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.. . . . ABSTRACT 

The r o l e  of the  d i g i t a l  computer i n  the design and analysis  of  e lec t ronic  

c i r c u i t s  i s  discussed with specia l  a t t en t ion  given t o  the  problems created by 

steady-state and t r ans ien t  nuclear environments. Examples a re  presented which 

i l l u s t r a t e  the  usage, capab i l i ty  and l imi ta t ions  of severa l  exis t ing analys is  

programs. ,The current  d i rec t ion of research and p r o g r m l n g  eYYorts i n  the 

a rea  of automatic c i r c u i t  analys is  programs i s  a l s o  considered. 
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THE DESIGN AND ANALYSIS OF ELEKTRONIC CIRCUITS 
BY DIGITAL COMPUTERS 

Introduction 

I n  order t o  e f f i c i e n t l y  apply computing machines t o  an area  of science o r  technology, a 

well-defined theory must e x i s t  which provides a numerical algorithm f o r  proceeding from a given 

s e t  of i n i t i a l  data t o  the desired solut ion.  Unfortunately, t h i s  prerequis i te  i s  not s a t i s f i e d  

i n  the area  of e lec t ronic  c i r c u i t  design because i n  a l l  but the most t r i v i a l  s i tua t ion ,  there  

i s  no algorithm which leads from a speci f ica t ion sheet  t o  the  topology of a sui table  c i r c u i t .  

Each designer has h i s  own mental processes fo r  subdividing a design problem i n t o  e lec t ronic  sub- 

systems which he can synthesize with c i r c u i t s  whose proper t ies  a r e  known and which a re  p a r t  of 

h i s  design reper to i re .  Once a topology has been se lec ted,  however, it i s  possible t o  use the 

general and mathematically rigorous theory of c i r c u i t  analys is  t o  inves t igate  the propert ies of  

the c i r c u i t  and determine the merit of  the  proposed design. A s  a  r e s u l t ,  most current  appli-  '. 
cations of  cornpi~t~~rs  jn the  design and analys is  of e l ec t ron ic  c i r c u i t s  generally have been \ 

directed toward the analys is  problem whereas the design problem has been t r e a t e d  through repeated 

analyses and optimizations of a predetermined c i r c u i t  topology. 

Whenever the subject  of c i r c u i t  analys is  i s  discussed, advocates of the experimental 

approach immediately question the wisdom of using computer analys is  techniques ins tead of  the 

laboratory "bread-board" t o  ve r i fy  o r  optimize designs. I n  view of the  cost  of  computer time, 

the  inaccuracy of component models and the d i f f i c u l t y  i n  obtaining representative parameter 

values f o r  these models, it must be admitted t h a t  t h i s  posi t ion i s  well founded. However, it 

should be rea l i zed  t h a t  analys is  by means of generalized computer programs does not compete 

with, but complements, the usual  design procedures. The advantages of  each method can be com- 

bined t o  increase the  productivity of  the design engineer and improve the performance and 

r e l i a b i l i t y  of the f i n a l  product. This paper i s  therefore  intended t o  c a l l  a t t en t ion  t o  severa l  

ex i s t ing  c i r c u i t  analys is  programs and t o  indicate  a number of ways i n  which these programs 

could be used t o  complement ex i s t ing  design procedures, especia l ly  i n  the design of r ad ia t ion  

to le ran t  c i r c u i t s .  

. . . . 

Exist ing .Circui t  Analysis Programs . . . . . . 

I n  order t o  show the usef i lness  of a n a l y s i s  programs., i t ,  i s  expedient t o  f i r s t  discuss t h e  

input formats of some ex i s t ing  programs and thereby indicate  t h e i r  genera l i ty  and ease' of  use.  

These discussions a r e  by no means complkte and' should be 'considered only a s  introductions t o  the  



respect ive  programs. These programs a re ,  with one exception, documented and the reader i s  

r e fe r red  t o  these documents fo r  addi t ional  d e t a i l .  

PREDICT 
\ 

The PREDICT Analysis Program1 was developed by the  Radiation Effects  Department of the 

In te rna t iona l  Business Machines Corporation, Owego, New York, t o  predic t  the e f f e c t  of t r ans ien t  

r ad ia t ion  upon e lec t ronic  hardware. This program, which i s  wri t ten  fo r  the IBM 7090 computer, 

i s  predicated upon the  assumption t h a t  every c i r c u i t  can be modeled by a col lec t ion of r e s i s t ive ,  

capaci t ive  and inductive components, voltage and current  sources and mutually inductive'compo- 

nents.  The maximum c i r c u i t  s i ze  i s  l imi ted  t o  300 components and 2000 c i r c u i t ' d a t a  cards. 

Nonlineari t ies can be included by def'ining the  res is tance ,  capacitance, inductance and source 

coef f i c i en t s  a s  f'unctions of' the appropriate voltage o r  current .  The form of  these nonline- 

a r i t i e s  can 'be speci f ied  by equations i n  the  Fortran format o r  by an a r ray  of tabular  data.  

Aii illustration of' the s teps  required t o  anal.yze a si.mp1.e amplif ier  using PREDICT i s  ,shown 

i n  Figure 1. F i r s t ,  the schematic diagram shown i n  Figure 1.a i s  converted t o  an equivalent 

network by replacing each device by an appropriate equivalent c i rcui t*  a s  i l l u s t r a t e d  i n  Figure 

l b .  The.PREDICT input format assumes t h a t  every voltage source i s  i n  s e r i e s  with and every 

current  source i s  i n  p a r a l l e l  with a passive element. Therefore, the i n t e r n a l  res is tance  of 

each driving. source i s  normally included i n  the  equivalent network. Next, every node (except 

those nodes between voltage sources and t h e i r  respective s e r i e s  elements) i s  assigned a unique 

number and every passive component i s  assigned a unique alpha-numeric name with pref ix ,  . . R j  L o r  . 

C t o  indicate  a r e s i s t o r ,  inductor, or  capacitor.  Names a r e  assigned t o  current  and voltage 

sources by preceding the name of t h e i r  respective p a r a l l e l  o r  se r i e s  element by a J or an E, 

respec L l v e l y  . 
In order Lo analyz'e the amplif ier  shown i n  Figure l a ,  the information contained i n  Figure 

l c  i s  punched on data cards. The beginning of the  problem i s  s i g n i f i e d  by a card containing 

the word START followed by one or  more t i t l e  cards which serve' t o  iden t i fy  , the  problem. A l l  

passive elements are  entered a f t e r  the word BRANCHES by l i s t i n g  the element name, i t s  respective 

node p a i r  and the  coeff ic ient  value.  . I n  the  case of  nonlinear elements, the  coeff ic ient  i s  

defined by e i t h e r  an equation o r  a tabular  ar ray  a s  i l l u s t r a t e d  by the  fourth ent ry  under 

BRANCHES i n  Figure l c .  Sources a r e  encoded a s  the  source name, the node number. toward which . 

the assumed posi t ive  d i rec t ion of the  source i s  or iented and the  source 'value o r  equation. The 

name of the  voltage o r  current ,associa ted  with a. pa.rtici11a.r element, is  derived by prefixing.  the 

element name with a V or  I, respect ively .  I n i t i a l  conditions and the  desired output are  then 

spec i f i ed  uniquely by these variable names as  i l l u s t r a t e d  i n  Figure l c  under. INITIAL CONDITIONS 

and OUTPUT. Nonlineari t ies spec i f i ed  i n  equation form and t,he d;r.t,;l. t , a . b l ~ s  a.re j.nrluileil. a f t e r  

a FUNCTIONS card. The equations, which a re  wri t ten  i n  the  usual Fortran format, may contain 

* 
Diode and t r a n s i s t o r  models are  presented i n  Appendix I .  



START 
SAMPLE PROBLEM - SIMPLE AMPLIFIER 10-21-64 

BRANCHES 
RS, 1 - 2 = 0 .050 
CI 2 - 3 = I O . O E 6  
RE' 3 - 4 = 0 . 1 2 0  
C B ~ ,  4 - 5 = EQUATION I 
'R2 5 - 1 = 0 . 1 0 0  
C C ~ ,  6 - 4.= EQUATION 2 
RC, 7 - 6 = 0.060 
R l ,  1 - 7 = 0 . 5 0 0  

SOURCES 
ERS, 2. = EQUATION 3 
JCBE, 5 = EQUATION 4 
JCCB, 4 = EQUATION 5 
ERl, 7 =10.0 

INITIAL CONDITIONS 
VC I = 0.68 
VCBE = 0.58 
VCCB = 8.76 

OUTPUT 
ERS 
VR I 
VR2 

FUNCTIONS 
EQUATION I = 5.0 + IO.6/SQRTF(VCBE + 1.01 + 3.OE - 9*EXPF(39.O*VCBE) 
EQUATION 2 = 5.0 + 5.6/SQRTF(VCCB + 1.0) 
EQUATION 3 = SINF (I.OE6 *TIME) 
EQUATION 4 = 1.52E-IO*(EXBF(39.0*VCBE) - 1.0) 
EQUATION 5 = 0.982* 1.52E- IO*(EXPF(39.0*VCBE) - 1-01 

Figure 1 Predict  Example and Data Format 



exponentiation, mul t ip l ica t ion,  division,  addit ion and subtraction operations a s  well a s  square 

root ,  s ine ,  cosine, exponential,  arctangent, hyperbolic tangent and natura l  logarithm functions. 

These equations may be. functions of  time, t ab les ,  voltage o r  current .  The STOPITMF: card s igni-  

f i e s  the conclusion of the c i r c u i t  speci f ica t ion.  This card i s  followed immediately by a card 

containing the r e a l  problem time a t  which the s o l u ~ i o n  i s  t o  be terminated, the allowable 

numerical in tegra t ion  e r ro r s ,  maximum integra t ion s t e p  s i ze ,  the maximum computer running time, 

e t c .  This i s  the  only card i n  the  PREDICT data which requires a f ixed f i e l d  format. 

Af ter  reading the  STOFTWE data card, PREDICT formulates a mathematical model of the c i r -  

c u i t  and numerically solves f o r  the t r ans ien t  response of  the desired var iables .  This solution' 

i s  p r j  nt.ed i n  tabular  form and, i f  p lo t s  a re  requested, i n  a form required fo r  the  Calcomp. 

p l o t t e r .  Continue, P lo t  and Message operating modes a r e  a l so  provided i n  order t h a t  a solution 

may be continued pas t  a previous termination point ,  addi t ional  data may be p lo t t ed  o r  specia l  

operating ins t ruc t ions  may be issued t o  the computer operator.  

NET-1 

The NET-1 Analysis Program2 was originally wri t ten  f o t  and developed on the  MAJKUC I1 corn- 
- 

puter .  However, the recent demand fo r  c i r c u i t  analys is  programs has prompted a t r ans la t ion  of 

t h i s  code t o  the IBM 7090/7094 language. This t r ans la t ion  should be completed and made avai l -  

able t o  the public i n  the near fu ture .  

The input  format f o r  NET-.l i s  i l l u s t r a t e d  i n  Figure 2 where a typ ica l  schematic diagram 

and the necess?:!.ry NET-1 input data are  shown. As indicated i n  Figure 2, the format f o r  r e s i s -  

t o r s ,  capacitors and inductors i s ,  except f o r  punctuation and naming conventions, iden t i ca l  t o  

t.he Ff3EDICT format. However, i n  contras t  t o  the PREDICT code, the coeff ic ients  of these com- 

ponents must be cons.l;ar~Ls. Tllerefo~e,  .1;1111e v a r y i l l g  cocfficieizta, which a r c  uocful i n  modeling 

such things as  radiation-induced conductivity mo&ulatibn, cannot 'be 'incl.udeC1 i l l  a NET-1 analysts. 

The nonlinear behavior of  diodes and t r a n s i s t o r s  i s  included i n  an analysis  by using pre- 

programmed diode and Ebers-Moll t r a n s i s t o r  models. These models a re  speci f ied  b y  simply writ ing 

T ( t r a .ns i s to r )  or D (diode) followed by the  appropriate node numbers and device code. The NET-1 

program then queries a l i b r a r y  tape t o  locate  the appropriate model coeff ic ients .  While t h i s  

fea ture  makes the program very easy t o  use, it r e s t r i c t s  the  v e r s a t i l i t y  of the  code by forcing 

a b u i l t - i n  model upon the user  and not permitting the use of models which a re  more appropriate 

f u r  a p a r t i c u l a r  pro'blcm. 

I n  addi t ion t o  obtaining the t r ans ien t  response o f  a c i r c u i t ,  the NET-1 program a l s o  per- 

forms other  tasks frequently required,  i n  the  design of c i r c u i t s .  During a t r ans ien t  analys is ,  

m,-1 a.iitnmatically p r i n t s  the  s t a t e  of a l l  diodes and t r a n s i s t o r s  and the time a t  which any 

s t a t e  changes occur. The power d i s s ipa t ion  of each semiconductor device i s  a l so  computed and, 

i f  maximum ra t ings  a r e  exceeded, recorded a s  p a r t  of  the output data.  The power d iss ipat ion of 

each semiconductor device i s  a l so  computed and, i f  maximum ra t ings  a re  exceeded, the maximum 

d i s s ipa t ion  i s  recorded as  pa r t  of  the output data.  NET-1 can a l so  perform steady-state 



TIME (NANOSECONDS) 

l NPUT SIGNALS 

"SAMPLE PROBLEM * * AND GATE INVERTER" 
- ,  

RI P3  1 10.0 
R2 V2 2 90.0 
R3 2 3 0.500 
R 4  VI 4 3.3 
D l  I PI IN279 
D2 I P 2  IN279  
03 1 2 IN279  
T I  0 3 4 2N709 
V I  +10.0 
v 2  -20.0 
P I  PULSE 0.0 5.0 10.0 
P 2  PULSE 0.0 5.0 25.0 
P 3  PULSE 0.0 10.0 50.0 
RESOLUTION I. 
INTERRUPT 500. 
END 

Figure 2 NET-1 Example and Data Format 



analyses t o  determine whether o r  not a power supply f a i l u r e  or  an improper power supply ,turn-on 

'sequence w i l l  jeopardize any of  the diodes or t r a n s i s t o r s  i n  the c i r c u i t .  

CIRCUS 

CIRCUS is  being developed by the  ~ a d i a t i o n  Effects  Unit, The Boeing Company Aero-Space 

~ i v i s i o n ,  f o r  the purpose of simulating the  e f f e c t  of  t r ans ien t  radia t ion upon systems and 

c i r c u i t s .  This program i s  current ly  i n  the firial.development ktages and d ~ c ~ e n t a t i o n  on 

formats and computer requirements i s  not available a t  t h i s  time. The prbgr& i s  wri t ten  in 

. . Fortran and has been x u r l  on IllM 7094. and Univac 17.07 computers. 

. MISSAP ' , 
' -  

. , . . ' . The MIchigan S t a t e  System Analysis Program3 i s  being developed a t  Michigan S ta te  univers i ty  
. . 

, under thk sponsorship of In ternat ional  Business Machines Corporation. Although t h i s  program has 

not  been released t o  the  general public, i t  i s  of pa r t i cu la r  i n t e r e s t  because' it reprcacntc one 

of the  f i r s t  attempts t o  automatically analyze a system composed o r  Lulli d i s t r ibu tcd  (trans- 

mission l i n e s )  and lumped parameter compo~~erits. I n  addi t ion t o  Ponniil.ating a mathematical model 
' 

of th? lumped parameter pa r t  of  the  system, MISSAP generates difference equation approximations 

t o  the' p a r t i a l  d i f f e r e n t i a l  equations which describe ' transmission l i n e s .  These 'difference 

equit ions and the equations characterizing the lumped parameter p a r t  of the  system are  then 

solved numerically and the  solut ions  a re  tabula ted  o r  p lot ted .  Fourier transforms of the t ran-  . 

s i e ~ l t   solution^ are  a l s o  tabula ted  and p lo t t ed  cpon request. 

The input format f o r  MISSAP.is s imi lar  t o  NET-1 although a f ixed  f i e l d  format i s  required 

and no p r o v i ~ i o n  i s  m.d.e Tor a translslul:  or  a o d c  l i b r a r y ;  I n  a.diFi.tion, voltmeter and ammetcr 

r!rlrr~y~r,negt~ n r e  ilsed, t o  specify the  desired output. Specla1 h:La cards a r e  a lco  needed t o  i n d i -  

cate t h c  placement of: transmission l i n e s  i n  the  c i r c u i t .  

Except f o r  the pre-programed t r a n s i s t o r  and diode models, a l l  components considered i n  a 

MlSSAP analys is  must be l i n e a r  with constant coefMcients.  Thc diode and t.ra.nsistor models are  

of the  Ehars-Moll form but do r ~ o t  incluck the r lu~~l i l lenr  dcplotion and rli ffiision capacitance 

terms. llhese capacl Laucc e f fec t0  oan be nppmxima.ted by including. l i n e a r  capacitance between 

the  external. terminals of the  device. 

ECAP - 
The o r ig ina l  version of the Electronic Circui t  Analysis Program,' ECAP, was programed fo r  

the  IBM 1620 computer. This programming was .done i n  the Fortran language and can therefore be 

e a s i l y  converted t o  other nlachi~ies. ECRP i~ capable nf performing ac ,  dc and t r ans ien t  analyses 

of c i r c u i t s  containing up t o  20 nodes and 60 R ,  L or C components. Nonlinear elements a r e  

admitted i n  the  analys is  by automatically changing component coeff ic ients  whenever a speci f ied  

component current passes through zero. This program a l s o  contains provisions fo r  automatically 

d.et,armining - s e n s i t i v i t y  coeff ic ients  ( the  r a t e  of  change of a voltage o r  current  with respect to. 

some c i r c u i t  parameter), worst-case solut ions ,  quiescent i n i t i a l  conditions arld .the standard 

deviation of node voltages.  

8 . 



Although ECAP contains several  features which are  not found i n  the programs discussed 

previously, the  manner i n  which ECAP t r e a t s  nonlinear elements makes it inconvenient t o  obtain 

accurate dc o r  t r ans ien t  solutions of c i r c u i t s  containing semiconductor devices. I n  order t o '  

approximate exponential functions, which a re  encountered i n  describing tlie junction capacitance 

- a s  well a s  the dc charac te r i s t i c s  of  many semiconductor devices, a large  number of  piece-wise 

l i n e a r  segments must be used and the  number of extraneous c i r c u i t  elements required t o  approxi- 

mate the behavior of a s ingle  device becomes excessive. , 

Applications of Analysis Programs 

It i s  evident from the above discussion t h a t  the  modern c i r c u i t  analysis  program i s  easy t o  

use and yet  contains s u f f i c i e n t  genera l i ty  t o  determine the t r ans ien t  and/or quiescent solut ion 

fo r  a large  c lass  of e lec t ronic  c i r c u i t s .  ~ e c a u s e  of these propert ies,  the u t i l i t y  of such 

programs i s  bounded only by the imagination of the analyst  and the economic considerations 

associated with a pa r t i cu la r  problem. 

Circui t  Design , 

I n . t h e  general f i e l d  of c i r c u i t  design there  a re  many applications where these progranis 

can be used Lo advantage.. The comparison of severa l  t en ta t ive  topologies, fo r  example, can be 

done economically on a computer because it  saves the expense and delay associated with con- 

s t ruc t ing  the  ac tua l  c i rcui ts . '  I n  addit ion t o  ident i fy ing i n f e r i o r  topologies, these prelimi- 

nary analyses may reveal  design oversights which could r e s u l t  i n  excessive power d iss ipat ion 

and damage t o  expensive components. The automatic analys is  program i s  a l s o  a useful  t o o l  i n  

"debugging" preliminary models of a c i r c u i t  design. For example, the hypothesis t h a t  a ce r t a in  

anomalous o s c i l l a t i o n  or  t r ans ien t  response i s  caused by p a r a s i t i c  capacitance o r  inductance 

can be quickly t e s t e d  by analys is .  

Many of the problems assnci.a.t.ed with f i n a l i z i i ~ g  a design a r e  a l so  expedited' by analys is  

programs. For example, the need f o r  safeguarding a c i r c u i t  against-overloads produced by 

adverse input o r  output conditions, power supply f a i l u r e s  o r  power supply turn-on or  turn-off 

sequence can be determined by analys is .  Circui t  analys is  programs a re  also useful  fo r  per- 

forming worst-case analyses t o  obtain an estimate of the e l e c t r i c a l  r e j e c t  r a t e  which might 

be encountered i n  .production. Other production problems might a l s o  be ant ic ipated by calcu- 

l a t i n g  the e f fec t s  of such things a s  the  s t r a y  wiring capacitance associated with a new package 

geometry n r  The subcti tut ioi l  o f  a riew ~omponent type. 

Contract Monitoring 

Contra.ct monitoring orgailiza1;ions can use c i r c u i t  analys is  programs t o  evaluate a f i n a l  

design and thereby be assured of a qual i ty  prndilrt  Morcovcr; t he~des ign  can be eva111a.teci a t  

intermediate stages of evolution i n  order t o  d.emonstratc the  ult irrate f e a s i b i l i t y  of the design 



and t o  avoid needless "deadend" projects  and loss  of time. These fac tors  a r e  pa r t i cu la r ly  

important when designs a r e  required t o  operate i n  abnormal environments, such a s  nuclear radi -  

a t i o n .  

Radiation Effects  

One of  the  most important uses of analys is  programs i s  i n  the simulation of environment 

o r  t e s t  conditions not r ead i ly  achieved i n  the  laboratory.  An excel lent  example of such a 

s i t u a t i o n  i s  the  simulation of the  t r ans ien t  and permanent e f f e c t s  o f  nuclear radia t ion.  

Transient Radiation Effects  -- When a t r a n s i s t o r  o r  diode i s  exposed t o  a pulse of ionizing 

radia t ion,  such a s  gamma or  X-rays, hole-electron pa i r s  ai.r geutratcd throughout +.he devi,ce. 

Some of the  c a r r i e r s  generated near. a junction will rravel's~ I.llc ju~cGion and pradl.lre t.rnnsient 

va r i a t ions  i n  the  terminal voltage o r  current  .5' These e f f e c t s  can be modeled b y  including 

the  appropriat,e current  sources i n  the  device models as discussed i n  Appendix I .  

To i l l u s t r a t e  how one might use an automatic analysis  program t o  design a radiat ion- 

hardened c i r c u i t ,  consider the  problem of comparing the  radia t ion s e n s i t i v i t y  of the two ampli- 

f i e r s  shown i n  Figure 3. Both of these amplif iers have a gain of approximately ten,  an input 

r e s i s t ance  of approximately one hundred kilohrns and a low output impedance. The s e n s i t i v i t y  of 

each c i r c u i t  t o  t r ans ien t  pulses of  ionizing rad ia t ion  i s  determined by using the c i r c u i t  

analys is  programs discussed previously and the models presented i n  Appendix I .  The r e s u l t s  of 

these analyses, shown by the s o l i d  l i n e s  i n  Figure 4, indicate  t h a t  fo r  iden t i ca l  exposures 

c i r c u i t  A has a peak response one-third a s  large  as Lllr I esyon,?c of c i rou i t  I3 . C i  r n ~ i  t, A is 

therefore  preferred f o r  those systems with an amplitude f a i l u r e  threshold. However, i f  a 

sys~cms  f a i l u r e  i s  fietermined by pulse duration, c i r c u i t  ,B  i s  preferred.  . Ah . experimental' 
,, 

evaluation of t.he two c i r c u i t s  i s  shown by the dotted l i n e s  of Figure 4. 

The rad ia t ion  s e n s i t i v i t y  of a c i r c u i t  i s ,  uf course, dependent u p n  the  choice of compo- 

nents as  well a s  c i r c u i t  topology. For purposes of i l l u s t r a t i o n ,  the proposed amplif ier  designs 

, were a l s o  evaluated using 2 ~ 3 3 6  t r a n s i s t o r s  instead of the 2N1051 code speci f ied  i n  Figure 3. 

These analyses, shown i n  Figure 5, ~ n m c a t e  LllaL d t h o u g h  the rolul-ivy h~ha.v.ior of the  cirn1it.s 

i s  independent of  device type the absolute s e n s i t i v i t y  of the c i r c u i t  i s  approximately doubled 

by using the  2~336 .  t r a n s i s t o r .  These predict ions a re  experimentally confirmed By the 'measured 

data  show i n  Figure 5. 

A study of the discrepancies between the preciicled and measured response indicates  two 

l i k e l y  sources of  e r ro r .  F i r s t ,  the s t r a y  wiring capacitance, pa r t i cu la r ly  t h a t  between the 

co l l ec to r  and base leads of the t r a n s i s t o r s ,  was not included i n  the  analyses and, as  a r e s u l t ,  

t he  predicted waveforms show a much f a s t e r  decay Lllall the  mcacured waveforms. Thus, even though 

c i r c u i t  analys is  programs g rea t ly  expedite the analys is  of c i r c u i t s ,  the analyst  must s t i l l  

exercise considerable judgment i n  order t o  include those c i r c u i t  parameters which a r e  important 

and exclude those which are  superfluous. Secondly, e r ro r s  i n  the measurement of t r a n s i s t o r  

parameters and inaccuracies i n  the t r a n s i s t o r  models a l so  contribute t o  the discrepancies 
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between the  predicted and measured response but, i n  t h i s  case, t o  a l e s s e r  degree than s t r a y  

capacitance e f f e c t s .  It should 'be elr~~lidsnecd, 11u vie V-.=r, hhn't, nvon raiith t , h ~ s ~  e r r o r s  and omis- 

s i o n ~ ,  the  predicted data  y ie lds  an accurate comparison between the proposed designs and 

therefore  provides a means f'or determinirlg the beLLcr design. 

The above examples a l s o  i l l u s t r a t e  the  economic considerations involved i n  the use of 

analys is  programs. I f  the device parameters a r e  known, the input da.t,a required fo r  each of  

the  above ' analyses can be. prepared by an engineer i n  about one hour. The analyses shown i n  

Figure 4 were performed with PDEDICT (on an IRM 'fog0 dompuxer) arid reyoired approxi,mat.ely f n ~ ~ r  

minutes per solut ion.  The data presented i n  Figurc 5, \ . /h lc l~  .wr:l:c cr,mputcd with CIRCITS (on a 

Univac 1107 computer 1, requxred abuuL uiit illinutc pos so! l1 t . i  nn . Conchusions concerning the 

r e l a t i v e  computing e f f i c i ency  of PREDICT and CIRCUS should not  be drawn from these data because 

t.hc t.wo programs used d i f fe ren t  t r a n s i s t o r  models and were run on &Lfre~.eilt computcrc. 

Permanent Radiation Effects  -- When serrlicoilductor matgrial  i s  exposed t o  a f lux  ot.' hlgh 

energy p a r t i c l e s ,  such as  neutrons, some of the  incident  p a r t i c l e s  i n t e r a c t  with the atoms of 

the  crystalline l a t t i c e  and displace these atoms from t h e i r  normal posit ions.  This process 

darnages the  l a t t i c e  s t ruc tu re  an8 thererul-e produccc permanent. changes i n  the propert ies of 

semiconductor devices. 7,8,9 

Permanent damage e f f e c t s  can be included i n  an analys is  by simply making the model coeff i -  

c i en t s  a function of the  incident  p a r t i c l e  f lux.  The common base current  gain, for  example, i s  



shown a s  a function of the in tegra ted neutron f lux  i n  Figure 6. If these data and s imi lar  

curves characterizing the other model parameters a r e  used i n  the ana1ysis;a c i r c u i t  can be 

evaluated a t  any a r b i t r a r y  neutron f lux  and, through repeated analyses, the . fa i lure  threshold 

of  the c i r c u i t  ( i . e . ,  the minimum neutron f l u x  a t  which the  c i r c u i t  f a i l s  t o  meet spec i f i ca t ions )  

can be determined. 

TRANSISTOR TYPE : 2'N 1051 

NEUTRON FLUX (NVT x I ~ ' ~ , E  > 001 M~ v 

Figure 6 Common Base Current Gain Versus Neutron Flux 

The t r ans ien t  and permanent damage mechanisms have been considered independently i n  the 

above discussions. However, s i tua t ions  e x i s t  where both e f f e c t s  occur simultaneously and must 

therefore be modeled simultaneously. This can be done by expressing each coeff ic ient  of the  

device model a s  a function of the  p a r t i a l  i n t e g r a l  of  the p a r t i c l e  . f lux r a t e ,  i .e ., 

where Kio(@) i s  the measured var ia t ion of the coeff ic ient  Ki with in tegra ted f lux  @ and n ( t )  i s  

Lhe f l u x  r a t e .  The ionizing e f f e c t  of the incident r ad ia t ion  can be simulated by including the  

appropriate photocurrent sources i n  the modcla as d i s c u s s e d  previously. 

Limitations 

One of the pr inciple  shortcnmings of exic t ing prugl-was 1s  t h a t  an excessive amount of com- 

puter time i s  required t o  solve. f o r  the.  t r ans ien t  respoase of c i r c u i t s  whose solutions contain 



extremely small time constants. While t h i s  d i f f i c u l t y  can be a l l e v i a t e d  somewhat by the  choice 

of component models, it s t i l l  represents a serious l imi ta t ion;  one which can.only be removed by 

a continued search fo r  more s t a b l e  numerical solut ion methods. A second bas ic  l imi ta t ions  

imposed by ex i s t ing  programs i s  associa ted  with the solut ion of nonlinear algebraic equations. 

W ~ t h  the  exception of MISSAP, none of the above programs provide the proper numerical methods 

and convergence c r i t e r i a  t o  simultaneously solve nonlinear algebraic and d i f f e r e n t i a l  equations. 

Therefore, junction capacitance must be included i n  every diode and t r a n s i s t o r  i n  order t o  

el iminate a l l  nonlinear algebraic equations. While t h i s  process i s  theore t i ca l ly  acceptable, 

it i s  usi.ia.lly expensive because small time constants a r e  introduced i n  the  solut ion and the 

number of in tegra t ion  s teps  required f o r  the desired solut ion may be excessive. 

Apart from the fundamental l imi ta t ions  imposed by numerical solut ion technlyues, Llle 

general  philosophy and urganization of the e x i s t i n e  programs Lave k~,posed othcr  l imi ta t ions  . 
The PREDICT program, f o r  example, does not adequately t r e a t  the  pro'blem of coupllng Le'l;ween 

elements and, a s  a r e s u l t ,  small s igna l  II-parmne%cr modclc of the t.ra,nsist,or carnot be used 

when condit ions permit. The NET-1, CIRCUS and MISSAP programs do not admit nonlinear capac- 

i t i v e  o r  inductive components. Although the ECAP program does admit.a l imi ted  form of nonlinear 

elements, this form i s  not general  enough t o  accurately characterize many devices. Moreover, 

none of the  above programs accept generalized liiathematical models of  multj.-terminal components; 

a fea ture  which i s  very important i n  areas such a s  radia t ion e f f e c t s  s tudies  where a large  

f rac t ion  of the  i m e d i a t e  problem centers around the determination of adequate component models. 

The problems a.ssociated with obtaining r e a l i s t i c  parameter values and component models 

must a l s o  be recognized. Although the re  i s  no problem.for r e s i s t o r s  o r  capacitors taken from 

3, c l e a r l y  ~ a b e l e d  'stock dabinet, t r a n s i s t o r  a r~d  diode speci f ica t ion sheets d o  n o t  normally con- 

t a i n  values f o r  such parameters as  junction di f fus ion capacitance o r  radiation-induced photo- 

current .  Furthermore, the  measurement" ol' device p%"mc.Lclnt j  i ~ :  iiut a lmp l  r rn,~;l;-tsl-, 

, p a r t i c u l a r l y  fo r  high frequency devices. 

The mater ia l  presented i n  t h i s  paper i s  primayily Iri'Le~lCleCl L U  review 3cvcral oxistin8 r i r -  

c u i t  analys is  programs and t o  indicate  a few of the many ways i n  which thcce programs can be 

i~scr l ,  t,o comglement, des ign ,  procedures. Although thesc programs a r e  not. a.s general a s  might be 

desired,  many of the l imi ta t ions  i r~herent  i n  thc  present  versions a r e  being systematically 

el iminated through the continued development and evolution of new coding and numerical techniques. 

I n  addi t ion t o  the normal process of  evolution, p r o g r ~ i n g  developments i n  o ther  sc ien t i -  

f i c  a reas  could a lso  influence future  analysis  programs. Because of tlle wurk Leiilg done i n  

pa t t e rn  recognition, it i s  not u n r e a l i s t i c  t o  think of submitting the  network topology o r  

parameter data i n  the form of schematic diagrams o r  p lo t t ed  curves. Even with the present 

technology, it i s  possible t o  have a computer automatically construct  a schematic diagram, a 

p a r t s  l i s t  and a cost  estimate from the  input data required by the analys is  programs digcussed 

above . 



The recent theoretical interest in the formulation of state models of electro-mechanical 

systems indicates that future analysis programs could be oriented toward generalized mathe- 

matical models of multi-terminal components without regard for the particular technology 

associated with the problem in question. In this way, one program or, more appropriately, a 

system of subprograms, could (1) perform detailed analyses of small subsystems, (2) obtain 

simplified mathematical representations of these subsystems and (3) use these simplified repre- 

sentations in the analyses of the entire electro-mechanical system. 



APPENDIX I 

Diode and Transistor Models 

Because of the importance of component models i n  the analys is  of e lec t ronic  systems, models 

of  the  diode and t r a n s i s t o r  a r e  reviewed i n  t h i s  appendix and discussed from the viewpoint of 

t h e i r  a p p l i c a b i l i t y  t o  c i r c u i t  analys is  programs. The e f f e c t s  of t r ans ien t  r ad ia t ion  a re  a l so  , 

considered. 

Diode Model 
P d  

The most widely used model f o r  predic t ing the  t r ans ien t  and dc behavior of illudes: i s  s11ow11 

i n  Figure 1-1. This model assumes t h a t  the diode can be modelea by a bulk ~ e s i ~ ~ l ; a i ~ c e ,  Rs ,  i n  

s e r i e s  with the  p a r a l l e l  combinatiorl of a current  source, I, and a capacjtor,  C .  The magnitude 

of  C i s  made up of  three components: (1)  a s t r a y  capacitance,* Cs,  introduced by the diode 

package, (2 )  a t r a n s i t i o n  region component, Ct, which var ies  a s  the rec iprocal  o r  %he J~nc.L;lun 

depletion region width, and (3) a d i f fus ion component, Cd, which var ies  as  .the exponential of 

the  junction voltage and, therefore,  l i n e a r l y  with the idea l  diode current  I ( t  ) . 

ANODE 

CATHODE 

Figure 1-1 Diode Model 

* 
Normally, the  s t r a y  capacitance i s  included between the external  terminals of the device, and 

a s  a r e s u l t ,  extremely shor t  time constants a r e  introduced i n  the  solut ion.  These time con- 

s t a n t s  can be eliminated with l i t t l e  or  no' s a c r i f i c e  i n  model accuracy by. including the  s t r a y  
. . 

capacitance with the junction capacitance. 



Although t h i s  model provide's a reasonable representation of most junction diode, it  should 

be used with caution f o r  diodes with signiyicant  conductivity modulat'ion; Fur therm~re ,  s ince '  

t h i s  model i s  derived by making a f i r s t  order apprbximation t o  the ,solution of the continuity 

equation, it should be used cautiously wheri time var ia t ions  a re  f a s t  compared t o  the normal 

recovery time of the diode. . ' . . 

Transient Radiation Model -- When a diode i s  exposed t o  ionizing radia t ion,  the hole- 

e lec t ron pa i r s  created wi'thin an average of one diffusion length on e i t h e r  s ide  of the junction 

t raverse  the  junction and produce, a t r ans ien t  photocurrent. This e f f e c t  can be taken i n t o  

.acc.ount by including an addi t ional  term, .I  ( t ) ,  i n  the i d e a l  diode current expression a s  
, . .pp .  . . 

follows : 

The negative sign preceding the photocurcent term indicates  t h a t  t h i s  current  i s  or iented 

i n  the reverse d i rec t ion,  i .e ., from the  cathode t o  the ano.de. Although I ( t )  i s  actuailjr a 
PP 

function of the junction voltage, diode. current  and radia t ion waveform, reasonable r e s u l t s  can 

generally be obtained by assuming a f ixed photocur~ent  waveform and scal ing the magnitude of  

I ( t )  l i n e a r l y  with dose. The photocurrent waveform can'be determined experimentally by 
PP 

measuring the  radiation-induced leakage current  of the  reverse-biased diode o r  it can be cal-  

culated by using the  geometric and mater ia l  propert ies of the  device. 5 

The accuracy of the radia t ion model can be improved by using difference equations t o  obtain 

approximate solutions fo r  the  c a r r i e r  densi ty  d i s t r ibu t ions  i n  the  device during the radia t ion 

exposure. I n  t h i s  way, e l e c t r i c  f i e l d  e f f e c t s ,  storage e f f e c t s  and conductivity modulation of 

the bulk material  can a lso  be included i n  the model. A physical in te rp re ta t ion  of a difference 

equation approximation i s  presented by L inv i l l .  9 

General Discussion -- The diode model given i n  Figure 1-1 i s  well su i t ed  t o  automatic 

analys is  programs since it .provides a reasonably accurate model of  the  device and a t  the  same 

. t . i m e  i c  amcnable t o  suluLlon by ex i s t ing  numerical techniques. P rac t i ca l  s i tua t ions  , ex i s t ,  

however, fo r  which t h i s  model should not be used because of the  excessive computer time required 

to o b t i i n  solutions.  I f ,  f o r  example, a very f a s t  diode (recovery time approximately one nano- 

second) i s  incorporated i n  a c i r c u i t  which has a r e l a t i v e l y  slow response, in tegra t ion  steps of  

the order of  one nanosecond may be required t o  maintain numerical s t a b i l i t y  and one inil l ion . 

in tegra t ion s t eps  may be reqi.dred t o  produce one illilllsecon& ol' r e a l  solut ion time. This 

problem can be reduced by using a slower diode since the  c i r c u i t  operation c lea r ly  dnek not 

deperlil upon the diode recovery charac te r i s t i c s .  This can be done a r t i f i c i a l l y  i n  the analys is  

by a r b i t r a r i l y  increasing the diode capacitance as  much as  possible without a f fec t ing  the  

solut ion.  A second approach i s  t o  delc te  the ju~c.l;.ion capacitance and characterize the  diode 



by equations with the  following form: 

Unfortunately, t h i s  leads t o  nonlinear algebraic equations which a r e  beyond the scope of most . 
automatic analys is  programs and i s  therefore not generally acceptable. 

Transis tor  Models 

Both the  , ~ b e r s - ~ o l l l *  and Charge control13 t r a n s i s t o r  models have been used extensively t o  

describe the  t r ans ien t  and dc charac te r i s t i c s  of junction t r a n s i s t o r s .  Although these models 

d i f f e r  considerably i n  concept and schematic representation,  it can be s h u w ~ ~  t h a t  thc  commonly 

used forms. presented below a r e  mathematically iden t i ca l .  Therefore, only'one of these models 

i s  considered i n  d e t a i l .  

'Ebers-Moll Model -- 'l'he Schematic ~ ~ e p r e s c n t a t i o n  of t.hr? Rhers-Moll mo&l, slsuw~ i n  Figure 

1-2, consis ts  of two r e s i s t o r s ,  Rb and Re,  two junction capacitors,  Cc  and Ce,  and two current  

sources, Ic and I,.- As i n  the  case of  the diode mode.% presented e a r l i e r ,  the capacitance values 

a r e  comprised of s t r ay ,  depletion and diffusion components. The de ta i l ed  form of the two capac- 

i t ance  values and current  sources can be expressed by ana ly t i ca l  approximations t o  the measured 

charac te r i s t i c s  of the device, a s  indicated i n  Figure 1-2, or  by in terpola t ion between ac tua l  " 

data  points .  

COLLECTOR 

d .  
EMITTER 

Cc = Ccs+ Cct+Octj 

Cct = Ccto/(Vzc-Vc Nc 

Ccd Y I c 8 c ~ p  [O,V )/2a MckTF I 

Ce = Ces+Cet +Ced 

N Cet =Ceto /(Vze-Ve) e 

Ced = Q I,, e ~ p ( 8 ~ V ) / 2 ~  MekTF, 

Figure 1-2 Ebers-Moll Transistor Model 



Transient Radiation Model -- When a t r a n s i s t o r  i s  exposed t o  a pulse of  ionizing radia t ion,  

holes and electrons generated near the junctions d r i f t  and di f fuse  across the junctions and 

produce photo-enhanced leakage currents s imi lar  t o  those discussed i n  the  diode case. However, 

i n  contras t  t o  the diode, these primary photocurrents a r e  amplified by the gain of the  t ran-  

s i s t o r  and produce a secondary col lec tor  current  which can be many times a s  l a rge  as  the  primary 

photocurrent. 

As i n  the case.of the diode, the e f f e c t  of t r ans ien t  r ad ia t ion  can be incorporated i n  the  

model by including the primary photocurrents associated with both t r a n s i s t o r  junctions. As a 

p rac t i ca l  matter, however, the  emit ter  contribution i s  usually ins ignif icant  compared t o  the 

col lec tor  component because the diffusion length of the emit ter  i s  usually very shor t  compared 

t o  that of the co l l ec to r .  Consequently, the term I ( t )  i s  included only i n  ~ ~ ( t )  as  shown i n  
PP 

Figure 1-2. 

I n  much of the analys is  work reported t o  date, the photocurrent I ( t )  has been obtained 
PP 

.. by l i n e a r l y  scal ing an experimentally determined waveform.* While t h i s  approach i s  s u f f i c i e n t l y  

accurate fo r  many pk-poses, conditions may a r i s e  where photocurrents obtained i n  t h i s  manner 

a re  not meaningful. The accuracy of the  rad ia t ion  model can be improved by obtaining I ( t  ), 
PP 

minority c a r r i e r  storage and bulk res is tance  from approximate solutions, f o r  the  c a r r i e r  densi- 

t i e s  i n  the  col lec tor  and base regions. These solutions can.be determined by approximating the  

continuity equation by the  appropriate difference equations as discussed i n  - the diode case. 

General. Discussion -- The Ebers-Moll model'has been used extensively by the NET-1 analys is  

program and, based upon t h i s  experience and a recent paper by Wilfinger, e t .  a1. ,12 appears t o  

be a very useful  form f o r  modeling many devices. Mathematically, t h i s  model i s  characterized 

by nonlinear d i f f e r e n t i a l  and l i n e a r  algebraic equations and, therefore,  does not present  any 

solut ion d i f f i c u l t i e s  which a r e  beyond the scope of most analys is  programs. P rac t i ca l  s i t u -  

a t ions  do a r i s e ,  however, which require excessive computer time t o  obtain solut ions .  As i n  the  

diode case, the  analysis  of a bas ica l ly  slow amplif ier  containing f a s t  t r a n s i s t o r s  i s  cos t ly  

because the  maximum solut ion s tep ,  i n  a sense, i s  determined by the  " fas tes t "  component. More 

sub t l e  €hfficLiLties a r i s e  when the  col lec tor  terminal i s  connected t o  the emitter  thr6ugh a low 

impedance element such a s  a capacitor o r  a small co l l ec to r  r e s i s t o r .  Under these conditions, 

tHe maximum integra t ion s t ep  s i z e  i s  controlled by the  time constant of the  col lec tor  c i r c u i t  

( R ~ c ~  ) and i s  typ ica l ly  10-lo seconds. 

Charge-Control Model -- I n  i t s  simplest form, the charge-control model proposed by Beaufoy 

and sparks13 provides. a conceptually and mathematically simple t o o l  f o r  predic t ing the approxi- 

mate behavior of c i rcui tds  r.nnta.ining t ranciotors  opei-ated i l l  Lhe ac t ive  region. However, when a 

more de ta i l ed  and accurate analys is  i s  desired,  the  bas ic  charge-control modelmust be augmented 

* 
This waveform i s  determined by measi~rine the radiation-induced leakage current  of a reverse- 

biased collector-base junction. 



t o  include the  e f f e c t s  of  junction capacitance, sa tura ted  and inver ted  operation, e t c .  These 

changes l ead  t o  t h e  more complicated model14 shorn i n  Figure 1-3. 

From the  equations describing the  charge-Control and Ebers-Moll models, it can be shown 

that. a.J t.hnilgh these models appear r ad ica l ly  dit't 'erent from the s.tandpoi11t o r  Y C ~ I U I I I U L ~ C  1-tprc- 

senta t ion,  they a r e  i d e n t i c a l  i n  a mathematical sense. Theref'ore, one can r~ead i ly  convert 

between Charge-Control and Ebers-Moll parameters and thereby use the  ex i s t ing  tabulation14 of 

Charge-Control parameters i n  the  NET-1, PRFlDICT and MISSAP analys is  programs. 



Definit ions of Symbols 

Normal and inverted common base current  gains 

Exponential coeff ic ient  f o r  diode, co l l ec to r  and 
d 

emit ter  junctions (volts-') ' 

. I  

Total  diode capacitance (farads ) 

Total  collector-base capacitance (farads ) 

Diffusion capacitance of  diode, co l l ec to r  and 

emitter  junctions (farads ) 

St ray  capacitance of diode, colXector and emit ter  

junction ( farads)  

Total base-emitter capacitance (farads ) 

Transit ion capacitance of diode co l l ec to r  and 

emit ter  junctions ( farads)  

Proportionali ty constants (time-') 

Satura t ion Current of  the diode, co l l ec to r  and 

emit ter  junctions (amperes) 

Primary photocurrent (amperes ) 

Boltmann constant (ergs/degree Kelvin) 

Emission constants of diode, col lec tor  and 

emit ter  junctions 

NeuLrori flu r a t e  (nvt)  

Grading constant of diode, col lec tor  and emit ter  

junctions 

Electronic charge (coulombs ) 

Normal and -inverted base charge- (coulombs') 

Se r i es  res is tance  of diode, base and co l l ec to r  (ohms) 

Normal and inver ted  base s t o r e  

Temperat~ire ( ikgrees Kelvin) 

~ o r m a l  and inver ted  base time constant (seconds ) 



Definit ions of Symbols (cont ) 

T ~ ~ '  T~~ 
Normal and inver ted  col lec tor  time constant (seconds) 

vj ;  vc) ve Diode, co l l ec to r  and emit ter  junction voltage ( v o l t s )  

'z) . V z c ~  'ze 
Contact po ten t i a l  of diode, co l l ec to r  and emit ter  

\ junction ( v o l t s )  
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