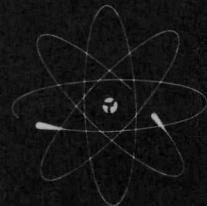


26914
3-14

2074

HASL-250


MASTER

health and safety laboratory

GLOBAL INVENTORY AND DISTRIBUTION OF Pu-238 FROM SNAP-9A

E. P. Hardy, P. W. Krey, and H. L. Volchok

March 1, 1972

UNITED STATES ATOMIC ENERGY COMMISSION
NEW YORK, N. Y. 10014

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

N O T I C E

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately-owned rights.

Printed in the United States of America
Available from

National Technical Information Service
U. S. Department of Commerce
Springfield, Virginia 22151
Price: Printed Copy \$3.00; Microfiche \$0.65

GLOBAL INVENTORY AND DISTRIBUTION OF Pu-238 FROM SNAP-9A

Edward P. Hardy, Jr.
Philip W. Krey
Herbert L. Volchok

March 1, 1972

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Health and Safety Laboratory
U. S. Atomic Energy Commission
New York, New York 10014

ABSTRACT

Following the burn-up of a SNAP generator containing Pu-238 in the upper atmosphere of the Southern Hemisphere in April 1964, balloon and aircraft sampling successfully documented the atmospheric transport and inventory of the debris from this unexpected release. Attempts to measure the fallout rate on a continuous basis at sites in both the Northern and Southern Hemispheres were not successful. By the end of 1970, the stratospheric measurements indicated that 95 percent of the SNAP plutonium had deposited over the earth's surface. Integrated fallout in the form of soil samples collected at over 60 sites throughout the world provided the data required to assess the distribution pattern and inventory of the deposited SNAP debris. Of the 17 kilocuries of Pu-238 originally in the generator, 13.4 ± 2.2 kilocuries are globally deposited with 3.1 ± 0.8 kilocuries in the Northern Hemisphere and 10.3 ± 2.1 kilocuries in the Southern Hemisphere. This accounts for essentially all of the Pu-238 inadvertently released as a result of the satellite abort.

TABLE OF CONTENTS

	<u>Page</u>
TEXT	
Introduction	1
Air and Fallout Measurements	2
Global Soil Sampling	4
Methods	5
Site Integrity	7
Analytical Quality Control	7
Latitude Distribution	9
Isotope Ratios	14
Global Inventory	14
Conclusions	17
Acknowledgements	18
References	19
APPENDIX	
Tables	23
Listing of people who cooperated in soil sampling program	30
TABLES	
Table 1. Depth Distribution of Pu-239 and Sr-90 in Soil	6

TABLE OF CONTENTS (Cont'd)

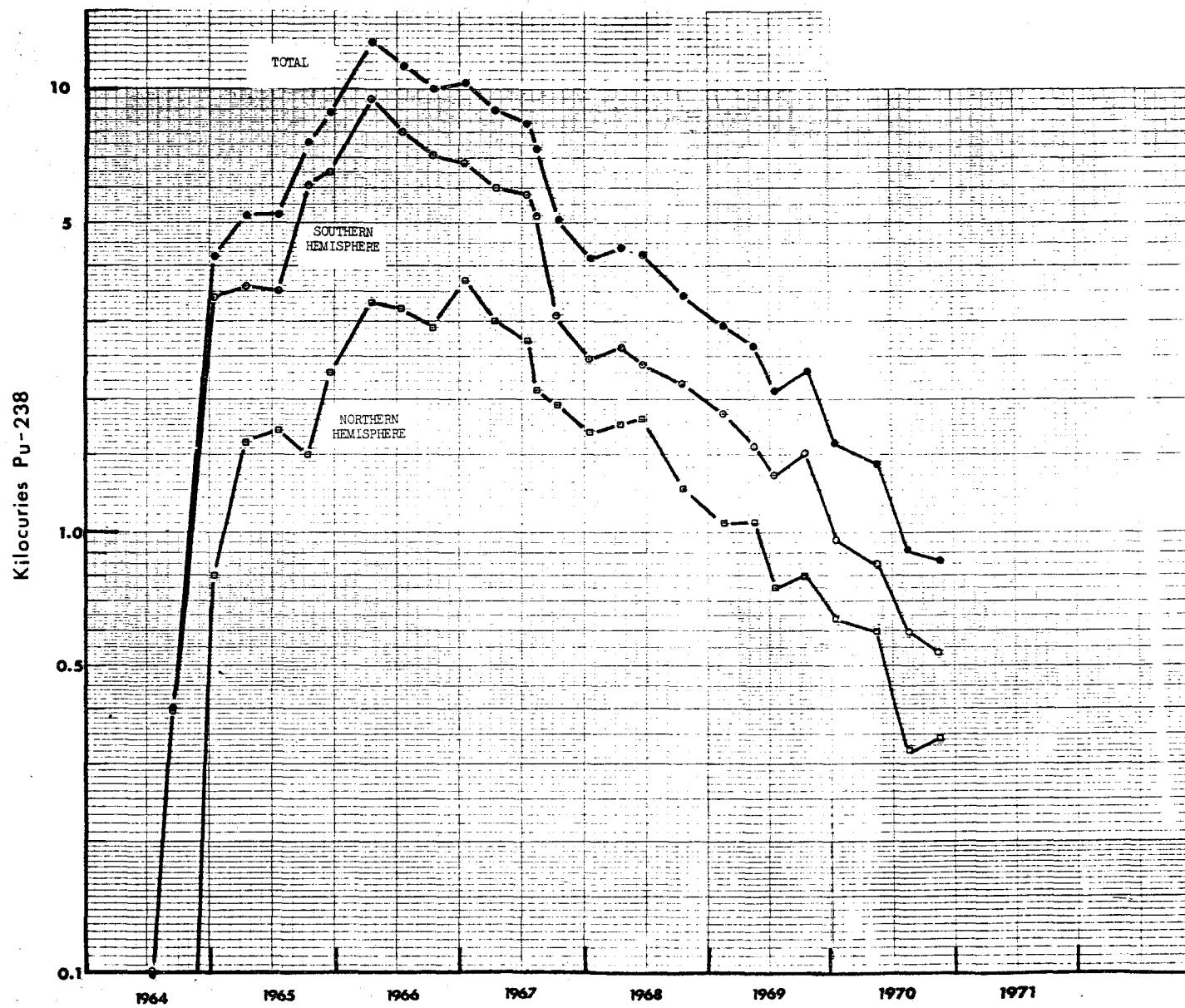
	<u>Page</u>
Table 2. Comparison of Pu and Sr-90 in Soils at Nearby Sites	8
Table 3. Pu Isotopes and Sr-90 in Soil Collected 1970-71	10
Table 4. Pre-SNAP-9A Soils.	12
Table 5. Average Latitudinal Distributions of Cumulative Sr-90, Pu-239, and Pu-238 Fallout	13
Table 6. Isotope Ratios from Soil Analyses	15
Table 7. Inventory Summary.	16
Table A. Pu-239 and Sr-90 Below 30 cm	23
Table B. Comparison of Methods for Pu in Soil	24
Table C. Pu in Blank Soil; Sr-90 in Blank Soil	25
Table D. Plutonium in Reference Soils	26
Table E. Sr-90 in Reference Soils	27
Table F. Pu Blind Duplicate Analyses of Soils Sampled in 1970	28
Table G. Sr-90 Blind Duplicate Analyses of Soils Sampled in 1970	29
ILLUSTRATION	
Figure 1. Stratospheric Inventory of SNAP-9A Pu-238. . .	3

INTRODUCTION

Plutonium isotopes, Pu-239, 240 and Pu-238 in particular, are injected into the stratosphere as a result of atmospheric nuclear weapons tests. These isotopes are eventually globally dispersed and reach the ground as particulate fallout in a manner similar to many of the fission products. About 8 years ago, however, an accidental stratospheric injection of Pu-238 occurred which has resulted in almost a three-fold increase in the global fallout of this isotope. The purpose of this report is to describe the method used by the Health and Safety Laboratory to determine the cumulative fallout and geographical distribution which resulted from this unexpected radioisotopic release.

On April 21, 1964, a Transit navigational satellite was launched with a Thor Able Star rocket from Vandenberg Air Force Base in California. The payload included a Systems for Nuclear Auxilliary Power generator, SNAP-9A, containing 17 kilocuries or about 1 kilogram of Pu-238^(1,2). Because the rocket failed to boost the satellite into orbital flight, the payload re-entered the atmosphere in the Southern Hemisphere^(2,3).

The SNAP-9A device, designed to convert heat developed by the Pu-238 into electrical energy, was not built for an intact re-entry. Based on subsequent stratospheric inventories⁽⁴⁻⁶⁾ it was concluded that the generator completely burned up during re-entry and ablated into small particles at an altitude of about 46 km⁽⁴⁾. Concentrations of the SNAP Pu-238 in the stratosphere were measurable through the end of 1970 when it was estimated that less than a kilocurie remained above 12 km⁽⁷⁾. Attempts to measure the ground deposition rate on a continuous basis using the HASL fallout network, were unsuccessful⁽⁸⁾. We finally resorted to soil sampling to obtain integrated fallout samples. By measuring the Pu-238 content of soils collected in many areas of the world we were able to estimate the global distribution and inventory of the accumulated SNAP-9A fallout. The soil data form the basis of this report, but first we shall briefly discuss the stratospheric, surface air, and deposition rate measurements that have been made.


AIR AND FALLOUT MEASUREMENTS

The SNAP-9A Pu-238 was first identified at 33 km over latitude 34° south, four months after the satellite failure⁽²⁾. The debris was collected on filters under the AEC's High Altitude Balloon Sampling Program. By January 1965 the SNAP plutonium was detected at 33 km in the Northern Hemisphere at latitude 31°⁽¹⁰⁾. The subsequent dispersion and subsidence of the debris was followed under Project Stardust, an aircraft sampling program sponsored by the Defense Atomic Support Agency⁽⁶⁾ and the AEC's continuation of the aircraft sampling under Project Airstream^(4,11-13). Figure 1 shows the stratospheric inventories at quarterly intervals from 1964 through 1970. Peak stratospheric concentrations occurred in 1966 and the stratosphere was subsequently depleted with a half-residence time of 14 months⁽⁷⁾.

Measurements were made of the SNAP Pu-238 particle sizes by radioautography of the balloon-borne filters bearing the debris collected between 20 and 30 km⁽¹⁴⁾. Although individual particles of SNAP debris could not be isolated, the size distribution of equivalent Pu-238 oxide spheres was log normal with a mode at about 0.013 μm (particle diameter) and a size range of 0.010 and 0.040 μm. As these small individual Pu-238 oxide particles entered the atmosphere they were expected to agglomerate with the larger natural aerosol particles quite rapidly.

Based on experiences with other high altitude injections of unique radioisotopes, predictions were made as to when ground level sampling systems would first detect fallout from the SNAP-9A^(2,15). Those predictions were eventually borne out. Ground level air measurements at Ispra, Italy first detected the SNAP plutonium in early 1966⁽¹⁶⁾. Shortly thereafter it was identified in monthly fallout collections in New York⁽¹⁷⁾ and Ispra⁽¹⁶⁾. The peak surface air concentration and deposition rate at Ispra occurred during the spring of 1967⁽¹⁸⁾. By this time, large area fallout collection systems in New York and Melbourne were discovered to be faulty due to contamination problems at HASL and incomplete removal of the plutonium from the collector at

Figure 1. Stratospheric Inventory of SNAP-9A Pu-238

Melbourne⁽⁸⁾. We began analyzing monthly fallout samples from Seattle, Honolulu, Rio de Janeiro, Salisbury, and Durban in 1968, but by this time the levels were too low. Ispra is the only site where continuous fallout measurements have been made. Consequently, it was neither possible to inventory the ground deposit nor determine the geographical distribution of the SNAP-9A fallout.

GLOBAL SOIL SAMPLING

The stratospheric inventories clearly indicated that by mid-1970, 95 percent of the SNAP Pu-238 had deposited on the earth's surface⁽⁷⁾. It was important to find out how it was distributed and to inventory the ground deposit since there was little information on which to base predictions. The isotope, mode and altitude of release, and the fact that the burn-up occurred in the Southern Hemisphere were conditions which had not been experienced. Knowledge of the fate of this debris is pertinent to studies of nuclear explosions in the upper atmosphere and the use of nuclear power sources in space.

Under the circumstances, soil sampling and analysis was the only way to measure the accumulated deposit. From October 1970 through January 1971, 65 sites around the world were sampled by HASL personnel and scientists from other countries (see appendix listing of people who assisted in sampling). The samples were sent to our laboratory where they were prepared for analysis and then submitted to two non-government laboratories, Teledyne Isotopes in Palo Alto, California (IPA) and Trapelo Division West in Richmond, California (TLW) for the actual chemical separation and counting of plutonium. A small number of the samples were analyzed for plutonium at HASL. The sampling^(18a) and analytical methods^(18b) were prescribed by HASL.

METHODS

The soils were collected from areas that had been undisturbed for at least 15 years. Each sample consisted of ten 8.89 cm diameter cores taken to 30 cm depth, representing a surface area of 622 cm². The samples were analyzed for Pu-238, Pu-239,240 (hereafter referred to as Pu-239), and Sr-90. The measured Pu-238 included that from weapons testing plus the SNAP-9A contribution. The Pu-239 was assumed to be entirely from weapons testing as we avoided areas known to be locally contaminated such as at Rocky Flats, Colorado⁽¹⁹⁾, Palomares, Spain⁽²⁰⁾, and Thule, Greenland⁽²¹⁾.

Strontium-90 analyses were carried out at HASL to compare with previous soil studies of this fission product⁽²²⁾ and to insure that the samplings included all of the accumulated fallout. Depth profiles taken at Brookhaven National Laboratory in September 1970 and reported in Table 1 indicated that 30 cm would be a suitable sampling depth for both nuclides. Table 1 shows that Sr-90 penetrated deeper than Pu-239 with 42 percent of the total Sr-90 deposit and 57 percent of the total Pu-239 deposit being contained in the top 7 cm. These data on vertical movement of Sr-90 and plutonium are in agreement with other studies⁽²³⁻²⁵⁾. At four other sites in the United States we sampled below 30 cm (see appendix Table A) and found less than 5 percent of the total Pu-239.

One thousand gram aliquots of soil were required to measure the total Pu-238 with one standard deviation of the counting error less than or equal to \pm 10 percent. An acid leaching procedure developed at HASL⁽²⁶⁾ was used to accommodate this large size sample. This procedure was compared to complete dissolution and two other extraction methods and found to be comparably efficient (see appendix Table B). Strontium-90 was extracted from 100 gram soil aliquots using a base-acid leaching method developed by the USDA Soil Conservation Service^(18c).

TABLE 1
DEPTH DISTRIBUTION OF Pu-239 AND Sr-90 IN SOIL

Depth (cm)	mCi per km ²		Percent of Total	
	Pu-239	Sr-90	Pu-239	Sr-90
BROOKHAVEN SOIL (September 1970)				
0-7	1.18±3%	30±9%	57	42
7-11	0.57±4%	21±6%	27	30
11-15	0.23±6%	11±12%	11	15
15-21	0.07±20%	5.8±7%	3	8
21-25	0.02±40%	1.4±20%	1	2
25-30	0.01±50%	1.9±50%	1	3
FRILFORD, BERKS. SOIL (October 1970)				
0-5	0.53±2%	15±8%	55	43
5-30	0.44±3%	20±14%	45	57

SITE INTEGRITY

We have previously demonstrated in our soil samplings for Sr-90 that the accumulated deposits at nearby sites are within 10 percent of one another on the average^(27,28). Table 2 shows the data for five areas in this most recent global survey. The average percent difference between nearby sites was 15 percent for Pu-239, 23 percent for total Pu-238, and 23 percent for Sr-90. These differences, larger than previously encountered, can be explained by the relatively few areas where two sites were sampled in this survey and the greater difficulty in finding undisturbed sites in 1970 as compared to five years ago. Furthermore, almost half of the samples were collected by people who had little experience in this type of sampling. For inventory purposes, however, these differences are quite tolerable.

ANALYTICAL QUALITY CONTROL

As is customary at HASL, the soil analyses were checked by submitting blanks, reference soils, and duplicate unknowns on a blind basis to the HASL and contractor laboratories. A soil collected before 1945 was used as a blank. Only once was a measurable Pu-239 value reported for the blank and even on this occasion, the activity level was an order of magnitude lower than that encountered in most samples (see appendix Table C).

Four reference soils were analyzed at random during the course of the analyses. The Brookhaven soil was sampled on the grounds of the Brookhaven National Laboratory on Long Island, New York. One hundred cores were taken to a depth of 5 cm and composited. The "Black" and "Red" soils were sampled 14 years ago near Raleigh, North Carolina and McHenry County, Illinois, respectively, and have been used extensively in other Sr-90 in soil studies. The Woodcliff

TABLE 2
COMPARISON OF Pu AND Sr-90 IN SOILS AT NEARBY SITES
(1970 SAMPLINGS, 0-30 cm)

Location	Distance Between Sites	mCi per km ²					
		Pu-239		(total) Pu-238		Sr-90	
		Site 1	Site 2	Site 1	Site 2	Site 1	Site 2
Oslo, Norway	meters	1.4	1.5	0.041	0.052	53	45
Wantage, U. K.	5 km	1.2	1.0	0.055	0.035	42	35
Melbourne, Australia	meters	0.61	0.56	0.079	0.099	22	22
New York, USA	100 km	2.4	2.6	0.098	0.097	-	-
Lourenco Marques, Moz.	meters	0.25	0.18	-	-	9	5

Lake, New Jersey sample was collected in March 1970 at a depth below 90 cm with the intention of using it as a blank. Before processing, the sample was slightly contaminated and so aliquots taken from the blended reference samples contain low but measurable amounts of Pu-239. Analytical results for these reference samples are shown in the appendix Table D. The error term associated with each value is that due to counting. Averages were calculated for each reference sample with an error term representing one standard deviation of the mean. In those sets of replicate soil aliquots where the counting errors were less than 10 percent, the maximum standard deviation of the mean was \pm 9 percent for Pu-239 and \pm 18 percent for Pu-238. Using the same criterion for the Sr-90 analyses, the maximum standard deviation of the mean was \pm 7 percent (see appendix Table E).

Five of the soils collected in this survey were analyzed in duplicate for the Pu isotopes. The analytical laboratories were unable to identify the samples. Average percent deviations between aliquots were 4 percent for Pu-239 and 6 percent for Pu-238 (see appendix Table F). Twenty-two sets of blind duplicates were analyzed for Sr-90 with an average percent deviation of 8 percent (see appendix Table G). These data convinced us that sample contamination was not a problem and that analytical reproducibility and accuracy were adequate for the objectives of this study.

LATITUDE DISTRIBUTION

The soil data are summarized in Table 3. The activity levels of the two plutonium isotopes and Sr-90 are expressed in the units, millicuries per square kilometer (mCi/km^2). Two isotope ratios, Pu-239 to Sr-90 and Pu-238 to Pu-239 are also given. The Pu-239 to Sr-90 ratio has been reasonably constant in stratospheric air⁽²⁹⁾ and in some areas, in fallout⁽³⁰⁾. Anomalously high ratios have occasionally been observed in surface air since 1968, however, but the reasons are not clear⁽³¹⁾. The Pu-238 to Pu-239 ratio reflects the contribution of weapons plutonium and the SNAP-9A Pu-238. The weapons

Table 3

Pu Isotopes and Sr⁹⁰ in SoilCollected 1970-71

Lat. band	Country	Site	Lat. ^o	Long. ^o	Avg. annual precip. (cm)	mCi per km ²			Pu ²³⁹ Sr ⁹⁰	Pu ²³⁸ Pu ²³⁹
						Sr ⁹⁰	Pu ²³⁹	Pu ²³⁸		
0 - 70 N	Greenland	Thule	76.6N	69.0W	<15	9	0.33	0.010	0.037	0.025
	U. S. A.	Barrow, Alaska	71.3N	156.8W	14	18	0.40	0.010	0.022	0.025
70 - 60 N	U. S. A.	Fairbanks, Alaska	64.8N	147.9W	28	34	0.85	0.040	0.025	0.048
		Reykjavik	64.1N	22.0W	86	55	1.5	0.052	0.028	0.034
	U. S. A.	Palmer, Alaska	61.6N	149.3W	41	32	0.92	0.044	0.029	0.048
		Bergen	60.4N	5.3E	192	92	3.1	0.123	0.034	0.039
60 - 50 N	Norway	Oslo	59.9N	10.8E	76	53	1.5	0.046	0.028	0.032
	U. K.	Wick, Caith.	58.4N	3.1W	80	56	1.4	0.048	0.025	0.034
	Denmark	Roskilde	55.6N	12.1E	59	48	1.2	0.038	0.025	0.032
	U. K.	Wantage, Berks	51.6N	1.4W	68	39	1.1	0.045	0.028	0.041
50 - 40 N	Germany	Munich	48.1N	11.6E	87	82	2.8	0.088	0.034	0.031
	U. S. A.	Puyallup, Wash.	47.2N	122.3W	109	58	1.4	0.046	0.024	0.032
	Italy	Ispra	45.8N	8.6E	145	84	2.5	0.085	0.030	0.034
	U. S. A.	Orono, Maine	44.9N	68.7W	94	63	1.7	0.057	0.027	0.033
	Japan	Sapporo	43.1N	141.4E	118	62	1.9	0.072	0.030	0.038
	U. S. A.	Vermillion, S. D.	42.8N	96.9W	65	86	2.3	0.104	0.027	0.046
	U. S. A.	Argonne, Ill.	41.8N	88.0W	84	74	2.1	0.069	0.028	0.033
	U. S. A.	New York, N. Y.	40.8N	73.9W	90	98	2.6	0.097	0.026	0.037
	U. S. A.	Denver, Colo.	39.8N	104.9W	38	67	1.8	0.077	0.027	0.043
40 - 30 N	U. S. A.	Manhattan, Kan.	39.2N	96.6W	77	88	2.4	0.087	0.027	0.036
	Portugal	Sacavem	38.8N	9.1W	73	58	1.5	0.048	0.026	0.032
	U. S. A.	Tulsa, Okla.	36.2N	95.9W	94	73	2.2	0.091	0.030	0.041
	U. S. A.	Raleigh, N. C.	35.8N	78.6W	116	91	2.4	0.105	0.026	0.044
	Japan	Tokyo	35.7N	139.8E	152	50	1.5	0.054	0.030	0.036
	U. S. A.	Burbank, Calif.	34.2N	118.4W	26	22	0.73	0.021	0.033	0.028
	Pakistan	Lahore	31.6N	74.4E	49	67	1.6	0.056	0.024	0.035
30 - 20 N	U. S. A.	Kingsville, Tex.	27.5N	97.9W	63	36	0.99	0.032	0.028	0.032
	U. S. A.	Ft. Pierce, Fla.	27.5N	80.7W	142	40	1.0	0.034	0.025	0.034
	U. S. A.	Weslaco, Tex.	26.2N	97.9W	61	28	0.88	0.037	0.031	0.042
20 - 10 N	U. S. A.	Papaikou, Hawaii	19.8N	155.1W	400	129	4.0	0.123	0.031	0.031
	Venezuela	Maracay	10.3N	67.5W	96	8	0.24	0.009	0.030	0.038
10 - 0 N	Colombia	Bogota	4.6N	74.1W	106	4	0.13	<0.002	0.032	
0 - 10 S	Kenya	Muguga	1.2S	36.6E	96	21	0.52	0.023	0.025	0.044
	Brazil	Belem	1.5S	48.5W	268	20	0.42	0.029	0.021	0.069
	Ecuador	Guayaquil	2.2S	79.9W	110	5	0.18	0.008	0.036	0.044
	Angola	Luanda	8.8S	13.3E	43	4	0.093	0.008	0.023	0.086
10 - 20 S	Peru	Lima	12.1S	77.0W	4	4	0.12	0.018	0.030	0.15
	Australia	Darwin	12.4S	130.2E	158	9	0.28	0.081	0.030	0.29
	Mozambique	Nampula	15.2S	39.2E	102	7	0.15	0.030	0.021	0.20
	Rhodesia	Salisbury	17.7S	31.0E	83	7	0.16	0.026	0.023	0.16
	Australia	Townsville	19.2S	146.8E	119	6	0.18	0.050	0.032	0.28
	Mozambique	Beira	19.8S	34.9E	151	5	0.17	0.040	0.034	0.24
20 - 30 S	Australia	Port Hedland	20.3S	118.6E	31	6	0.20	0.022	0.035	0.11
	Brazil	Angra dos Reis	23.0S	44.3W	26	26	0.60	0.112	0.023	0.19
	Australia	Alice Springs	23.7S	133.9E	24	10	0.35	0.079	0.035	0.23
	S. Africa	Pretoria	25.8S	28.2E	76	10	0.32	0.060	0.032	0.19
	Mozambique	Lourenco Marques	26.0S	32.6E	80	7	0.25	0.049	0.036	0.20
	Australia	Brisbane	27.4S	152.9E	108	19	0.40	0.071	0.021	0.18
	Australia	Perth	33.1S	115.9E	102	16	0.41	0.066	0.025	0.16
30 - 40 S	Chile	Santiago	33.5S	70.7W	36	9	0.22	0.048	0.024	0.22
	S. Africa	Stellenbosch	33.9S	18.8E	70	12	0.26	0.037	0.022	0.14
	Australia	Sydney	34.8S	150.7E	144	20	0.47	0.061	0.023	0.13
	Argentina	Buenos Aires	34.8S	58.5W	99	18	0.49	0.093	0.027	0.19
	Australia	Adelaide	35.2S	138.7E	88	14	0.33	0.086	0.024	0.26
	New Zealand	N. Auckland	35.8S	174.2E	181	16	0.43	0.096	0.027	0.22
	Australia	Melbourne	38.2S	145.9E	103	21	0.55	0.078	0.026	0.14
40 - 50 S	Chile	Puerto Montt	41.5S	73.0W	260	7.3	0.20	0.062	0.027	0.31
	Australia	Hobart	41.5S	147.1E	83	12.	0.26	0.051	0.021	0.19
	New Zealand	Greymouth	42.5S	171.2E	250	24.	0.67	0.142	0.028	0.21
	New Zealand	S. Canterbury	44.4S	171.2E	57	12	0.28	0.055	0.023	0.19
50 - 60 S	Chile	Punta Arenas	53.2S	70.9W	22	7				

Pu-238 to Pu-239 ratio should not vary greatly. A ratio of 0.03 is considered characteristic of weapons test debris^(29,32). The hemispheric differences found from the soil analyses are due to the unique geographical distribution of the SNAP debris.

There are not enough sites to warrant plotting these cumulative deposition data on a constant area world map and drawing isolines as was done for previous Sr-90 inventories⁽²²⁾. Instead, we grouped the sites into ten degree latitude bands and averaged the values. We plotted these averages against the sine of the latitude in order to make straight line extrapolations to zero at the poles. The weapons Pu-238 contribution was obtained by multiplying the Pu-239 values by 0.024. This factor is the average weapons Pu-238 to Pu-239 ratio found for six soils collected prior to fallout from the SNAP-9A. Table 4 shows the data for these pre-SNAP 9A soils. This average ratio has a standard deviation of \pm 12 percent. The SNAP-9A Pu-238 is simply the difference between the measured Pu-238 and the weapons Pu-238. The average activities per km^2 in each 10 degree latitude band are given in Table 5.

Results for one soil sample, reported in Table 3, were not included in the averaging. The site at Papaikou, Hawaii is in an exceptionally high precipitation region (400 cm per year). The measured deposition is reasonable for this amount of rainfall but the site is highly non-representative of the latitude band.

The error term associated with the average for each ten degree latitude band is simply the standard deviation when two or more sites are located in the same band. In those cases where only one site is represented or the value was derived by extrapolation, an average error for other bands in the hemisphere was applied.

The distribution patterns for Sr-90, Pu-239, and weapons Pu-238 are very similar showing heaviest deposition in the Northern Hemisphere temperate latitudes and minima in the polar and equatorial regions. There is a slight rise in the Southern Hemisphere temperature zone which, at its peak, is about one-fifth of the Northern Hemisphere maximum.

Table 4

Pre-SNAP-9A Soils

<u>Country</u>	<u>Site</u>	<u>Lat^o</u>	<u>Long^o</u>	<u>Date Sampled</u>	<u>Sr⁹⁰</u>	<u>mCi per km^{2*}</u>	<u>Pu²³⁹</u>	<u>Pu²³⁸</u>
					<u>Sr⁹⁰</u>	<u>Pu²³⁹</u>	<u>Pu²³⁹</u>	<u>Sr⁹⁰</u>
U. S. A.	Barrow, Alaska	71.3N	156.8W	Aug 1964	13	0.33	0.0082	0.025
Norway	Bergen	60.4N	5.3E	Jul 1964	74	2.8	0.073	0.038
U. S. A.	New York, N.Y.	40.8N	73.9W	Dec 1964	58	1.8	0.047	0.031
Panama	Canal Zone	9.0N	79.6W	Nov 1963	13	0.31	0.0083	0.024
Kenya	Muguga	1.2S	36.6E	Nov 1963	13	0.32	0.0074	0.025
Argentina	Buenos Aires	34.8S	58.5W	Dec 1963	7.8	0.24	0.0046	0.031

*as of Aug. 1971

Table 5

Average Latitudinal Distributions of Cumulative
Sr⁹⁰, Pu²³⁹, and Pu²³⁸ Fallout

<u>Hemisphere</u>	<u>Lat. band</u>	<u>Sr-90</u>	<u>Pu-239</u>	<u>Pu²³⁸</u>	
		<u>mCi per km²</u>		<u>weapons</u>	<u>SNAP-9A</u>
Northern	90 - 80	(3±1)	(0.10±0.04)	(2.5±1.0)	(0.1±0.06)
	80 - 70	14± 6	0.36±0.05	8.7±1.2	0.4±0.2
	70 - 60	53±28	1.6 ±1.0	38. ± 25.	26 ± 15
	60 - 50	49±7	1.3 ±0.2	31 ± 4	13 ± 4
	50 - 40	76±14	2.1 ±0.5	52 ± 11	26 ± 12
	40 - 30	64±22	1.8 ±0.6	42 ± 14	25 ± 15
	30 - 20	35±6	0.96±0.07	23 ± 2	11 ± 4
	20 - 10	8±4	0.24±0.10	5.8±2.3	3.2±1.8
	10 - 0	4±2	0.13±0.06	3.1±1.2	0
Southern	0 - 10	12±9	0.30±0.20	7.1±4.6	9.9±6.8
	10 - 20	6±2	0.18±0.05	4.2±1.3	36 ± 21
	20 - 30	13±8	0.35±0.14	8.4±3.2	57 ± 27
	30 - 40	16±4	0.40±0.12	9.4±2.7	61 ± 20
	40 - 50	14±7	0.35±0.21	8.4±5.1	69 ± 38
	50 - 60	7±3	(0.20±0.09)	(5.0±2.2)	(44 ± 23)
	60 - 70	(3±1)	(0.10±0.04)	(2.3±1.0)	(22 ± 12)
	70 - 80	(1±0.5)	(0.03±0.01)	(0.9±0.4)	(8 ± 5)
	80 - 90	(0.5±0.2)	(0.01±0.004)	(0.2±0.1)	(4 ± 2)

NOTES: results in parentheses were derived by extrapolation
error terms are standard deviations

The SNAP-9A Pu-238 has an entirely different distribution pattern. Most of the SNAP debris has deposited in the Southern Hemisphere where the maximum fallout is $2\frac{1}{2}$ times that in the Northern Hemisphere. As in the case of weapons debris there is a low in the equatorial region and decreasing deposition toward the poles.

ISOTOPE RATIOS

Table 6 shows the ratios of Pu-239 to Sr-90 and Pu-238 to Pu-239 found in the soil samples averaged by 10 degree latitude bands. The Pu-239 to Sr-90 ratio shows no significant hemispheric difference and averages on a global basis $0.028 \pm 15\%$. The relatively small standard deviation of the mean indicates that in most cases the soils sampled included the total Sr-90 that had fallen out. The Pu-238 to Pu-239 ratio for the Northern Hemisphere averaged $0.036 \pm 17\%$ and for the Southern Hemisphere from $10^\circ - 50^\circ S$, $0.20 \pm 25\%$. Again the standard deviations from the means are reasonably small indicating little fractionation within hemispheres. In the equatorial region of the Southern Hemisphere the Pu-238 to Pu-239 ratio is much lower probably reflecting interhemispheric mixing.

GLOBAL INVENTORY

The average and extrapolated activities per km^2 for each ten degree latitude band were multiplied by the area of the latitude band to calculate the total deposit in kilocuries. These values were then summed to obtain the inventories in Table 7. The errors were propagated by conventional means. For example, the square of the individual errors in each ten degree latitude band were summed and the square root taken to give the error of the hemispheric average.

Table 6

Isotope Ratios from Soil Analyses

<u>Hemisphere</u>	<u>Lat. Band</u>	<u>No. of Sites</u>	<u>Pu²³⁹/Sr⁹⁰</u>	<u>No. of Sites</u>	<u>Pu²³⁸/Pu²³⁹</u>
Northern	90 - 80	0	-	0	-
	80 - 70	2	0.030±0.011	1	0.025
	70 - 60	4	0.029±0.004	4	0.042±0.007
	60 - 50	4	0.027±0.002	4	0.035±0.004
	50 - 40	8	0.028±0.003	8	0.036±0.005
	40 - 30	8	0.028±0.003	8	0.037±0.006
	30 - 20	3	0.028±0.003	3	0.036±0.005
	20 - 10	2	0.031±0.001	2	0.035±0.005
	10 - 0	1	0.032	0	-
Avg.		80 - 0	32	0.028±0.003	
Avg.		80 - 10		30	0.036±0.006
Southern	0 - 10	4	0.026±0.007	4	0.061±0.021
	10 - 20	6	0.028±0.005	6	0.22 ±0.06
	20 - 30	6	0.030±0.007	6	0.18 ±0.04
	30 - 40	8	0.025±0.002	8	0.18 ±0.05
	40 - 50	4	0.025±0.003	4	0.22 ±0.06
	50 - 60	0	-	0	-
	60 - 70	0	-	0	-
	70 - 80	0	-	0	-
	80 - 90	0	-	-	-
Avg.		0 - 50	28	0.027±0.005	
Avg.		10 - 50		24	0.20 ±0.05

Table 7

INVENTORY SUMMARY

	kilocuries deposited			
	Sr-90	Pu-239	Weapons	Pu-238 SNAP-9A
Northern Hemisphere	9,000±1,100	253±33	6.1±0.8	3.1±0.8
Southern Hemisphere	2,600±600	67±14	1.6±0.3	10.3±2.1
Global Deposit	11,600±1,250	320±36	7.7±0.9	13.4±2.2

error terms are standard deviation

We estimate that $11,600 \pm 1,250$ kCi of Sr-90 has accumulated on the earth's surface from weapons tests. Within the limits of error, this is in agreement with the cumulative deposits derived from the 1965-67 soil survey⁽³³⁾, the HASL monthly fallout network⁽³⁴⁾ and the fallout sampling program operated by the United Kingdom Atomic Energy Authority⁽³⁵⁾. The total Pu-239 deposit is 320 ± 36 kCi and the weapons Pu-238, 7.7 ± 0.9 kCi. Our estimate of the SNAP-9A Pu-238 deposit, 13.4 ± 2.2 kCi, is in reasonable agreement with the 16 kCi we would expect to have fallen out based on the stratospheric inventory.

CONCLUSIONS

A global inventory and distribution pattern of Pu-238 fallout from the SNAP-9A satellite were derived from analyses of soils collected at over 60 sites throughout the world in 1970-71. As a result of this unique injection in the high stratosphere of the Southern Hemisphere, the SNAP-9A debris has a different distribution pattern than Pu-238 and fission products from nuclear weapons tests. Close to 75 percent of the total SNAP Pu-238 deposit is in the Southern Hemisphere whereas only about 20 percent of the total weapons Pu-238 fallout occurred in that hemisphere. In the Northern Hemisphere, 34 percent of the total Pu-238 fallout is attributed to SNAP-9A while in the Southern Hemisphere, 86 percent is from the generator. This accidental release of Pu-238 which occurred in April 1964, almost tripled the global deposit of this plutonium isotope by 1970. We can account for 13.4 ± 2.2 kilocuries deposited as compared to 17 kilocuries of Pu-238 which comprised the generator prior to burn-up. Since stratospheric inventories indicate slightly less than 1 kCi still in the atmosphere at the end of 1970, the fallout inventory derived from soil analyses, within the limits of error, provides a material balance of the SNAP-9A debris.

ACKNOWLEDGEMENTS

We wish to acknowledge the efforts of Gustave Farnham, Aaron Frankel, and John Weber who prepared the soil samples at HASL. All of the samples were analyzed for Sr-90 under the direction of Melvin Feiner and the reference soils and some of the unknowns were analyzed for plutonium by Norton Chu at HASL.

It was only through the cooperation of scientists in other countries that we were able to obtain soil samples from so many regions of the world. Many other people, both in the United States and South America made it possible for us to find suitable sites and assisted us in the sampling. The appendix lists the names and affiliations of those to whom we are indebted for their cooperation.

Valuable advice as to site locations and validity of the samples collected was given by Dr. Lyle T. Alexander, consultant to AEC.

REFERENCES

1. Finney, J. W.
U. S. Error Loses Deadly Plutonium in Sky Over Africa
New York Times, May 24, 1964
2. Harley, J. H.
Possible Pu-238 Distribution from a Satellite Failure
USAEC Report HASL-149, p. 138, October 1, 1964
3. Korsmayer, R. B.
Progress in Aerospace Safety
Nuclear Safety 5, (4), p. 303, Summer 1964
4. Krey, P. W.
Atmospheric Burn-up of a Plutonium 238 Generator
Science, 158, No. 3802, pp. 769-771, November 10, 1967
5. Telegadas, K.
The Seasonal Stratospheric Distribution of Plutonium-238
and Strontium-90: March through November 1967
USAEC Report HASL-204, p. I-2, January 1, 1969
6. Feely, H. W., J. P. Friend, H. Seitz, J. D. Martin, and
W. E. Erlebach
Final Report on Project Stardust
DASA 2166-3, March 15, 1971
7. Kleinman, M. T.
The Stratospheric Inventory of Pu-238
USAEC Report HASL-245, p. I-84, October 1, 1971
8. Volchok, H. L.
Fallout of Pu-238 from the SNAP-9A Burnup-V
USAEC Report HASL-227, p. I-34, July 1, 1970
9. Salter, L. P.
Detection of Debris from a SNAP-9A Satellite Failure
USAEC Report HASL-155, p. 300, January 1, 1965

10. Salter, L. P.
The Early Stratospheric Distribution of Debris from a
SNAP-9A Abort
USAEC Report HASL-158, p. 310, April 1, 1965
11. Krey, P. W.
Stratospheric Trends and Inventory of SNAP-9A Debris
USAEC Report HASL-181, p. I-2, April 1, 1967
12. List, R. J., L. P. Salter, and K. Telegadas
Radioactive Debris as a Tracer for Investigating
Stratospheric Motions
Tellus, 18, 345-353, 1966
13. Telegadas, K.
Seasonal Stratospheric Distribution of Cadmium-109,
Plutonium-238, and Strontium-90
USAEC Report HASL-184, p. I-53, January 1, 1968
14. Holland, W. D.
Final Report of Studies of Pu-238 Debris Particles from
the SNAP-9A Satellite Failures of 1964
Trapelo Div. West Report TLW-6006, May 1968
15. Machta, L.
Calculations of Pu-238 Concentrations from the SNAP-9A
Burn-up
USAEC Report HASL-155, p. 297, January 1, 1965
16. deBortoli, M. C. and P. Gaglione
SNAP Plutonium-238 Fallout at Ispra, Italy
Health Physics, Vol. 16, pp. 197-204, 1969
17. Volchok, H. L.
Fallout of Pu-238 from the SNAP-9A Burn-up - IV
USAEC Report HASL-207, p. I-5, April 1, 1969
18. Harley, J. H. (editor)
Manual of Standard Procedures
USAEC - HASL Report NYO-4700 (1971)
 - a. pp. D-04-01 to 07
 - b. pp. E-Pu-06-01 to 03
 - c. pp. E-Sr-01-17 to 18

19. Krey, P. W. and E. P. Hardy
Plutonium in Soil Around the Rocky Flats Plant
USAEC Report HASL-235, August 1, 1970
20. SIPRI Yearbook of World Armaments and Disarmament 1968-69
Humanities Press, New York, 1970
21. Aarkrog, A.
Radioecological Investigations of Plutonium in an Arctic
Marine Environment
Health Physics, Vol. 20, pp. 31-47, January 1971
22. Meyer, M. W., J. S. Allen, L. T. Alexander, and E. Hardy
Strontium-90 on the Earth's Surface, IV
TID Report 24341, May 1968
23. deBortoli, M. C. and P. Gaglione
Natural and Fallout Radioactivity in the Soil
Health Physics, 17, 701-710, 1969
24. Inoue, Y., and M. Sakanoue
The Determination of Plutonium in Soil Samples
J. of Rad. Res., Vol. 11, No. 2, pp. 98-106, July 1970
25. Yamagata, N., M. Chiba, and H. Kobayashi
Total Ground Deposition of Strontium-90 in Japan
J. of Rad. Res., Vol. 10, No. 2, pp. 62-72, June 1969
26. Chu, N. Y.
Plutonium Determination in Soil by Leaching and Ion-
Exchange Separation
Analytical Chemistry, 43, p. 449, March 1971
27. Hardy, E., P. Krey, and M. Feiner
Accumulated Fallout Strontium-90 in the Rocky Flats Area
USAEC Report HASL-237, p. I-11, October 1, 1970
28. Hardy, E., and P. W. Krey
Determining the Accumulated Deposit of Radionuclides by
Soil Sampling and Analysis
Proceedings of Environmental Plutonium Symposium,
LA-4756, 1971

29. Harley, J. H.
World-Wide Plutonium Fallout from Weapons Tests
Proceedings of Environmental Plutonium Symposium, LA-4756
1971
30. Miyake, Y., Y. Katsuragi, and Y. Sugimura
Deposition of Plutonium in Tokyo Through the End of 1966
Papers in Meteorology and Geophysics, Vol. 19, No. 2,
pp. 267-276, July 1968
31. Volchok, H. L. and P. W. Krey
Plutonium-239 Anomaly in the Troposphere
USAEC Report HASL-224, p. I-14, April 1, 1970
32. Mamuro, T. and T. Matsunami
Plutonium-238 in Fallout
Science, Vol. 163, pp. 465-467, January 31, 1969
33. Hardy, E., M. W. Meyer, J. S. Allen, and L. T. Alexander
Strontium-90 on the Earth's Surface
Nature, Vol. 219, No. 5154, pp. 584-587, Aug. 10, 1968
34. Volchok, H. L. and M. T. Kleinman
World-Wide Deposition of Sr-90 through 1970
USAEC Report HASL-243, p. I-88, July 1, 1971
35. Cambray, R. S., E. M. R. Fisher, W. L. Brooks, and
D. H. Peirson
Radioactive Fallout in Air and Rain, Results to the
Middle of 1970
AERE - R 6556, November 1970

A P P E N D I X

Table A

Pu-239 and Sr-90 Below 30 cm

<u>Site</u>	<u>depth (cm)</u>	<u>mCi per km²</u>		<u>Percent of total below 30 cm</u>	
		<u>Pu-239</u>	<u>Sr-90</u>	<u>Pu-239</u>	<u>Sr-90</u>
Brookhaven, N.Y.	0-30	2.1	\pm 2%	71	\pm 5%
	30-60	0.01	\pm 100%	1	\pm 100%
Denver, Colorado	0-30	1.8	\pm 2%	62	\pm 6%
	30-46	0.050	\pm 13%	7	\pm 33%
Raleigh, N. C.	0-30	2.4	\pm 3%	91	\pm 2%
	30-41	0.12	\pm 15%	5	\pm 25%
Vermillion, S. D.	0-30	2.3	\pm 7%	86	\pm 2%
	30-41	0.063	\pm 18%	2	\pm 33%
Weslaco, Texas	0-30	0.85	\pm 2%	20	\pm 11%
	30-41	0.039	\pm 38%	8	\pm 10%

Table B
Comparison of Methods for Pu in Soil
(BROOKHAVEN SOIL, 1970)
(100 g aliquots)

<u>Method</u>	<u>Lab</u>	<u>fCi Pu²³⁹ per gram</u>
HNO ₃ -HCl leach	HASL	18.6 ± 5%
	HASL	17.7 ± 6%
	IPA	22.1 ± 3%
	IPA	18.9 ± 3%
	IPA	19.1 ± 5%
Δ to 500°C then HNO ₃ -HCl leach	HASL	19.2 ± 5%
	HASL	18.2 ± 5%
HNO ₃ -HCl - HF leach	IPA	18.4 ± 4%
Complete dissolution	IPA	18.5 ± 5%
	IPA	18.9 ± 5%

Table C

Pu in Blank Soil
(soil collected before 1945)

(1000 gram aliquots)

<u>Lab</u>	femtocuries per gram (fCi/g)	
	Pu-239	Pu-238
IPA	0.009 ± 100%	0.004 ± 100%
IPA	0.20 ± 7%	0.001 ± 100%
IPA	0.003 ± 100%	0.003 ± 100%
TLW	0.009 ± 100%	0.01 ± 100%
TLW	0.02 ± 100%	0.04 ± 100%

Sr⁹⁰ in Blank Soil
(soil collected before 1945)

<u>Lab</u>	aliquot weight	fCi per g
	(g)	
IPA	100	1.4 ± 100%
HASL	100	4.5 ± 100%
HASL	100	4.5 ± 100%
HASL	200	9.0 ± 100%

Table D

Plutonium in Reference Soils
(1000 gram blind aliquots)

Lab	<u>femtociuries per gram (fCi/g)</u>	
	Pu-239	Pu-238
BROOKHAVEN (1970)		
HASL	19.5 ± 0.5%	0.86 ± 5%
"	19.0 ± 0.5%	0.76 ± 6%
"	18.7 ± 0.5%	0.81 ± 6%
"	18.6 ± 1%	0.47 ± 7%
IPA	19.8 ± 2%	0.86 ± 4%
"	19.0 ± 2%	0.72 ± 4%
"	19.2 ± 3%	0.76 ± 5%
"	18.3 ± 2%	0.72 ± 6%
"	18.7 ± 3%	0.75 ± 5%
TLW	18.4 ± 3%	0.72 ± 7%
"	18.7 ± 2%	1.0 ± 5%
Avg.	18.9 ± 3%	0.77 ± 18%
"BLACK SOIL" (1958)		
HASL	2.5 ± 10%	-
IPA	2.4 ± 2%	0.054 ± 15%
TLW	2.4 ± 5%	0.032 ± 88%
Avg.	2.4 ± 3%	0.043 ± 37%
"RED SOIL" (1958)		
HASL	1.6 ± 10%	-
IPA	1.9 ± 2%	0.058 ± 15%
TLW	1.8 ± 6%	0.076 ± 36%
Avg.	1.8 ± 9%	0.067 ± 19%
WOODCLIFF LAKE (1970)		
IPA	0.58 ± 4%	0.014 ± 50%
TLW	0.68 ± 16%	0.081 ± 99%
Avg.	0.63 ± 11%	-

Table E
Sr⁹⁰ in Reference Soils
 (HASL analyses)

Aliq. wt (g)	fCi q
-----------------	----------

BROOKHAVEN (1970)

100	504 ± 2%
200	468 ± 1%
200	459 ± 1%
100	423 ± 1%
100	423 ± 1%
100	473 ± 2%
100	473 ± 2%
100	514 ± 2%

Avg. 46.7 ± 7%

"BLACK SOIL" (1958)

100	54 ± 8%
100	55 ± 8%
100	53 ± 8%

Avg. 54 ± 2%

"RED SOIL" (1958)

100	40 ± 11%
100	50 ± 9%

Avg. 45 ± 16%

Table F

Pu Blind Duplicate Analyses of Soils Sampled in 1970
(Lab: IPA, 1000g aliq.)

Site	aliq.	fCi per g	
		Pu-239	Pu-238
Argonne, Illinois	A	4.6	0.15
	B	4.4	0.14
Angra dos Reis, Brazil	A	1.6	0.29
	B	1.7	0.32
Roskilde, Denmark	A	2.9	0.10
	B	3.0	0.09
Ispra, Italy	A	11.7	0.39
	B	11.4	0.38
Tokyo, Japan	A	9.4	0.33
	B	9.2	0.33

Table G

Sr⁹⁰ Blind Duplicate Analyses of Soils Sampled in 1970

Lab: HASL, 100g aliquots

<u>Site</u>		<u>fCi per g</u>
	<u>aliqu. A</u>	<u>aliqu. B</u>
Argonne, Illinois	162	158
Angra dos Reis, Brazil	76	68
Ispra, Italy	374	396
Tokyo, Japan	311	306
Brookhaven, New York	194	203
Fairbanks, Alaska	90	81
Palmer, Alaska	117	99
Burbank, California	58	58
Denver, Colorado	171	144
Papaikou, Hawaii	757	748
Manhattan, Kansas	234	225
Orono, Maine	167	149
Vermillion, S. D.	230	243
Puyallup, Washington	261	212
Bergen, Norway - 1	234	203
Bergen, Norway - 2	1099	1072
Oslo, Norway - 1	162	144
Oslo, Norway - 2	131	131
Muguga, Kenya	63	58
Samford, Australia	54	45
Warragul, Australia - 1	54	58
Warragul, Australia - 2	76	72

Persons Who Cooperated in the 1970-71 Soil Sampling Program

(An asterisk, *, indicates that the soil was collected under the direction of the individual cited. Otherwise HASL personnel collected the sample with the co-operation of the person listed).

UNITED STATES

*Mr. Samuel Rieger U. S. Dept. of Agriculture Soil Conservation Serv. Palmer, Alaska	Dr. H. J. Murphy University of Maine Orono, Maine
Mr. George A. Izay Dept. of Parks and Recreation Burbank, California	Mr. Edgar Hunter Brookhaven National Lab Upton, L. I., New York
Mr. Lester B. Volchok North Hollywood, California	Dr. Jack V. Baird North Carolina State University Raleigh, North Carolina
Mr. William Major Trapelo Div. West Richmond, California	Mr. Pat Combs Tulsa International Airport Tulsa, Oklahoma
Mr. George Atencio Dept. of Parks and Recreation Denver, Colorado	Dr. Edwin H. Shaw, Jr. The University of South Dakota Vermillion, South Dakota
Mr. Thomas L. Sloan Cow Creek Ranch Fort Pierce, Florida	Dr. W. R. Cowley Texas Agricultural Experiment Station Weslaco, Texas
Dr. H. James Simpson National Oceanic and Atmos- pheric Admin. Mauna Loa Observatory, Hilo, Hawaii	Mr. L. F. Wilkinson, Jr. King Ranch Kingsville, Texas
Dr. Philip F. Gustafson Argonne National Laboratory Argonne, Illinois	Dr. D. F. Allmendinger Western Washington Research and Extension Center Puyallup, Washington
Dr. Clenton E. Owensby Kansas State University Manhattan, Kansas	

SOUTH AMERICA

Dr. D. Beninson
Comision Nacional de Energia
Atomica
Buenos Aires, Argentina

Dr. Eduardo Penna-Franca
Instituto de Biofisica da UFRJ
Rio de Janeiro, Brazil

Dr. Alfonso Wisniewski
Instituto de Pesquises e
Experimentacao Agropecuaria
Belem, Brazil

*Commandante Sergio Bravo Flores
Oficina Meteorologica de Chile
Santiago, Chile

Dr. Jaime Terro Gutierrez
Instituto de Asuntos Nucleares
Bogota, Colombia

Sr. Gustavo Wray A.
Estacion Meteorologia
Subdireccion General de Aviacion
Civil
Guayaquil, Ecuador

Sr. Guillermo Belevan
Corporacion Peruana de Aeropuertos
y
Aviacion Comercial
Lima, Peru

Dr. J. Solanos
Instituto Venezolano de
Investigaciones Cientificas
Caracas, Venezuela

EUROPE

*Dr. Asker Aarkrog
Riso Research Establishment
Roskilde, Denmark

*Dr. F. B. Ellis
Agricultural Research Council
Wantage, Berks, England

*Dr. Rene Coulon
Commissariat a l'Energie Atomique
Palaiseau, France

*Dr. F. Wachsmann
Institut fur Strahlenschutz
Munich, Germany

*Mr. Brian Smith
AFCRL Geopole Station
Thule, Greenland

*Dr. Bjarni Helgason
Agricultural Research Institute
Reykjavik, Iceland

*Dr. Maurizio de Bortoli
Joint Nuclear Research Centre
Ispra, Italy

*Dr. T. Hvinden
Norwegian Defense Research
Establishment
Kjeller, Norway

*Dr. Armando Severo
Junta de Energia Nucleares
Sacavem, Portugal

AFRICA

*Dr. Augusto Ribeiro da Fonseca
Junta de Energia Nucleares
Luanda, Angola

*Dr. J. R. Blackie
East African Agriculture and
Forestry
Research Organization
Nairobi, Kenya

*Dr. Oliveira Sampaio
Junta de Energia Nucleares
Lourenço Marques, Mozambique

*Dr. J. G. Thompson
Ministry of Agriculture
Salisbury, Rhodesia

*Dr. J. K. Basson
Atomic Energy Board
Pelindaba, Rep. of S. Africa

ASIA

*Dr. H. Rouhaninejad
Tehran University Nuclear
Centre
Tehran, Iran

*Dr. Noboru Yamagata
The Institute of Public
Health
Tokyo, Japan

*Dr. Chae-Shik Rho
Atomic Energy Research
Institute
Seoul, Rep. of Korea

*Dr. Ishfaq Ahmad
Atomic Energy Centre
Lahore, Pakistan

*Dr. Pao-Shan Weng
National Tsing Hua University
Hsinchu, Taiwan

AUSTRALIA AND NEW ZEALAND

*Mr. J. R. Moroney
Atomic Weapons Tests Safety
Committee
Victoria, Australia

*Dr. G. E. Roth
National Radiation Laboratory
Christchurch, New Zealand