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Measurements have been made of the  t o t a l  energy deposited a t  va r i -  

ous points  within a 42-cm-dia spher ical  wa te r - f i l l ed  l u c i t e  phantom by 

the  secondary p a r t i c l e s  resu l t ing  from 1 6 0 - ~ e ~  proton reactions with 

various t a rge t s .  The proton source was the Harvard University Synchro-. 

cyclotron. Target mater ia ls  were water, aluminun, carbon, copper and 

bismuth. Detectors were small lucite-walled ionizat ion chambers f i l l e d  

with 97% A - 3% C02 or  ethylene gas. 

Data were taken both with the l u c i t e  phantom on the  beam *is and 

with the phantom o f f s e t  approximately 5b0-43' from the beam ax is .  The . 

proton beam energy determined from a p a r t  of these r e su l t s ,  160-162 MeV, 

i s  i n  good agreement with published values. The energy deposited by 

secondary p a r t i c l e s  was found t o  increase with Z, a s  expected. The depth- 

dose curves obtained have a s teeply  negative slope over the  region near 

the  surface of the phantom and a more gent le  slope a t  greater  depths. 

The magnitude of the  dose i n  the  region of the  i n i t i a l  slope decreases 

with increasing t a r g e t  thickness. The dose i n  t h i s  region i s  presunably 

due t o  secondary protons. The magnitude of the  dose a t  g rea te r  depths 

increases with increasing t a r g e t  thickness. A t  the  g rea te r  depths the  

slope of the  depth-dose curves, presumably control led by secondary neu- 

t ron in teract ions ,  i s  s imilar  t o  t h a t  observed when the  depth dose due t o  

a co60 gamma-ray source was measured. A por t ion of the  data  i s  presented 

graphically and a complete tabula t ion o f ' a l l  r e s u l t s  i s  included a s  an 

appendix. 
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I. INTRODUCTION 

The shielding of space vehicles from the  radia t ions  i n  space has 

received considerable a t tent ion,  espec ia l ly  since the  nat ional  comitment 
1 

t o  manned lunar and interplanetary  f l i g h t s .  A t  Oak Ridge National Labo- 

ra to ry  a combination of t heo re t i c a l  and experimental approaches t o  the  
2 problem has been followed. The primary goal  of the  experiments i s  t o  

provide da ta  against  which the  v a l i d i t y  of calcula t ions  of proton-induced 

reactions i n  shie lds  may be t es ted .  73ius major emphasis i n  t he  experiments 

i s  given t o  the  determination of secondary neutron, proton, and g m a - r a y  

spectra.  However, measurements of the  ionizaLion produced i n  a t i s sue - l i ke  

mater ia l  have a l so  been made. From the  ionizat ion measurements, the energy 

deposited, or  physical  dose, was determined. These dose values, l i k e  the  

spec t ra l  measurements, provide a check on the  calcula t ion of secondary 

p a r t i c l e  production and t ranspor t  within a shie ld .  Additionally, the  dose . . 
determination i n  a t i s sue- l ike  mate r ia l  requires f o r  comparison the  calcula-  

t ion  of t he  penetrat ion of secondary p a r t i c l e s  through the  material ,  proper 

in tegrat ion over the  incident  angular d i s t r ibu t ions ,  and appropriate f lux-  

to-dose conversions. Over a l l ,  the  cmplex geometry involved, together 

with the  other requirements, provides a s t r ingen t  t e s t  of the  a b i l i t y  of 

the  calcula t ions  t o  t r e a t  a r e a l i s t i c  geometry. 

Below are  described dose measurements using 160-M~V protons from the  

Harvard University Synchrocyclotron. These measurements were o r ig ina l l y  

intended only a s  a f e a s i b i l i t y  t e s t  of the  equipment. However, the  r e s u l t s  

obtained appear t o  contain data  of useful  accuracy, and no ad.d.i,tional mea- 

surements a r e  planned a t  160 MeV. I n  the  repor t  an attempt has been made 

t o  assess  the  errors ,  including many a r i s i ng  because of the  preliminary 

nature OP experiment which can be e f f ec t i ve ly  eliminated i n  fu ture  work. 

Succeeding port ions of t h i s  repor t  describe the  experimental equip- 

ment, i t s  d isposi t ion a t  t he  synchrocyclotron, ca l ib ra t ion  of the  

1. Recently an e n t i r e  symposium was devoted t o  t h i s  subject .  See: 
Proceed.ings of Symposium on Protection Against Hadiation Hazards i n  
Space, Gatlinburg, Tennessee, Nov. 5 -7, X T ' m 1 -  - 

2. Neutron Phys. Div. Space Radiation Shielding Res. Ann. Prog. Rept. ---  
Aug. - a 1962, = ~ - C F 6 2 m e R e ; ; ) .  



dosimeters, and t h e  determination of t h e  absolute proton beam in t ens i t y  and 

energy. The r e s u l t s  of t he  dose measurements a r e  summarized and discussed. 

Appendices contain r e s u l t s  of f i r s t - c o l l i s i o n  dose calcula t ions  and a 

complete tabulati'on of the  experimental r e su l t s .  

11. E X P E R r n A L  EQUIPMENT 

D i f f e r en t i a l  dosimeters f o r  use i n  the  mixed f i e l d  of secondary neu- 

trons,  protons, and gamma rays r e su l t i ng  from 160-MeV proton in te rac t ions  

with mat ter  a r e  no t  p resen t ly  available,  nor i s  t he  development 'of su i tab le  

. instrumentation expecte'd t o  be easy. Therefore, f o r  the measurements d i s -  

cussed here  a s impl i f ied approach was followe'd, t h a t  of determining the  

t o t a l  energy diss ipated,  a s  measured by a small ionizat ion chamber, a t  var i -  

ous po in t s  within a spher ica l  water "phantom." The phantom at tenuates  the 

primary rad ia t ions  and produces secondaries i n  a manner s imi la r  t o  t h a t  

which occurs i n  t i s sue .  The t o t a l  energy deposited within the  phantom may 

be accepted a s  a measure of t he  damage which the  secondary radia t ions  pro- 

duce i n  t i s s u e  only i n  the  l i m i t  t h a t  the  r e l a t i v e  b io log ica l  ef fect iveness  

of a l l  of t he  secondaries i s  equal. Measurements of absorbed energy a s  a 

funct ion of pos i t ion  lead  t o  the  so-called depth dose. 

1. Phantom 

The phantom i s  a 42-cm-dia l u c i t e  sphere, shown i n  Fig. 1,. having a 

w a l l  thickness of 1.27 cm everywhere except a t  one point  where i t . i s  

diminished t o  0.32 cm. When f i l l e d  with water, t h e  weight of the  phantom 

i s  approximately 84 lb s .  It i s  supported b y  a s turdy aluminum frame, having 

provis ion f o r  posi t ioning t he  phantom a t  desired angles, heights, and d i s -  

tances with respect  t o  the  cyclotron beam ax i s  and t a r g e t  posit ions.  The 

phantom can be ro ta ted  about both i t s  hor izontal  and v e r t i c a l  axes, thus 

enabling depth-dose measurements throughout the  sphere. With the  de Lector 

i n s ide  t h e  sphere, a con t ro l  mechanism passing 'through a water t ight  b a l l  

j o i n t  allows t h e  detector  t o  be remotely posit ioned along a diameter of' 

t he  sphere which i n t e r s e c t s  the t l l i ~ l  portion of the  sphere wa3.1. I t s  

depth i s  remotely read by a res i s tance  bridge c i r c u i t  t o  within 1 mrn. 
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Fig. 1. The Ionizau,,,, Chamber anc ~pherica;  d c i t e  Phantom 



2. Ion Chambers - 
The energy deposited or  absorbed a t  a given spot within the phantom 

might be measured by several  means, but one of the most sensitive depends 

on ionization measurements i n  gases. Such measurements u t i l i z e  the famil- 
9 

ia r  BraggoGray re la t ion .  The method i s  based upon the concept t h a t  a 

s m a l l  cavity, introduced i n  a homogeneous absorbing medium which i s  uni- 

formly i rradiated,  i s  traversed by the same radiation f i e l d  tha t  ex is t s  

i n  the medium. 

The detector f o r  the  present application was  designed fo r  two si tua-  

t ions.  It must correct ly measure the energy deposited at  various depths i n  

the phantom by secondaries resul t ing from high-energy reactions, and must 

respond correct ly as a single-collision dose measuring instrument i n  a i r ,  

so tha t  cal ibrat ions against known sources may be made. A diagram of the 

ion chamber i s  shown i n  Fig. 2. The chamber has a 1.74-cm-radius spherical 

cavity, f i l l e d  with e i ther  974% A - 3% COs! or ethylene (c-9~~) gas a t  a pres- 

sure of 1 atm. The l u c i t e  wall of the cavity i s  0.32-cm thick i n  the 

forward direction. The e l e c t r i c a l  connections a re  made a t  about 10 or  12 

cm from the  cavity, so as t o  minimize the disturbance of the secondary 

p a r t i c l e  equilibrium near the  cavity. Lucite was chosen f o r  the cavity 

w a l l  because of i t s  s imi lar i ty  i n  atomic composition t o  water. The 0.32- 

cm w a l l  thickness of fers  l i t t l e  attenuation t o  the primary radiation, and 

meets the  requirement of establishing secondary pa r t i c l e  equilibrium when 

used with gamma-ray sources ( < - 1.5 M ~ V )  i n  air. The spherical cavity 

was chosen t o  simplify interpretat ion of the  measured dose. The volume 

of the cavi ty was chosen such tha t  when f i l l e d  with the gases and a t  
-1 -1 the  pressure noted above, an energy deposition of - 10 erg* s o = h r  

produces a readily measurable current ( - 10-l3 mp). 

3. The Br&gg-Gray relation, i t s  application t o  ionization chamber 
dosimetry, and the conditions under which it i s  valid have been d d e l y  
documented. See, f o r  example, National Bureau of Standards, Handbook 
IZ, Issued - Feb. Z, 1961; also: References 4, 5, 6, and 7 below. 
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Several  workers 4,5,6,7 have s tud ied .cav i ty  ionizat ion with respect  

t o  t he  e r r o r  produced by var ia t ions  i n  cavi ty  s ize ,  wall  material ,  and 

gamma-ray energy. ~ u r c h '  found t h a t  f o r  a 2-cm-dia, air-equivalent  wall  

chamber i r r ad i a t ed  with CO" gamma rays the  e r ro r  due t o  e lect rons  t h a t  do 

not  cross  the  cav i t y  i s  about 1%. Attix, DeLaVergne, and Ritz, experi- 
4 

mentally, and Spencer and Attix,  theore t ica l ly ,  have shown t h a t  the e r ro r  

introduced by t he  cav i t y  s i z e  i s  small when low atomic nmber  w a l l  materi- 

a l s  and gases a r e  used. 

The high vol tage required t o  sa tu ra te  the ion chamber response was 

determined experimentally. Current readings a s  a function of applied vo l t -  

age a r e  shown i n  Fig. 3 both f o r  the pulsed cyclotron source and f o r  gamma- 

ray  and neutron sources. Only a few v o l t s  were required f o r  sa tu ra t ion  a t  

t h e  currents  shown. 

Ion Chamber Volmes 3- - 
The determination of dose with an ion chamber depends upon the  mass 

of gas contained within the  chamber. With the  simple spher ical  geometry 

of t he  chambers used i n  the  present  experiment, t he  volume can be calcu- 

l a t e d  d i r e c t l y  from the  specif ied chamber dimensions and the  mass computed 

from the  volume and density.  The accuracy,of the  value so  obtained, 

however, may be poor because of fabr ica t ion  tolerances, gas absorption o r  

leakage, o r  o ther  fac tors .  Therefore t he  volume was computed from the  

Bragg-Gray r e l a t i on  on the  ba s i s  of t he  response of the chamber t o  g m a  

rays from co60 and ~s~~~ sources of known d i s in tegra t ion  ra tes .  

The Bragg-Gray r e l a t i o n  may be wr i t t en  a s  

F. H. At t ix .  L. DeLaVerane. and V. H. Ritz.  J. 
J - 

Standards, 60, 235 (1958) . ' 
L. V. Spencer and F. H. Att ix,  Radiation Res., 
P. R. J. ' Burch, Radiation &. ,-1m). 
U. Fano, Radiation - Res., 1, 237 (1954) . 

Research - N a t l .  Bur. 
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P'ig. 3. Ion Chamber Response as a Function of Applied 
Voltage f o r  Various Sources 
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where 

E = t o t a l  energy imparted t o  a un i t  mass of the  chamber gas 
m 

( ev/g), 

'=M 
= t h e  r a t i o  of the  mass stopping power of t he  chamber wall  

t o  t h a t  of t h e  gas, 

W = the  average energy required f o r  production of an ion p a i r  

i n  the  gas (ev/ip),  and 

J = the  number of ion p a i r s  produced per u n i t  mass of chamber 

gas ( ip/g) 

I f  JG = I / v ~ ,  where I i s  the  current  i n  amps measured when the  chamber i s  

exposed t o  a source of known d i s in tegra t ion  ra te ,  V i s  t he  gas volume and 

d i t s  density,  then Eq. 1 can be rearranged and writ ten,  with appropriate 

u n i t s  and conversion f ac to r s  a s  

( 2 )  

The subscr ipts  L and G i d e n t i f y  l u c i t e  and gas, respectively.  

For gamma rad ia t ion  t he  energy absorbed per  gram of i r r ad i a t ed  

ma te r i a l  a s  a function of gamma-ray energy can be determined by calcula t ion 

of the  f i r s t - c o l l i s i o n  dose.. Calculations were made a s  i n  NBS Handbook 758 . . .. 

f o r  l uc i t e ,  ethylene, 97% A - 3% C02, water, ' and standard t i s sue .  The 

r e s u l t s  a r e  tabulated and p lo t t ed  i n  Appendix I. 

The photon f l u x  f o r  t he  f i r s t - c o l l i s i o n  dose calcula t ion was 

computed from the  known source strengths.  The co60 source, according t o  a 

ca l i b r a t i on  by the  National Bureau of Standards produced (2.38 x lo-*) 

+ 3% r /sec  a t  1 m. The ~s~~~ source strength,  determined by comparison 

8. National Bureau of  Standards, Handbook 75, Appendix Issued Feb. 5 - 
1961. - 



with a ~s~~~ source ca l ib ra ted  i n  t he  ORNL high-pressure ion chamber, was 

(3.91 a - 0.11) x lo8 photons/sec. The quant i ty  E the  energy absorbed, was 
mJ 

taken a s  94.5 ergslgL f o r  1 r f o r  the  co60 source. For t he  ~s~~~ s o m e  a 

conversion f ac to r  of 3.38 x lo-' ergslgL f o r  one photon/cm2 was obtained 

from the  f i r s t - c o l l i s i o n  dose p lo t .  Transmission through the  ion  chamber 

w a l l  was 0.977 f o r  Co60 gamma rays, 0.970 f o r  ~s~~~ gamma rays.  

The stopping-power r a t i o s  f o r  Co60 were computed from the  secondary 

e lect ron spectrum produced i n  waters and the  mass stopping powers given by 

~ e l m s . ' ~  For ~s~~~ an e f fec t ive  average r e c o i l  energy of 260 kev was used. 

The stopping-power r a t i o s  a re  shown i n  the t ab l e  below. The quanti ty W was 

taken a s  26.0 + - 0.25 ev/ip f o r  argon and 26.4 + - 0.22 ev/ip f o r  ethylene. l1 

Table 1. Stopping-Power Ratios Used i n  Volume Calculations 

Gamma-Ray Source p~ Lucitr/p M Argon % ~ u c i t e / ~  M Ethylene 

Current measurements were made a t  several  source-chamber separations, 

using t h e  vj.hra.t,ing-reed electrometer discussed l a t e r  i n  t h i s  report .  The 

e r r o r  i n  J was estimated a s  +4.5%. From the  computed values of V a 
G - 

weighted average was' obtained, with the  weighting based on the estimated 

e r ro r s  i n  the source-to-chamber distance measurements, the  estimated e r r o r  

i n  the  electrometer scale  used, and t he  magnitude of the  background. The 

distance dependence was l/? within t h e  associa ted e r rors .  

The r e su l t s  of the  volume determinations a r e  shown i n  Table 2. The 

ca l ib ra ted  volumes a r e  i n  every case considerably l e s s  than t h a t  computed 

9. G. J. Hine and G. L. Brownell (eds . ) ,  Radiation Dosimetry, Academic 
Press, New York (1956)~ p 25. 

10. A. T. Nelms, Energy Loss and Range of Electrons and Positrons, NBS-C- - 
577 (1956) 

11. Weighted averages of values taken from the  bibliography of I. T. 
Meyers, The Measurement of t he  Electron Energ Required t o  Produce 
an Ion PZ i n  Various G = e ~ , K W ? f 6 . d ) .  ~ e i ~ h t r w e r e  as-  ---- 
signed whenever the  authors gave no e r ro r s ,  



from the  nominal chamber dimensions. The di f ferences  may stem from e r ro r s  

i n  pressure  o r  temperature during f i l l i n g  of the  chambers with the  gas, or  

may be due t o  f ab r i ca t i on  e r rors .  

Table 2. Ion Chamber Volumes from Cal ibra t ion 
with Gamma-Ray Sources 

Cal ibra t ion Argon-Filled Chamber Ethylene-Filled Chamber. 
Source ( cm3 ( cm3 > 

4. Disposit ion -- a t  t h e  Harvard Synchrocyclotron 

The general  arrangement of the  experiment a t  the synchrocyclotron i s  

shown i n  Fig. 4. The Harvard University 95-in. Synchrocyclotron i s  a 

frequency-modulated machine producing unpolarized protons a t  a nominal 

energy of 160 MeV, with an energy spread of about 2 MeV and f luxes  a s  high 

as 5 x 10" protons/sec. I t s  frequency range i s  from 23 t o  30 ~ c / s e c ,  

modulated by a r o t a t i n g  condenser. The nominal beam a rea  i s  7 cm2 o r  l e s s  

and t h e  permanent sh i e ld  cons i s t s  of from 3 t o  8 f t  of ordinary concrete. 

The proton beam emerging from the  machine f i r s t  passes through a 

v e r t i c a l  s l i t ,  then i s  def lected by t he  s tee r ing  magnet and focused by the  

quadrupole magnets. The focused beam continues through a beam tube and 

impinges on the  t a rge t .  The lead br icks  shown were added t o  reduce back- 

grounds during t h e  p resen t  experiments. 

A t a r g e t  holder i s  centered on the  beam by adjustment of alignment 

pos t s  a t  e i t he r  end of t he  holder. Polaroid film, i n  holders t h a t  a t t a ch  

t o  t h e  tops  of t h e  alignment posts,  i s  used as t h e  beam-finding sensor. 

The t a r g e t  holder i s '  then posit ioned by using an alignment bar  extending 

between t he  posts .  For a por t ion of t he  measurements t he  phantom was 

loca ted  .at  45'. hor izon ta l ly  and ve r t i c a l l y .  (below) from the  beam 

-is.. For the  remainder of t h e  measurements the  phantom was located 

on t he  extension of t he  beam- axis,  and the  beam s t ruck t he  phantom . 
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d i r e c t l y .  The beam cross  sec t ion  a t  the  point  of en t ry  i n t o  the  phantom 

was roughly e l l i p t i c a l ,  with a major & i s  of 2.5 cm and a minor a x i s  of 

1.6 cm. The r a d i a l  d i s t r i b u t i o n  of photons was approximately gaussian, a s  

determined by densitometricmeasurements of Polaroid negatives and by 

examination with a p r o f i l e  telescope cons i s t ing-of  a p a i r  of small sc in-  

t i l l a t i o n  counters. 

The e lec t ron ics  f o r  t he  ion chamber i n  the phantom and the  s ca l e r  

f o r  t he  beam monitor were remotely located i n  a van, and connected t o  the  

cyclotron area  with 150- t o  200-ft cables.  

5. Cerent-Measuring Equipment 

A block diagram of t h e  instrumentation i s  shown i n  Fig. 5. The 

system i s  divided i n t o  two p a r t s :  a dose-determining channel and a beam- 

monitoring channel. I n  the  dose-determining channel, the  current  produced 

i n  t h e  i on  chamber wi thin  t he  phantom i s  measured by a vibrating-reed 

electrometer.  The electrometer can be operated e f t he r  by measuring the 

r a t e  of change of voltage across the  v ibra t ing  capaci tor  or  by measuring 

t h e  p o t e n t i a l  d i f ference across  a high-value input r e s i s t o r .  The l a t t e r  

method was invar iably  used. Althdugh the  amplified current  can be. read 

from a m i l l i m e t e r ,  an accurate meter reading i s  d i f f i c u l t  t o  obtain be- 

cause of t he  current  f luc tua t ions  caused by var ia t ions  i n  beam s t rength 

and other  causes. Instead,  the  electrometer output was fed t o  an ex te rna l  

recording system, a Royson Lectrocount. This system e l e c t r i c a l l y  i n t e -  

g r a t e s  the - f luc tua t ing  s i gna l  and transforms it t o  a count ra te ,  propor- 

t i o n a l  t o  the  average current ,  which i s  recorded by a s ca l e r  uni t .  

6. Beam Monitor - 
A beam monitoring system was required i n  order t o  normalize data  

necessa r i ly  taken over a wide range of beam i n t e n s i t i e s .  The system i s  

based upon a spec i a l l y  constructed ion chamber,12 through which the  proton 

.beam from the  acce le ra to r  passes, with l i t t l e  absorption, enroute t o  the  

t a r g e t  o r  phantom. The cur ren t  developed i n  the  ion chamber i s  fed  t o  a 

12. R. T. Santoro, Measurement of the  In tens i ty  of the  Proton Beam of the -- -- --- 
Harvard Universi ty Synchrocyclotron ( t e n t a t i v e  titlm be pub- 
Ezx). 
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cu r r en t  i n t eg ra to r  which t r ans l a t e s  the  current  i n t o  counts. The counts 

a r e  used t o  con t ro l  a gate  c i r c u i t  f o r  the  dosimeter s ca l e r  and a r e  a l so  

recorded by another sca le r .  

The ca l i b r a t i on  of  t h e  spec ia l ly  constructed monitor ion chamber i s  

described i n  d e t a i l  elsewhere.12 Briefly,  the  monitor ion chamber was 

ca l i b r a t ed  against  a Faraday cup. The current  produced by the cup was 

determined with reference t o  a NBS-calibrated standard current  source of 

(1.34 - + 0.01) x 10" amps which was loaned by A. M. Koehler of Harvard. 

The ca l i b r a t i on  was (1.788 c - 0.054) x lo7 protons per  monitor in tegra tor  

pulse  f o r  a l l  beam s t rengths  used. 

111. MEASUREMENTS AND CALIBRATIONS 

1. Configurations 

Two d i s t i n c t  types of measurements were made. I n  the  primary s e t  of 

measurements, t a r g e t s  of water, alwninwn, copper, carbon, and bismuth were 

placed i n  t he  primary beam, and the  phantom was e i t h e r  on the  beam 

a x i s  o r . o f f s e t  a t  given dis tances  and angles. Thus the  energy deposited 

i n  t h e  water phantom by the  secondary p a r t i c l e s  r e su l t i ng  from the  beam- 

t a r g e t  in te rac t ions  was measured. I n  a subordinate s e r i e s  of measurements, 

the  d i r e c t  bean 'of protons w a s  allowed t o  s t r i k e  the  .phantom d i r ec t l y .  I n  

such measurements the  dominant e f f e c t  was produced by the  primary photon 

beam f o r  water thicknesses l e s s  than the  proton range. Figure 6 shows 

t he  experimental geometry and defines the  quan t i t i es  referred t o  i n  the 

summary of Table 3 and i n  t h e  complete tabula t ion of data  of Appendix 11. 

2. Cal ibra t ion Factors 

The measured ionizat ion values were converted t o  energy absorbed o r  

dose by using Eq. 1. The quan t i t i es  p and W of Eq. 1 a r e  somewhat depend- 
M 

e n t  upon p a r t i c l e  type and energy, and d i f f e r  from gas t o  gas. Values of 

both f o r  argon and ethylene a r e  shown i n  Tables 4 and 5 .  Ethylene was 

se lec ted  a s  a counter gas t o  minimize the  var ia t ion  i n  p while argon M' 
demonstrates the l e a s t  dependence of W on p a r t i c l e  type and energy of any 

of t he  common gases. 
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Table 3 .  Key t o  Experimental Configurations Studied and 
Locations i n  Which Results a re  Given 

Phantom Posi t ion Dosimeter 
Target Thickness Angles* Traverse Angle* Ion Chamber 

Results 

g/cm2 Mev 01 (deg) f3 (deg)' 9 ( deg) TYPe Fig. No. Table No. 

No Target; Proton Beam Direct ly Incident on Phantom ' 

0 0 0 Both 7,8 11.1 
0 ' 0 90 Argon 11.1 

No Target; Calibrated co60 Source 

0 0 0 Both 9 11.2 

Aluminum Target; Target-Phantom Distance: 48.5 cm 

160-132 0 0 0 Argon 8 
160 -9 5 0 0 , 0 .  . Argon 8 

178 o o o ~ 0 t h  . 8 
178 o o 90 .  Argon 11 
247 0 0 0 Ethylene 8 

&O Target; Target-Phantom Distance: 48.5 cm 

179 0 0 0 Argon 

Aluminum Target; Target-Phantom Distance: 53.7 cm 
. . 

160-132 45 45 0 Argon 9 
160-95 . 45 45 0 Argon 9 

178 45 45 0 Argon 9,10 
178 45 45 45 Argon 11 
178 45 45 90 Argon 11 

Carbon Target; Target-Phantom Distance: 53.7 crn 

178 45 45 0 Argon 10 

Copper ' ~ a r ~ e t ; * % a r ~ e t - ~ h m t o m .  Distance : 5 3.7 cm 

177 45 - 0 Argon 10 
-. h-5 ,: , ; . , . , 

.c,:. . . 

Bismuth ~ a r ~ e t ;  Target-Phantom Distance : 5 3.7 cm 

179 45 45 0 Ar- eon 10 

%ee Fig. 6 fo r  diagram defining these angles. 
*WO-cm-dia and 40-cm-dia copper.targets; a l l  others 20-cm-dia. 



Table 4. Comparison of Stopping-Power Ratios 

Stopping-Power Ratios, pM 

Lucite Water Lucite Water 
Argon Argon Ethylene Ethylene 

-- - -- - - - 

co60 r e c o i l  e lect rons  1.38 1 .41  0.915 0.936 

20-MeV protons 1 . 4 y  1.46 0.914 . 0.928 

100-MeV protons 1.49* 0 937 

1.45 + 0.04 
+ 0.003 

Average** - 0*934 - 0.006 
Average, ** 

a l l ' v a l u e s :  . 1.43 - + 0.06 0.926 - + 0.011 

*Based on data  i n  UCRL-1325; a l l  other  values based on UCRL-2301. 
*The  l i m i t s  a r e  shown t o  indicate  t he  spread i n  values. 

'l'able 5. Average Energy, W, Required f o r  Production -., 
of an Ion Pair* 

Pa r t i c l e  Argon Ethylene 

G m a - r a y  r e c o i l  e lect ron 26.0 + - 0.25 26.4 + - 0.22 

Polonium and plutonium 
alpha p a r t i c l e s  26.4 + - 0.20 28.0** 

Average 

*Weighted average of values from bibliography of Meyers 
( r e f .  1 ) .  Weights were assigned' whenever authors gave 
no e r rors .  The resu l t ing  e r ro r s  a r e  probably too small. 

*NO e r ro r  estimate given. 

For gamma rays and low-energy ( < 20 M ~ V )  protons, t he  r eco i l s  which 

lead t o  ionizat ion i n  the chamber occur l a rge ly  i n  the  l u c i t e  ion chamber 

wall.  For neutrons and high-energy protons the  per t inen t  r eco i l s  a r i s e  

primarily i n  the  water of the  phantom. Clearly, f o r  mixed radia t ions  and 



f o r  a wide range of energies,  s i gn i f i c an t  contributions come from both 

regions.  However, t h e  var ia t ion  i n  stopping-power r a t i o s  from l u c i t e  t o  

water i s  seen i n  Table 4 t o  be only about 3%. For argon, the  overa l l  va r i -  

a t i o n  i n  p i s  - 8% and f o r  ethylepe only'2.5%. The values adopted f o r  p M M 
i n  t h e  d a t a  analyses, based on an average of a l l  of the  values shown i n  

Table 4, were: f o r  argon, 1.43 - + 0.06; f o r  ethylene, 0.926 + - 0.011. For 

.W, on t h e  other hand, the  argon values vary only - l.5%, while the  ethylene 

values f o r  e lect rons  'and alpha p a r t i c l e s  vary 6%, with no r e s u l t s  avai lable  

f o r  protons.  The ove ra l l  uncertainty resu l t ing  from the  unknown character  

of t he  secondaries producing the  observed ionizat ion i s  about 4%. 

It was unfortunately necessary t o  delay the  absolute ca l i b r a t i on  of 

t h e  ion  chambers against  the  ca l ib ra ted  co60 and cslS7 sources u n t i l  

s eve ra l  weeks a f t e r  t h e  measurements at t he  cyclotron were completed. 

Rela t ive  ca l ib ra t ions  aga ins t  an Am-Be neutron (and gamma-ray) source over 

t h i s  i n t e r v a l  showed a reduction i n  the  response of the  argon chamber by a 

f a c t o r  of 1.06 + - 0.03 and i n  the response of t he  ethylene chamber by a 

f a c t o r  of 1.14 + - 0.07. A poss ible  reason f o r  the  reduction may be d i f -  

fus ion of gas through the  counter walls, bu t  t h i s  hypothesis has not  been 

t e s t e d  experimentally. Corrections f o r  t he  lowered responses have been 

appl ied t o  the dose r e s u l t s .  

Af te r  app l ica t ion  of correct ions  f o r  a l l  e f f e c t s  other than p a r t i c l e  

s c a t t e r i n g  from the  concrete f l oo r  of t he  cyclotron, the  conversion f ac to r s  

appropr ia te  t o  Eq. 1 are :  The absorbed energy .(erg.  -' .set-l) i s  equal t o  
%o 

t he  measured ion iza t ion  (amps) times (1.40 t 0.14) x lo1' f o r  t he  argon- - 
f i l l e d  ion  chamber and (1.58 + - 0.19) x lo1' f o r  the  e thylene-f i l led  ion 

chamber. The r e l a t i v e  e r r o r s  f o r  the  dose da ta  given below a re  l e s s  than 

t he  absolute  e r ro r ,  being of t h e  order of 6%. These e r rors ,  about +lo$ - 
absolute  and +6$ - re la t ive ,  may be applied t o  the  r e s u l t s  -given i n  

Appendix 11. 

3 .  Backgrounds 

The backgroundwith the  beam off  o r  with the  t a r g e t  removed was mea- 

sured and shown t o  be small i n  general.  The background due t o  . pa r t i c l e s  

( e spec i a l l y  neutrons) sca t te red  from' t he  surroundings could no t  be 



determined experimentally i n  a straightforward manner. The most important 

sca t te re r ,  the  concrete f loor ,  was 147 cm from t h e  t a r g e t  center, while 

the  phantom-target distance was 50 t o  70 cm. I f  t he  estimate of Cook and 

strayhorn13 f o r  fast-neutron s ca t t e r i ng  from a concrete f l o o r  i s  used, t he  

background due t o  f l oo r  s ca t t e r i ng  of the  neutron component of the  second- 

a r i e s  i s  - 8% f o r  t he  s i t ua t i on  i n  which the  phantom i s  o f f s e t  45" hor i -  

zonta l ly  and v e r t i c a l l y  (below) from the  target-beam ax is .  The e f f e c t  

was, of course, decreased when the  phantom was ra i sed  t o  the  target-beam 

axis,  being only about 3%. The e f fec t ive  albedo f o r  secondary protons 

should be negl igible  and the  primary beam was stopped more than 20 f t  from 

the  t a rge t .  Finally,  the  albedo f o r  gamma-ray s ca t t e r i ng  from the  f l o o r  

i s  of the  order of one-third of t h a t  f o r  neutrons.14 

Alsmiller ' s calculation15 of the  proportions of the  three  secondary 

components indicates  t ha t  the  secondary neutrons a r e  probably dominant f o r  

the  t a rge t s  used. Corrections of the  amounts given f o r  neutron s ca t t e r i ng  

were therefore  subtracted from the  otherwise corrected dose measurements. 

The e r ro r s  were assumed a s  one-half of t he  s ca t t e r i ng  corrections,  i .e . ,  

4% and 1.5%. No sca t te r ing  correction was made t o  t he  measurements without 

a ta rge t .  
7 

The background due t o  t he  rad ia t ion  s e n s i t i v i t y  of the electrometer 

reed head was made negl igibly  small i n  comparison with foreground by shie ld-  

ing the  head with lead br icks .  

A possible source of error ,  t h a t  due t o  the  re tu rn  by backscatter  

of protons i n to  the  monitor ion chamber, was found t o  be unmeasurable 

( < 2%) f o r  the  t a r g e t  with the l a r g e s t  physical  dimensions. 

13. . C. F. Cook and T. R. Strayhorn, - Fast  Neutron Physics, - Vol. IV, Par t  1 
(J. B. Marion and J. L. Fowler, eds . )  Interscience,  New York (l=j,- 
p 012. 

14. Reactor Handbook, Vol. - I, Interscience,  New York (1955), p 698. 
15. R. G. Alsmiller, Jr., and J. E. Murphy, Space Vehicle Shielding 

Studies: Calculations of the Attenuation of a Model Solar  F la re  and -- ------ 
Monoenergetic Proton Beams bx Aluminum Shields, ORNL-3317 ( ~ a n .  
1963) ; a l so :  Neutron Phys. Div. Ann. Prog. Rept. Sept. 1, 1962, -- 
ORNL-3360, p 2 - o H e F 2 ,  3445.- 



IV. DISCUSSION 

1. Proton Beam Energy - 
From t h e  r e s u l t s  of t he  measurements i n  which the  proton beam w a s  

d i r e c t l y  incident  upon, t h e  phantom, it i s  poss ible  t o  obtain the  proton 

range i n  water and thus the  energy of the  proton beam. The spher ical  s h e l l  

geometry i s  not  wel l  su i ted  f o r  a range determination, bu t  the  "far" s ide  

of t h e  Bragg peak observed i s  qui te  steep, a s  seen i n  Fig. 7. It must be 

noted t h a t  the depth given i n  the p l o t s  i s  measured t o  the  cen te r  of the  

ion  chamber. This i s  appropriate f o r  the  consideration of secondary 

p a r t i c l e s ,  but  f o r  t he  case of the  collimated proton beam the  "f ront  edge" 

of t he  chamber should be used t o  determine t h e  range. The di f ference be- 

tween t he  f ron t  edge and the  center  i s  1.74 cm, t he  ion chamber ins ide  

radius .  Measured from the  f r o n t  edge, the  range which corresponds t o  a 

l i n e a r  extrapolat ion t o  zero current  i n  Fig. 7 i s  17.9 g/cm2 of water, 

allowing 0.6 g/cm2 of water f o r  t he  118-in.-thick l u c i t e  she l l s  of the  

phantom and the  ion chamber. The energy corresponding t o  t h i s  range, taken 

from the  curves of Rich and Madey, l6 i s  162 MeV. 

The pos i t ion  of t he  peak i n  Fig. 7 should correspond t o  the  mean 

range a s  measured t o  the  average, ra ther  than the extreme, f r o n t  edge of 

t h e  ion  chamber. The average f ron t  edge of the  chamber i s  1.37 cm from 

i t s  center .  The range based on the  peak pos i t ion  i s  17.4 g/cm2, which cor- 

responds t o  a proton energy of 160 MeV ( ~ e f .  16).  

The energy values derived above a r e  i n  good agreement with energy 

es t imates  based on the  proton range i n  copper reported by ~ o h n s o n ' ~  of 

160.5 - c 0.6 MeV, and ' a r e  consis tent  with values reported e a r l i e r  of 

159 MeV (Ref . 18) and 158 MeV (Ref . 19) . 

16. M. Rich and ' R .  Madey, Range-Energy Tables, UCRL-2301 ( ~ a r . ,  1954). 
17. C.  F. Johnson, p r i va t e  communication, Jan. ,  1963. 
8 G. Calame -- e t  a%, Nuclear ~nstrumentk 1, 169 (1957) . 
19. F. T. Howard, Cyclotrons - and High-Energy Accelerators - 1958, ORNL- 

2644 (Nov. 17, 1958) . 
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2. Dose Due t o  Secondary Pa r t i c l e s  --- 
Figure 8 shows the  absorbed dose as a function of depth i n  the  phan- 

tom f o r  aluminum t a r g e t s  of four thicknesses and f o r  no ta rge t .  A s  the  

f i gu re  shows,the proton beam struck the  phantom both without a t a r g e t  and 

f o r  the  two th innes t  aluminum ta rge t s .  The depth i n  the  phantom was mea- 

sured along a diameter p a r a l l e l  t o  the  proton beam axis .  

The no-target  r e s u l t s  a r e  consis tent  f o r  both the  e thylene-f i l led  

and 97% A - 3% C02-fi l led ion chambers. The e r ro r s  f o r  the  region beyond 

the  Bragg peak a r e  uncertain, . b u t  large .  

Since t he  ion chamber cross sect ion i s  l a rge r  than the  cross sec- 

t i o n  of t he  proton beam, t he  absolute values of t he  absorbed dose f o r  t h e  

t h i n  t a r g e t  r e s u l t s  should be 'regarded with considerable caution. Un- 

deniable, however, i s  t he  l a rge  decrease i n  dose- beyond the Bragg peak. 

Before conclusions regarding the r e l a t i v e  importance of secondaries a r e  

drawn from Fig. 8, it should be noted t h a t . t h e  e ' ffective so l id  angle i s  much 

l e s s  f o r  the  secondary p a r t i c l e s  than f o r  the  primary beam. This i s  

p a r t i c u l a r l y  t r u e  f o r  t he  th icker  t a rge t s ,  within which all of the  primary 

p a r t i c l e s  are  stopped.' The e r ro r s  shown on some data  points  a re  intended 

t o  be representa t ive .  

The absorbed dose a s  a functioii of depth i n  the  phanto~n i s  shown ln 

Fig.  9 f o r  aluminum t a rge t s  of three  thicknesses. The diagram shows the  . 

pos i t i on  of the  phantom r e l a t i v e  t o  t he  t a r g e t  and primary beam. No 

primary protons can reach t he  phantom i n  t h i s  geometry. The i n i t i a l l y  

'high values of dose f o r  the  6.72 g / c s  and 13.4 g/cm2 t a rge t s  (both th in-  

ner than t h e  proton range) a r e  probably due t o  secondary or  sca t te red  

protons. The dose due t o  secondaries a t  greater  depths appears t o  be 

g r ea t e r  f o r  l a rge r  t a r g e t  thicknesses, a s  might be expected. The slopes 

a t  l a r g e r  d is tances  a r e  probably consis tent  within the  eqe r imen ta l  e r ro r .  

The lowest curve of Fig. 9 representsg the  depth dose resu l t ing  from the  

ca l i b r a t ed  co60 source previously described, located, a s  shown i n  the  

diagram, 17.9 cm from the  surface of t he  phantom. The slope of the  dose 

curve due t o  the  - 1.25-MeV average energy co60 gamma rays i s  qui te  s imi la r  

t o  t h a t  f o r  the secondaries from the  1 6 0 - ~ e ~  protons. The secondaries from 
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t he  160-M~V protons would be expected t o  be predominantly neutrons a t  the  

l a rge r  depths. 

I n  Fig. 10 i s  shown the  absorbed dose a s  a function of depth f o r  

four t a rge t s  of widely varying Z. The dose increases with Z, a s  expected. 

The curve f o r  the  aluminum t a r g e t  appears t o  r i s e  i n  r e l a t i on  t o  the  

curves f o r  the  other materials  a t  large  depths, bu t  a s  shown, the  e r ro r s  

f o r  the aluminum t a r g e t  data  a r e  qui te  large,  because of an abnormally 

high background during t h i s  measurement. 

A l imi ted number of t raverses  were made through the  phantom i n  

di rect ions  other than along the  target-phantom ax i s .  Three such t raverses  

a r e  shown i n  Fig. 11. The r e s u l t s  appear reasonable when the  geometries 

f o r  secondary p a r t i c l e  production a r e  considered. I n  pr inciple ,  by de- 

termining the  depth dose along many such diameters, it i s  poss ible  t o  

ascer ta in  the  absorbed dose a t  a l l  points  throughout the  phantom. The , 

requirements f o r  cyclotron operating time would be sizeable.  

The smoothness of the  data, especia l ly  t h a t  of Fig. 11, suggests 

t h a t  the r e l a t i v e  e r ro r s  shown may represent an overestimate. 

No comparisons with t heo re t i c a l l y  predicted r e su l t s  a r e  presented 

here. Even with the  spher ical  geometry of the  experiment, an e laborate  

t ranspor t  ca lcula t ion combined with appropriate secondary p a r t i c l e  produc- 

t i o n  cross sections i s  required. As previously s ta ted,  it i s  the  purpose 

of these measurements t o  provide a standard against  which such ca lcu la t ions  

may be t es ted .  

Similar  measurements a re  planned with incident  proton beams of 

- 70 MeV. 

The s e r i e s  of nuclear secondary measurements a t  the  Harvard Univers- 

i t y  Synchrocyclotron, of which the  present  work i s  bu t  one small pa r t ,  

was made p o s s i b l e ' o n l y ~ b y  the  extraordinary cooperation extended by W. M. 

Preston and A. M. Koehler of the  University. The beam-strength determina- 

t ions  were made by R. T. Santoro. M. M. Chiles designed and constructed 

,the ion chamber, and T. F. S l i s k i  and H. J. S t r i p l i n g  designed the  ion- 

chamber dr ive  and t h e  phantom assembly. 
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Fig. 10. Absorbed Dose a s  a Function of Depth i n  
Phantan f o r  Four Targets of Widely Varying Z 



UNCLASSIFIED 
ORNL- LR- DWG 79234 

0 4 8 12 4 6 2 0  24 2 8  3 2 36 
DEPTH IN PHANTOM (cm) 

Fig. 11. Depth Dose Traverses at 45 and 90 deg from the 
Target-Phantom Axis 



The values of the  . f i r s t  c o l l i s i o n  dose tabula ted and p lo t t ed  on 

t h e  following pages were computed according t o  t he  formula given i n  

r e f .  8. 



Table 1.1. F i r s t  Col l is ion Dose Versus Photon Energy f o r  Specified Media. 
( see  a l so  Figure 1.1.) 

Photon Dose ( e rg  ;Ig f o r  lo7 photons/crn2)' 
Energy 
( ~ e v )  Lucite Argon + 3% C02 Ethylene H2 0 Tissue 



Fig. 1.1. First-Collision Dose as a Function of Photon 
Energy for Water, .Tissue, and Lucite. The 
broken-line portion of the lucite curve shows 
the probable low-energy response of the 
dosimeter tu galma rays. 





Table 11.1. Physical Dose Within a 42-cm-dia Water Phantom 
as  a Function of Ion Chamber Position. No target;  

10" incident protons; a = p = O0 

Ethylene-Filled Chamber, Argon-Filled Chamber, Argon-Filled Chamber, 
8 = 0" 8 = 0° 8 = 90" 

Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy 
( cm) (ergs/g of G O )  ( cm) (ergs/g of ~ 2 0 )  . (cm) (ergs/g of G O )  

*Digit i n  parentheses indicates power-of -ten multiplier, i.e., 1-39 (4) = 1.39 x lo4. 



Table 11.2. Physical Dose Rate Within a 42-cm-dia Water Phantom as a 
Function of Ion Chamber Position, for a co60 Gamma-Ray Source.* 

Source-Phantom Distance: 17.9 cm. 
a =  p =  e =  oO. 

- - - - - 

Argon-Filled Ion Chamber Ethylene-Filled Ion Chamber 

Depth Absorbed Energy Depth Absorbed Energy 

( cm) (ergs Gig- sec 'l) ( em> (ergs G'-O. sec-') 
2-35 5.48 (-2) 2.45 5-31 (-2) 
3.05 4.95 (-2) 2.95 5.04 (-2) 
4.25 4.44 (-2) 4.15 4.31 (-2) 
5.85 3.79 (-2) 5.85 3.58 (-2) 
7.45 3.03 (-2) 
7.45** 3.06 (-2) 

8.05 2.64 (-2) 
8.05- 2.79 (-2) 

9.45 2.51 (-2) 
11 35 1.91 (-2) 
ll.35** 2.03 (-2) 

12.85 1.85 (-2) 
14.85 1.41 (-2) 

16.85 1.32 (-2) 
17.85 1.05 (-2) 

19-55 1.04 (-2) 
19.55%* 1.05 (-2) 

20.95 0.84 (-2) 
23.85 0.76 (-2) 
27.35 0.59 (-2) 
30.35 0.118 (-2) 
52-95 0.41 (-2) 

*Source strength: 2.38 x lo-" r/sec at 1 m, National Bureau 
of Standards calibration. 

**Repeated measurement. 



Table 11.3. Physical  Dose Within a 42-cm-dia Water Phantom a s  a 
Function of Ion Chamber Posi t ton.  Target: H20; 21.1 g/cm2; 

argon-f i l led  chamber; .a = @ = 8 = O0 ; lo1' incident  
photons; target-phantom distance:. 48.5 cm: . 

Depth Absorbed Energy 
. . ( cm) . (ergs /g  of &O 



TaXe 11.4. Physical Dose Within a 42-cm-dia Water-Filled Phantom as  E. Function 
of Ion Chamber Position f o r  Various Thicknesses of Aluminum Target. 

Target-phantom distance: 48.5 cm; .a = f3 = 8 = 0" ; 
l o l o  incident photons. 

Argon-Fillad Im Chamber Ethylene-Filled Ion Chamber* 
Target Ttickness: 6.72 g/c$ Target Thickness: 13.4 g / c 8  Target Thickness: 26.9 g/c$ Target Thickness: 47.0 g / c 8  

Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy 
( cm) (ergs/g of &o) ( cm) ( ergslg of Hz01 , (cm:) (ergslg  of H20) (cm) (ergs/g of ~ ~ 0 )  

1.42 (-1) 

10.85 1.30 (4) 
11-75 1.48 
12-95 2.21 
13.15 2.32 13.15 1.18 (-1) 
13.45 2.29 
13.85 1.52 
14.05 7.12 (3)  14.15 1.81 (-1) 
14-75 1.08 (1)  14.75 1.47 (1)  
17.35 4.96 (0)  17.15 1.50 (-1) 16.85 9.75 (-2) 

18.05 1.33 (1) 
18.85 0.70 (-1) 

20.95 2.46 (0) 21.05 1.09 (1) 20.25 1.22 (-1) 20.85 8.39 (-2) 
23.95 2.13 (0)  23.85 1.10 (1) 24.05 1-09 (-1) 24.95 6-75 (-2) 
27 35 3.16 (0) 27.35 1.18 (1) 26.95 0.93 (-1) 
30.05 2.63 (0) 30.05 9-56 (0) 30.25 0.79 (-1) 28.85 5.77 (-2) 

.32.85 1.43 (0)  32.85 8.91 (0)  32.85 4.94 (-2) 

*A comparison of the response of the ethylene-fil led chamber with that of the argon-fil led chamber under iden t ica l  condi- 
t ions  i s  shown i n  Table 11.2. 

+*Repeated measurement. 



Table 11.5. Physical  Dose Within a 42-cm-dia Water phantom as  a 
Function of Ion Chamber Posi t ion.  26.9 g/cm2 -thick alminwn 

t a r g e t ;  CX = @ = 0" ; lo1' incident  photons; 
target-phantom distance:  48.5 cm. 

Argon-Filled Chamber Argon-Filled Chamber 
8 = 0" 8 = 90" 

Depth Absorbed Energy Depth Absorbed ~ n e r ~ ~  
( cm) (ergs/g  of ~ 2 0 )  ( cm) (ergs/g of &o) 



Table 11.6. Physical  Dose Within a 42-cm-dia Water Phantom a s  a 
Function of Ion Chamber Posit ion,  f o r  Two Target Thicknesses. 

Argon-Filled Ion Chamber, a = !3 = 45'; 8 = 0"; 
target-phantom distance:  53.7 cm. 

6.72 g/cm2 Al Target 13.4 g/cm2 Al Target 

Depth AbsorbedEnergy Depth Absorbed Energy 
( c m )  . (ergs/g of ~ ~ 0 )  ( cm) (ergs/g of &0) 



Table 11.7. Physical  Dose Within a. 42-cm-dia Water ,Phantoni a s  a   unction 
of Ion chamber Pos i t ion  f o r  Traverses a t  varidus Angles, 8, from 

the  Target  -Phantom Axis. Alwninum ta rge t ,  26.9 g/cm2; 
argon-f i l l e d  ion chamber: a: = f3 .= 4 5 O  ; 

tgrget-phantom distance:  53.7 cm. 

e = oO e = 45" e = go0 

Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy 
(cm) (ergs/g  of G O )  (cm) ( ergs/g of G O )  (cm) (ergs/g of GO)  



Table 11.8. Physical Dose Within a 42-cm-dia Water Phantom as a Function of Ion Chamber 
Posi t ion,  f o r  Targets of Carbon ( z  = 6) ,  Copper ( z  = 29) and Bismuth ( z  = 83).  

Argon-fi l led i o r ~  chamber; a: = fj = 45'; B = 0'; 10" incident  photons; 
target-phantom distance:  53.7 cm. 

Carbon Target Copper Target Copper Target Bismuth Target 
(23.3 g/cm2) (20 cm dia, 31.8 g/cm2) (40 cm dia, 31.8 g/cm2) (44.3 g/cm2) 

Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy Depth Absorbed Energy 
(cm) (ergs/g of GO) (em) (ergs/g of G O )  (cm) (ergs/g of ~ 2 0 )  (cm) (ergs/g of GO) 
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