I + D I M E N S I O N L E S S  - - - - - - - P A M M E T E R S  - - - 
I PUNCHED OUT 

i 
/ PROGRAM 029 1 /-I p-LN AND SEM-LN I 

N A L Y S I S ;  L E A S T  
SQUARE D E T E R M I N A T I O N  

V E R I F I C A T I O N  I EQUATION I 

PROGRAM 017 ' . I  
DETERMINANT 
E V A L U A T I O N  

I 
I 
I 

E X P O N E N T S  FO 
J 

\ PARAMETERS / 

F i g u r e  10 : Systemat ics  o f  C o r r e l a t i o n  Procedure 
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8 3 0 0  C PROGRAM 029 ,  DATA 'CONVE.RSI ON AND LEAST SQUARE ANALYS l S CURR I ER 
8300 C 
8300 C SW l TCH 1 OFF, LOG-LOG 
8 3 0 0  C SWITCH 1 ON ,SEMI-LOG 

DIMENSION CONSK(S),E(18),P(20),8(15,20) 
DO 14.1=1,5.  
READ 37 CONSK.( I 
CONSK( I !=LOG( CONSK( I 1) 

14 COMTI~IUE 
DO 01 1=1,18 
READ 37,E( I )  

0 1  CONT INUE 
' DO 1 5  1=1,20 

P (  I )=O. 
DO 1 6  J=1,15 
B(J,  I)=o. 

16 CONTINUE 
1 5  CONTINUE 
1 8 R E A D 3 9  . .  

DO 2 5 - i = i  11,s 
READ 37,Pf l ) , P (  I + 1 ) , ~ ( 1 + 2 ) , ~ ( 1 + 3 ) . P (  I+h) 

25 CONTINUE 
READ 41 
READ 41 
DO 0 2  1=1,13 
P ( I  )=E( I ) *LOG(P( I  1) 

0 2  CONT INU'E 
'DO 05 1=1,5 
IF (SENSE SWITCH 1 ) 0 3  04 

04 P (  1+13)=CONSK( I)-P(I! 

GO TO 06 
1 1  P ( N ) = P ( I )  

N= N+ 1 
06 CONT 1 NUE 

N=N-1 
NN=N-5 

DO i 2  I=I;N 
B(J, I>=P(J)*P(I)+B(J, I)  

1 2  CONT INUE 
13 CONT l NUE 

L=N-NN 
IF (SENSE SWITCH 9)17,18 

17 PUNCH' 4.5,NN,L 
DO 1 9  I=1.N 
cs 2 0  J=I;NN,~ 
PUNCH ~~,B(J,I),B(J+I,I),B(J+~,I),B(J+~,I),B(J+~, 1 )  

20 CONTINUE 
1 9  CCNT INUE 

. F i g u r e  1 1 - F o r t r a n  s t a t e m e n t  f o r  P r o g r a m  02.9 ( S h e e t  i. of 3) 
+ 



STOP 
FORMAT( I 2 1 2 )  

~ 1 4 . 7 , ~ 1 4 . 7 , ~ 1 4 ~ 7 , ~ 1 4 ~ 7 r ~ l 4 * 7 )  
1 

FORMAT(IH J) 
~0RMA~(F14.4,~14.4,~14.4,~14*4,F14*4) 
END 

Figure  I I - Fort ran.  Statement f.06 Program 029 (Sheet 2 of 3) 



NOMENCLATURE PROG. 029 

CONSK ( I )  - Constants 
E ( 1 )  - - Exponents 
P ( I )  - Dimensionless Parameters 
B ( J , l )  - Least Square Coef f ic ients  
L - Number o f  Constants 
NN - Number of .Unknowns 

FIGURE I I  - FORTRAN STATEMENT FOR PROGRAM 029(SMEET 3 OF 3) 
< * 



i Yes 

Subtract A lpha 
from Constant 

Vectors (Right 
hand side o f  

Figure 12 - Logic Diagram f o r  Program 029 
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C SOLUTION OF N NON-HOMOGENEOUS SIMULTANEOUS L INEAR EQUATIONS BY THE 
JORDAN ME'HOD OF E L I M I N A T I O N  b E N M U S T B E L E S S T H A N O R E Q U A L T O 1 5  

**P,R, HENNINGSEN IBM MILW, 

C UP TO 5 CONSTANT VECTORS MAY BE INCLUDED PER SET OF EQUATIONS 
DIMENSION ~ ( 1 5 , 2 0 ) , P ( 2 0 )  
IF(SENSE SWITCH 9) 1,1 

1 I F  (SENSE SWITCH 9) 999,2 
C RESET AREAS TO FLOATING ZEROS 

I 2 DO 2 5  &1,20 . . 

P(J)=O, 
DO 2 5  1=1,15 

2 5  A( I ;J )=Oe 
C READ SYSTEM S I  ZE,N AND NO. OF CONSTANT VECTORS,L 

READ IO l ,N,L  
C READ MATRl X OF COEFF l C l ENTS AND CONSTANT VECTORS 

NL=N+L 
DO 3 J=1. NL 
DO 3 I= l ;N 5 

3 READ 1 0 2 , ~ i  I ,J),A( I+l,J),A( 1+2,J),A( 1+3,J),A( l+4,J) 
C P R l N T  MATRl X + CONSTANT VECTORS UNDER CONTROL OF SENSE SWITCH 2 
C SENSE SW l TCH 2 ON -BYPASS ** SENSE SW l TCH T OFF -PRINT 

IF(SENSE SWITCH 2 )  9,4 
4 . P R I N T  111, N,N 

DO 6 IP1,N 
DO 5 J=1 ,N, 5 

5 PR lNT  112,  A(I.J),A(I,J+~),A(~,J+~),A(I,J+~),A(I>+~) 
6 PR lNT  1 1 3  

PR lNT  1 1 4 , ~  
DO 8 J=1, L 
PRlNT 115, J 
JN=J+N 
DO 7 I=1,N,5 

~ 7 PRINT 11 2, A(  I, JN),A( I+1, JN)  ,A( I+2, JN),A( 1+3, JN),A(I+~., JN) 
8 PR lNT  113 

C REDUCE COEFFICIENT MATRIX TO U N I T  MATRIX 
9 DO 1 0  K=1,N 

C REARRANGE ROWS SO THAT A(K,K) I S LARGEST (ABSOLUTELY) OF THE A(  J, K) 
KK= K 
TEST= ABS(A( K, K) ) 
DO 11 I=K,N 
IF(TEST-ABS(A( I, K).) 1 2 , l l  , I  1 

11 CONTINUE 
GO TO 13 

1 2  TEST = ABS(A( I , K ) )  
KK= I 
GO TO 11 

. I 3  DO 14 J=l,NL 
P ( J )  = A(KK,J) 
A KK, J)=A(K, J) 

14 A t K,J~=P(J )  
C D I V I D E  ROW K BY A(K,K) SO THAT A(K,K) WILL BE UNITY  

AKKaA ( K, K) 
D.0 15 J=l,NL 

15 A(K,J)=A(K,J)/AKK 

F i gure 13 - F o r t r a n  Statement f o r  Program 17 (Sheet I of  2) 



C DEVELOP P IVOTAL  ROW AND REDUCE KTH COLUMN 
KM1= K-1 
K1=K+1 

I ,  I F  (KM1)999,47,46 46 DO 16 la1 Kt41 
AI K=A( I, KJ a,.. 

DO 16 J- l ,NL 
P J)=A(K J ) * A I  K 

16 A [ I , J ) = A f I  J ) -P(J )  
I F  [K l -N)  k7,47,10 

47 DO 17 I=Kl,N 
AIK=A(I,K) 
DO 17 J- l ,NL 
P(J )=A(K,  J ) * A I K  

17 A( I, J)=A( I, J)-P(J) 
10 CONT l NUE 

C REDUCTION COMPLETE, TYPE(SW 3 OFF) OR PUNCH(SW 3 ON) SOLUTIONS 
IF(.SENSE SWITCH 3 )  20,30 

30 DO '31 J=l ,L 
P R I N T  117,.J 
JN=J+N 
DO 3 2  I=1,N,5 

3 2  PRINT 112,  A(  l ,JN),A( I+~,JN),A( 1+2, JN),A( 1+3,JN),A( 1+4,JN) 
31 PRINT  113 

GO TO 1 
2 0  DO 2 1  J=1 ,L 

PUNCH 117,J 
JN=J+N 
DO 2 1  l=l,N,5 

2 1  PUNCH 102,  A(  l ,JN),A( 1+1 ,JN),A( 1+2,JN),A( 1+3,JN),A( 1+4,JN) 
GO TO 1 

999 STOP 
101 F O R M A T ( I ~  1 2 )  
1 0 2  FORMAT ~14.7 ~14.7,~14.7,~14.7,~14.7) 
111 FORMAT / / / / l h ~ 1 3 , 3 ~  X,13,4X22HMATRIX OF COEFFICIENTS,///) 
1 1 2  
113 FORMAT(/) 
11 4 FORMAT(//20X, 12,4X18HCONSTAMT VECTORS,//) 
11 5 FORMAT(20HCONSTANT VECTOR NO. , 12)  
117 F o R M A T ( ~ ~ H S O L U T  ION FOR CONSTANT VECTOR NO, , 12)  

END 

- 

F i g u r e  13 - F o r t r a n  Statement f o r  Program 17 (Sheet 2 o f  2 )  



J 9 X 9 MATRIX OF COEFFICIENTS 

SOLUTION FOR CONSTANT VECTOR NO. 1 
3.7971 7E-01 -6.92048E-01 5.04683E-01 6.62576E-01 7.30338E-01 
5.201 00E-01 -7.29847E-01 -1.02053E-00 -1.01 076E-00 ,00000E-99 

I SOLUT l ON FOR CONSTANT VECTOR NO. 2 
1.431 43E-01 -6.82285E-01 5.22780E-01 -1.52342E-01 2.4682OE-01 

-1.75778E-01 -3.42278E-01 9.826466-02 1.05343E-01 .OOOOOE-99 

SOLUTION FOR CONSTANT VECTOR NO. 3 
3.7402 5E-01 -6.88955E-01 5.071 29E-01 9.33028E-01 1 .19662E-00 
2.901 24E-01 -8,09763E-01 -8.65386E-01 -8055775E-01 .OOOOOE-99 

SOLUTION FOR CONSTANT VECTOR NO. 4 
1 ,29497 E-01 -6.80943E-01 5.10426E-01 5.12447E-01 8.03600E-01 
6.81 072E-02 -6.08131 E-01 -4,28592E-01 -4.19330E-01 .00000E-99 

SOLUT l ON FOR CONSTANT VECTOR NO. 5 
8,12224E-02 -6.77020E-01 5.18068E-01 1.52013E-02 4.2421 2E-01 

-2.17584E-01 -3.88507E-01 9.05856E-02 9.87230E-02 .00000E-99 

STOP 

F igu re  14 - Sample P r i n t - O u t  f o r  P,rogram 17. 



08300 C DOWNCOMER CARRYUNDER V E R I F I C A T I O N  1-21-63 GRENDA-CURRIER 
08300 C 
68300 C SW l TCH 1 ON, SEM I-LOG 
a8300 C SW l TCH 1 OFF, LOG-LOG 
68300 c 
68300 DIMENSION E ( 1 3 ) , P ( 1 5 )  
88300 READ 38, CONSK 
8 8 3 2 4  DO 0 3  L=1,13 
88336 0 3  R E A D 3 8 , E ( L )  
8 8 4 2 0  PR l NT 398 
88444 P R l  NT 399 
88468 PAUSE 
88480 2 2  PR INT  400 
88504 IF(SENSE SWITCH 1 ) 2 0 0 , 2 0 1  
8 8 5 2 4  2 0 0  P R l N T  401 
88548 GO TO 18 
08556 2 0 1  P R l  NT 403 
08580 18 P R l N T  01 
88 604 DO 444 NIN=.1,50 
fi8616 READ 39 
88640 .DO 2 5 -  ~ = 1 , 1 1 , 5  
8 8 6 5 2  READ ~~,P(K),P(K+~),P(K+~),P(K+~),P(K+~) 
88844 2 5  CONTINUE 
88880 READ 41 
08904 ,READ 4 1  
8 8 9 2 8  X=l . 
389 5 2 DO 0 2  J=2,13 
88964 x=(P(J)**E(J))*x 
09060 0 2  CONTINUE 
89096 I F( SENSE SW l TCH 1 )300,301 
891 16 300 Y=CONSK*EXP(X) 
8 9 1  5 2  GO TO 302  
0 9 1  60 301 Y=CONSK*(X**(-E(l ) ) ) 
8 9 2 0 8  3 0 2  P R l N T  39 ,P ( l ) ,Y , x  
8 9 2 5 6  IF (SENSE SWITCH 9)83,444 
8 9 2 7 6 .  444 CONT I NU,E 
8 9 3 1  2 PR INT  445 ' 

89336 GO TO 2 2  
09344 ,, 83 STOP 
8 9 3 9 2  37 FORMAT(F14.4 ~14.1t,~14.4,~14,4,~14.4) 
89434 ' 38 FORMAT(FIO.~! 
8 9 4 5 6  39 F O R M A T ( ~ O H  ,F14.4,F14.4,F15.5) 
89516 41 F O R M A T ( 1 H ) -  . 
0954 .2  0 1  FORMAT(5X3HRUN,9XIlHALPHA MEASm,3X26HA~PHA CALCo X COORDINATE,/) 
8 9 7 2 0  398 FORMAT(1 OX~gHADVANCE PAPER, SWI ON-SEMI LOG,OFF-LN-LN.) 1 
b 9 8 5 0  399 FORMAT(1 OXIOHPUSH START) 
8 3 9 2 2  400 FORMAT(15X,33HDOWNCOMER CARRYUNDER VERIFICATION,/) 
7 0 0 5 4  4 0 1  FORMAT(20X17HSEM I-LOG ANALYS I S, / /) 
7 0 1  70 403 FORMAT(20Xl6HLOG-LOG ANALYS I S, / / )  
7 0 2 8 4  445 FORVAT( / / / / / / / / I  
7 0 3 4 2  END 



NOMENCLATURE PROG. 025 

CONSK - Constant 
E (L) - Exponent 
P (K)  - Dimensionless Parameters 
x .. - X Coord i na t e  
Y - Alpha Ca lcu la ted 

FIGURE 15 - FOFiTRAN STATEMENT FOR PROGRAM 025 
(SHEET 2.of 21 



ca lc  = k (x)  

Then Alpha Calc.  
L k  XI 

. .. .!,:' 

C 

Parameters 
f rom P rog . 023 

l n v o l u t i o n  
0 f 

Pa'ramete rs 

Figure  16 - Log.ic Diagram f o r  Program 25 
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DOWNCOMER CARRYUNDER V E R I F I C A T I O N  

LOG-LOG A N A L Y S I S  

RUN ALPHA MEAS, ALPHA CALC. X COORDINATE 

40 Z 
41 Z 
4 2 2  
43 z 
44z 
4 5 2  
4 6 Z  

6 A A  
7 A A  
8 A A  
9 A A  
1  OAA 
1 1 A A  
1 2 A A  
1 3 A A  
1 4 A A  
1 5 A A  
2  2AA 
2 3 A A  
2 4 A A  
2  5 A A  
2  6 A A  
2 7 A A  
2 8 A A  
2 9 A A  
3 0 A A  
3 1 A A .  
3 2 A A  
3 9 A A  
4 0 A A  
41 AA 

F i gu re  17 - Samp le  P r  i nt-Out f o r  Program 2 5 ( ~ h e e t  I of 2 )  



LOG-LOG A N A L Y S I S  

RUN ALPHA MEAS. AL/PHA CALCo X COORD I NATE 

1 occ 
l l C C  

Figure  17 - Samp le Pr  i n t -Ou t  f o r  Program 25(Sheet 2 o f  2 )  
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Figure 18 - Error P lo t  f o r  Carryunder Prediction 
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Figure 19 - Ten l nch D i  m e t e r  Centr i f uga l Steam Separator Mode l 



Outlet Nozzle Model 27 

Outlet Nozzle Model 30 

F i gure 20 - Twentv-f our 1 nch Out l e t  Nozz les 
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Figure 21 - Outlet Nozzle 
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P lgure 22 - Perfonaancte Curves far  Sopiarabr Mods 1 2-27 ' 
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I Figure 24 - performenae Cuwes for $csparator )bsdel 2-30 
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Outlet  Nozzle Model 36 

Figure 26 - Short Out l e t  Nozz les 

O u t l e t  Nozzle Model 40 



Pisure 27 - Performance Curves for Separator Model 2-36 
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Figure 28 - Performance Curves for Separator Model 2-40 



Outlet  Nozzle Model 
Top View 

Out le t  Nozsle Hadel 32 
S i d e  View 

F igure 29 - Turning Vane O u t  le t  



STOP 
CORE CLEAR PAGE 1 

XENTRI FUGAL SEPARATOR-SEPARAT I NG LENGTH I I I- I I I I YANT GREENDALE 
C . GPM, = GALLONS PER MINUTE c, .c 

DS = DIAMETER OF SEPARATOR ( INCHES) C 
'@ c .  DV = DIAMETER OF'.VORTEX ( INCHES) 

C N = NUMBER OF ITERATIONS a (RS-RV) X 4 
C E = EXPONENT I N  EQUATION C= VIN*(R**E) 
C ' P W  = DENSITY OF WATER ( L B / C U B I C  F T )  / 

C PV = D E N S I T Y  OF VAPOR (LB/C.UBIC F T )  
GAMMA = SURFACE PENSION ( L B  FORCE/FT) C 

t C 'TEMP = TEMPERATURE (DEGREES F) 
V I N  = I N L E T  VELOCITY (FT/SEC) C 

, C RB=BUBBLE RADI  US ( F T )  ' 

C . VAX a A X I A L  VELOC I T Y  . ( F T  /SEC) 
c AREA y SEPARATOR. X-SECT I ON (FT SQUARED) 
C R = SEPARATOR RADIUS ( F T )  
c VTAN = AVERAGE TANGENT IAL VELOC I T Y  ( F T ~ S E C )  - .  

c.  RAV = AVERAGE BUBBLE PATH R A D . I U S . ( F T )  
C ' ' ENG =p N SUB G - PEEBLES 

' C  V B b B U S B L E  VELOCITY - REGION 4 (FT/SEC) 
VB3uBUBBLE VELOC 1 TY - REG l ON 3 .  (FT/SEC) . C 

C VB4M=MINIMUM BUBBLE VELOCITY - REGION 4 (FT/SEC) 
C . T = TRANS1.T T I M E  (SECONDS) 
C SAX = A X I A L  TRAVEL D l  STANCE ( F T )  

I C . STAN = TANGENTIAL TRAVEL DISTANCE ( F T )  
1 READ2,GPM,DS,DV,N,E,PW,PV,GAMMA,TEMP,VIN,RB 

PRINT3,GPM, DS,DV 
PRINT4,N,E,PW . 

P R I  NTS,PV,GAMMA,TEMP . ' 

v 

PRINT6,VIN,RB 

Q ASEP=(~.I~I~*((DS**~)-(~~**2)))/((4."144.)) 
VAX=(GPM) /(449,*ASEP) 
R=(DS/24.) . 
c=vIN*((.R)**E) 
V T A V l O  
A l l . .  
S=N . 
DOI OJ=I, N 

. . 

v=C/(R-( .0208*A))**E 
VTAV=VTAV+( V/ S) 

10 A=A+l. 
. PRINT.~,ASEP,VAX,VTAV 

RAV=(DS+DV) /48, 
ENG=8.*( (vTAv**~)*(Pw-PV.)) / (  (3  .*(RAV)*PW)) 

. ~ ~ b . 8 2 5 * ( ( ( ~ N G * * 4 ) / 3 2 . 2 ) * * e 0 8 3 ) * ( ( ( G A M M A * 3 2 a 2 ) / P W ) * * o 2 5 )  
P R I N T 1 9  VB4 
VB3=1 .~&~*(((ENG/~~.~)**.~~~))*(((GAMMA*~~.~)/(RB*PW))**.~O) 
P R I N T 1  8,VB3 1 

I ~ ~ 4 M = . 6 6 3 * (  ((GAMMA*32.2)/(PW) )**.75)*(1 ./RBI' 
-<. PR I NT17,,VB4M 

IF(VB4-VBX1)11,12,12 m 11 PRINT1,3,RAV,ENG,VB3 
VB=VB3 . . 

GOT01 5 
1 2  P R I  NT14, RAV, ENG, VB4 

. . 

F igure  30-A - L i s t i n g  o f  computer Program f o r  Separating Length 
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P R I  NT16,T, SAX, STAN 
2 ~ORMAT(~6.O,F6.2,F6.2;13,F6.2,F6.1,F6.1,F6.4,F6.0,F6.2,F7. 
3 FORMAT(SX, 6HGPM = ,F6.0,9X, 6HDS = ,F6.2,9X,6HDV = ,F6.2) 
4 FORMAT(~X,~HN = ,13,9X,6HE = ,F602,9X,6HPW ,=  ,F6. 
5 FORMAT(SX,6HPS = ,F6;1,9X,6HGAMMA=,F6.4,9X,6HTEMP ~ ~ F 6 . 0 )  
6 FORMAT(SX,6HVIN = ,F6.2,gX,5HRB =,F7.5) 

; 9 FORMAT(5X, 6HASEP= ,F6.3,9X, 6HVAX = ,F6.2,9X, 6HVTAV- ,F6.2) 
i 13 FORMAT(5X, 6HRAV = ,F6.2,9X, 6HENG = ,F6.0,9X, 6HVB3- = ,.F6..2) 

14 FORMAT(5X,6HRAV = ,F6.2,gX, 6HENG = ,F6.0,9X, 6HVB4 = .  ,F6.2) 
5X, 6HT IMEP ,F6.2,9X, 6HSAX = ,F6.2,9X, 6HSTANn ,F6.2/ 
10X,6HVB4M =,F6..2) . 

18 FORMAT( 1 OX, 6HVB3 =, F6..2) 
19 'FORMAT(lOX, 6HVB4 =,F6,2) 

IF(SENSE SWITCH 9)20,1 
20 STOP 

END 

END OF L IST ING 

F i gure'  30.-B - L i  s t  i.ng o f  Computer Program. f o r  Separat i ng Length (Cont i nued) 



i . , , ' .  ., . 
. . ,, . 

GPM = 2000. , 

N . .  P. 1 4  .' 
P S  = '.I ' 

V I N  . 9.75 
.ASEP= .496 

VB4 = '1.46 : 

VB3 ' = .  lo92 
VB4M'= 2.49 

RAV = .27 
T l ME= e l  5 

D S  = 80.00 
E = a 30 
GAMMA= .0043 
RB = .(I0278 
WAX = 8,97 

EHG 6295, 
SAX = 1.35. 

DV =' 3.00 
PW 1 60.6. 
TEMP = 175. 

VTAV= 11.48 

DV = 3.00 , t GPM = 2000. DS = l0sOO 
I N 14 E a  030 PW = 60.6 1 , . 

P S  =I ' e l . .  . , GAMMA= .0043 TEMP 175. 
V IN= 9..75'... ' .  RB = i00347 VTAV= 11 .48 ASEP- ,496 WAX = 8097 VB4 ..P - .- .1..o4.6 . ' 

VB3 = '1.72 
VBW, = 1 a99 

RAV = 27 EM6 a 12950 VB3 0.72 . . 
T I.M,E= .16. .  SAX= 1051 . STAN= 1.94 

. . 

E x .  
P 

GPM 2000. DS 10000 ov = ' 3..00 
0.30 N a 14 E = PW = . 60.6 

GAMMA= 00043 P S  = '  .I TEMP = 175. 
. ae = 00041 7 . . . V I N  0 '9.75 

ASEP= .496 YAX= 8097 WTAV= 11.48 
V B ~  = .  1046 . 

~ 6 3  .=  1'.57' . 
VB4M = 1 066 

RAV a .27 ENG 1 12950 v ~ j  = . 1.57. 
T I ME= '. .I8 , ' SAX = 1.66 STAN= 2.02 

. , 

' . GPM' a 2000. 
. N  . . . =  14 

PS . =  .I 
, . V I N  = 9.75 

ASEP= .496 
V B ~  , = '  1.46 
VB3. = 1045 
VB4M = 1 .42 

. . RAV = . ..27 
'.. -TIME= . . el9 

. ' . G P M  1 2000. 
N 1 14. 
ps '  . n. . 1 
WIN = 9075 
ASEP= .496 

V B ~  = 1 .46 
vB3 . = . 9.36 
VB4M = l e 2 4  

. R A V =  '. 27 
T !ME= .I9 

DS 7 10.00 .' 

E 9 * 30 
GAMMA= .0043 
RB zs .00487 
VAX 9 8.97 

. . 
EMG =a 02950 
s a x =  8.79 

ENG ,12950 
SAX = I 079 

.. . .  

DV.'. P 3.00 
PW = 60.6' 
TEMP .I 175. 

DV 1 3.00 
PW = 60.6 
TEMP = 175. 

F i g u r e  3 I-A - Computer P r i  nt-Out; Se a r a t i n g  Length; ~ 1 ~ 9 . 7 5  varying f i ~ '  -8- 



GPM = 2000. 
N 14 
P S  = 01 
V I N  = 8.00 
ASEP= .496 

VB4 = 1.28 
VB3 . =  1.80 
VB4M = 2.49 

RAV = 27 
T lME= ' . I6 

DV = 
PW. = 
TEMP = 

GPM = 2000. 
N a 14 
P S  .=  01 
V I N  = 8.00 
ASEP= .496 

VB4 = .1.28 
VB3 = 1.61 
VB4M = !.99 

RAV = . .27 
T I ME= .I8 

DS' = 10.00 
E = 3 0 
GAMMA= .0043 
RB = .00347 
VAX = 8.97 

DV = 
PW = 
TEMP = 

GPM = 2000. 
N r 14 
P S  = 01 
V I N  = 8.00 
A SEP= .496 

VB4 = 1.28 
. V B 3  = 1.47 
VB4M =. 1.66. 

RAV = 27 
T IME= .I9 

D S  1O;OO 
E a 030 
GAMMA= .0043 
RB = .00417 
VAX = 8.97 

DV = 
PW = 
TEMP = 

ENG = 872. 
SAX= 1.77 

GPM = 2000. D S  = ,10.00 DV = 3.00 
N a ' .  . 14 E a 030 PW a 60.6 
PS' = .I- GAMMA= .0043 TEMP = 175. 
V I N  = 8.00 RB = .00487 
ASEP= .496 VAX = 8.97 VTAV= 9.42 

VB4 9 1.28 
V B 3 ,  = 1.36 
V B M .  = 1.42 

RAV = .27 ENG= 872. VB3 = 1.36 
T lME= .21 SAX = 1.92 STAN= 2.01 

GPM = 2000. DS = 10.00 DV = 3.00 
N a 14 E 0 030 PW a 60.6 
P S  = • 1 GAMMA= .0043 TEMP = ,  175. 
V I N  = 8.00 RB = .00556. 
ASEP= .496 . VAX = 8.97 VTAV= 9.4.2. 

VB4 = 1.28 
VB3 = 1.27 
VB4M = 1.24 

RAV = .27- ENG =' 872. VB4 = 1.28 
T l ME= .22 

. . . . . . . . . . .. - . . . SAX= 2.04 
. . . - .  . 

STAN= 2.14 

F igure  3 I-B - Computer P r i  nt-Out; Separat ing Length : V I N  = 8.00, Varying F43 
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4 
Figure 33 - Ve1ooii-y Prcfi l'e of Model 2 I n l e t  Nozzle 







Figure 36 - I n l e t  Nozzle Nodel 4 



Pigerm 37 - Vefmfty Pmfils of Model 4 Inlet N~ar Is  



Figure 38 - l n let Nozzle Model 5 





Figure 40 - Relative Performance of I n l e t  Nozzle 



F i gure 4 1 - Perfomnce of Separator Mode l 3-30 



, . 
,.f i$d'Mv4ia - Cer f~mnee  eS Separator Wsdel +;30 



Cwrva of Prassure Drop 
GarneriFugaZ .Separator Model 5-30 

2.75 ft I n l e t  Submrgencs 
200 cfm A i r  Added t o  Coop 

Figure 43 - Performance of Separator M e  I 5-30 



t Figure. 44 . - . Carquador $@r %parator I.nlots 3, 4 and 5 



Figure 45 - Pressure Vesse l l nsta l l a t  ion 



Present Design 

_ _ - - -  Future Geometries to be studied 

Figure 46 - Future Geometry Changes for    educed F low Area Riser Studies 
. . .  



PHASE A 
A i  +Water Gol umn 

, Mod i f i ca t  ion t o  

~ r e l  imi nary carryunder 
Tests (Unscheduled) 

Cent. Separator Test 

A i  r-Water -Tank , 

Equip.:.Design, 
. . 

. . 
Fabrication h: . '  ' 

Erecf ion 
. . 

Test ' . (F i rs t  series) . . 

PHASE B . : - .  

: Steam-Water Tests , , 

. . 
. . 

'Des l gn Loop' ' . . . 
. . .  

~ k t a  i '1 . Loop 

Order d Mfg. ' .  , ., 

: 'va l'ves . &  ins t r .  

Tests .; 
. . 

n l I l n p o s e d  Schedule . . . . 
. .  . . . 

' - -Performance . . - . .- -. . - - . . 
. . 

. . . .  . . .  

Figure 47 \- Schedu le  o f  P'rogress ~ h ' a r t  




