

IOWA STATE UNIVERSITY

Institute for Physical Research and Technology

Center for Coal
and the Environment
288 Metals Development
Ames, Iowa 50011
515 294-7936
FAX 515 294-3091

RECEIVED

DEC 09 1996

OSTI DOE/PC/95208-T/

Heteronuclear Probes of Coal Structure and Reactivity

DOE Grant No.: DE-FG22-95PC95208

Semi-Annual Report

Due: May 31, 1996

Prof. John G. Verkade, PI

Gilman Hall

Iowa State University

MASTER

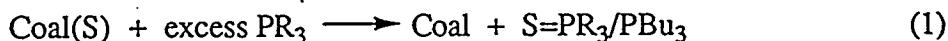
DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED


DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

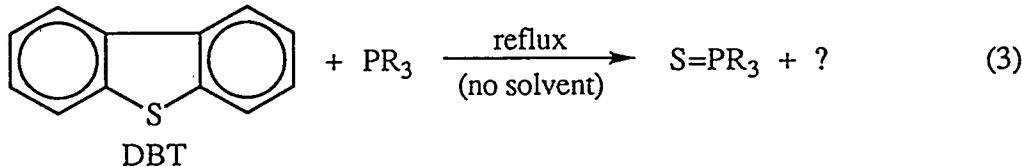
**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**


Abstract. Efforts toward quantitation of the sulfur removed from coal in the reaction below by column chromatography of the products followed by weighing

the SPBu₃ and vacuum distillation of the SPBu₃/PBu₃ mixture followed by gas chromatographic analysis are described. The first method failed, but the latter is more successful. It has been discovered that para-chloro phenol catalyzes the removal of sulfur from dibenzothiophene by PBu₃ under mild conditions.

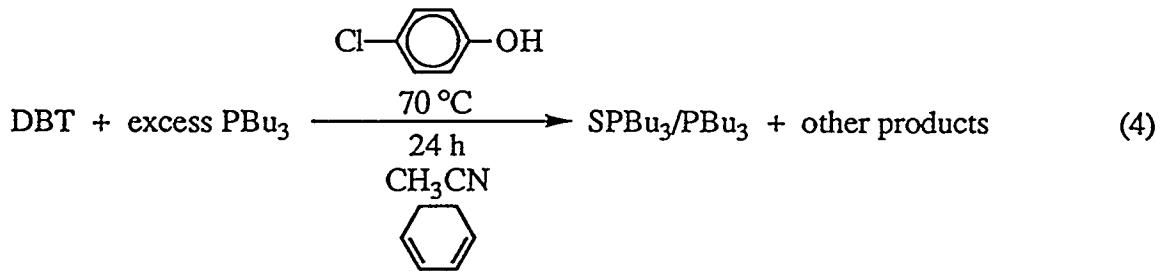
Project objectives.

A. Optimize the coal desulfurization reaction with respect to time, temperature,


coal type and the R groups (including R = H), and also on extraction, impregnation and sonication conditions.

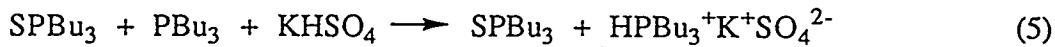
B. Optimize the conditions for the HDS reaction

(which allows the PR₃ to function as an HDS catalyst for coal) with respect to R group, temperature, pressure, H₂ gas flow rate and inert solvent presence.


C. Determine the product(s) and the pathway of the novel redox reaction that

appears to *quantitatively* remove sulfur from dibenzothiophene (DBT) when R = Bu when FeCl₃ is used as a catalyst.

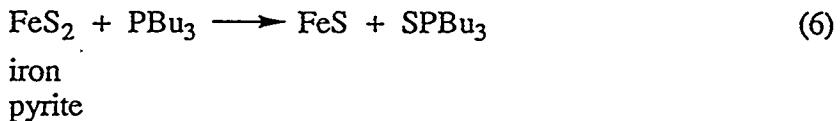
- D. Impregnate sulfur-laden coals with Fe^{3+} to ascertain if the PR_3 desulfurization rate increases.
- E. Determine the nature of the presently unextractable phosphorus compounds formed in solid coals by PR_3 .
- F. Explore the efficacy of $\text{PR}_3/\text{Fe}^{3+}$ in removing sulfur from petroleum feedstocks, heavy ends (whether solid or liquid), coal tar and discarded tire rubber.
- G. Explore the possibility of using water-soluble PR_3 compounds and Fe^{3+} to remove sulfur from petroleum feedstocks and heavy ends in order to remove the SPR_3 (and Fe^{3+} catalyst) by water extraction (for subsequent HDS of the SPR_3).
- H. Explore the possibility of using solid-supported PR_3 compounds (plus Fe^{3+} catalyst) to remove sulfur from petroleum feedstocks and heavy ends in order to keep the oil and the SPR_3 (formed in the reaction) in easily separable phases.


Summary of Progress. An analytical method has been developed for speciating and quantitating the SPBu_3 and PBu_3 obtained in reaction 1 in Objective A. The analytical problem is a non-trivial one because part of the coal dissolves in the $\text{SPBu}_3/\text{PBu}_3$ reagent mixture and part of this mixture is embedded in the coal residue. It has been discovered that the removal of 62% of the sulfur from dibenzothiophene (DBT) in reaction 3 in Objective C is catalyzed under very mild conditions by para-chloro phenol (reaction 4). This result aids in the

understanding of the pathway whereby PBu_3 removes organically bound sulfur from coal.

Results. A nagging and persistent problem with reaction 1 (which was discovered during the course of our research under the previous UCR grant) has been the determination of how much sulfur is actually removed from the coal. ^{31}P NMR analysis by integration of the SPBu_3 and PBu_3 peaks indicated that up to 90% of the sulfur was removed in some reactions. Elemental analysis of the coal residues gave variable and often conflicting results owing to the fact that some of PBu_3 and SPBu_3 remains in the coal matrix, and also, a small amount of the coal is dissolved in the $\text{SPBu}_3/\text{PBu}_3$ product mixture. Further complicating the ^{31}P NMR integrations are the paramagnetic mineral materials extracted from the coal that broaden the peaks and interfere with quantitation of the peak areas.

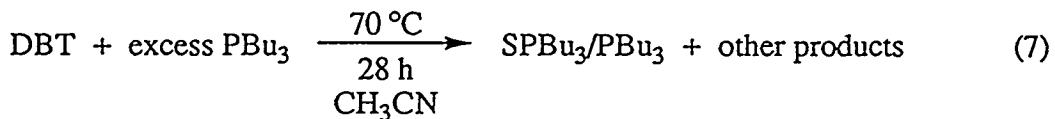
At first, efforts were made to quantitatively separate the product SPBu_3 from the reaction by the obvious method of column chromatography. This failed, however, because SPBu_3 and PBu_3 do not elute separately very well owing to the large excess of PBu_3 used in the reaction. Attempts were then made to pass the mixture through a bed of KHSO_4 to achieve reaction 5 wherein the HPBu_3^+ was



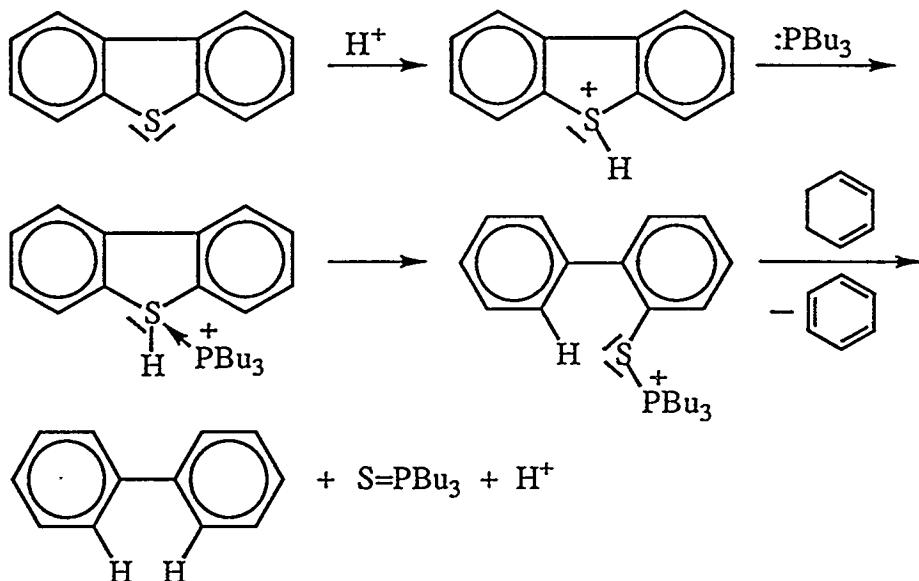
expected to remain on the column. While the desired separation does occur to a large extent, the eluate is not pure SPBu_3 , and further separation and purification

must be carried out on a silica gel column. This procedure is not very satisfactory at best, since there are too many opportunities for loss and incomplete separation.

A problem with this approach, however, is that we cannot inject the products of reaction 1 directly onto the column; not even a carefully centrifuged reaction mixture. Metal compounds (primarily iron species) are dissolved in the product mixture and such materials would damage the column. We therefore treated the centrifuged reaction mixture with aqueous base to precipitate the metal salts as their hydroxides and separated the aqueous and organic phases. The organic phase was to be subjected to GC and the centrifuged aqueous phase to elemental analysis for sulfur and phosphorus. We felt that it was likely that there would be negligible sulfur and phosphorus in the aqueous phase since SPBu_3 and PBu_3 are not very soluble in water. If these methods corroborated our ^{31}P NMR results, we would use this approach wherever appropriate, since it is more convenient. This methodology turns out to be unworkable for a variety of reasons, including retention of metal species in the organic phase as complexes ligated by PBu_3 .


We then developed another technique which now appears to work quite well. After the coal sample is refluxed in PBu_3 , we vacuum distilled the SPBu_3 , PBu_3 and other volatile organics into a separate vessel, leaving the non-volatile metal salts and coal residue behind. In carrying out this procedure with an Illinois No. 6 coal-derived pyrite sample we were able to remove 52% of its sulfur content as indicated by our gas chromatographic analysis. This is *very* encouraging since the calculated amount removable by our method is 50% according to reaction 6. In other words, PBu_3 is not expected to remove sulfur

from the FeS product of this reaction and this was demonstrated in an identical reaction with FeS.


The above apparent solution to our analytical problem has an additional advantage in that virtually all the coal (except its small amount of unextracted sulfur content) will be left after the vacuum distillation. Thus elemental analyses for residual sulfur content will be more informative in telling us how much sulfur that remains is as original sulfur and how much has become incorporated as SPBu₃.

Using ³¹P NMR peak integration methods (which we do not yet regard as definitive) we analyzed the sulfur removal from DBT. Thus reaction 7 results

in less than 10% of the sulfur being removed when phenol is used as a catalyst, but with 1,4-cyclohexadiene present as a hydrogen donor, 39% sulfur removal is realized. Interestingly, when para-chloro phenol is used in place of phenol (reaction 4) 62% sulfur appears to be removed after 24 hours. We find this result remarkable since DBT has never given up so much sulfur so easily under any conditions found in the literature. We did these reactions with phenol and para-chloro phenol present because we had evidence from research carried out under the previous grant that phenolics in coal aided sulfur removal by PBu₃. These results suggest that nucleophilic attack of PBu₃ on sulfur in DBT is facilitated by sulfur protonation as shown in Scheme 1. Here the proton acts as a catalyst since

Scheme 1

it is regenerated. Why para-chloro phenol is more effective in reaction 7 than phenol itself is not clear. Thus an acid stronger than para-chloro phenol (e.g. HO_2CCF_3) does not work in this reaction.

Expectation for achieving project objectives. Although we can now distill pure $\text{SPBu}_3/\text{PBu}_3$ from the mixture produced by reaction 1 for quantitation of the sulfur removed, we must address the problem of properly analyzing the coal residue for sulfur. Here the problem is that the residue still contains a small amount of a mixture of $\text{SPBu}_3/\text{PBu}_3$, trapped in the matrix, plus some unremoved sulfur left in the coal. An elemental analysis will be helpful here since it will represent the sum of the SPBu_3 and PBu_3 trapped in the residue. Perhaps the problem of $\text{PSBu}_3/\text{PBu}_3$ entrapment can be avoided by preswelling the coal with pyridine and then vacuum distilling out a mixture of pyridine/ $\text{SPBu}_3/\text{PBu}_3$, leaving the coal residue unadulterated.

The 62% desulfurization of DBT was measured by ^{31}P NMR integration, a method of dubious value unless it can be verified by another analytical technique.

Since DBT is too nonvolatile to go through a GC column for quantitation of the mixture produced by reaction 4, the vacuum distillate will be passed through the GC for quantitation of sulfur removed as SPBu₃. The residue of the distillation and the distillate will be weighed for mass balance purposes.

Experimental details.

Coal/PBu₃ reactions. In a typical reaction, about one g of Ill. No. 6 (or coal-derived pyrite, or FeS) was mixed with *ca.* 5 mL of PBu₃. After heating at 250 °C for 48 h under an atmosphere of N₂, the mixture was allowed to cool to room temperature. The reaction vessel was then cooled to liquid N₂ temperature and evacuated to 0.03 mm. The closed system was then subjected to vacuum distillation at 130-140 °C until no more liquid distilled. The distillate was then analyzed by gas chromatography using a Hewlett Packard 6890 GC system after dissolving *ca.* 40 mg of distillate in about 10 mL of CHCl₃ using a volumetric flask. The GC oven temperature was 200 °C and the carrier gas was helium.

DBT/PBu₃ reactions. In a typical run about 0.1 g of DBT was dissolved in *ca.* 5 mL of CH₃CN. To this was added 0.1 equivalent of phenol (or para-chloro phenol or HO₂CCF₃) 2 equivalents of cyclohexadiene and 2 equivalents of PBu₃. The reaction mixture was then heated under nitrogen for 24-28 h at 70 °C. The solvent was removed in vacuo and the residue was dissolved in C₆D₆ or CD₃CN for ³¹P NMR spectroscopic analysis. The percent sulfur removed was estimated by measuring the ratio of ³¹P NMR peaks of SPBu₃ and PBu₃.

Patent/Publication Activities. The patents below have been issued:

Verkade, J. G.; Mohan, T.; Angelici, R. J. "Catalytic Hydrodesulfurization of Coal", US Patent 5,437,696, August 1, 1995.

Verkade, J. G.; Mohan, T. "Mild Desulfurization of Sulfur-Bearing Materials", US Patent 5,509,945, April 23, 1996.

The publications below have appeared:

Erdmann, K.; Mohan, T. and Verkade, J. G. "³¹P Solid State NMR Study of Coals Treated with Phosphorus Reagents", *Energy and Fuels* 1995, 9, 354.

Erdmann, K.; Mohan, T.; Verkade, J. G. "HPLC and ³¹P NMR Analysis of Phenols in Coal Liquefaction Oils", *Energy and Fuels* 1996, 10, 378.

Commercial Activity. Cytec Corporation of Niagara Falls, Ontario in Canada called me to inquire about the issued patents referred to above. Cytec manufactures PBu_3 (and other phosphines) in large quantities. They are interested in the potential market for their products and in the research we are doing to bring our process closer to commercialization. They have kindly offered to supply us with free research samples of PBu_3 and other PR_3 compounds we could try.