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C 
"F PHYSICAL PROPEElES OF SINEBED Be0 AS 

INFLUENCED BY MICROSTRUCTIIHF: 
4 

by R. E. Fryxell  and B:A. Chandler 
. , 

B Nuclear Materials and Propulsion Operation., 
General E lec t r i c  Company, Cincinnati,  Ohio 

, I 
Physical proper t ies  a r e  presented f o r  extruded and s in te red  Be0 

- - -- --T- 4 -4 -_I -__--.I - I 
I 

from 25 t o  1 4 0 0 ~ ~  a s  a funcxion of porosi ty  (0-15$), grain s i z e  (5-100 

microns 1, and grain  or ien ta t ion  (random t o  80% preferred)  . The e l a s t i c  

constants and l i n e a r  thermal expansion are sens i t ive  t o  the  degree of 

preferred grain  or ientat ion.  Measurements on polycrystal l ine  specimens 

have permitted calculat ion of the anisotropy in s ing le  c rys t a l s  of BeO. 

Modulus of rupture data a r e  t r ea t ed  in terms of the  Knudsen equation, 

and compressive creep data i n  terms of t he  Nabarro-Herring equation, the 

l a t t e r  leading t o  estimates of the  diffusion coef f ic ien t  f o r  Be a t  1 2 0 0 ~ ~ .  

Presented a t  two meetings of The. American Ceramic Society: 12th.  Pacif ic  
doast Regional Meeting, Sea t t le ,  Washington, October 19, 1962, and the , '  

65th Annual Meeting, Pittsburgh, Pennsylvahla, April  30, 1963. 
. . 

The wri te rs  are pr inc ipa l  engineers, Nuclear ktetials and Propul-, ' 
. . sion Operation, General E lec t r i c  Company. . .  . 



. . 

In connection' with a  program f o r  .evaluating the  e f f e c t s  of neutron ir- 

rad ia t ion  on s in te red  k ~ ,  it was necessary t o  characterize a s  accurate ly  

a s  possible t i e  as-fabr icated n a t e r i a l .  For t h i s  study, specimens were pre- 

yared from two t i y s  of powder; (I j t y p  UOX, calcined from BeSO,, and (2 ) 

I t y p  AOX: calcined from Be (OX);? whicn was i n  turn prepared from the n i t r a t e .  

I These were or ig ina l ly  se lected as representat ive  commrcial raw mater ia ls  of 

d i f f e r e n t  degrees or' pur i ty ,  AOX,having higher l eve l s  of impurit ies than UOX. 

In addi t ion,  it was learned t i t  UOX powder contains an appreciable amount 

of needle-like pa r t i c l e s  (crystallographic c - ax i s . i n  the  d i rec t ion  of the  long 

dimension of the  needles) which tend t o  become aligned in '  the  d i rec t ion  of 

extrusion i f  t h i s  method of fabr ica t ion  i s  used. The growth of these needles 

(1 i n  s i n t e r ing  r e su l t s  i n  a  high degree of p re fe r red ,gra in  or ien ta t ion  . 
On the otlier hand, AOX powder consis ts  of agglomerates which do not result 

i n  an oriented s t ruc ture .  

Specinens were i n  the f o m  of so l i d  cyl inders ,  '3.3 .inches long and 0.238 

inch diameter a f t e r  cen te r less  grinding. Some were made by i s o s t a t i c  pres- 

1 , . 
s ing but most were made by an extrusion process. Details  have been reported 

I 

by  Clulndler , l )uderstadt ,  and White (' ) . Rods fabr icated from UOX powder con- ~ 
I , 

ta ined 0 . 5  weignt ' p r c e n t  IQl:O which was added a s  a  s in te r ing  a i d .  This ad- 

d i t i o n  did  not s i gn i f i can t ly  a f f e c t  the  development of preferred grain o r i -  

en ta t ion  which has been observed'also f o r  undoped UOX af ' teriextrusion and 



Specimens fabr icated from UOX with the  hQO addi t ion w i l l  be referred t o  . , . 

I ~ a s  UOX-NO. Property data w i l l  emphasize' UOX-MgO and undoped AOX, but i n  , . 

. . 1 some instances, reference w i l l  be ' made. t o  other  compositions. Properties w i l l  

be 'discussed i n  terms of. d ra in  s i ze s  i n  t he  range. 5-100 microns ,' and 'of po- . J 

. . 

r o s i t y  i n  the range 0-15 percent. 

. . 

Tnis report  w i l l  embrace thermal'expansion, e l a s t i c  constants, s t rength,  

and compressive creep, and where applicable differences between the two types. .  
. 

of mater ia l  w i l l  be i n t e rp re t ed  i n t e r m s  of preferred grain  or ientat ion.  . 
. . 

11. THERMAL EXPANSION is 
(1) Method of Measurement k 

Linear thermal expansion t o  1 2 0 0 ~ ~  was measured by a dilatometer tech- 
. . 

nique with specimens of e i t h e r  two inch o r  3.5 inch length.  The support mem- k 
bers were one-eighth inch sapphire rodsand  the d i f f e r e n t i a l  sensing element 1; 
was a s t r a i n  gage whose displacement was amplified 2000 times on an X-Y re-  t 
corder char t  which provided continuous readings of d i f f e r e n t i a l  expansion and 

. . 

temperature . Heating and cooling r a t e s  were programmed a s  . f ollovs,: 

73 '~  per hour up t o  400'~ . . 
. . .  . . 

1 0 0 ~ ~  per hour up t o  540'~ ., 

l>oOc per hokr up t o  650'~ 

2 0 0 ~ ~  per hour above 6 joOc . . 

Under these conditions, the  .heating and cooling cyrves were generally i n  ex- 

. ce l l en t  agreement, r a r e ly  d i f f e r ing  by 'more than 0.0002 inch. The re turn '  t o  
. . 

zero was 'even b e t t e r ,  r a r e ly  disagreeing by more than.0.00005 inch from the 

. . 



. . . . . . 

. .i. . . 
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b 
. . 

s t a r t i n g  point .  ' Xeadings from the  chart. were converted t o  n e t .  expansion of 
. . 

the  Be 0 us in& sapphibe data  given b y  Cre-r (' ' . A t  the' time t h i s  work rras 

I s t a r t ed ,  the more recent data of Wachtman,' Scuderi, and Cleek were not ava i l -  I. C 
I able""; these would r e s u l t  i n  small posi t ive  correct ions  i n  t h e  low temper- 

a tu re  region and small negative correct ions  a t  1 2 0 0 ~ ~ .  The correct ions  have' 

. . not been made, however, inasmuch a s  t hey ' a r e  e n t i r e l y  negl igible  with respect  .- . . 

t o  the  anisotropy calculat ions  presented below. 

( 2  ) Experimental Zesults 
- I 

The data f o r  twenty-five specimens of extruded AOX were submitted t o  a 
. . 

multiple regression ana lys i s  and yielded the  following equation: I F, 

5 expansion (25 t o  TOC ) = 5.8660 x 10-4 (T-23) : 

+ 3.8697 x . 1 ~ - 7 ( ~ - 2 3 ) 2 - 7 . 0 j 4 5  x (T-251)~ 

A s imi la r  treatment was made of t he  data  f o r  e igh t  specimens of i s o s t a t i c  pressed 

and s in te red  Be0 made from various types of raw mater ia l .  The following 

equation resulted:  

,$,. expansion (25 t o  T'C) = 5 -91.48 x (T-25) 

- 1 i + 3.3394: x (T-25)'-5.1600 x 1 0  (T-2>)3 

~ y p i c a l  values calculated from these' equations a r e  given i n .  Table I together 

with 957; confidence limits. *an t ' n e b l  expansion coef f ic ien ts  deduced from 

these data a r e  given i n  Table 11. Also shown i n  Table I a r e  individual data  

f o r  twenty-three specirn&ns, of UOX-MgO. Ti-iese have not been submitted t o  a 

multiple regression ana lys i s  since the phenomenon of 'preferred grain  or iegta-  ' 

t i o n  exposes tliermal expansion anisotrcpy whicll var ies  with grain s i z e .  I 



LIXi3AR TKERW EXPANSION OF AS-SIN'JERED Be0 ---- 
b 

Density, ' . , Grain Size,. . Thermal Expansion from 23 t o  T'C, percent 

e m 3  - ., microns oOoOc ~OoOc 1 0 0 0 ~ ~  1200°c 

- .  kxtruded 
--TIT , AO.1 , . 2 t o  112 0.4519 0.6543 . 0 .ti746 1.1094 . 

9%; confideme l i m i t s  O.OOO-/ 0.0007, . O . O O O ~  0.0013 

I 
I s o s t a t l n  Pvessed (-0 

! 11 t 0 .34  0.44'73 0 .  t;lb70 0 .&);jj 1.1000 
97% confidence limits 0.0025 0.002'j , 0 ,0025 0.0045 

i --- -.--. 
(a ) Averac;e oi' twenty- five specimens w i t h  densi t ies  ranging 

from 2 .:>ti t o  2.9-i g / ~ m 3 .  
w 

( b''hverai;e of e igh t  specimens with densi t ies  ranging from 
2..;.',3 to 2 .?6 &/cm3. . . 



. . . . 
hIEkY TLJEi7fUL EXI'ANSION ~ ~ O E F ~ . ' ~ I . S ~ ~ J T S ~ ' ~ ~ ~ O ~ ~  beG 

OF '.WiDOM <: 1IA IN ORIF,?TAT 1011 
---. ----- - ----- - -  --_I--- . .. 

. ?.lean expansion c o e g f i c i e n t  from . . 

T OC 25 t o .  T'C, 10- in/in"c . 

- 
.' extruiied i s o s t a t i c  p re s sed  . ..' - --.------ 

. . 

-- -- -- .-- + -- 
!i:,'~ confidence l i m i t s .  



. .. . . ,.:..i::, a ~ c  .ca~e:ltiall:;.iti ran:io;.L; orieuteii ir,res>ectis:e .oc !,:relr: size: ;i;~i.la,?- 

. .:; . coni'iciensc lil.lits t'oc AX:. . i?Icnn tl1er.a:- expzs ion  eoef f i : ie~tc  for  AO:: . 

de5uced f'ro.!~ eii..:ation' j j . )  2.re s h o ~ c  ir. ?igure i to,i;cther vit;: selected I l k r -  

'atlire :iatz . The ?reseilt <isL? o:e 5.; .- ;;oo.j agreerne:?t wit?: tllosc oLLqined 2::. 

ot .~err , ,  and i :~ Yezt the l a t t e r  aknost i:ithout except-'on iili vit.'lin the 9: ..- - 
Y '-o;,fiiien::c lixlits. f o r  tkie individual ciata points o.ta t>le present t l @ r ~  . 

I r l  eontract t o  AOX, the UO;<-ldkO'e;cili3its tiiermal expansior. cimmcter- . . 

' -ti.-- . ,u wilicli ::arjr w i t h  grain s i ze .  TLis i s  s i i on  in  Figure :: i c  w i l i ~ i ,  tile 

. , 

-1e;i?.' t;le--nt?j. e:<_oansiol? c0efficie:lt fro?: 2:. t o  12W01: 1s !,.lott.e!', ::er:-:l;r ;~.r,lr, 

C. - A ...e ,.. . i'or ht:; :,.?rides sf ,%0. . t ince t!le 2c;ree 0.' ?re ferre.1 o:-ientatio:l. 

ir: UO::-:,Gs.;c -!nrfes w i t l i  3raiil si::e; it is  clca:. tlat these data a:.e rei 'leitin; 

tL:e ctr,isot:.o.::l.? :lat-11-e of -0. It i s  ?ossisle t o  ;iedi~r:e ti:e si11l;j.e c1-\-- J J  

is., .i".id:=-! 
A < .  * . -- --.I c...*.--cto.-~ contri!>-~tes t c  t;leniml e:.rgansion ill a ci-:era ;!.i:ection ' i n  



TEMPERATURE, T°C 





(1 j same form a s  tiie sumnation used f o r  ca lcula t ing .  percent  o r i e n t a t i o n  . Tile 

zonsistency 02 t h e  cla-tn i s  si1ov-n i n  Picure 3 ~ I ~ i c i i  i n d i c a t e s  tile l i n e a r  r e -  

I.ationship between ,7ercent o ~ i e a t e t i o n  and observed l i n e a r  e;rpansion of ?oly- 

crysta1lir .e  s=u~lples . Both :;ro::erties a r e  def ined ,with reference t o  the  1oni;i- 

t u d i n a l  a x i s  of the  sge2ir:;ei:. Witii t h i s  summation procedur2, <i';f'e;*ences in 

tiie l i n e a r  e:c:xnsioil c.et-deen the  t e s t  s.rje,cirnen and tilat o f  a ~.aildon;ly o r i en ted  I 
* 

specimen '.{ere c,or;inined w i t h  ti.~e i;?eas-zed gercent  o r i e n t a t i o n  t o  ob ta in  a n  

es t ima te  of tile :-axis expansion of a s i n g l e  c r y s t a l .  This value,  i n  t u r n ,  
, . I 

:Led t o  deterrainink tiie a -ax i s  expansion. T i e  results f o r  se-<en specimens are. . 

civen i n  Table 1x1 i n  d e t a i l  and a r e  s u m r i z e d  i n  Table  T\I t o g e t i ~ e r  with data 

obtained i n  t n i s  l abora to ry  ,7y hikh t e r ~ y e r a t u r e  X-ray diifractornetry'".  , 

' 

r- ~ , n e  ugreernent Letween tiie two netnods is genera l ly  good, a t  i e a s t  a t  6 6 0 ~ ~  
. I 

and above, and i n d i c a t e s  an  anisot rogy.  of about 1315 essent i ;a l ly  indepe~~clent  I 
of tern-xrature i n  the  range 690 t o  1 2 0 9 ~ ~ .  Tile r e s u l t s  a r e  i l l u s t r a t e d  i n  . . ' ' 1  
Zigures 4 and 7 t o g e t h e r  wi th  h t a  lrorn the. l i t e r a t u r e .  Tne', res7dts ~ r e ' s e n t e d  

v . I :  
4 

by ~ i l e r ( ~ ~ '  vere re-evaluated  and ;om6 t o  <enionstrate anisot ropy althougfi . ' 1 
t h i s  w a s '  no t  recognized 'in h i s  r e p o r t .  

.x 
The aTierage value f o r  AOX w a s  used  a$ t h e  b e s t  avai lable f i ~ u r e .  The a l t e r n a -  
t i v e  would be t o  f i t  a  curve t o  tiie seven po in t s  show, *n Figure 3 without 
assmif ig  a value f o r  a  randonly o r i en ted  s?cimen. Tiis was attempted, and 
i n  telms of t h e  anisot ropy r a t i o  a s  deI"ined i n  Table 111, t he  aT,.era;;e d i f -  
f e r e ~ c e  betxeen t i e  two ne t l~ods  o i  c a l c u l a t i o n  'was only  O.OOt) i n  the  temgera-, 
t u r e  range of L;OO t o  1 2 0 0 ~ 2 .  , T h i s i s  w e l l  w i t h i n t h e  genera l  s c a t t e r  of the 
da ta  and is  f u r t h e r  eviderrce that AOS c o n s i s t s  of  randomly o r i en ted  grains. .  . 

. . (  





----- -- . . ---- 
Exosnsion of  

Single  ~ r y s t a l ,  ::: 
(aeduced) . 

.~klisotro!iy 
Temperature, ' Linear Expansion 

(1) 
' 1s.ti.0, 

OC From 2> t o  T'C, .' a  axis c a x i s  t B  ) .$ ,::, a ,/ ;; ll ---- -----..--- '1" -- - - - ^ - - - - - 2 -  

( 3 )  rsmple yi1, -P$ grain o r i e n t a t i o n  
300 0 . 1 r;4 0 .19925 0.  ltdl 1 . l!>'(> 
..)OO 0.1129 0 . 11.7-($ 0.4201. 1 . 11.5 :!s 
<jOO 0.513 0. nbjO 0 . 9 6 9  1 ; liti12 

i0i)O 0 .  t:l'( 0.914'1 0 . ' ~ $ 5  1 .1;:12 
1200 1.04.j 1 . l>=;o 1.0170 1 .1:3$2 

C&muie' i& ' j ; z . ,  - > .  .g .rain o r i e n t a t i o n  
300 0 . l'(>? 0.1959 0.lr;gt. 1 . 1 *;ik -1 
t 00 0 . ~ 1 . 3 ~  0 .4Lv73 0 .L~211 1 .log7 
!>cj() ()  . (.) :.- j0 0. tj;*r-/& 0 - . . 1.1160 

1000 0.559 0.9090 0. i;O;jr( I.. s l i 2  
1200 l . . O c ; y '  , 1.140:) ,I. . O?l,5 ' 1.1135 

Sample $3, 3:?$ g a i n  o r i e n t a t i o n  
300 . 0 . l ' i - /  0.2064 0 .l j i+> 1.3339 

000 0 .4!;2 0 .4iS.';O 0 .  j4236 1.1000 
boo ;I ,635 0. oij04 0. m20 1.1302 

1000 0 . e1.17 , 0.  gli+o o .r;gy*(, 1 .11186 
12 00 j. . 0d3 1.1471 1.0340 1.1093 

:.hm~;le i 4 ,  . i%?;; grain o r i e n t a t i o n  . 

0.1.74 0.1953 0 . l ' r t j i ~  1 .1.0!+6 
0 .ic2 i.: 0 . lhd(:.q 0.4225 1. i03l  
0 .  ~ ~ 1 %  0.  (.!(:01 0. ~02.7 1 .]-2iiit 
0.. 215 0..3041 0.  tjO~6 1.12i14 
1.041 1 . 1 ;>ll . 1.0200 I,. 121.9 

Sarflple :?:.'::., '73;;; g ra in  o r i e n t a t i o n  
0 .l'{l 0.201:> : 

0.422 "0.472tj 
0.ljog 0 &jg> 
o . o ,9128 
1. Olig 1.1510 

Ekrnple Po, !.a% :rain o r i e n t a t i o n  
0 .1?,:! 0. L900 . 
0.42.) C .44t;O 
o . :.;1~ 0,661) 
,o a bi:; 0 .  gl lG 
3. . OLc2 1.1314 



Re0 THERMAL EXPANSION AMISOTROPY DEDUCED 
1 F80M DILATOMEZRIC MEASUREMENTS 

--------.---I----- 

Expansion of - Single Crystal, $ 
(deduced ) Anisotropy : ' Temperature, Linear Expansion Ratio, 

OC: From 23 t o  T'C, :j> a axis  ('I c a x i s  ( 2 )  $ a a j $ a c  

300 
Goo 
boo 

1000 
1200 

") Random 

sample 2;'7, '19' p grain orientation 
0 .lr(b. 0.1961 0.1731 1.1199 
0.428 0.4670 0.421b , 1.107b 
0.614 0.6798 0.6033 1.12t58 
0.819 0.9090 0.8042 1.1313 
1.042 - 1.1521 
-a- 

1.0241 1.1249 

, . [(random - observed) x 1001 
2 x :,? orientation I J 

, p  ),. (random - observed) x 100 andom - $ orientation 
.J 

, '3)  preferent ial  c axis ,@-sin orientation i n . t h e  direct ion o f .  
rneasure~rlent (longitudinal direct ion of  cyl indrical  specimen). 



-- 

. . 

' , I 
i 

. I 

,/ 
. . - .- . . . 

TABLE I V  
. .. . 

. . .  

SUMMARY OF Be0 THERMAL EXPANSION ANISOTROPY 

Anisotrogy Mean expansion coif  f i c i e n t  . Expansion from 25Oc, ,$ Temperature, lbstio, from 25O~,  LO-' injin"c: . . .  . . 

OC . . a ax i s  z ax i s  $, a/,,:- a ax i s  c a x i s  r ..; ," a c 
. I 

I . >:-*ray d i f f rac t ion ,  powdered sanple . . I 

Dihtomet r ic  measurements, Table 111 average 

300 

600 

.. Goo 
1000 

1200 



a-axis: SOL1 D POINTS 
c- ~ x i s :  OPEN POI NYS 

I I 1 I I I I 1 
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a GRAIN  8 CAMPBELL ( 7 )  
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j 
I . . 

i .. . 
111. DY?IJA<IZ ELASTIC CONSTANTS 

. . 

II 
!i 

T:le dynemi: '101-mgls mod~dus and t h e  shear  modulus were ca lcu la ted  from 
i: 

. 
ncasxreineiits ci.' t he  iun~iment31 resoaance frequencies of  round rods, 0 .2 jd  

tjle resonance measureraent of  t h e  f l e x u r a l  mode of  v ib ra t ion  and 

tile s i lea-  modLiLus. i'r& tiie t o r s i o n a l  mode i n  accordance with s tandard  

For roorn temperature neasuremeilts , t h e  specimens were supported '  on two 

f i n e  cross-wires a t  t h e  nodes of  the fundamental f l e x u r a l  mode of v i b r a t i o n .  

' 

The specimens were v ibra ted  by means of  a va r i ab le  frequency o s s i l l a t o r  . 

dr iv ing  a p i e z o e l e c t r i c  t ransducer  coupled t o  one end of  t'he specinen through 
. . 

a f i n e  wire touciling t h e  end. Tie  resonance' f requencies  were monitored by 

a second p i e z o e i e c t r i c  t ransducer  coupled t o  t h e  specimen by means o f  another  

f i n e  wire t o u c i i i n ~  the  o t h e r  end of  t h e  specimens. The rezeived s i g n a l  was 

arr~yii i ' ie l ,  displayed on an  osc i l loscope,  and t i e  resonance frequency indica ted  

on a n  e l e c t r o n i c ,  c o i k t e r  having an accuracy of 0.01 percent  o f  t h e  neasured 

frequency. For t h i s  specimen s i z e  and shape, the  fundamental f l e x u r a l  

resonance freqilency t-ar~ged' fro:n h-6 k i locyc les  per second and the  t o r s i o n a l  . 

resoriance I r e  quenc y Erom j>-Li) k i locyc les  ;per second. The cor rec t ion  t o  

Yolm!;;'s :n0dd.us fof E i ; e ,  shape, and Poisson's r a t i o  mount& t o  about  2 .> 
.aePce~?t increase  abosle tht calcidateci from the frequency measurement, and 

irns :na;ie i n  accordance tile equat ions  and t a b l e s  set  f o r t h  by Spinner and 
. '0 1. .p "+'t i 1 - 1  , I - . .. . 1d.enti:'ication o i  t h e  v i b r a t i o n a l  modes was made ly observat ion  



of the  phase s h i f t  when t ravers ing the  specimen iength  . f o r '  the  .fundamental 

resonance f lexura l  mode and by t ravers ing the  diameter f o r  the  t o r s ioaa l  mode 

(13 a s  discussed Sy Spinner and T e f f t  . 

Three rods selected a t  random were chosen a s  standards.  These rods 

have L>een measured repeatedly t o  insure against  d r i f t  i n  the  equipment with 

time and have served t o  e s t ab l i sh  precision l i m i t s  f o r  the  e l a s t i c  constants 

measurements. Pased upon approximately 100 readings of t i  standard rods 

over a period or"  tin^, it i s  corcluded that the precision limits a re  such 

t h a t  a t  the 95:; confidence l eve l ,  the r o b  temperature Young's modulus f o r  

an individual  rod i s  reproducible t o  within t 0.26 percent, the  shear modulus 

t o  within t 0.49 percent and tine calculated Poisson's r a t i o  t o  within 

+ 2 . 1  percent.  

For elevated temperature measurements, the  specimens were suspended i n  

H tube furnace from two ,010 inch p1atin.m wires located near the  fundamental, 

f l exura l  nodal points .  The d r ive r  c r y s ' k l  was attached t o  one wire and . the  

receiver  c r y s t a l  t o  the  other  wire ex t e rna l f rom the  furnace. The same elec-  

t ron ic  equipment was used f o r  elevated temperature measurements as was used 

Tor room temperature measursments'. . Tne frequency rneasureknts a t  2 0 ' ~  b y  

the  two d i f f e r en t  specimen support  mefiods employed were repeatable wi th in  
. . . . 

% : 

the  l i m i t s  s t a t ed  f o r  the  s tandard.rods .  

. . 
. \ 

( 2  j F:xperimental 9esul ts  , , 

Zoom ~ e m ~ x r a t u l - e  fileasurements " . . 
. . 

. The 'dynamic e l -as t ic  constants were d e t e e e d  a t  2'0'~ f o r  extruded AOX ' '  

. . . .  
. . . . . . . . . . . . 

. , . . 

. . 

. . 
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an:l iJO::-i{Q;O over the &rain s i ze  range of .f -GO microns and tile i 'ractional po- 

~ o s i t j  ranfie of CJ . W - C  .LC#. Tile data f o r  the  two, compositions a t  each nominal 

I s i z e  m e  . : I  L i t  by tile method of l e a s t  squares t o  ' th ree  d i f f e r e n t  

poros iw equations of' trre followini types : . 

where E i s  the  dynamic e l a s t i c  modulus (Young's o r  shear )  a t  the f r ac t i ona l .  

porosity,  P, and Eo i s  the e l a s t i c  modulus a t  t heo re t i ca l  density,  3.01 g/cm3. 

Equation (3) i s  a simple l i n e a r .  f i t  of the  data and describes the  data 

s u f f i c i e n t l y  well  f o r  most. p r ac t i ca l  purposes. Equation (4) i s  an exponential 

(14 1 lit of the  d a t a  proposed by Spriggs, and equation (3)  is. the  semi-theo- 

(13 ) r e t i c a l  equation of Hasse,lman . A comparison of r e s u l t s  obtained f romthe  

three  eq-a t ions  is  shorn i n  Table 'J where it can be seen t h a t  the  standard 

e r r o r  of es t i lmtg i s  l e s s  f o r  eqilat io~l ( 5 )  of Hasselman than f o r  the other  

two equations. Equation (5) a l s o  extragolates  t o  zero a t  a f r ac t i ona l  poro- 

s i t y  of 1 . O .  A comparison of r e s u l t s  by the  three  equations f o r  AOX ma te r i a l ,  
. . 

( randa i iy  o r ien ted)  i s  silpwnwn i n .  r'igure 6 extrapolated. beyond the  range of 
' )I 

f .  

the  inp;l.t ciata t o  silov th; ' l imits of t i r  equations.  m e  r c s d t s  a r e  

. . 
(16 ) j a r e l  t o  a preiious survey o? tile i i t c r a t w  that was made by L i l l i e  , 

L i l l i e l s  s:&:.ey o:? .&O of various m i c r o s t r u c t m s  would i n d i c a t e  a grea te r  
. . 

. . dependency on p o r o s i t y  than' o m  o m  data. ' .. . 



COMPARISON OF Ec;;UATIONS BLATDJG DYNkMIC YOUNG'S MODWdS TO PO3OSITY I 
-5P . E = Eo AP 

'E = .Eo [ l  - bP j E = E o e  I 1  i. 1 - ( A t l )  P 
mnge SknCard Standard Standard 

Grain Size,  Fraction No. Of xo Error, Eo Xrror, , Eo Error,  
microns porosity 0-bserv&tions lo6 p s i  b .:c J lo6 p s i  b 1c6 p s i  A ,.- -! ; A  . 

uox- r4go 
. . 

2-5 0.04-0.17. 150 34.9 l . ,72  2.3b 53.7 2.06 2 .  . 59.3 -1.99 2 - 0 3 ,  

AOX . - 
5-100 0 .02-o .15 4%) 56.1 1,86 1.83 56.7 2.20 1.77 36.6 -2.19 1 .27 

.' Eo = 'the modulus of e l a s t i c i t y  a t  zero porosity,  lo6 p s i .  

The var ia t ion  of Eo with grain  s i z e  i n  UOX-MgO is caused by an increasing degree of o r ien ta t ion  
with increasing grain s ize ;  it i s  not a ' func t ion  of grain s i ze  per se .  

Standard e r r o r  is the  mean e r r o r  between t i e  observed and calculated values of E i n  percent. I 



FRACTIONAL POROSITY 



. . 

. .  . 

A s  mentioned previously, Be0 extruded'from UOX material exhib i t s  a degree 
. . 

of preferred grain  or ien ta t ion  i n  extrusi'on which is  enhanced with grain  
. . 

growth during s i n t e r i n g ;  consequently, the l a r g e r  the  grain  s i z e ' i n  the  s i n -  ' . . 

1 t e i d  . . body the  l a rge r  i s  t h e  percentage of grains  having the  c-axis or iented ' . . .. 

i n  the: d i rec t ion  of extrusion .. . This e f f e c t  .results i n  higher e l a s t i c  con- . . . . . 

s t a n t s  a t  .a given porosity f o r  extruded UOX nntterial a s  grain  s i ze  increases.  

On the  o ther  .hand, AOX i's e s s e n t i a l l y  mndom i n  .o r ien ta t ion  and there  is . ' -  

. . . . .  

l i t t l e  change i n  the e l a s t i c  constants a s  grain  s i z e  increases.  The b e s t '  . ' " , 

1 estimate of E as a,. function of preferred @;rain or ien ta t ion  in' polycrysta l l ine  . . 

,' 
&'O has been,obtained from selected specimens of UOX-MgO f o r  which both 

I Youlgls'modulus and or ien ta t ion  d i s t ~ i b u t i o n  functions were measured. The , 

r e s u l t s ,  of measurements macte on eleven such specimens are. shown: i n  Figure, 7 , : 
. . 

wilere t he  ~ o u n b ~ s  modulus values, corrected . t o  zero porosity,  a r e  p lo t ted  a s  
. . .  

a function of percent 0,r ientation of c-axes with t he  axis of extrusion,  ca l -  

cula ted by the  method of Sjodahl and Bartram('). ~ o r i ~ c t i o n i  t o  zero porosi ty  
' ' 

. . 
f o r  Young's modulus a r e  made according t o  the  equations presented i n  Table VI.. 

k .  swcmary of Y O & ~ ' s  and shear moduli da ta  f i t  t o  Hasselmanls equation . . 

1 . ( j  ) i s  presented i n  !Bible VI f o r  the nominal grain  s i z e s ,  of UOX-MgO and AOX ' . ' 

I 
! 

I i nvest igated.  In  addi t ion,  composite equations f o r  the  two moduli a r e  pre- . 

sented <or (1) i s o s t a t i c a l l y  pressed UOX, i s o s t a t i c a l l y  pre$sed AOX, and hot . . 
' 

, . 

1 pressed basic  ace t a t e  derived Re0 (fabr icated by Atomics In te rna t iona l )  a l l  

of which are es sen t i a l l y  random i n  grain. or ienta t ion,  and (2)  the  above' ran- 

domly or iented 'bodies and a l l  of the  extruded AOX.:over t h e  grain  s i ze  range 
, 

5-60 microns. Tile l a t t e r  equations. ,represent the  best est imate of dynamic 
I . , . . 
I . . 

, .. 

i e l a s t i c  . cons tan ts ' fo r  randomly oriented BeO. ' .  . ' 



, . 
PERCENT ORIENTATION OF C-AXES W~TH AXIS OF EXTRUSION 



i 
TABLE VI . 

yomcls A~JD SHEAR MODULI VS. POROSITY (HASSELMAN EQUATION) 
2 .  

Fractional Density 
Porosity -=Wg Grain Size, No. of Standard Error 

Composition Range gjcm microns Equation Constants Observations of Estimte 

YOUNG'S MODULUS E 3 Eo 1 . .  i T x E  ] E = 1 o e p s i  

Eo A . . - $ - lo8 ~ 6 . i  - 
UOX + 0.5 wt. $ k?gO 0.04 - 0.17 2 . 5 0 - 2 . 9  . 2-5 55.30 -1.99 150 2.06 1.15 

(Extruded j 0.02 - 0.10 2.53 - 2-95 7-10 9.2k -2.24' 150 0.76 0.44 
0.02 - 0.15 2.56 - 2.94 15-20 59.91 -2.16 150 0.70 0.42 
0.02 - 0.14 2.60 - 2-93 35-50 63.72 -2.61 150 - 1.36 0.87 
0.02 - 0.10 2.71 - 2.96 60-80 61.08 -2.10 100 2-30 . 1.53 

. . 

AOX 0.02 - 0.16 2-55 - 2.93 5-100 56.60 -2 -19 490 1.27 0.72 
(Extruded ) . - 0.06 - 0.16 . 2.55 - 2.83 2-5 55.09 1. -2 .12 100 3.07 1.69 

0.03 - 0.16 2.55 - 2.91 7-10 55-62 -2.03 1% 0.43 0.24 . , 

0.03 - 0.16 2 . 9  - 2.91 15-20 37.0? ,"-2.22 .150. - . 0.21 0.12 
0.02 - 0.14 2.60 - 2.96. 33-50 57.28 -2.32 150 .0.56 .o .32 
0.02 - 0.09 2.73 - 2.96 60-80 . . 55.85 -2.10 100 0.93 0.52 

. . 
. I : ;  

Composite of 0.00 - 0.16 2.55 - 3.00 5-80 56.42 -2.19 766 0.99 0.56 
i: : Randan V&erial 

UOX, AOX, HPA (8) .- 

 s so static and 
Hot. Press) 

SHEAR MODULUS C = Go [l + &] G - 10' p s i  

A Co - . . 
U O X ' + O . ~  w t .  5 MgO ' 0.04 - 0.17 2.50 - 2.90 2-5 21.04 -2.00 1% . 0.57 0.12 

(Extruded ) 0.02 - 0.16 2.53 - 2.95 7-10 n .0l -2.28 150 0.27 0.06 
. . 0.w - 0.15 2 . 5 ~  - 2.94 15-20 22.75 -2 -28 150 . 0.22 0.05 

. . .  0.W - 0.14 . 2.60 :i 2.95 35-50 25-90 -2 .tlo 150 0.46 0 .Xi 
0.02 - 0.10 2.n - 2.96 60-80 23.16 -2.31 100 0 - B  Oil7 

. .  . .: . . .. 
. . .  AOX , 0.06 - 0.16 2.55 - 2.83 . 2-5 20.93 - 2 1  . 100 , 1.10 0.23 ' 

(Extruded ) 0.03 - 0.16 2.55 - 2.91 . 7-10 21.23 -2.12 1% 0.19 0.04 
0.03 - 0.16 2.54 - 2.91 15-20 21.61 .-2.20 150 . 0.42 0.09 
.O.M - 0.14 2.60 - 2.96 35-50 21.78 -2 -33 . 150 . 0.18 0.04 . 
0.02 - 0.09 2.73 - 2.96 60-80 21.22 -2.14 100 . 0.33 0.07 

UOX, AOX, H ~ A ( ~ )  0.00 - 0.06 2.83 - 3.00 20-40 21.68 -2.75 136 0.14 0 .03 
(Isostatic and . . .  

Hot Press) 

(8) HPA = BeO'deriwd from basic acetate. ' . . . . .  . . 

. . 



Inspection of the values i o r  Eo and Go f o r  both UOj;-l&&O and AOX i n  Table 
. . 

'!I reveal  r a t i x r  low values ir, the  2-5 micron range and a drop-off i n .  tile 

c,o-;:o ir.icroc range . It i s  kr.0-m t h a t  tile smll  grain  s i z e  lnaterial  ,2-:j  micror,, 

2ontsined mostly intergranular  porosiby of d i f f e r en t  s i ze , shape ,  and d i a t r i -  

bntion klan specimens of l a rge r  grain  s i z e  which could account f o r  the  d i f -  

ference i n  porosi ty  deuendence. Spriggs (14 has discussed tne  e f f e c t  of d i f -  

f e r en t  f o m  of p o s i t y  on tile e l a s t i c  constants (60-100 microns). In the  

l a r ~ e r , e r a i n  s i z e  specimens; in t ragranular  cracks were observed, increasing 
. . 

i n  number and sever i ty  i n  the  1OO'micron grain s i z e  range t o  a point where it 

was sometines im~oss iS l e  t o  nleasure the e l a s t i c   constant,^; 

Elevated ?km:kratu& Measurements . . 

Y o ~ u l ~ ~ s  modulus and tine shear modulus a s  a function of temperature were 

determined for  representat ive  samples of the  various grain s i ze s  and dens i t i e s  

up t o  1 4 0 ~ ' ~ .  No consis tent  trends with grain  s i ze ,  density,  o r  preferred 

grain or ien ta t ion  isrere apparent and t i e  data from both AOX and UOX-higo speci- 

mens co-%lering the  e n t i r e  grain  s i ze  - densi ty  range were combined f o r  a sta- 

t i s t i c a l  l e a s t  square f i t  of tile da& i n  terms of percent decrearr  i n  e i t i l e r  

Yousri; s modlllus (E j o r  the  shear modulus ( G )  from tine 2 0 ' ~  values presented 
, . 

i n  Table '11'. The following equations indicate  the  percent decrease from the  . I i 

20°c value i n  the  e l a s t i c  constants B and i; with temperature i n  the  range 20 I 
. . 

t o  1400'~. 

- 3 
,I,; Decrease i n  E = 6.cj x 10 (T-20) 1- 1.29 x lo-' ( T - 2 ~ ) ~  ( 6 )  .. . 

, . 

-3 . 4 Decrease i n  Cr = 8.80 x 1 0  (T-20) + 1.66 x 10,-' ( ~ - 2 0 ) 3  



The standard e r ro r s  of est imate f o r  t h e  individual  points  about the  calculated 

l i n e s  a r e  1 l.l> percent decrease f'o? E and .+ l.'(O percent decrease f o r  G. . ' ' 

: 

The l a r g e r  s t anb r .d  e r r o r  of est imate for  G r e s u l t s  from a ~ r e a t e r ' d i f f l c u l t ~  

i n  measuring the  to rs iona l  v ibra t iona l  mode, espec ia l ly  a t  elevated tempera- 

t u r e s . ;  A comparison of curves p lo t ted  from equations 6 and 7 i s  made i n  
I 

I 

Figure a t o  summary curves presented by L i l l i e  (lo) i n  which he compares data 

obtained by Atomics Internat ional  and Argome National Laboratory. It can 

be seer1 t l l a t  a l l  data a re  i n  qui te  good agreement. There apparently i s  l i t t l e  

i f  any r e a l  d i f ference i n  tlie temperature dependence of' E and G and from a 

p rac t i ca l  point  of view e j t h e r  equation ( 6 )  o r  (7)  adequately describes the 
, . 

. . 
be'mvior of both constants.  

3 c is cuss ion of Results 

.When it was observed t h a t  t l ~  degree of preferred grain o.r ientation had 

such a l a rge  e f f e c t  on Young's modulus, it was~concludedthat the  polycrystal-  

l i n e  Young's modulus data, 0-btained .from UOX-MgO rods over a wide range of 

grain s i ze ,  could be used i n  conjunction with or ien ta t ion  d i s t r i bu t ion  functions 

t o  deduce some of the  compliance moduli f'or s ingle  c rys t a l s  of I b O .  This 

appeared t o  be possible s i n c e ' i n . a  polycrysta l l ine  body, Young's modulus i s  

reasonably well  represented by t i e  ,space average of the  i n d i v i d a l  c r y s t a l  

E ' s i n  the  d i rec t ion  of measurement (17). Consequently, the eleven rods f'or 

which or ien ta t ion  distr ibut ' ion functions were determined, those presented i n  

.-, r lgure  7, Irere used t o  estai j l isl i  an equation f o r  Young's modulus of s ing le  

Be0 c rys t a l s  a s  a function of the  angle of measurement from the  c-axis (18 j 

The ' resu l t ing  equation, 





. . 

\;here E i s  YOUQS modulus i n  10" p s i  measured a t  the angle 8 from the c-axis,  
t' 

gredicts  a va1.x Por 9 of 66.2 x lo6 p s i  i n  the  d i rec t ion  of tile c-axis and 

~ i ; ;  .l x 10' p s i  i n  tile d i rec t ion  of the  a-axes . These values lead t o  an aniso- 

tl-opy m t i o  . z  ,"E of 0 .dz 
a: c , l o r  Young's modulus. Equation d is p lo t ted  a s  

Figure 9 along .17ith two .reference curves for  cadmium su l f i de  (same space group, 

c :,!, a s  pe0) tr!;icli were norrrdli:<ed t o  the  -0 curve f o r  comparision of curve 
\,. .I 

s'aape . The CtiS cur-.:es, were pi-ottec! from data  obtained by RerZincourt (19 
(;?o ; 

a~c'i 301e.Y ' e t  . a i  . , fro:n i~leasurements of CdS s ingle  c r y s t a l s .  A s ing le  

point  re:>resenting a measurement o2 . a  s ingle  c r y s t a l  of Be0 m i e  by Austerman, 
. . 

e t  .al!f12n tile bas& i lqne  is  a l s o  silom f o r  comparison anfi i s  higher timn 

t!le value f o r  tne basal  plane predicted from equation ". It. i s  believed t h a t  

the  calculated valae of tne  c-axis Young's modulus f o r  s ing le  c rys t a l s  i s  

qui te  good s ince tile calculat ion of the  equation was obtained from rods having 

preferred or ien ta t ion  of the  c-axis i n  the  d i rec t iod  of extrusion ranging 

from 30 t o  65  p . r c e n t .  The value f o r  the a-axes is not  as. r e l i ab l e  but it i s  

obvious from the  measurements t i+ t  Young's modulus i s  l e s s  i n  the plane of , 

the a-axes than in  the d i rec t ion  of t i e  c-axis, and t h a t  a minimum occurs..  . . 

between the  two extremes. A 'mashun c r j s t a l  anisotropy o f ,  about 0 .d f o r  . . . 

E ; E .  i s  predicted from equation 6 when O equals about 55'. 
6 c 

. . 

,-, la--,.. A ,:,e d i s c w a n c y  e x i s t s  i n  the  .calculated values of ?oisson ls , r a t i o  
. . 

i'oi- Be0 betrzeei.1 . . i : ler?surc~nts r e p x t e d  by i)entle '22) and our data when ca l -  ,. ' , , 

c:Lateci f::.o;:;1 tile weii  knorm equetion: . . 
. . 

. . .  

. . . , . . . . 
. . ,  E" . '." ' . . .  . . . . .  

1 v = ( ~ 6  ,-1). . . : . . ( 9 )  , . 
. . . . 

. .  , . . 
. . . . . . .  

, . . .  . . . 
,,. . . ,  . 

, . . . 
. . 

.,. , 



ANGLE OF MEASUREMENT WITH THE C-AXIS, degrees 



Bentle. rkports values f d r  ~ ~ i s s o n ' s  ra t io  in  the  neighborhood of 0.20 f o r  

Be0 whereas calculated Poissonts r a t i o s  based upon the  equations presented I 
, - i n  Table V I  p red ic t  values of 0.3 o r  grea te r .  It is  known t h a t  Poisson's 

r a t i o  calculated- by means ' o f  equation 9 is  an .approximation and appl ies  only 

t o  iso ' tropic bodies. Kowever, i n  a polycrysta l l ine  body composed of aniso-.. 

. . t r op i c  c rys t a l s  a random d i s t r i bu t ion  of these c rys t a l s  cons t i tu tes  an i so-  

t rop ic  condition on a macroscopic scale  (13). Therefore, Poisson's r a t i o  f o r  . 

the - .randomly oriented'  mater ia l ,  extrkded AVA o r  i s o s t a t i c a l l y  pressed mater ia l ,  I 
' siiould be approximatkly eorrec t i f  the proper .values fo r '  Young 's modulus and I 
the  shear modulus are used i n  equation 9 .  The adv i sab i l i t y  of using equa- . ! 
t i o n  9 t o  p red ic t  Poisson I s  r a t i o  i n  p re f e r en t i a l l y  or iented bodies composed . . 

' . of anisotropic  : r j s t a l s  i s  debatable and subject  t o  an unknown amount of 

e r r o r .  The i a r g e s t  chance f o r '  e r r o r  i n  the  resonance frequency technique 

i s  i n  the  possible mistilcen i d e n t i t y  of a resonance peak. For example, it 
I 

cduld be possible t o  mistakenly i den t i fy  the second overtone of the  f l exu ra l  i 
i 
I 

f iu ihnenta l  fxequency a s  the  to rs iona l  frequency since both a r e  within 2,000 

cycles f o r  tile specimen s i ze  and shape t h a t  was used. ilowever, the. second 

overtone' appears a t  a f ixed r a t i o  above the  fundamental and it was possible 

by using t i e  technique described by Spinner and Te f f t  (13' t o  i den t i fy  the 

p a r t i c l e  motion both f o r  the  second overtone of the f l exu ra l  v ibrat ional  mode, 

and tile to rs iona l  mode fundamental frequency. Since both the  equations f o r  

Young's m0dulu.s and the  shear modulus .are .very accurate f o r  round specimens 

having a l a rge  L/D r a t i o  when the Young18 modulus is  corrected f o r  s i z e  and 
. . . . 

shape of tile specimen, t h e r e . i s  every reasori t o  believe t l la t  tile Gal& f o r  

?oissonts  r a t i o  i n  randomly oriente'd Re0 i s  as ' a c c ~ a - t e . a s  equation 9 permits 

and t h a t  the bes t  e s t k t e  'of t h i s  calculated value is  0.313. 



i I V .  - MODULUS OF RUPrUm 

I 
I. 

(1) Method oi" I4easarement 

i40od~lus of' r q t u r e  measicrements were made using. the  standard cy l indr ica l  

rod s!xci~aen previously discussed. A l l  measurements reported a r e  '+-point . 

loading over a .3- inch span witii a constant moment over the  middle one inch 

(frequently referred t o  a s  t h i r d  r o i n t  loading) .  A constant loading head 

t r a v e l  r a t e  of O . O s  inch per minute was used. 

(2 ) Experinental Results 

' The average modulus of rdpture ' s t rength f o r  the  nominal grain  s i ze s  and 

dens i t i e s  of ADA and UOX-%O a r e .  silo~m i n  Table V I I  a s  well  a s  the  nwnber of 

specimens rugtured, and the  standard deviation f o r  tile individual measurements 

about the  mean value f o r  the s i x  measurenent temnperkitures, 20, 300, li00, 600, 

. 1000, and 1 2 0 0 ~ ~ .  The nominal grain s i ze s  and dens i t i e s  f o r  the  rods a r e  

a l s o  shown. An inspection of Table V I I  shows t h a t  there  i s  a wide var ia t ion  

i n  the  standard deviation of d i f f e r en t  microstructures but t he  mode l i e s  be-' 

tween 3,000 and 4,000 p s i  indicat ing a r a the r  l a rge  s c a t t e r  in sample 

s t rengths  about the  mean values. . T1-le da ta  of Table V I I  a r e  f u r t h e r  ,summa- 

r ized i n  Ta-ble V I I I  where the  ioom temperature s t rength data f o r  each inicro- 

structul-e i s  given and the  elevated t empra tu re  data presented i n  terms of 

the  f r ac t i ona l  room temperature 3treni;th. 

Discussion of ;.iesud.ts 

Elspection of W ~ l c  '*!I11 reveals s e v e r a l  in te res t ink  trends.  F i r s t ,  

it wi.13. be note? tha t  fo r  R. ;:i*!en c.om;)osition-density combination, t i e  room 

temperatlire ~ t ~ % i ~ : , t i l  increases R S  expected. w i t h  iiecreasin;:;  grain s i ze  w i t h  

ti:.e e;:cegtion of the ";micron :;rain size mater ia l  which si10ws a decrease 



I TABLE VII 

.. -- -  
Grain Sim, Density, 

Composition nicrons 8/cm3 

AOX 100 
80 
50 
20 
10 
80 
50 
20 

Modulus Of - &flure 
a x sx 

Modulus of Rupture 
A X Sx 

Grain Size, 
Composition . microns . 

AOX 

Density 
&/a3 ' 
2.90 
2.90 
2.90 
2 . 9 !  
2.90, 
2.90, 
2-75; 
,2.75 
2.75 
2.73 
2.75 
2.60 
2.60 , 

. 2.60 
.2.60 

. Wulus of Rupture . 
N X % 

. ' hlodulus of Rupture: 
N X .  sx . '".. 

6 '23.7. 2.80:.5; 
' 10 31.2 3.89 ' .  

14 27.0 2.61 '. 
28.4 2.30 ' : , .  

7 33.8, 5 - 2 9 ; . ; '  
. i 15  28.7 6.09 '..'. . 
!; 12 25.6 2.38 : - 
: 6 22.3 1.75 ' 

.. . . ... .. .. , 

. . .. . 
Notes : - .  - 

(a) 4 point, 3 inch span, 1 inch cone- moment, 0.06 h/Mn haad trawl. 

(0) 9 - Average modulus of rupture of B samglee, lo3 wl. 
' 

. : . 
(d) Sx standad &viati~n,pf points about the average' value,: 103 psi .  

I 
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i n  stren:,tii l'rom the  1 0  niicron g ra in  s i z e s .  This d i f f e rence  i n  ijeilavior of 

tile !?, r;:icron g r a i n  s i z e  ~taterial  ilas a p w a r e d  ir, tile e l a s t i c  cons tants ,  and 
. . 

i n  colnpressi.;e creep rrlenstlre~nents a s  w e l l  as in'mod-&us of r.u.otu,re r,leasure- 

!aents. This afio;lElous hei1a:iio:r a s  w n t i o n e d  before  i s  a t t r ibu tec i  t o  a d i f -  

i a r e : ~ t  d i s t r i b u t i o n ,  skg$e, and s i r e  o f  poros i ty  compare& t o  tile o t h e r  g ra in  

s i x 3  jecailse 05 i:l2omgiete s i n b r i n g .  T h e m 1  soak tests Tor 500 ilours nave 

silow~l tile .:; micron g ra in  s i z e  rnaterial sh r inks  considerably a t  1 2 0 0 ~ ~  with- 

ou t  . ap~>rec ie%ie  ,;rain j;rBo\stii i nd ica t ing  t h a t  i n t e r ~ r a n u l a r  .sores a r e  c los ing  
, 

while all o t h e r  micros t r i lc tares  appear t o  be s t a b l e  under ' t l lese cond i t ions .  

Anoti~er  t r e n d  t ~ t  can 'be seen , i n  Table V I I I  i s  tht tile .peaic s t r e n g t h  

(values *anderlined) occur a t  lower t en~ l , e ra tu res  as g ra in .  s i z e  decreases .  I n  

a d d i t i o n ,  it w i i l  be observed t h a t  genera l ly  speaking tile s t r e n g t h  behavior  

w i t l i  temperature can be grouwd bjr small, medium, and l a r g e  g r a i n  s i z e  f o r  

each of  t h e  composit ion-densi ty combinations. Tilat i s ,  the.:';, 10 ,  and 20 

micron g r a i n  s i z e  ma te r i a l  beliaves i n  a similar manner f o r  a i i  ~ o r o s i t i e s ,  

while tile 20 micron pirain s i z e  ma te r i a l  behaves i n  a d i f f e r e n t  manner, and 

tile :,O and 100 micron grain s i z e  m a t e r i a l  behave i n  s t i l l  a d i f f e r e n t  manner. 

The s t r e n ~ t h  de:?endencies wit!] ternperaturn grouped a s  above a i e  shown i n  

Figure iO where tile r a t i o  of  tile stren&il a t  e l eva ted  t enpera ta res  i s  showrl 

a s  a f 'u ic t ion  of teinpemture f o r  tile sub-divis ions  of  ma te r i a l ,  small, 

mediun, agd 1ari;e g ra in  size 's  disre;;arding t h e  poros i ty  :;nriaLle. It w i l l  

be seen t i ~ t  tile stren;:th increase  from 20°c t o  ~ O O O C  i s  g r r a t e r  wits i n -  

creasin:; train s i z e .  T h i s  observation is i n  agreement with Cable(')) who 

s t a t e s  tliat i n t e r n a l  s t r e s s e s  a t  rooril temperature are g r e a t e r  f o r  i a r g e r  g r a i n  

s i z e s  and r e l a x  as tlie temperature approaches t i e  stre'ss free temperature 



4 

I 
! 

1.6 

1.5 

I I I I I I 

- 43 
.L 

Q 

e LEGEND 

NOMINAL A O X  UOX-MgO 
0.8 - GRAIN SIZE 

- 

0 . b 
6 1.4- - 
k . a 
& 
\ 
o-, 1.3 - '2 

- 
0 
t- 
w 
6E 
3 1.2 - - 

L 

- 

M 
0 

0.9- 
a 

0.7' 

0.6 

R A N G E , 4  \ 

5 - 2 0  
\ 

- n 
50 0 G l  

\ - 
80-100 0 @ \ A 

1. I 1 I I I 
0 2 0 0  400 600 8 0 0  1000 1200 

f EMPERATURE, 6~ 37, 
6 c i ,  (0 



. . 

i n i n t e r i : ~ s  t e n , ~ e r a t u r e  : . A t  tempera t i~res  a-oove 30o0c, apparent ly  i n e l a s t i c  
. . 

s t r a i n  occurs whicn causes a reduction i n  tile modulus of ru!~ture. The re-  

duction i s  l a rge?  a s  tile g ra in  s i z e  decreases and i n  t h e  small  g ra in  s i z e s , ,  . 

a d i f fe rence  i n  i n e l a s t i c  'be'havior i s  seen between AOA and U.0::-h$,O. Tni s 

d i f fe rence  oetween AOY and IIOY-b$O ooserred a t  tne  lower g ra in  s i z e s  and 

n o t  a t  tile liiginer could be relate,?.  t o  tile rnoduius of rupture  loading r a t e .  

It i s  p o s s i b l e  t m t  Pol- the  loading r a t e  used tine i n e l a s t i c  deformation of 

tile sinall g ra in  s i r e  m a t e r i ~ l  i s  f a s t  enough t o  show a d i f fe rence  between 

mate r i a l s  while tile i n e l a s t i c  deformation r a t e  o f  the  l a r g e r  g r a i n  s i z e  
. . 

m a t e r i a l  i s  t o o  s l o w ' t o  ~ 3 e r m i t  oboervation of the  ma te r i a l  d i f f e r e n c e s .  

. . The da ta  .of' Table :;I11 a r e  .olotteci on an  abso lu te  s c a l e  i n  .Figure 11 

t o  s h o i ~  t h e  e f f e c t  of' o r i e n t a t i o n  i n  the  temperature range 2:: t o  &oOe. It 

can be seen tihat i n  t h i s  teraperatilre range the re  i s  l i t t l e  i f  any r e a l  d i f -  . . 

ference  i n  s t r e n g t h  between t n e  randomly o r i en ted  AOX and tile : ? re fe ren t i a l ly  

o r i en ted  UO:!-Mt;O f o r  g r a i r s i z e s  up t o  and inc luding j O  micron. However, t h e r e  

i s  a s i g n i f i c a n t  d i f f e rence  between the  p r e f e r e n t i a l l y  o r i en ted  UOA-MgO and tine 

randomly o r i en ted  AO:( i n  t n e  rX>-LOO nicron g ra in  s i z e  range ~ ~ i t i ~ t h e  UOX-M&O 

showing c o n s i s t e n t l y  about  a  30 percent  nigher s t r e n g t h .  Perhaps it i s  neces- 

s a r y  f o r  tile degree of ? re fe r red  o r i e n t a t i o n  t o  reacii some minimum value 

'oefore a s i , ~ i f i c a n t  increase  i n  s t r e n ; ~ t i l  can be obser-~ed 'because of' tile l a r g e  

s'tanfiard de-:iation i n  rnateriai  s t r e n g t h  o r  because of t i le .  r e l a t i v e l y  insen- 

s  iti /e nodalus o r  r u p t ~ i r e '  rneasuremnt . The, p re fe r red  or . ientat ior .  of  g a i n s  

ilavin,; tile crystal10~;raphic c-axis  o r i en ted  with t h e  a x i s  of  ex t rvs ion  i n  

'iJO>.:-l/lt,C a p ? r o a c i ~ s  r.0 gercent  f ' o ~  g ra in  s i z e s  of about  20 micron, ' uO-c: perzent  





f o r  50 micron grain s i ze ,  and 30 percen t  o r  g rea te r  i n  the,  60-100 micron 

range. , 

. . Tl~e 30dulus of .  rupture data f o r  UOX-MgO and AOA have a l s o  been ana- 

(24 ) lyzed by f i t t i n g  t h e .  data t o  the Knudsen equation . . f o r  grain s i z e s ,  of 10  

microns .or g rea te r .  The nominal 5 micron material was not included s ince 

the  s t rength  of t i e  mater ia l  a s  pointed out 2reviously wss considerably l e s s  

than would be predicted wit'n the Knudsen cor re la t ion .  For tnese correla-  

t i ons ,  the  individual  rod modulus of rupture,  the  grain s i ze  by l i n e a l  analy- 

sis determined f o r  the  s i n t e r  batch, and the  average batch densi ty  were used 

t o  determine. the  l e a s t  square fit of the  data f o r  each test temperature t o  

the  equation : 

which i s  the  logarithmic form of mudsen's equation, 1 
where S = modulus of rupture (4  p t  , 3 i n .  span ) , 103 p s i  

G = grain s i ze  by l i n e a l  analysis ,  microns ' 

P = f r ac t i ona l  porosi ty  ( t o t a l )  based upon 3.01 

g/cm3 theo re t i ca l  densi ty  

Table IX shows the  r e s u l t s  of the  curve f i t t i n g  f o r  AOX and f o r  UOX-blgO a t  

each temperature invest igated.  I n  addi t ion,  the  t ab l e  snows t i e  rumber of 

samples used i n  each correla t ion,  the applicable range of poroaity and grain  

s i z e ,  cor re la t ion  coef f ic ien ts  t o  ind ica te  tne  degree of cor re la t ion  of each 

independent' var iable  t o  the  :dependent var iable ,  t i e  95 percent confidence . 
1 .  

. . 

. . 
. . 
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TABLE IX 

-a -bP 
S = k G  e 

Average 9%; Confidence ~imits 
Rupture No'. of Grain Size ,  f o r  S, $ 

Temperature, OC Samples k a b  microns (b ) (c ) 

uox + 0 .$ w/o blg0 

20 239 87.7 .3> ,2.18 28 + 2.'7 k 30.8 

300 124 ' 6 . 3  .24 2.31 31' 3.9 39.4 
500 126 87.8 3 3.57 30 2.6  28.5' 

800 125 76:k .23 2.85 28 3.4 37.1 

1000 123 d4.0 .19 2.97 30 j.0 34.2 

1200 125 , 49.4 .11 4.25 29 . ' 2.9 ' ,  32.3 

AOX - 

ia '4 point ,  3 inch span, 0.06 in/min head t r a v e l .  
S = HiR, lo3  psi ;  Cr = l i n e a l  grain. s i ze  microns (range: 7-100 microns); 

. P = f r ac t i ona l  porosity,  (range : 0.01-0.15). 
' .  

(bi9g$ confidence l i m i t s  f o r  the  mean'value of M/g a t  the  average gra in  ' 
, 

s i z e .  Tne limits a t  the  ends of the  appl icable  grain s i z e  range a r e  
approximately twice tile value shown for the average grain s i z e .  

(C)99$ conf'id6nce 'limits i i th in ' ' vh ich  9'3% of measured values would be 
. . expected t o  fal l .  



I l i m i t s  r'or tile l i n e ,  and the  9:. percent 'confidence l i m i t s  f o r  the ,  s c a t t e r  .of 
. . 

. . 
individuai  points about the '  l i n e .  . Although the  s c a t t e r  of the  points about 

a Line ~ :e .&.  , S xrs C; a t  constant p o r o s i t y ~  a r e  qui te  l a rge  as seen i n  the  

l a s t  column of t i e  t a b l e ,  a su f f i c i en t ly  l a rge  number of samples have been 

t e s t ed  t o  narrow the  93 percent confidence l i m i t s  of a l e a s t  square l i n e  t o  a 

reasonable l eve l .  These l i m i t s ,  assuming a normal d i s t r i bu t ion  fo r  each grain 

s i ze  - densi ty  group, would be those within which the  t rue  mean value of 

modulus of rugture would be expected t o  f a l l  a s  a function of grain  s i z e  f o r  

a given porosity,  o r  a s  a function of porosi ty  f o r  a given grain s i z e .  How- 

ever ,  tile d i s t r i bu t ion  of the  modulus, of rupture s t rengths  was not normal, 

but r a the r  skewed and i r r egu la r  which adds a degree of uncertainty t o  the  

s t a t i s t i c a l  r e s u l t s .  . Figure 12 i s  a log-log p l o t  of modulus of rupture s t rength  

a s  a ' func t ion  of grain  s i z e  p lo t ted  from the Knudsen cor re la t ion  f o r  UOX-MgO 

a t  20°c rupture temperature. f o r  the  three  .nominal poros i t i es ,  3.7, 8.6, and 13 .o 

percent.  The narrow l i m i t s  about the  j.7 percent porosi ty  l i n e  a r e  the  ca l -  

culated 9> percent confidence limits on t h a t  l i n e .  Tne points  a r e  the  average 

values,  taken from Table V I I ,  f o r  the  f i v e  grain  s i z e  groups of 2.90 gm/cm3 

nominal densi ty  (.037 f r ac t i ona l  porosi ty)  t o  compare t o  the  calculated l i n e .  

' It i s  c l ea r  t h a t  3 of tine 3 points  f a l l  somewhat outside of the 95 percent 
, , 

l i m i t s  although frorn the  s t a t i s t i c s  it would be predicted that a l l  should be . 

within.  Tle outer  dashed l i n e s  a r e  the  limits a t  95 percent confidence within 

which 93 percent of any measured modulus of rupture wquld be expected t o  

f a l l  f o r  rods having 3 .  -( *&rcent porosity.  

Fi;gure 13 sllows the  individual Knudsen equation constants, "ktt "a" , ' 

I and "btt, a s  a function of temperature f o r  the  two grades of material, and 
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the  average of both grades: It .can be seen .that the  constants "kt' and "aw 

follow the same pa t te rn  and decrease with temperature. The constant "k" re-  

f l e c t s  the  basic  s t r e n g t h  of the  mater ia l ,  and the  constant "a" tne e f f e c t  of 

grain  s i ze  on tile s t rength.  Tile decrease in ''a1' ind ica tes  a decreasing de- 

pendence on grain  s i z e  as the  temperature i n c r e a s e s .  Since i n t e r n a l  s t r e s s e s  

a r e  a function of Crain s i z e  and should reduce a s  temperature increases,  the  

decrease i n  "a" may be t he  result of t h e  decrease i n  i n t e r n a l  s t r e s se s .  
- z 

- ! 

The porosi ty  coef f ic ien t ,  "b", apparently.remains f a i r l y  constant, 

although there  is considerable s c a t t e r ,  with increasing temperature, the 

average value being about -2.). It w i l l  be noted that the  constant "a" for '  

P.OX is  s ign i f i can t ly  higher than that l o r  UOX-MgO a t  temperatures below 80o0c, 

indicat ing a g r ea t e r  dependency upon &-ain'size f o r  AOX than f o r  UOX-MgO. 

v. c0MPRF:ssm CREEP 

Compressive c r e e p  tests were run i n  a conventional creep stand with one. ,  ' 

inch diameter high densi ty  alumina push rods. Specimens were the  standard 

0.238 inch diameter, one inch long, and were column 'loaded with dead weight. : I 
Ends of t:?e specimens were square and p a r a l l e l ,  generally within 0.0002 inch.  

In addition' t o  dimensions, weight, and densi ty ,  they were inspected before 
, . 

, . 
t e s t  and found f r ee  of flaws by X-rayand Zyglo techniques. After  test, Zyelo 

, : 

inspection occasionally indicated some small cracks, pa r t i cu l a r ly  on the  ends, 
. . . . 1 

;aut otherwise tie specimens, were & a c t  i n  every respect. 1 
I 



The objective of these 'tests .yas .pr imari ly  t o  study the e f f e c t  .of grain 

s i ze ,  porosity,  and composition var iables .  Consequently, a l l  tests were 

performed a t  a .  s ingle  temperature, 1200°c, f o r  a period of 500 .hours. A f t e r  . 
assembly, the  t e s t  r i g  was brought up t o  temperature with minimal load, then 

the  desired load applied.  A t  the  end of the  test, the r i g  was cooled t o  room 

tempera tbe  before removing the load. A t  a l l  times, the  furnace was swept 

out  with slowly moving dr ied a i r  t o  prevent water vapor corrosion of the  

BeO. That t h i s  was successful  i s  borne out by the observation t i t  the average 

weight l o s s  w a s  only one milligram 'for the  t yp ica l  2.0 gram sample. 

mny of the e a r l y  t e s t s  were run without benef i t  of a sa t i s f ac to ry  

cont$nuous record of deformation versus time. For these t e s t s ,  the only re- 

l i a b l e  measurement was t o t a l  deformation. Later in '  tine uropyam, this s i t u -  

a t i on  was corrected by i n s t a l l a t i o n , o f  a sapphire rod dilatometer arrange- 

ment i n  which the moving rnember'was i n  d i r e c t  contact  with the end of the 

specinen via  a hole through . the pushrod. Exter ior  t o  the  furnace, movement 

was detected by a l i n e a r  voltage d i f f e r e n t i a l  transformer and the signal fed 
. . 

. 0 -  , 

i n t o  a c h a r t  recorder.  . . 

('2 ) Experimental Results 

Data from th i r t een  t e s t s  operated witn tile dilatcmeter arrangement a r e  

summarized i n  Table X .  Seven a re  i l l u s t r a t e d  i n  Figure 1 4 .  It is  
% 

I apparent that the curves a r e  f a i r l y l i n e a r  and that total deformation i n  

most cases may be used a s  a .good estimate of  s t r a i n  rate. Tne comparison i n  
. . 

Table X includes s t r a i n  r a t e r  (percent i n  500 hours ) calcul?ted from the 



. . . . . . 

I . .  , 

. . , , . ' 
COhIPFBSSIIrE CREEP OF'BeO SPECDENS AT 1 2 0 0 ~ ~  . . 

Grain 
. .Porosity, Size, S t r e s s  , Creep, '$I i n  500 hours . 

Material % microns . p s i  ( a ) .  (b) . (C ) 

2.2 (d 20 . 6000 0 .'3c 0.36 0.23 

(a) Total  c,hange in length of sample. 
' 

(b) Total  def lect ion on chart recorder. 

(c  j Calculated from constant s t r a i n  rate port ion of curve. 

(d )  I s o s t a t i c  pressed and s in tered .  . 
. . 



3.0 

Groin size, Porosity, stress, 
Motcriol microns 53 psi 

TIME, hours 



l imi t ing  slopes of the time curves, .with two exceptions as noted i n  Figure 14. . 

On tile basis  of t h i s  comparison, and recognizing the s c a t t e r  of data which 

otherwise e x i s t s ,  a l l  t e s t  runs are report&, including those f o r  which t o t a l  
I 
I 

* 

deformation is  the only avai lable  measurement. These tests are summarized ' 

i n  Table X I .  Included a r e  r e su l t s  f o r  four tests of spechens  of UOX contain- 

ing 3 weight percent %*. 

3 Discussion of Results 

If one equates t o t a l  deformation with. s t r a i n  r a t e ,  it is possiljle t o  

discuss the  data i n  terms of the Nabarro-Herring re la t iansh ip  (25' which states .. . 
t h a t  s t r a i n  rate, i , is proportional t o  .stress, cr , and the diffusion coef- 

f i c i e n t  of the  diffusing species,  D, and inversely proportional t o  the square 

of the grain s i ze ,  p.. This i s  val id  i f  creep is diffusion controlled,. and . 

i s  expressed a s  follows: 
. . 

where K i s  a proport ional i ty  constant which includes the  volume of the  d i f -  

fusing species.  A t  a s ing le  temperature, both T and D are constant, and it 

i s  apparent that s t a i n  , r a t e  , should be a l i n e a r  function of the parameter I t 
0 - .  I 

I 
The experimental da ta  may be manipulated i n  various ways. For example, 

s t r a i n  rates ( t o t a l  deformation i n  5OO hours ) may be normalized t o  a s ing le  
', . 

. grain s i ze  according t o  the above expression. Such normslized data plo t ted  

versus stress should be a s t r a i g h t  l i n e .  In  ac tua l  f ac t ,  such a plot' (not 



TABLE XI 

COMPRESSIVE C m P  OF Be0 SPECIMENS AT 1 2 0 0 ~ ~  

Grain Creep, (a  

Size, Density, Porosity , S t r e s s ,  Parameter,  pe rcen t  in 
ti jcm3 microns 4 psi psi/microns2 . 500 hr 



. . TAI3.U X I  (Cont. ) 

. , 
COMPIiESSIVE CREEP OF Be0 SPECIMENS AT 1 2 0 0 ~ ~  

. Grain Creep, (a ) 
Size, Density, Porosity, Stress ,  Asrameter, percent i n  

microns g/cm3 $ p s i  psi/microns2 300 h r  

UOX- ZrQ 

14 2 093 4 .O 6000 30.6 ( C  

15  2 093 4.1 6000 26.7 
O *l9 (c ) 
0.22 

19 2.94 3.3 , 3000 8 3 0 .07 
21 2 .9'j 3.1 6000 13.6 0.09 

(a )  Column loading on specimens one inch long by 0.238 inch diameter. 
Tested i n  dry a i r .  . . 

(b)  Further d e t a i l s  given i n  Table X. 

( c )  $eformation versus time shown i n  Figure 14. 

(d) I sos t a t i c  pressed and sintered. . . 



1 s,ho~m ) suggests &at' a t  stresses g r e i t e r  than 6000 ps i ,  s t r a i n  rate depends ~ 
on stre.ss. ra i sed  t o  a power g rea t e r  than unity.  This is  pa r t i cu l a r ly  apparent 

. . 

ir ,  the. AOX data., Also., two tests.. attempted a t .  15000 p s i  resu l ted  i n  specimen 
. . 

f a i l u r e  during tile f i r s t  t w e p t y ~ 2 ~ ~ s .  ' Taken"together, these observations '. , . . . . 
. , . . 

8 .  

sugees t t h a t  above a s t r e s s  l e v e l  o f  6 0 b  ps i ,  microcracking may occur which' . . , . 
. , 

l eads  t o  enlanced deformation rates and i n  the  extreme case, catas t rophic  

f a i l u r e .  . . 

Secondly, there  i s  a strong suggestion in  the  data that samples o f .  very ' . 

small grain s i z e  (< 10 microns j exh ib i t  t o t a l  deformations more than expected . . 
. , 

on the' ba s i s  of r e s u l t s  obtained ~ i t h  coarser s t ruc tures . "  Evidence i s  i m -  : .  
' ' 

.' p l i c i t  i n  Table X i n  whicn the  grea te r  disagreements between tottl.1 deforma- 

t i o n  (a ) observed and (b ), calculated from constant  s t r a i n  rate curves occur . ' 

f o r  the  s m l l e s t  grain  s i ze  samples .in each group. . In  part, this disagree- . . 

ment ' i s  accounted f o r  by t he  f a c t  t h a t  t he  small g r a i n . s i z e  samples undergo 

some addi t iona l  s i n t e r ing  a t  1 2 0 0 ~ ~ .   h he magnitude of t h i s  shrinkage was 

separate ly  deterrained i n  thermal soak t e s t s  but  was found in su f f i c i en t  i n  most 

cases , t o  account f o r  the  anomalous behavior. This "anomaly" i s  therefore  

considered r e a l ,  and is  s imi la r  t o  t h a t  discussed above with respect  t o  

Young ss modulus and modulus of rupture, a l l  three  perhaps a manifestation : of 
. . 

a d i f f e r e n t  type of p o r ~ s i t y  disj ir ibution.  
< 

Third, there  i s  tne  p o s s i b i l i t y  t h a t  specimens with a high degree of 

porosi ty  w i i l  deform more rapidly  than specimens with low porosi ty .  In 

Figure 13, a l l  date a r e  presented, and tests in t h e  above categories a r e  con- 
< .  

sidered anomalous and coded separate ly  according t o  t he  a r b i t r a r y  descriptions:  





( a )  s t r e s s  3 8000 p s i  ' . 

(b )  specimen 5 7 micron .grain  s i z e  . . 

(c ) specimen > 8% porosity 

Figure 1 3  i s  a log-log p lo t  of t o t a l  deformation i n  500 hours versus the 

paramete.r 1f' the  anomalous points a r e  ignored, l i n e s  with u n i t  Slope, 

a s  drawn, a r e  good representations of the  data f o r  the  three types of speci-  
-W 

men . This i s  considered evidence t h a t  compressive creep a t  1 2 0 0 ~ ~  i s  a dif- 

fusion controlled process according t o  the Nabarro-Herring re la t ionship.  '. I 

It i s  i n t e r e s t i n g . t o  note t h a t  tk. anomalies a r e  more pronounced f o r  AOX' ' . . i 
i 

! I 
than f o r  UOX-MgO although i n  both groups of specimens similar ranges in grain  I .  

! 

s i ze ,  porosity, and s t r e s s  were included. 

Since the data satisf 'y the  requirements of t he  MBbarro-Herring re la t ion-  

ship,  it is per t inent  t o  review the  da ta  for UOX-MgO i i t h  respect t o  the  

a p l o t '  such a s  Figure 15 with un i t  slope since degree of or ientat ion var ies  ' . I 1 

' ,  

phenomenon of preferred grain  or ientat ion.  If the  degree o f .o r i en t a t ion  were 

a f fec t ing  strain ra t e ,  samples of small and large' grain  s i z e .  would not  f i t  

with -rain s i ze .  Putt ing it another way, data f o r  UOX-MgO should separate  . 
. . 

i n t o  a family of such u n i t  slope curves, each corresponding t o  a d i f f e r en t  

I 

- . .  

grain s i ze .  However, inspection of the data indicates  t h a t  there is no.: t rend 

'with grain  s i ze .  

. . 
-. 
if 
. For AOX, t i e  data points*~.ould &haps' b e  b e t t e r  represented by a s t i a i g h t  . . '  , 

l i n e  with a slope greater  then mi-&, but this would involve an unwarranted , ' 

degree of confidence i n  those t e s t s  f o r  which the  . t o t a l  deformation was less . 

than 0.001 inch. . . 
. . 

. . 
. , ,-,, . . . , . . 



I f  preferred grain  or ien ta t ion  is  not a f ac to r  i n  determining creep 

r a t e s ,  the  differences between the  th ree  groups of points i n  Figure 15  prob- 

ab ly  m s t  be ascribed t o  composition dif ferences .  Using the  Pabarro-Herring 

re la t ionship,  the  following d i f fus ion  coef f ic ien ts  'may be estimated from the 

i i n e s  drawn i n  Figure 13: 

AOX 

. . 

Tnese values a r e  shown i n  Figure l o  togetlier w i t h  o ther  data from . the  

l i t e r a t w e ,  a l l  of which were obtained a t  higher temperatures. Zqe data .of 
. , 

Chang 
( 2 6 )  were, deduced from bending creep measurements and required extrapo- 

l a t i o n  from 1 6 3 0 ~ ~  which was h i s  lowest temperature of measurement. Tie da ta  

of Austerman ( 2 7 )  were dotained d i r e c t l y  from measurement of beryllium-7 pene- 

t r a t i o n  a t  temperatures ' ranging from 1566 t o  2 0 1 0 ~ ~ .  The pa r t i cu l a r  'data 

shown i n  Figure 16 were obtained f o r  99.3% dense Be0 and a r e  considerably 

io~.rer than he found ' for  (2 . j +$  dense BeO. The l a t t e r  a r e  omitted from t h i s  com- 

parison s ince it i s  f e l t  t h a t  a t  t he  extremely nigh temperatures of h i s  measure- 

ments, rnecilanisms ot!ler tiian bull< di f fus ion  a r e  more l i k e l y  t o  complicate the  

experiments f o r  tile more porous mater ia l .  The resul ts :  by Irandervoort and 

( 2 6 )  
Yamore a r e  of :part icular . in te res t  .since t he  temperature range of 1370 

t o  1 5 4 0 ~ ~  i s  close  t o  t+at o f  the  present work. In t h e i r  repor t ,  only s t r a i n  
m 

r a t e s  were given; however, adeeuate sample descr ipt ions  were avai lable  and 

. diffusion coef f ic ien ts  were estimated from the  Nabarro-Herring equation'. 

Data f o r  e igh t  runs designated 3y . tnese  invest igators  (26' a s  "standard creep 

t e s t s "  a r e  siiown i n  ' ~ i ~ u r k  16. me l i n e  representat ive  of these  da ta  is. 
9 ' L .  
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drawn with a slope corresponding t o  the heat of ac t iva t ion  of 96.0 kcal/mole. . . 

The vaiues f o r  dif fusion coeff ic ients  obtained i n  the  present work, a r e  seen 
. . 

t o  bracket the  range 'covered by the extrapolated l i n e s  from Auste-n and 
. . . 

from '~andervoort and Ramore. . This is considered evidence that the  diffusing . 
. , 

species whick determines the s t r a i n  r a t e  a t .  1 2 0 0 ~ ~  is beryllium. . . 
* 

SUMMARY 

- 

, The degree 'of preferred grain or ien ta t ion  i n  polycrystal l ine  s in te red  . 

Be0 influences e l a s t i c  constants and l i n e a r  thermal expansion. Measurements , 

of these properties,  combined with pole ' f igure  determinations of grain  o r i -  . . 

entat ion,  have* permitted the development of mathematical e x p e s s i o n s . r e l a t i n g  

the d i rec t ion  of measurement i n  a s ing le  c r y s t a l  with Young's modulus and 

r r i t i l  t b c m l  expansion. Young Is modulus i n  the  basal  plane (a-axis ) i s  

1>?1 lower than i n  the  d i rec t ion  of the  c-axis. The-1 expansion i s  13$'higher 

i n  t h e  .di rect ion of the  .a-axis . 

These proper t ies ,  a s  well  a s  modulus of rupture and compressive creep, 

have been found sens i t ive  t o  microstructural  parameters of grain s i z e  and 

porosity.  A number of empirical equations are presented t o  r e l a t e  these 

various fac tors .  

fXnemlly,  the 0-~servat ions  a r e  in reasonable agreement with expectations. 

The p r i m a q  anomaly aspears ui t i i  the be-havior of specimens of .Jery small 

grain s i z e .  Tnese exhib i t  lover  s t rength than predicted by the Knudsen equa- 

t ions ,  iligiler creep r a t e s  than predicted by the Nabarro-Herring equation, 



and somewhat lower e l a s t i c  constants than l a r g e r  grain  s i z e  randomly oriented 

samples of the  same porosity.  .r his i s .  postulated t o  b e  the  1.esult of a higher '  

proportion of inter-granular porosity i n  the  f i n e  grained s t ruc tures .  
' 
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FIGUIIE: CAPTIONS 

. . 

1 
I Fig. 1. Mean t h e m 1  expansion coef f ic ien t  f o r  BeO. ' , . 

Fig. 2 .  Mean thermal expansion' coef f ic ien t  from 25' t o  1 2 0 0 ~ ~  versus 
. . 

grain s i ze  f o r  AOX and UOA-NO. - 

Pig. 3.  Demonstration of l i n e a r  correspondence between a x i a l  expan- 
- 

sion and percent c-axis o r ien ta t ion .  

Fig. 4. Anisotropy of Be0 thermal expansion coeff ient .  

Fig. 3.  Anisotropy of Be0 thermal expansion. 

Fig. 6. AOX data f i t  t o  '(1 ) a l i n e a r  equation, (2) Spriggs l exponential 

equation, and ( 3  ) Hasselman s equation r e l a t i ng  Young 1s 

- .modulus t o  porosi ty  and compared t o  an e a r l i e r  l i t e r a t u r e  

survey made by L i l l i e .  

~ i g  . 7. Young I s  modulus f o r  polycrysta l l ine  Be0 as a function of 

p r c e n t  o r ien ta t ion  of the '  c-axes with the  ax i s  of extrusion.  

Fig* 8 -  C~mParisoti Of Youngts and shear modulus a s  a function of , 
, . 

temperature w i t 1 1  Atomics ~n ' ternat ional  and Argonne . National 
. . . . 

Iaboratory data re-oorted by L i l l i e .  



Fig. 9. Calculated Youngts modulus f o r  s ing le  c rys t a l  Be0 as a func- r . . 

t i on 'o f  the  angle '  of measurement from the c-axis. Measured 

values (normalized t o  Re0 curve) f o r  CdS s ing le  c rys t a l s  a r e  

presented .for comparison of -shape. 
. . 

Pig. 10. ,%ti0 of modulus of rupture a t  temperature t o  modulus of 

rupture a t  2 0 ' ~  as a function of temperature f o r  UOX-b@O and 

AOX segregated by "small", "medium", and "large" grain size.. 

F ' U Modulus of rupture as a f'unction of temperature for.  UOX-1480 1 
and AOX segregated by "small", 'bidium", and "large" grain  

s i ze .  

Fig. 12. Mean values and the  maximum spread i n  the  m o d u l u s  of  rupture 

of UOX-MgO a t  2 0 ' ~  'at the  5 nom$nal grain s i ze s  a t  3.776 poro- 

s i t y  a r e  compared' t o .  the l e a s t  square f i t  of the  Knudsen equa- 
. . 

t i on .  L i m i t s  a t  3 ~ ;  confidence'are shown f o r  the  l i n e  and f o r  I 
the  s c a t t e r  of points about t h e  l i n e .  The two o ther  nominal 1, 
porosity curves a r e  shown f o r  comparison. 

I I 
~ i g  - 13 : G h a v i o i  of the cons t an t  "k", grain s i z e  exponent "a", and 

porosity 'coefficient "b" ' i n  the.  ~nu;dsen s t rength equation, 
-a -'bP 

S = k G ,  e , a s  a function of temperature f o r  modulus of 

rupture of UOX-NO' and AOX . 



. . 

. . 

+' F i g .  14.. ~:ompressive creep deformation vs .' t i m e  at' 1 2 0 0 ~ ~ .  
. . 

. , 

..7, - 
?lg.. 1,. Fercent creep i n  500 hours a t  1 2 0 0 ~ ~  as function of s t r e s s  . 

1 
i and , grain s i ze  : 
I 
! 

Fig. 1 .  comparison o f '  data f o r  bulk diffusion coef f ic ien t  i n  PRO. 
I .  

. . 


