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Abstract

A numerical algorithm to study the nonlinear, resonant interaction of fast parti-
cles with Alfvén waves in tokamak geometry has been developed. The scope of the
formalism is wide enough to describe the nonlinear evolution of fishbone modes,
toroidicity-induced Alfvén eigenmodes and ellipticity-induced Alfvén eigenmodes,
driven by both passing and trapped fast ions. When the instability is sufficiently
weak, it is known that the wave-particle trapping nonlinearity will lead to mode
saturation before wave-wave nonlinearities are appreciable. The spectrum of linear
modes can thus be calculated using a magnetohydrodynamic normal-mode code,
then nonlinearly evolved in time in an efficient way according to a two-time-scale
Lagrangian dynamical wave model. The fast particle kinetic equation, including
the effect of orbit nonlinearity arising from the mode perturbation, is simultane-
ously solved for the deviation, §f = f — fo, from an initial analytic distribution
fo. High statistical resolution allows linear growth rates, frequency shifts, resonance
broadening effects, and nonlinear saturation to be calculated quickly and precisely.
The results have been applied to an ITER instability scenario. Results show that
weakly-damped core-localized modes alone cause negligible alpha transport in ITER-
like plasmas — even with growth rates one order of magnitude higher than expected
values. However, the possibility of significant transport in reactor-type plasmas due
to weakly unstable global modes remains an open question.
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I. Introduction

A critical requirement for the design of a steady-state fusion reactor is good con-
finement of the fusion-product alpha particles, with a substantial transfer of the
alpha energy back into the bulk plasma. The design specification for the proposed
ITER device [1] requires that the alpha particle loss be less than 5% of the total
alpha particle energy. This is equivalent to an energy loss rate of less than 20 MW. It
is already known that some fraction of the alpha particles will be lost due to toroidal
field ripple, but for nominal ITER plasma currents and expected edge temperatures
of 3-6 keV, the loss fraction has been estimated to be quite small (less than 1%).
However, it was pointed out more than two decades ago [2-3] that the substantial
free energy of the alpha particle population represents a mechanism for the excita-
tion of Alfvén waves. Various types of discrete Alfvén eigenmodes (AE) have been
predicted to exist in tokamak plasmas — for example, the global (GAE), toroidal
(TAE), kinetic (KTAE), elliptic (EAE), noncircular (NAE) and beta (BAE) Alfvén
eigenmodes. Most of the experimental and analytical effort has been devoted to the
study of TAE modes, which have been clearly observed in a variety of experiments,
either passively driven by neutral beam injection (NBI) [4-5] and ion-cyclotron-
resonance heating (ICRH) [6], or actively excited by external antennae [7]. More
recently, alpha-driven TAE activity has been observed in burning D-T plasmas [8].

The fear is that if these modes are driven unstable by resonant interaction with
alpha particles in a reactor-type plasma, and if nonlinear saturation of the unstable
spectrum occurs at a sufficiently high amplitude, anomalous transport and/or loss
resulting from the stochastic motion of the alphas may result. The first step in the
systematic analysis of the alpha transport scenario has been the study of the linear
aspects of the problem; namely, eigenmode structures and damping rates, in both
large-aspect-ratio and general toroidal geometry. Further, perturbative and semi-
perturbative calculations of the background damping due to thermal electrons and

- ions have been accomplished both analytically and numerically [9-12]. It has been
accepted for some time that for a large, high-field machine the range of toroidal
mode numbers, n, for which TAEs are likely to be unstable can be very large. In
particular, simulations using a linear boundary layer model [13] showed that for
ITER-like plasmas [14], this range could be as large as 10 S n < 50 (cf, Fig. 1).
The calculation of the linear mode structure as well as the nonlinear evolution of such'
a broad spectrum of high-n modes turns out, not surprisingly, to be substantially
more complex than for a few low-n modes.

In the present paper we summarize the underlying physical principles, as well as
various technical aspects, of a new numerical technique to study the nonlinear phase
of Alfvén wave evolution in tokamaks — including self-consistent anomalous fast-ion
transport. Subsequently, we apply this model to an ignited ITER-like plasma.

We emphasize that the approach is based largely on the methodology of Refs. 15-
17, for which the relevant nonlinearity is the trapping of resonant particles in the
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finite-amplitude Alfvén wave field. This assumption has been discussed exhaustively
in previous literature [18-20] for the TAE problem, and has also been validated
by full gyro-kinetic-MHD hybrid simulations [20]. A necessary condition for the
predominance of the wave-particle nonlinearity is a small fractional growth rate
(roughly v /w ~ 10~2). Indeed, if this condition is satisfied, the wave will grow to a
saturated state with negligibly small wave-wave nonlinearity. It is precisely this sort
of weakly-unstable regime that appears to be characteristic of AE modes in ITER-
like plasmas. The linearity of the background plasma response enables a substantial
reduction of computational complexity, since the fluid modes can be taken directly
from a linear eigenvalue code such as CASTOR-CR [21].

As the fast particle pressure grows beyond a critical value, non-perturbative un-
stable modes can exist [22]. These so-called energetic particle modes (EPM) are not
considered in the present work, although it is known that they can have a strong
scaling of «y;, with the fast ion pressure, and thus a potentially large saturated am-
plitude.

An overriding complication of the linear theory is the strong sensitivity of the
mode structure and damping rate to the plasma equilibrium — and in particular
to the safety factor. This complexity will dictate our simulation methodology, as
described in the sections which follow.

e
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II1. Fast Particle_ Motion

A. Guiding center Hamiltonian

Fast ion trajectories in an axisymmetric toroidal plasma can be approximated by
the gyro-averaged motion of the particle guiding center so long as the gyro-radius,
pf» is sufficiently small and the perturbing wave frequency, w, is low:

' 1dB

B Ps L1 and w <K wei (1)

In Eq. (1), B is the magnetic field amplitude, r is the minor radius, and wg; is the
ion cyclotron frequency. When the preceding conditions are satisfied, the resonant
interaction between waves and particles is dominated by the transit motion of the
guiding center in the TAE case, or the toroidal drift motion of the banana/potato
center in the fishbone case.

The Hamiltonian for n, guiding-center particles (index j) moving in a spectrum
of n,, fixed-amplitude Alfvén waves (index k) is

Tp
1 e
Hge = Zm (Evﬁj +p;B; + _77—7:@‘7-) . . (2
Jj=1

where e and m are the particle charge and mass, respectively, and Hi = vﬁ_j /2B;
is the constant magnetic moment of the jth particle. Technically, we are interested
in the flow of the fast particle canonical phase space, rather than the motion of
individual particles themselves, so that we hereafter refer to the index j as the label
of a “marker” in phase-space. While the two pictures are essentially equivalent in
regards to the path traced by the jth phase point, the effective number of particles
associated with each marker may change with time. .

B. Magnetic field representation

The simple appearance of Eq. (2) is deceptive, in fact, as it contains no information
about the equilibrium magnetic field structure, and makes no explicit reference to
canonical variables. To make the Hamiltonian formulation explicit, we must first
decide on an appropriate set of coordinates for the magnetic field representation.

For an axisymmetric toroidal equilibrium, we begin with the standard form

B=g(¥)V(+V(x VY, (3)

<
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where 9 is the poloidal flux and ¢ is the (physical) toroidal angle. Following the
method presented in Ref. 23, to which the reader is referred for a complete derivation,
we introduce the new (nonphysical) toroidal angle

SOEC_V(&":[))) (4)
with 6 an undetermined angle in the poloidal cross-section. The goal of the trans-
formation defined by Eq. (4) is to choose the function v so that the field lines in the

(6, )-plane are straight. With v suitably chosen [23] the magnetic field can then be
written in the geometrically intuitive form

B=V(p—¢) x V¢, . ®

with the safety factor,

= 5vg = 2, ()

constant on a magnetic surface, and x(¢) the toroidal flux. The freedom which
remains, in choosing the poloidal angle § can be equivalently viewed as a freedom
to choose the Jacobian, J, connecting toroidal coordinates to real-space variables.
Note that while J depends on the choice of poloidal angle, it is independent of how
we shift the toroidal angle (cf., Eq. (4)):

- 1 _ 1 .
TV (VEx VOl T Ve (VOx Vo)l (7)

J

It is shown in Ref. 23 that if the quantity JB? is chosen as a flux function then the
covariant representation of the magnetic field becomes especially simple. Indeed, B
takes the form

B =g()Ve +I)V+5(,0)Vy, - (8)

with I() independent of @ for the specific choice

JIB? = I(¥) + g(¥)a(¥) - (9)

Despite the appearance of the nonzero radial component of V3 in Eq. (8), it
is clear from Eq. (5) that the magnetic field satisifes the obvious requirement that
B-V1 = 0. This completes the specification of the coordinate system for the guiding
center motion. With the magnetic field expressed as in Eq. (8), the Hamiltonian
will depend only the quantities g, I, g, and B. For reference, we note that a vector
potential corresponding to this field is A = xV8 — ¢Ve.
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In Eq. (2), the indices on the magnetic field strength B(%,8) and electrostatic
potential ®(¢, 8, @) indicate that they are to be evaluated at the location (15, 8;, ;)
of the jth particle.

C. Structure of the perturbation

Within the context of linear theory, a distinct toroidal eigenfunction (index k,
mode number ny) is written as a sum over all poloidal harmonics (mode number
m). For a nonlinear simulation, however, only the dominant poloidal harmonics need
be retained. In its most general form, then, the full potential at the jth particle
position is written as sum over eigenfunctions with slowly varying amplitudes:

+

o, = Zw zk: [Xe(2) €08 ©jkm + Vi (£) $in © jkm)] brm (¥5) (10)

€
m
k=1 m=my

where the phase angle, ©;km, is defined as

@jkm = Nngp; — mkej - wkt . (11)

The amplitudes A and Vi, — undetermined by linear theory — are to be determined .

by the nonlinear model. In Eq. (11) and in what follows, wy refers only to the real
part of the frequency of the kth eigenmode.

An adéquate description of the spatial structure of the unstable modes can be
realized by representing magnetic perturbations in the following restricted fashion:

SB =V x (6A,) = V x (aB) . (12)

The perturbation is thus characterized by the pair (®, @), which are both first-order
quantities (although a & prefix has not been used). We emphasize that Eq. (12) is a
convenient description in that the parallel momentum (see Ref. 23) becomes

oes
pj=Bij_+<_1j- (13)

Eq. (12) also gives an appropriate description of low-3 shear Alfvén waves, for which
0E, =0 and

1864,
L =_pb.VD. 14
c Ot v (14)
The connection between ® and JA, above implies that « in Eq. (12) is strictly
determined by the functional form of ® for the low-3 case. In Eq. (14), b = B/B
is the unit vector along the equilibrium magnetic field. For convenience, we choose
the system of units shown in Table I, so that o; may be written
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6

= Z Z Kym o (X () €08 Ojem + Vi(t) $in Ojim] Brom (i7) - (15)

J k=1 m—m

The canonical toroidal and p0101dal angular momenta have the explicit, compact
forms

Po; =gjp; —¥; , (16a)
Py =Iipj +Xj » (16b)

with p; defined in terms of the perturbation ; (see Eq. (13)). Eliminating v,; in
Eq. (2) using Eq. (13) gives

np !
1
Hge ({Pyj» 0, Poj, 0},1) = [§(Pa‘ —;)’B? + ;B + ‘I’j] ,

=1

Tp
=1

(17)

such that p; = p;(Pyj, Ps;) and ; = 1;(P,;, Ps;). Hamilton’s equations, which
follow at once from Eq. (17), are

P i = VUyiQpi — Ppj (18a)
. 1 0B;
Pyj =vyj00; — gj — (vll.’l + 13 B; ) B 39 (18b)
. _ wiBj < oI; ) I;
; +p A , 18¢c
Pj D; Pji 3, ) (18c)
s _ VB 9g; 93
0; = D; (1 pPj 61,[)3) D; i | (1§d)
. 1 0B;
with  Aj =y 0, — By — (v"J + p3B; ) B; 90; ° (19)
oI; 7]
and Dj; = p; (g] 3%; -I; aZj) +I; + 595 - - (20)

The various partial derivatives of ® and « are given explicitly in Appendix A.

In practice, it is more convenient to integrate 1; forward in time and then evaluate
Pyj explicitly using Eq. (16b), rather than evolve Py; forward and attempt to invert
Eq. (16a) for ;. In terms of differential quantities, the equation for P; is

INSTITUTE FOR FUSION STUDIES REPORT IFSR-773

-~




b=Lpy - 25, . (21)
J

D. Wave evolution
b
A Lagrangian representation for the time-evolution of free (undriven) Alfvén waves
has been considered previously in Ref. 24. For the evolution of linear, fluid Alfvén
waves — which are assumed to grow on a timescale asymptotically longer than the
equilibrium - the structure of this Lagrangian is universal:

Ly =L (wo) + LY . ' (22)

Variation of £{? gives the fluid eigenmode structure, whereas variation of ) gives
the slow time evolution of the mode. Time derivatives in subsequent formulae refer
to the slow (wave growth) timescale

0
5~'7<<w0. (23)

Thus, in an operational sense, one fixes the spatial structure of the eigenmode and
allows time variation of the amplitude — which is undetermined by linear theory.
The nature of the approximation is analogous to the perturbative W formulation
of Ref. 18, although the present formulation includes the wave amplitude and phase
as intrinsic dynamical variables. Hereafter we omit the superscript 1 from the per-
turbed wave Lagrangian, which has the general form

Nw

£ = Z gk [./"E'k + Vi +wi (Xkyk — Xkyk)] ). (24)

k=1 k

with Ej the inertial energy per unit amplitude of a shear-Alfvén wave:

2 m?

: dv 2
=—_ | == (k) i i
Eg e ) |V _{_Q | [Ga,u§S1an units] . . (25)

The integral in Eq. (24) is defined completely by the linear éigenmode structure:

+
my

¥ = " expli(nip — mb)] grm (%) - (26)
m=m;
" We also note that in the large-aspect-ratio, constant density limit, one may simplify

the expression for E; substantially. To leading order dV ~ rRydr dp df, so that in
normalized units the wave energy is
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+
o [ (dkm\? | (mdim |
E~221i/ —= = )
B ~ 2n°nom | wda Z_[( dw)+< - ) (27)
m=mk

with £ = r/a the normalized minor radius. Here, n; is the thermal ion density,
measured in units of 1/R3, and m; is the ion mass, measured in units of the fast
particle mass. The interaction Lagrangian, which is already implicitly contained
in the guiding-center Hamiltonian, Eq. (17), is also needed to determine the wave
evolution. For a zero-f perturbation, this takes the form is

Np Ny

Line = — Z Z Z "mv",) (X% €08 Ojrm + Vi SIn Ojkm) drm (¥5) , (28)

j=1k=1 m=m

which has been discussed previously in Ref. 25. Variation of Lin, + L, then yields
the extremal equations

m+
. wp OLin 1 & & .
X = 5B, Y, b = ~ 75 Z Z (W — kymvy5) SinOjkm dkm(¥5) , (29a)

Jj=1 m=m;

: Line 1 _
Ve ="2Lgk th = Z Z (Wi = kymv,5) €08 Ojkm Gm (W;) , (290)

m—mk

where we have neglected second derivatives of A3 and ). which arise from the first
two terms of L,, in Eq. (24). This simplification is consistent with the assumption
of slow variation of the linear eigenmode amplitude.

E. System Invariants

At this point, we can derive conservation relations for both the energy and the
momentum of the coupled wave-particle system. First, the rate of change of toroidal
canonical momentum, P,;, as a sum over individual wave contributions is

Nw
Ppj = Z Pojk
k=1

_mk

(30)

while the rate of change of particle energy is
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Np Ny

= O0H We -
Hoe= =5 =D D P - (31)

j=1k=1

It should be mentioned that cross-terms which arise from the amplitude variation
:

):s . OH
Xy —E2 and £ 32
g T 52)
vanish when summed over particles. Further, it can be verified that
2B (Xka + yk:yk)
np M
= - Z Z (wk — k"m’uuj) [.)C'k sin ejkm — yk COs @jkm] ¢km(¢j)
=1 m=m
Np w ‘
k -
i=1

Summing Eq. (33) over k£ and comparing with Eq. (31), yields the conservation of
energy relation

4 .
E (ch -+ Ewa.ve) =0. (34')

Here we have defined the wave energy, Eyave, as

Nuw '
Ewave = » EpA7  with AZ=X2+)2. (35)
k=1

By a similar calculation, it is simple to show that momentum is also conserved:

d
Zﬁ' (Pparticle + Pwave) =0 ) . (36)

where the particle and wave momenta are, respectively,

Np Ny
n
Prarticle = E Pyj and Puave = E w_'I]: Ek:A% . (37)

In the case of only one Alfvén eigenmode (n,, = 1), the momentum and energy
equations are formally degenerate, and differ only by the constant w/n.
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I11. Algorithm for Numerical Simulation

A.. Discretization of the kinetic equation

"The differential element of phase space volume in straight-line field coordinates is
normally written as

d'®) = 2702 dv dX\ T dop dp d6 | (38)

'where A = v, /v is the cosine of the pitch angle, and J is the Jacobian defined

in Egs. (7) and (9). The volume element associated with the Hamiltonian flow
generated by Hy, is

dT' = (2mdp)(dP, cé<p) (dP; df) . (39)

Note that I'?) — which refers to the physical phase space — is not in general equal
to the invariant volume element T associated with the flow Hy.. The transformation
rule between the two is

dl'®) = NdT . (40)

where A is the determinant of the Jacobian matrix.

(»)
Nsl%rf- 1+(9( ] ) (41)

wei R

This means that with regard to the guiding-center motion, I'?) is a weak function
of time. In what follows we will therefore restrict our attention to the canonical
element T" for purposes of numerical simulation, since exact time-invariance of the
volume element is an algorithmic requirement.

In the absence of a plasma wave (X = Y, = 0), the fast particle motion will
conserve both the energy, Hg., and toroidal momentum, P,. Additionally, the mag-
netic moment, p, is exactly conserved, regardless of the size of the perturbation. The
unperturbed distribution of fast particles is accordingly restricted to be a function
of these motion invariants.

It is well-known that the §f-method is the most efficient technique to evolve the fast
ion distribution forward in time. We employ the algorithm developed in Ref. 26, with
the subtle modifications described below. Begin by writing the fast-ion distribution
f in the form
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f= fo(€, Py ) + 0fa(T, 8) + fna(T, £) (42)
e N N

equilibrium fluid-like kinetic

where P, and £ are the unperturbed momentum and energy, respectively:

gvu ’02
P, — - =
¢=TF "V aa E=gHHB (43)
=P¢—ag =H-—&

The equilibrium part, fo, which is to be specified analytically, defines the total
number of particles through a simple moment:

| no = / fo(€, Py ) dT . (44) |

The adiabatic part, df,, is responsible for the fluid-like contribution to the fast-ion
response [27-28].

_9fo 9fo
0fa = W +&— 58

(45)
For this reason, it is appropriate within the context of the two-time-scale formalism
to consider the adiabatic response as accounted for in the fluid eigenmode structure,
even if in practice it is neglected. Thus we are interested in the time evolution of
0fna only. Substituting f, as written in Eq. (42), into the kinetic equation df /dt =
gives an evolution equation for the nonadiabatic response

dfva _ _p Ofo _ g 0fo

dt YoP, = B8E (46)

In order to represent §fn, numerically, we begin by specifying a 5-dimensional cube |

U inside 'of which markers are to be loaded in an asymptotically uniform way. This
is done systematically with the use of a bit-reveral scheme described in Ref. 26. An
element of volume in I is then related to the corresponding element in I through

dl' = Mdl , : (47)

where M is the determinant of the Jacobian transformation matrix. It should be
clear that the choice of U/ is not unique and may be altered to suit a particular
simulation. A simple but effective choice is

dU = dip dv d dip df . (48)
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For clarity, the relevant volume elements and Jacobian determinants are summa-
rized in Table II. We mention, also, that the loading defined in Eq. (48) is not
necessarily optimal. For example, loading uniformly in %'/2, rather than in v, may
result in faster convergence with increasing marker number.

Once the space U is specified, we partition it into np’ eqﬁal—volume hypercubes
(with centers computed using the bit-reversal technique). Referring to Eq. (47), we
find that the time-independent volume in I' corresponding to the jth U-hypercube
is

AT; = Y-T%QM,- with  V(U) = / au , (49)

with the Jacobian M evaluated at ¢ = 0 to reflect the invariance of AT'; in time. The
density of particles on each element AT'; satisifes the discrete version of Eq. (46):

dbfna;
dt

Ofo
P,

- 0fo
;T

= —PFy; (50)

J

With the definitions presented above, we can \change between integrals and particle
sums according to

/ £(T,)g(T, £) dT ~ / @00 + Y om0 o0, . (1)

=1

where 6n;(t) = ATL'j 6fna;(t). Eq. (51) clearly introduces a discretization error, but
uniformly approaches the continuum limit as n, — co. Finally, applying the trans-
formation rule, Eq. (51), to the wave equations and introducing a linear background
wave damping rate v4, we obtain '

Tp mf
F =g S5 3 0k = kymys) Sin@imim() ~Ta X, (520)
j=1 m=m, :
+
. 1 p My
Ve =35, Do Y (wk — kymvys) €08 OjkmBrm (Wi) —va Ve - (52b) -
j=1 m=m,;

This completes the derivation of the nonlinear model. The result, which we summa-
rize for completeness below, is a (5 X n, + 2 X n,)-dimensional system of ordinary
differential equations.
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ngj

2

%] j—_—l,.--,np {y;:} k=1,...,n4y (53)
0
of ;

This algorithm has been coded in FQRTRAN, and compiled on a variety of plat-
forms. It has been given the name FAC, for Fast particle, Alfvén wave interaction
Code.

B. Orbit averaging method

According to Eq. (42), we must specify the distribution as a function of P, and £.
Of course, analytical approximations to fo, for both trapped and passing particles,
are typically formulated in the zero-orbit-width limit (e.g., Ref. 29), for which the
poloidal flux is constant along a particle orbit. However, for particles with MeV-
range energies, the excursion from a flux surface can be a substantial fraction of the
machine size. Passing alphas in JET, for example, can have Ay/a in excess of 1/4,
where A, is the orbit width.

Consider, for example, the consequence of writing the equilibrium distribution as
fo(®,€). Such a form would require Eq. (46) to be recast as

;o '-3}0_ »+0fo ‘
toa =~ ~HZ2 (59)

Clearly, fo would not be a stationary distribution in the limit A%, Ve — 0, as 0fna
would be modified according to the finite drift velocity . The essential point is
that unless fy is expressed as a function of the true constants of motion, statistical
noise in §fna will not scale with the amplitude of the perturbation. Thus, it is an
absolute computational requirement that fy have the form indicated in Eq. (42).
However, this is a rather inconvenient requirement, with the consequent form of the
distribution rather unintuitive. Also, experimental measurments of quantities which
determine the fast-particle profile — such as radial deposition profiles in the case of
neutral beam injection — give results naturally in terms of the poloidal flux. Thus,
we need to develop a general procedure to obtain a realistic distribution fo(P,, £; 1)
from a given reference zero-orbit-width distribution F (4, £).

The goal is, quite simply, to obtain a reasonable expression for an averaged quantity
(¥) that is a function only of constants of motion. From a physical standpoint, then,
(¥) labels what is effectively the “orbit center” of a particle with given (€, Py, 1)
and arbitrarily large orbit excursion. Using the equation defining P, in Eq. (43),
we can write the averaging condition as

w = (292 Ve =B ) - P (55)
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where B = B(%,0) and o is the sign of v,. For trapped particles, the parallel velocity
changes sign at the banana tip. The value of 4 at this point is thus a good indicator
of the orbit average: (1) = —P,. A simple map valid for all classes of particles in a
large-aspect-ratio field is

VE—pu—P, E>p (co-passing)
W={ =P,  E<p - NG
~VE&—-p—P, &>p (counter-passing)

More complicated forms can be derived by rigorous averaging methods, but the
method described by Eq. (56) captures the essential effects of orbit excursion. Near
the trapped-passing boundary, the form /€ — 1 may appear to be an especially poor
approximation to the average indicated in Eq. (55). However, the region where the
averaging is poor is precisely where the term is essentially negligible.

Consider a passing particle with x = 0. Here, we find that the average value of
becomes ‘

<¢) =Y - Py, (57)

where v, = V2E. The correction to this expression is formally of O(e2) if we take the
average to be in poloidal angle. For the sake of illustration, let F'(, &) be a typical
reference beam distribution: wiz., exponential in poloidal flux and Maxwellian in
energy. According to Eq. (57), the correspondence becomes

F=Ce e/ 5  fo=Ceoi=Pelg /2T (58)

The constant C in Eq. (58) may be straightforwardly related to the volume-averaged
fast particle beta or the particle number by an integration over % in the usual
manner. The requirement that the functional form be in terms of constants of
motion is required only for the numerical simulation.

Finally, for illustrative purposes, we give an analytic calculation of the small-orbit-
width linear growth rate in Appendix B. This derivation proceeds directly from the
equations used by the numerical model, and should be particularly instructive for
those not familiar with linear theory.
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IV. Dynamics of Particle Trapping

A. Wave-particle resonance

If one applies first-order perturbation theory to calculate, for example, the particle
orbits in a wave field of the form.given by Eq. (10), a resonant denominator will
occur whenever [27]

o U=nw,—lwp—w=0 “LeZ. ' (59)

is satisfied. Here, wy = (0) is the poloidal oscillation frequency, and w, = (¢) is
the frequency of motion in the toroidal direction. Particles close to this point in
phase space become become trapped in the wave potential well and execute local
oscillations at the wave trapping frequency, wy. It is interesting to note that if one
attempts to calculate to second order in the perturbation, new resonances become
possible; these occur when

'

Qel + Qez = 0 ) (60)

such that both ¢; and £, are integers. Thus, we can say equivalently that second
order resonances occur when £ in Eq. (59) is a half-integer. The general rule for an
sth order resonance may be similarly expressed by replacing ¢ in Eq. (59) with £+r/s,
where £ is any integer, and (r, s) are relatively prime. However, in the perturbative
regime, the island size corresponding to a wave of amplitude A scales like A%/2, so
that for a small perturbation, island width vanishes rapidly as s increases.

For a realistic TAE mode scenario, energy exchange between waves and particles
—and thus the instability — will saturate as a consequence of particle trapping in
the relatively large s = 1 islands. Stochasticity, if present globally, will likely be the
result of overlap of s = 1 islands from different modes, owing to the extremely small
size of nonlinear islands for typical TAE saturation amplitudes.

In the one-dimensional bump-on-tail problem [30], the motion of resonant parti-
cles, which become trapped in the field of a single electrostatic wave, satisfies the
nonlinear equation [31]

Q+w?sinQ =0 with Q=kz—uwt. (61)

Here, (k,w) are the wavenumber and frequency of the electrostatic mode. In this
case, w? = ek€ /m, where £ is the electric field amplitude of the wave. The trapping
frequency grows until the wave saturates, and in the undamped, collisionless limit,

the saturated state satisfies
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CYL = Wy, . (62)

where 7, is the linear growth rate and ¢ ~ 3.2 [30] is a universal constant.

For the TAE problem, the principle mechanism which governs the saturation is
similar, although the details become complicated by the higher phase space dimen-
sion. For simplicity, consider a passing population of fast ions with x = 0. In this
case it is convenient to use the variable pair (p, C), where

p=P,, | (63a)
CE€—%R“ . {(63b)

In the above we have used the unperturbed variables P, and £ defined in Egs. (42).
In the field of a single toroidal eigenmode with mode number n, resonant particles
on each constant-C surface satisfy an equation analogous to Eq. (61):

Q+w3(C)sinQ=0 with Q=np—~0)—wt. (64)

for each value of ¢ (discrete) and C which satisfy the resonance condition Q, = 0.
We remind the reader that 4 is not the poloidal angle but rather the angle conjugate
to the unperturbed action

1 :
b:ﬂfmw, (65)

with Py the unperturbed poloidal momentum. A qualitative diagram of the three-
dimensional island structure described by Eq. (64) is shown in Fig. 2. A formula
which generalizes Eq. (62) has been developed to describe the saturated state in the
TAE problem [33]; this requires an integration over the invariant surfaces {C} for
each value of ¢:

ot = 2] 40w (9F[38) / (6] 00
31 [ dCwiy (9F/0p) [ (9Q/0p)”

(66)

with ¢* a constant analogous to ¢ in Eq. (62). The integrands are to be evaluated
at the island centre — that is, at the value of p which gives 2,(C,p) = 0. Note that
OF/0p in Eq. (66) gives the usual instability drive:

OF OF

o oP,

w OF

£+.T_2:—3—§7, (67)

In Fig. 3 we plot both we /v, and OF/0p as functions of C for a passing particle
population in an ITER-like plasma. We have attempted to calculate the integrals
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in Eq. (66) in order to obtain a value for the constant ¢*. Initial estimates show
c* ~ 5.0, although the accuracy of this estimate has yet to be established. Finally,
we give an example of the island structure on the surface C = 3.5 MeV for a small-
amplitude perturbation in Fig. 4, in terms of the radial variable s = [t)/1(a)]'/2.

When first-order islands associated with different values of £ overlap, Eq. (66)
breaks down - and in the limit where resonances due to many ¢ values overlap,
quasilinear theory becomes applicable.

B. Resonant particle reconstitution

Our kinetic description (see Eq. (46)) is at present somewhat restricted in that we
have no physical mechanism to describe the replenishment of resonant particles into
the vicinity of a given island. The various ways in which this replenishment takes
place have been identified in Ref. 33. These are briefly summarized below.

1. frequency sweeping
If the resonance condition changes adiabatically with time, that is

ldw  w?

. Sd < o | (5§)

then the (nonlinearly) trapped resonant particles remain trapped in the wave po-
tential, but the island as a whole may change its position in phase spave. A strong
local gradient in the distribution f is the result, and may lead to an enhancement
in the particle-to-wave power transfer. This effect can be easily reproduced in the
present code by prescribing the time dependence of w(t).

2. effective particle source

Because of classical electron drag or pitch angle scattering, fast ions can be con-
tinuously injected into the resonance region. This injection can be characterized by
an effective reconstitution rate, veg which is approximately described by a term of
the form

—Veff Ofna (69)

added to the RHS of Eq. (46). When the rate veg is much smaller than both v, — 4
- and 7y, it can be shown that isolated pulses will occur with the height of each
pulse no greater than the level predicted by particle trapping in the absence of the
reconstitution. This is the regime that we will consider in our subsequent ITER
simulation in Sec. V. When 7, 74 and veg are comparable, the mode saturation
and long-time dynamics become more complicated.
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V. Tokamak Simulation

A. Large-aspect-ratio equilibrium

For the examples presented in this paper, we employ a zero-g, large-aspect-ratio
equilibrium [23]:

r2 ) ‘
B=Vp+ V0, (70)

This simple equilibrium minimizes initial coding difficulties, enables direct com-
parison of numerical results with analytic formulae for the linear growth rate, and
also provides a convenient benchmark for other numerical codes. The contravariant
components of this field ~ as defined by Eq. (8) —are g = 1, I = r?/q and § = 0;
the poloidal flux is x = 72/2, the parallel wavenmber is kym = n —m/q, and the
magnitude of B is

(1+e/a?)™"
B= 1+7rcosf (1)

The choice of ¢ is arbitrary within the context of this model equilibrium.

B. The thermonuclear alpha distribution

For the equilibrium distribution function we consider a simple product form:

fo=Chi({¢)) h2(€) . (72)

For anisotropic populations, or when profile effects on the energy dependence are
important, Eq. (72) can be generalized accordingly. Presently, we wish to concen-
trate on-a reactor-relevant alpha particle population, in which case the form of ho
is determined by alpha particle drag arising from collisions with thermal €lectrons
and ions. When reactants (thermal D and T ions) have a common temperature 73,
alpha particles will be produced with a roughly Gaussian-in-energy distribution, as
shown by Brysk [34]. This implies an alpha particle source of the form

(€ = &0)* :
tezar). e

with & = 3.6MeV and Af[keV] = 106+/T;i[keV]. The steady-state distribution of
alphas can then be obtained by solving the Fokker-Planck(FP) equation with source,
Eq. (73): :

S(v) = Spexp
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10 .
5 = 22 50 ('03 + vg) ho +7,S(w) =0. (74)

The crossover velocity, v, is given approximately by

ve[em/s] ~ 1.7 x 108@]_

(mi/mH)1/3 ) (75)
}
For & > AE, the solution of the FP equation is
fi - &) /A
hy = Erfc[(€ — £0)/AE] . (76)

v3 + 08

We remark that this form gives the correct spread in velocity around the 3.52 MeV
birth ene{vgy, and for burning plasma, indicates that there can be a substantial
number of fast ions produced above the birth energy. Indeed, in a 25keV plasma,
18% of the alpha particles will have an energy above 4 MeV [35]

The form of h; depends sensitively on the plasma temperature and density profiles,
and can be calculated directly from these profiles (and also the impurity concentra-
tions). Although plasma density profiles in ITER H-mode are expected to be flat or
even hollow, the temperature profile can be quite peaked in the absence of sawtooth
activity. In this case a good representation for the radial alpha pressure profile is

! (a3 )
(¥)
hy={1-— 7
1 < . 1!’(01) ) (7 )
with o an adjustable parameter. However, the appearance of sawteeth are expected
to produce a repetitive flattening of qhe plasma temperature inside the sawtooth
mixing radius (roughly r/a ~ 0.55). Although we ignore the effect of sawteeth on the
alpha orbits, we consider that the plasma temperature profiles can be significantly

altered from the peaked pre-sawtooth values. The shape of these flattened profiles
can be adequately described by

1

e SYINFS

(78)

where £ = () — 1y and A measures the steepness of the alpfla gradient at the
mixing radius. - ‘

C. Code benchmark

We have benchmarked FAC (see discussion following Eq. (53)) in the linear regime
against the linear §W code CASTOR-K ([36] for identical equilibria and the post-
crash-like h; profile given by Eq. (78). A value of A in accord with expected ITER
" pressure gradients was used. Also, ¥y was taken at the ¢ = 1 surface. For the radial
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eigenfunction, we use the n = 10 core-localized mode shown in Fig. 5. This was
computed by the ideal, incompressible MHD code MISHKAL [37].for a simple equi-
librium with circular flux surfaces and g-profile with an extended low-shear region.
The two dominant poloidal harmonics, m = (8,9), are peaked just inside the ¢ =1
surface. Our consideration of core-localized-modes is motivated by the important
fact that they can be nearly undamped (with regard to continuum damping), and
are thus good candidates for TAE instability. Previous analyses have indicated that
high-n modes (10 < n < 40) are the most -dangerous for ITER {13-14], while low-n
modes are typically stable, since w.o < w. .

A scan of the linear growth rate versus w was made with all other parameters kept
fixed. Due to the (df/fo)? scaling of the particle noise reduction in the noise [38],
simulations with very small wave amplitude can very accurately recover the linear

‘growth rate. The agreement between FAC and CASTOR-K results, shown in Fig. 6, is

exceptionally good.

D. ITER-like ignited plasma simulation

Our primary goal in an ITER-relevant simulation will be to get a gquantitative
feeling for what saturation amplitudes and levels of anomalous diffusion are possible
for strong local instability scenarios. Since we have found that global TAE modes
typically suffer strong intrinsic damping (continuum plus radiation) by comparision
with core-localized modes, we have restricted our attention to the latter type in this
study. It will be necessary for a more conclusive study to consider both local and
global modes, as well as drag and pitch angle scattering of the fast ions (as described
in Sec. IV.B.). We tentatively expect, however, that the saturated amplitudes cal-
culated in this work will represent an upper-bound to the possible TAE amplitudes
one is likely to find in an ITER-like plasma.

Using the MISHKA1 code, we computed a realistic set of weakly-damped, high-n
eigenfunctions in the range 17 < n < 26. These modes have m = (n —1,n —2), and
are thus localized around the ¢ = (n—3/2)/n surface, as shown in Fig. 7. At present,
the linear mode computation cannot be automated; rather, it is an extremely la-

borious procedure. We remark that the g-profile used for the computation of these

modes had ¢(0) = 0.87, which is a reasonable value for the pre-sawtooth phase.
Also, it was not as flat as for the benchmark. Since the existence of core-localized
modes does not require ¢(0) < 1, we expect that simliar modes will exist even when

g on axis rises above unity.

Initial linear simulations showed that all such modes are stable to (flattened) post-
Sawtooth crash profiles even in the absence of background (i.e., , thermal electron and
ion) damping. This is a consequence of the stabilizing term 8fo/9€ — which is known
to be particularly strong for an isotropic, slowing-down population. Subsequent
simulations, however, demonstrated that the same modes are unstable to a peaked
distribution, Eq. (77), with « = 4, since it has a shorter gradient scale length than a
post-crash profile inside ¢ = 1. We proceeded with this form, using the parameters
listed in Table III. First, we ran all modes together in a single simulation with a
large value of the fast ion pressure ({8 f) = 0.8%) and no thermal ion damping.
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The time evolution of §B and dw for each mode is given in Fig. 8, with a su-
perposition of the evolution of every §B/B shown in Fig. 9. For the core-localized
modes we have computed, CASTOR-K finds that the dominant damping mechanism,
ion Landau damping, is roughly yq/w ~ 2(8;) for T} = 15keV, where (G;).is the
volume-averaged thermal ion beta. This result is fairly insensitive to mode structure
and small changes in equilibria. For the typical value (8;) ~ 1%, then, v4/w ~ 2%.
We re-ran the previous simulation including this value of the damping. The re-
sult was that growth rates and saturation amplitudes were reduced accordingly, as
illustrated in Fig. 10. .

Next, we examine the fast particle response to the unstable spectrum. In Fig. 11,
the density perturbation as a function of radius and time is plotted. Particles are
moved outwards by the unstable modes, and the time-evolved distribution is thus
locally flattened. This is consistent with the usual physical picture of the instability;
viz., , that the free-energy associated with the unstable distribution in the vicinity of

s ~ 0.3 is tapped and converted to wave energy. A similar picture — for the density .

perturbation as a function of energy and time — is given in Fig. 12. The region of
velocity resonance is very broad, extending well below 1 MeV, with the strongest
interaction in the 3 — 4 MeV range.

Recent studles indicate that when wave-particle resonance regions overlap, a sub-
stantial enhancement of the particle-to-wave energy transfer may occur. The process
by which this occurs has been dubbed the domino effect [33], according to the way
in which a.dJacent regions of local flattening appear to “topple” onto one another.
To quantlfy such an enhancement in the present case, we calculate the total particle-
to-wave energy transfer for all modes, and then rerun the simulation for each of the
10 modes seperately and sum the individual energy transfers. The result shown in
Flg 13, indicates that the power transfer in this case is not enhanced by the effect
of multiple modes.

Finally, we address the most pressing question regarding the nonlinearly evolved
state, namely, the overall anomalous' diffusion of the alphas. In Figs. 14 and 15,
we, plot the initial and final density of guiding centers; Fig. 14 shows the result
for no background damping, and Fig. 15 for 2% ion damping. Clearly, even for the
most unstable case — where the growth rates of the modes are likely far in excess
of expected values — the profile modification is minimal. In fact, the resilience of a
machine to diffusion/loss caused by fast-particle instabilities seems to be generally
indicated by the size of the parameter A;/a.

It is worth mentioning that we have performed preliminary nonlinear simulations

for fishbone modes (the beam-driven n = 1 internal kink) in PDX and JET. Exper- -

1menta11y, PDX was observed to lose up to 20% to 40% of perpendicular beam ions;
this order has been reproduced self-consistently by FAC. As well, simulation of JET-
like-plasmas produce large redistribution with negligible losses; again in agreement
with experiment. The diffusion for all ITER scenarios we have studied is extremely
benign compared with the fishbone-induced losses in these smaller, weak-field ma-
chines.
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VI. Summary

In this paper a method to calculate the linear growth and nonlinear saturation of
Alfvén eigenmodes in general, axisymmetric toroidal geometry has been described.
The model has been fully benchmarked with an independent numerical code in the
linear regime. The nonlinear evolution of an unstable spectrum of ten core-localized
modes - restricted to the radial domain 0.2 S r/a S 0.4 - in a simplified circular
geometry was also considered, under otherwise general ITER-like conditions. The
simulations indicate that for relevant values of n, such a radially localized group
of modes leads to rather insignificant anomalous alpha-particle redistribution even
in worse-than-expected conditions. The possibility of significant redistribution via
interaction with more radially extended modes (and with the inclusion of collisional
effects) is a question that remains the subject of ongoing research.
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Appendix A: Terms in Equations of Motion

The partial derivatives of the electrostatic potential which appear in the guiding-
center equations take the form

Dy an)' —Z Z [Xkcosejkm ¢km(¢1) yksin@jkmw (A1)

3¢3 k=1 m=m_ 31,[) albj
) o
@ . k
D, = 52;1 = _Z Z [ sin O jrm — Vi €08 Ojkm] NkPrm (¥5) (A2)
7 k=lm=m
13
) o
b
@gj = 553' = Z Z Xk sin @ka — Yk cos @ka] MPrm 1!)3) ’ (A3)
J k= Im._m ’
k
8%; & . .
B, = a—t" Z Z [Xk €08 Ojkm + Vi sin Ojkm
k=lm=my
+wi (X sin O jxm — Vi cos @jkm)] Drm(¥5) - (A4)

Next, derivatives of the function o can be expressed as

Oa;

ay; = Bjz= 3%

- i Z [(Xk €08 O jkm W”“@Lﬁ + Vi sin Ojkm —a¢’;’”¢5¢j ) )

k= 1m-—m

1 6B
- _W(-Xk €08 Ojkm + Vi Sin O jkm ) Prm (¥5)
J

m
Il‘m 7 dd)]

(Xk cos @]km + yk sin @ka)¢km (¢J )] ’ (A5)
kym )
=— Z Z ulJl_k [Xk sin Ojkm — Vi €08 Ojkm] NiPrm (¥5) , (A6)

26 INSTITUTE FOR FUSION STUDIES ’ REPORT IFSR-773




= Z Z [m X, 8in Ok — Vi €08 Ok )

k=lm=m]

1 0B;

- B_W.(Xk CoS @]km + Vi sin @ka)] @km('lﬂb.')) ’ (A7)

de;
% =Bi5- 6t

= Z Z [Xk €08 Ojxm + Yy sin Ojkm

k=1m=mg

+ Wi (X SIn Ok — Vi €08 Ojkm )| Bem (¥;) (A8)

The partial time derivatives of ¢ and «, given in Egs. (A4) and (A8), are required
to compute the time derivative of Hyg:

ch = 05 + Pej . (A9)
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- Appendix B: Linear Growth Rate

For a preliminary validation of the code, we must choose some relevant limiting
case for which analytic results can be obtained, and then reproduce these results
numerically. A particularly simple regime is the large-aspect-ratio, large field (i.e.,
thin orbit) limit — for which it is straightforward to calculate an analytic expression
for the linear growth rate. We begin with a single-helicity perturbation,

[y

B = X(t)eime—mo-wtg (r) . | (B1)

This this form results in no loss of generality should be evident. Also, the radial part
¢m may be arbitrarily broad; that is, we shall make no assumptions regarding radial
localization of the mode. In the interest of simplicity, we have fixed the wave phase
by directly setting J = 0. This neglects the small frequency shift which occurs in
the presence of a perturbation.

The derivation of the growth rate is exceptionally simple if one considers fy to
depend on the perturbed constants of motion — in contrast to the formal structure
of the numerical model. Since the perturbation can be taken to be arbitrarily small,
the result for the linear growth is unaffected. Using Eqs. (18a) and (A9) to obtain
the rate of change of energy and canonical momentum, respectively, we can write
the fast-particle kinetic equation as

dé .
with
9 .
fe=gg wd fe=gh. .

We remark that the time derivative operator, when applied to the perturbation @,
becomes.

d

T =—1 (w—k"mv")+vD-V . (B4)

The first term on the RHS of Eq. (B4) refers to the zero-order field line motion,

- which will define our integration characteristics, while the second gives the deviation

from this motion. In a strong magnetic field, the latter, or “drift”, motion is much
slower than the former. A formal integration of the kinetic equation, along with a
substitution using Eq. (B4), gives

t

s0) = (fe+21e) [

-0

d
dr (—E+vD-v) 3 . (B5)
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Now, the term associated with the total time derivative in the integrand gives the
adiabatic particle response. This does not contribute to the wave growth and is
subsequently ignored. The task at hand, then, is too calculate an explicit expression
for the drift velocity vp in the equilibrium given by Eq. (69). For simplicity, a
beam-like population of particles is considered (case (i)), for which g = 0 and vy
is constant. An inspection of the equations of motion reveals the fast and slow
timescales (expressed in terms of unnormalized variables)

We RO

WeTo =

(B6)

2
and  wor, = (%Ro> T weRy Ry '

b
Uy U Ro" vy 7

Expanding Egs. (18c,d) and (21) according to this ordering, we find for the fast
" motion: 79 =0, 6y = v, /q and ¢ = v,. Some algebra then gives the slow terms as

| 1= —vsinf (BTa)
i . %‘2
6, = — (vﬁ + -?q—v"> cos (B7b)
@1 = —v,r*cosf (B7c)

These results for the drift velocity imply

kym '
vD-V@=—vﬁ [sinGa—@—icos9<%+"—T> @] . (B8)

or v,

Concentrating on the resonance w — ky(m-1)vy, = 0 (which will be relevant for co-
passing particles), we then evaluate the integral in Eq. (B5) along the unperturbed
trajectories ¢o(7) = v,7, 6o(T) = v,7/q at constant radius to find

8f(,0,7,v,,t) = g(r,v,) X (t)ei(re—(m=1)6-wi) (B9)

where

T 5 ddm Eym
o= o 2) [ (25 o ) (o

i

For the amplitude evolution, we use the continuous version of Eq. (51a):

!
t

. 1 » )
X = ~3E / dr® gf (w — kymv,) sin(ng — m8 — wt) dp, - (B11)

Integrating by parts and once again ignoring the reactive contribution gives a final
expression for the fractional growth rate v, /w:
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4 a km 2
%:2;&,2/0 rdru? (fg+ fp) [dﬁ+(r ! r) ¢m] . (B12)

vy

with u = w/k,(m—1)(r). In this result, the distribution is evaluated at the resonant
velocity v, = u. Finally, writing fo as a function of the averaged poloidal flux (1) as
defined by Eq. (57) of Section 3.2, we can transform back to the (¥, £) representation
atcording to

oF m-laF

fe+ fp % @ 9%

(B13)

This-result illustrates clearly a point which is the source of some confusion, and has
been mentioned recently in a paper by Fiilop et al. [39]. Fundamental considerations
show that the instability drive (through fp) is proportional to the toroidal mode
number'n. However, calculations in the ZOW limit have shown that the drive scales
with the poloidal mode number m rather then n. The difference is explained by
the dependence of P, on the particle energy. This effect, when combined with the
evaluation of v, at the resonant velocity w/k,(m-1)(r), gives a scaling of the drive
term with m rather than n. :
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Table I
Simulation Units

Dimension Unit Description
mass m fast-particle mass
length Ry major radius
time 1/w. inverse, on-axis gyrofrequency

magnetic field By on-axis magnetic field

Table IT
Volume Elements

dau dv d)\ dip dip df

' dT’ 2npdP, dPy dip df
' ' dT'® 2702 dv dX T dvp dp d

M 2w v2D/B?
N JB?*/D
Table III
"ITER Transport Simulation
n; 6 x 1013¢cm?3
A m;/mH 2.5 (D-T)
a 280 cm
Ry 800 cm
By 58T
Te 15 keV
T " 15 keV
mg/my 4 (@)
(Bs) 08 %
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Figure Captions

(1] High-n n linear instability window for TAE modes in an ITER-like plasma, calcu-
lated using a large-aspect-ratio, boundary layer code. The background damping
is the sum of electron and ion Landau damping, collisional electron damping, and
radiative/continuum damping.

[2] IHustration of the wave-particle resonant island structure as a function of C, which
labels the continuum of Poincaré surfaces-of-section, and p, which labels successive
contours on each surface. The phase variable is Q = ny — £6 — wt.

(3] Variation of the trapping frequency (solid line) and instability drive (dashed line)

for a range of surface levels, C, in an ITER-like plasma. The passing particle

resonance (u = 0) is driven by an £ = 9 island resulting from the (n,m) = (10, 10)
component of a core localized mode with saturated amplitude §B/B = 4 x 1075.
The instability drive has been averaged to yield the unperturbed value.

[4] The ¢ = 9 island structure on the surface C = 3.5 MeV. The parameters are

the same as in Fig. 4, but the amplitude of the eigenmode has been increased to
dB/B = 3.25 x 10~4.

(5] Plot of the m = (8,9) poloidal harmonics for an n = 10 core-localized-mode in an
ITER-like circular equilibrium. All other harmonics are negligible.

(6] Benchmark linear growth rate comparsion between the nonlinear FAC code and the
linear CASTOR-K code for the mode shown in Fig. 1. Identical circular equilibria
are used. Considering that there are differences in the method used to compute
equilibrium orbit averages (see Eq. (51)), the agreement is excellent.

[7) Upper core-localized TAE modes in the m = (n — 1,n —2) gap.

[8] Plots of §B/B (smooth curves; log scale with range 107% < §B/B < 2x1073) and
. dw/w (noisy curves; linear scale with range —0.2 < dw/w < 0.2) for each toroidal
eigenmode. In this case the modes are interacting and there is no background
wave damping.

[9] 'Superposition of the time evolution of §B/B- for the modes shown in Fig. 8.

[10] Same as Fig. 9, except with background ion Landau damping v4/w = 2% for each
mode. This value, sensitive only to ion temperature, is characteristic for plasmas
with T; = 15 keV at the TAE location.

[11] Time evolution of the fast ion density perturbation as a function of radius. This
was obtained by numerical integration of df,, over all degrees of freedom except
radius.

[12] Time evolution of the fast ion density perturbation as a function of energy, which
shows strong’interaction beyond 3.5 MeV.
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[13] A comparison of the total particle-to-wave energy transfer as a function of time.
The solid curve is the result for interacting modes (see Fig. 9), while the dotted
curve was computed by simulating each mode individually. In this case, a collective
enhancement of the energy transfer does not occur.

[14] The self-consistent anomalous alpha diffusion caused by the strong instability sce-
nario for 10 upper-core-localized TAE. The vertical dotted lines correspond to
those in Fig. 7. Diffusion is rather small and well-localized to the region contain-
ing the eigenfunctions, even though the most unstable mode had a growth rate
YL/w ~ 8% — which is at least one order of magnitude above expected values.

[15] Same as in Fig. 14, but with 7g/w = 2%.
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