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Abstract

A kinetic theory of collisionless electron heating is developed for inductively coupled dis-
charges with a finite height L. The novel effect associated with the finite-length system is
the resonance between the bounce motion of the electrons and the wave frequency, leading

to enhanced heating. The theory is in agreement with results of particle simulations.

PACS Nos.: 52.80.pi, 52.50.-b, 52.50.dg, 52.75.-d




Collisionless electron heating is the dominant heating mechanism in low-density induc-
tively coupled discharges.!™ It can be described quantitatively in terms of the surface
impedance. The standard theoretical model is to assume that the height of the system
L is infinite.»>% When compared with results of particle simulations, this model is found to
be valid for §, < L.! Here, §, is the anomalous skin depth defined as 8, = [v;¢?/(v/Tww?2, )]}/
with v, the elecfron thermal speed, c the speed of light, wy. the electron plasma frequency,
and w the wave frequency. In particle simulations, the surface impedance deviates and de-
creases significantly from the standard theoretical model when 6, S L.! We develop a kinetic
theory to allow L to be finite. The novel effect associated with the finite height L is the
bounce resonance between the bounce motion and the wave frequency. The results of the
theory are in agreement with those from particle simulations. Because we adopt an optimum
ordering, i.e. we assume that the electron collision frequency v is of the order of the wave
frequency w, the theory is applicable to both collisional v > w, and collisionless v <« w
plasmas. Thus, it can be useful in modeling inductively coupled discharges in searching for
an optimum operation regime’®. Note that the physics associated with a finite height L we
describe here is not included in Ref. 9, in which a fluid theory is developed to simulate the
kinetic effects in a half-infinite (i.e. L — o00) system. Our work, on the other hand, is similar
to that of Ref. 10. With proper modifications of the electron equilibrium distribution, the
theory is also applicable to conductors and semi-conductors.®

We employ a simplified theoretical model to describe the source. At z = 0, there is a
spiral, planar antenna coil in which an oscillating current is driven with frequency w. Plasma
is conﬁnéd in the region 0 < z < L. The side wall in the radial direction is assumed to be
at infinity. This assumption is valid if the collisional mean-free-path £ is less than the radial

dimension of the source.

- The coupled system of kinetic-Maxwell equations is solved as follows. We first solve




the linearized kinetic equation for the perturbed electron distribution in response to the
azimuthal wave electric field driven by the current in the coil. The azimuthal plasma current
density is calculated by taking the velocity moment of the electron distribution. Inserting
the plasma current in the Maxwell equations, we solve for the self-consistent azimuthal wave

electric field and calculate the surface impedance.

The linearized kinetic equation away from the sheath regions located at z ~ 0 and z ~ L
ig58
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where ]?1 is the perturbed electron distribution function, v, is the electron speed in the z-
direction, e is the electron charge, M is the electron mass, v is the electron velocity, and
far = [N/(7%%0})] exp(—v?/v?) is the Maxwellian distribution with N the plasma density,
and v = |v|. The collision operator C(f;) in Eq. (1) can be approximated by a Krook
model, i.e. C(f1) = —vfi. Here, v is the electron collision frequency which includes electron-
electron Coulomb collisions, electron-ion Coulomb collisions, and electron-molecule collisions.
In general, v is a function of v. We assume that the width of the plasma sheath at z ~ 0
and z ~ L is much smaller than the skin depth so that we can neglect the structure of the

sheath. Assuming E; = E{(z)e® and f; = f1(2)e™, we simplify Eq. (1) to

. 0 e af
The solution to Eq. (2) is
fi= /z o B oJi ar i asn | ge= T 5 (3)
L v

where g is an integration constant with dg/9z = 0, and D = —(eE;/M) - 3 f/0v.
The constant g and thus f; are determined by the boundary conditions at z = 0 and

z = L, where the electrons are assumed to be specularly reflected by the plasma sheath




potentials. To be specific, the boundary coditions are

filv; >0, 2=0) = f1(v, <0, 2=0),

(4)
filvy >0, z=L) = fi(v, <0, z=L).
With Eq. (4), f1 is found to be
z D viiw v4+iw -1
+ d = vz (Z Z) 1____ _QTL
= 2 . e ( e )

where the superscript “+” in f; indicates that v, > 0. For v, < 0, f{ has the same form as
fi, ie.
viw v+iw -1
/ dz e S (@-a) (1 — e‘27tz""L)

v [ az 2 [ | ) (6)
L v,

The azimuthal current density Jp can be calculated by taking the vy moment of Egs. (5)
and (6). Here vy is the azimuthal electron speed. Extending the domain of interest from
0<z< Lto—-L <2< L, and employing the relation for the azimuthal wave electric field

Ey(—2) = Ey(z), we can cast Jp in a symmetric form

Jp = }Aj\/’[zt/ 7 By(2)Ko(|2 = 7)), (7)

where

/2 in3 ajz—2’
K,(|z — 7)) / drz’e™ / a0 2= © e~ Himo

cos©

alz—z'| alz—2z'| e—zaL/(l'COS e)
+ (6 zcs® + ¢ Icose) el R (8)

In Eq. (8), z = v/w, a = (v+1iw) /vy, and © is the angle in the spherical coordinates (v, ©, ¢)

in the velocity space such that v, = vcos ©, and vy = vsin © cos ¢.




Combining Faraday’s law and Ampére’s law, we obtain

d’Ey  w? diw

With Eq. (7), Eq. (9) can be expressed as
%2+§E9 =ia/idz'Eg(z')Kaﬂz—z'D, (10)
where o = 2ww?, /(/Tuc?).
Equation (11) can be solved by expanding in Fourier series with the boundary condition
Eo(L) = Eo(—L) = 0. Note also that dEg/dz at z = 0 is not continuous because of the
current in the coil, and we have dEy/dz|, o+ = —dFEy/dz|,—o- = p. The solution for FEy(z)

is then

cos[(2n + 1)mz/2L)
Ey(2) = ,
6( ) Z 2n+17r . ucj__zz_ +ZOch‘g

where k7 = L' [, dzcos|[(2n + 1)7z/2L] a(]zl) The surface impedance Z is defined as
Z = —(4miw/c*)Eg(0)/p. From Eq. (11), we find

(11)

driw 2 & 1
— 2 . 12
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The explicit expression for & is

/2 sin®@ | 2a (=1)"2n + )7
3.~z
a L/ dua’e / 40 cos © Lccos@_{_ Lsinh(-2£) 8
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If v is not a function of v, k7 can be simplified to

= /Ooo dye ¥ [aL + (_;f}fglz/i))ﬁy} /{(aL)2 + [(n + %)wyr} . (14)

The first term in the square brackets of Eq. (13) and (14) describes the wave-particle

resonance in a half-infinite system, whereas the second term describes the bounce resonance
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between the bounce motion and the wave frequency in a system with a finite height L in the
collisionless, i.e. ¥ <« w case. Because the w < wye, w?/c? term in Eq. (12) can be neglected.
If the collisional mean-free-path ¢ = v;/v is much less than L, the bounce resonance term

can be neglected, k? =~ /7 /(2aL), and the collisional surface impedance is

4miw

7 =
2k

tanh(kL), (15)

where k = (wpe/c) (\/qﬁ(l +¢)/2+ i\/g(l — ¢)/2), and ¢ = (1 + v%/w?)~Y2. This result is
in agreement with that obtained by solving the Maxwell equations with a collisional Ohm’s
law.}19 If ¥ « w, both resonance terms contribute to Z. However, if §, < L, the wave-
particle resonance effect dominates k7 ~ 1/(2n + 1), and

Zz%—;ﬁ%(i+%). (16)
This result agrees with that obtained in the L — oo limit.1®1112 If §, < L, the bounce
resonance term becomes dominant. The individual contributions to the real part of the
surface impedance ¢ from each of these two terms, and the real part of the total impedance as
a function of §,/ L are shown in Fig. 1. The bounce resonance term {gg is seen to be dominant
for most of the relevant range of the parameter §,/L. Note that the total impedance shown
here is not equal to the sum of the individual parts because of a cancellation that occurs
when both terms are considered simultaneously, and the nonlinear dependence of { on its
individual parts. The dashed line in Fig. 1 indicates the result of the L — oo limit {, shown
in Eq. (16). It is seen that ¢ deviates and decreases significantly from (, when 6,/L R 0.1.
The theory can be used to find an accurate low-density operation limit at which ( reaches its
maximum, i.e. d(/d(6,/L) = 0. Because we adopt an optimum ordering, i.e. v ~ w in solving
the kinetic-Maxwell equations, the theory is applicable to both collisional and collisionless
plasmas. This is demonstrated in Fig. 2 where ¢ as a function of v/w is shown. When

v/w < 0.1, ¢ becomes independent of v/w indicating the onset of collisionless heating. The




results in Figs. 1 and 2 are in agreemenﬂwith the particle simulations presént-ed in Refs. 1
and 9.

In summary, a kinetic theory of the collisionless electron heating is developed for in-
ductively coupled discharges with a finite height L. The novel effect associated with the
finite-size of the system is the bounce resonance between the bounce motion of the electrons
and the wave frequency. The theory is in good agreement with results of particl'e simulations.
The surface impedance obtained in the L — oo limit Z, is valid if §, <« L. However, if
8. S L, the value of the surface impedance decreases significantly from Z,,. The value of
8./ L at which the real part of the surface impedance ¢ reaches maximum i.e. d{/d(6,/L) =0
can be employed to define an accurate low density operation limit. Because we adopt an
optimum ordering, the theory can be used in searching for the optimum operation regime.
It can be tested experimentally by continuously varying the ratio v/w. With proper modifi-
cation of the equilibrium distribution function, it can also be applicable to conductors and

semi-conductors.
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FIGURE CAPTIONS

FIG. 1.

FIG. 2.

The real part of the surface impedance as a function of §,/L. (gg-line has only the
bounce resonance contribution from Eq. 14, whereas the (y p-line has the contribu-
tion from the wave-particle resonance term. The plasma parameters are: v/w = 0.01,
L = 4cm, w = 27 x 13.56 MHz, and T, = 5eV. The dashed line is the L — oo limit
from Eq. 16.

Real part of the impedance ¢ as a function of v/w. The plasma parameters are the

same as in Fig. 1, and N = 10'cm=3.




101

10°

10° 1

10-2

10°2

e rrer

10!

Fig. 1




101

ﬁ
q
L

O S W W 1

10° 2 : r r T r r
100% 10°% 102 10°' 190° 10! 102 103

v/®




