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Abstract

In this study we employed the Monte Carlo/Latin Hypercube
sampling technique to generate input parameters for a liquid
polymeric-film drying model with prescribed uncertainty
distributions. The one-dimensional drying model employed
in this study was that developed by Cairncross et al.! We
found that the non-deterministic analysis with Monte Carlo/
Latin Hypercube sampling provides a useful tool for charac-
terizing the two responses (residual solvent volume and the
maximum solvent partial vapor pressure) of a liquid poly-
meric-film drying process. More precisely, we found that the
non-deterministic analysis via Monte Carlo/Latin Hypercube
sampling not only provides estimates of statistical variations
of the response variables but also yields more realistic esti-
mates of mean values, which can differ significantly from
those calculated using deterministic simulation. For input-
parameter uncertainties in the range from two to ten percent
of their respective means, variations of response variables
were found to be comparable to the mean values.

Introduction

Inrecent years advances in computer hardware and numerical
analysis have made it possible to model, theoretically, many
complex engineering processes such as liquid polymeric-film
drying; and systematic ‘numerical experiments’ can be
carried out on a computer for the purpose of process design
and optimization before any testing is conducted on an actual
apparatus. These process simulations are often done in a
deterministic fashion, i.e., process conditions and physical
properties involved are usually taken to be precisely known.
In real-world processes, however, some levels of
uncertainties are always present. At issue is how to
characterize the responses of processes such as liquid
polymeric-film drying given uncertainties in both process
conditions and physical properties.

After being freshly coated onto a substrate support, a liquid
polymeric coating is usually solidified by hot-air convection
drying. This is an important manufacturing process for pro-
ducing imaging/information-recording products such as pho-
tographic and xerographic films, and video and audio tapes.
The heat and mass transfer involved in such a drying process
can be predicted via numerical analysis as demonstrated by
Cairncross et al.!

However, uncertainties abound in both physical properties
and process conditions such as solvent-diffusion coefficient,
heat and mass transfer coefficients, and oven temperature.
Two relevant response variables that are of practical interest
are the residual solvent volume and the maximum solvent
partial vapor pressure. The former determines the extent of
dryness of the coated film after drying and the latter controls
bubble formation in the coated film. To prevent the coated
film from sticking on the conveying roll surfaces, the residual
solvent volume must be below a certain level when the dried
film exits the oven. Also, the maximum solvent partial vapor
pressure must be less than the oven ambient pressure
(normally 1 atm) in order to avoid bubble formation, which
can give rise to various coating defects.

In the present study we employed the one-dimensional com-
puter model developed by Cairncross? in computing the two
response variables of residual solvent volume at the oven
exit and maximum solvent partial vapor pressure inside the
oven. In this model, there are twelve parameters associated
with estimation of the binary mutual diffusion coefficient. In
addition, there are another nire input parameters associated
with physical/transport properties (e.g., keat and mass trans-
fer coefficients) and process conditions (e.g., oven tempera-
ture). In all, there are 21 input parameters required for
computing the two response variables chosen in this study.
In the present study, only the following three of the 21 input
parameters were assigned uncertainty distributions (i.e.vary
statistically within prescribed bounds): the pre-exponential
Sactor of the diffusion coefficient (D), the ratio of solvent
and polymer jumping units (§), and the oven temperature
(T ). The first two are key parameters in estimating the dif-
fusion coefficient. Effects of uncertainties of the above three
input parameters on the two response variables were exam-
ined using non-deterministic analysis via Monte Carlo/Latin
Hypercube sampling.

The Deterministic Drying Model

Details of the deterministic one-dimensional drying model
have been documented elsewhere!”2. Briefly, the heat and
mass transfer are described by transient one-dimensional
convection-diffusion equations of energy and mass
conservations. Because the liquid film is thin, lateral
variations in composition, temperature and film thickness are

* This work was supported by the United States Department of Energy under contract DE-AC04-94AT1.85000.
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States

Department of Energy.

T Current address: Mechanical Engineering Department, University of Delaware, Newark, DE19716-3140. }\

MAR 2 8 1557




DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabiti-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof, The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.




DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.




calculated with 10,000 runs using LHS) using LHS whereas
more than 2,000 runs are required to achieve the same level
of convergence using simple sampling. For the mean value of
the maximum solvent partial vapor pressure, only 20 runs are
needed to approximate its converged value to within 1%
using LHS whereas more than 300 runs are required using
simple sampling. For the standard deviation of residual
solvent volume, it takes about 400 runs to obtain the 99%
convergence (i.e., reduce the error to within 1%) using LHS
whereas more than 2,000 runs are necessary using simple
sampling. For the standard deviation of the maximum solvent
partial vapor pressure, the required number of runs to reduce
the estimate error to within 1% are about 700 and more than
4,000, respectively for using LHS and simple sampling.

In short, for the mean value estimate, LHS outperforms sim-
ple sampling by more than an order of magnitude. For the
standard-deviation estimate, the LHS results in run-number
reduction by a factor of five or more when compared with the
simple sampling. For response calculations that require
intensive CPU time, reduction in the number of runs needed
to achieve the desired level of convergence franslates into
huge savings in computational costs.

It is informative to compare predictions of the two response
variables computed from deterministic simulations with that
determined from nondeterministic analysis. Using the res-
pective mean values as input to the deterministic model, the
residual solvent volume (per unit area of drying surface) was
calculated to be 120.85 pm and the maximum solvent partial
pressure to be 1.0197 atm. With the distribution functions and
degrees of scattering for the three input parameters chosen -
here, the nondeterministic model (with LHS) yielded an
estimate of 658.73 wm as the expected or mean value for the
residual solvent volume and the corresponding standard
deviation of 825.22 um; for the maximum solvent partial
vapor pressure, the estimates were 1.0523 arm and 0.2705
atm, respectively for the mean value and the standard devia-
tion. In short, the mean value of maximum solvent partial
vapor pressure estimated from nondeterministic analysis
differs from that calculated from the deterministic model by
a mere 3.1% but the corresponding standard deviation was
found to be quite significant (24.4% of the mean value). As
for the residual solvent volume, the mean value estimated
from the nondeterministic model is 5.45 times of that calcu-
lated from the deterministic model; moreover, the estimated
standard deviation is actually greater than the mean value.
This implies that the chosen degrees of scattering for the three
input parameters are too high (particularly for the oven tem-
perature) and the estimates are not reliable. In other words,
the standard deviations for the three input parameters need to
be smaller in order to obtain realistic estimates for the resi-
dual solvent volume. In practice, to obtain lower degrees of
scattering of the input-parameter data certainly demands
better measurement techniques and more precise instruments.
In any case, as demonstrated here, nondeterministic analysis
provides a useful tool for determining the statistical varia-
tions of response variables in manufacturing processes like
liquid polymeric-film drying.

Effect of Uncertainty-distribution-function Types

To generate input parameters using either simple sam-
pling or LHS, we must specify the types of uncertainty
distributions. It is certainly ideal if we have complete
descriptions of the uncertainty distributions (e.g., via proper
measurements). But more often than not, only very limited
information regarding the uncertainty distributions is known.
In this case, how an analyst chooses an uncertainty
distribution becomes a very relevant question. If only the
lower and upper bounds of a distribution are known, one may
want to start with the uniform distribution. If the mean or
expected value is also available, one can use the maximum
entropy (i.e. a truncated exponential) distribution. When both
mean value and standard deviation are known, one can
certainly employ the normal distribution, which provides a
more complete description over either the uniform or
maximum entropy distribution.

To examine effects of distribution types on statistics of
response variables, we computed predictions of mean value
and standard deviation for the residual solvent volume and
the maximum solvent partial vapor pressure, using uniform,
maximum entropy, and bounded normal distributions with
various standard deviations, respectively. The results are
plotted in Figures 3 & 4. In all cases, three input parameters,

the pre-exponential factor (Dy;), the ratio of solvent and
polymer jumping units (), and the oven temperature (T ),

were varied statistically and assigned the same type of
distribution functxon Here, the lower bound for Dy was set
to 4.338x10°® m?/s and the upper bound to 5. 302x10% m /s,
for &, the lower bound was 0.765 and the upper bound 0.935;

T 'has a lower bound of 114 °C and an upper bound of 118
°C. For the max1mum entropy distribution, mean values of
4.82x10°8 m%ss, 0,85 and 116 °C were specified, respectively
for Dy, &, and T™ ; and the lower and upper bounds were set
identically as that for the case of uniform distribution. In the
case of bounded normal distribution, the lower and upper
bounds and the mean value were the same as that for the case
of maximum entropy distribution; four different sets of
standard deviations were specified: in thg basecase set,
standard deviations for Dy; &, and T~ were set to
0.241x10°® m?%s, 0.0425 and 1.16 °C, respectively; in the
second set, each standard deviation was doubled e.g. Dy
now has a standard deviation of 0.482x10°8 m?s; in the third
set, each standard deviation was tr12pled e.g. Dg; now has a
standard deviation of 0.723x10°8 m?%/s; in the fourth set, each
standard deviation was quadrupled e.g. Dg; now has a
standard deviation of 0.964x108 m?/s.

As shown in Figures 3 & 4, statistics of the two response
variables calculated using the uniform and maximum entropy
distributions are very close, to within five significant figures
(it should be pointed that both the uniform and maximum
entropy distribution functions yield spurious estimates, i.e.,
spikes, at run numbers of 300 and 4000, respectively; what
causes this is not clear to the authors at this point). The
bounded normal distribution with small standard deviations
yields statistics close to that predicted with both the uniform
and maximum entropy distributions. As the input data
become more scattered (i.e. the standard deviation varies but




the mean value is kept the same), however, discrepancies rise
rapidly. In Figure S5, the mean values of residual solvent
volume and maximum solvent partial pressure estimated
from the pondeterministic model with different input
distribution functions are further compared with that
calculated from the deterministic model. For residual solvent
volume, estimates obtained using the uniform and maximum
entropy distribution functions are very close, and they differ
only slightly from that using the bounded normal distribution
function with small standard deviations. But the discrepancy
rises rapidly as input data become more scattered. The same
is true for maximum solvent partial vapor pressure though the
effects are much smaller.

In short, with the small uncertainties as specified here for the
three input parameters, the effect on the predicted residual
solvent volume is significant but the effect on the maximum
solvent partial vapor pressure is small. For the residual
solvent volume, its calculated standard deviation is nearly
30% of its predicted mean value. For the maximum solvent
partial vapor pressure, its standard deviation was estimated to
be more than 3%.

Again, it should be noted that the uncertainty levels chosen in
this sub-section are less than that specified in the previous
sub-section on the effects of number of observations;
moreover, unbounded normal and lognormal distributions
were used in that previous sub-section whereas bounded
distribution functions were employed in this sub-section.

Summary and Conclusions

It was demonstrated in the present study that the nondeter-
ministic analysis with Monte Carlo/Latin Hypercube sampl-
ing provides a useful tool for characterizing the two responses
(residual solvent volume and the maximum solvent partial
vapor pressure) of a liquid polymeric-film drying process
subject to uncertainties in the three input parameters: pre-
exponential factor of the diffusivity, the ratio of solvent and
polymer jumping units, and the oven temperature. By em-
ploying the Latin Hypercube Sampling technique, we were
able to reduce the number of observations or runs required to
achieve the same level of convergence for the response
variables by as much as an order of magnitude when
compared with using simple sampling. Also, the uncertainty-
distribution types were shown to affect variations of response
variables, which implies that accurate characterization of
uncertainty distributions of the input parameters are
necessary in obtaining objective assessment of the statistical
variations of response variables of the liquid polymeric-film
drying process. We found that the non-deterministic analysis
via Monte Carlo/Latin Hypercube sampling not only provides
estimates of statistical variations of the response variables but
also yields more realistic estimates of mean values, which can
differ significantly from that calculated using deterministic
simulation. For input-parameter uncertainties in the range
from two to ten percent of their respective means, variations
of response variables were found to be comparable to the
mean values.
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Table 1. Input Parameters in the Base Case

Dy 4.82x10°8 m?/s

3 0.82

X 0.393

ER 0 °K

v, 1.154x10°3 milkg
w0, 0.970x10°3 mfkg
vy 0.917x10°3 m3lkg
1 0.728x10°3 milkg
Kyfy 1.45x10°6 m3lkgl°K
Kiz- Ty -86.32 °K

Koy 0.433x10° 6 m3Ikgl’K
Kp-Ty -258.2 °K

T 116 °C

C, 1254 Jlkgl°C
AH, 8.8x10% Jlkg

K 0.326 kg m/s°*PK
P, 0 atm

hgs 3.96x10° kgls*I°K
hgs 3.96x10° kg/s*I°K
kg 0.132 mls

ho 250 wn

t 30 s

Note: the first 12 parameters are associated with estimation of
diffusion coefficient. C, is heat capacity, A H, heat of
vaporization, K thermalpconductlvny, P0 oven ambient
partial vapor pressure, hgg heat transfer coefﬁc1ent at the
substrate surface, ipg heat transfer coefficient at the drying
surface, kg mass transfer coefficient, A initial wet liquid
polymeric-film thickness, and ¢ drying time. In the present
study, the three input parameters that were varied statistically
within prescribed bounds are: pre-exponential factor, Dyq;
the ratio of solvent and polymer jumping units, &; and oven
temperature, T
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Figure 1. Effect of number of observations on convergence of predicted residual solvent volume (with unbounded lognormal distribution):
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