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ABSTRACT

An investigation is made of a new approach to solving a set of equa-
tions (the multimode kinetics equations) which have been obtained by the
application of time synthesis to the multigroup neutron diffusion equa-

tions. The multimode kinetics equations are cast into the form of the

‘point kinetic equations and successfully solved utilizing the application

of an analytic inversion of the matrix [I-8A] to both the Padé (2,0) and
"modified" Crank-Nicholson approximations to exp[At All
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CHAPTER 1

INTRODUCTION

1.1 The Use of Space-Dependent Kinetics

Although the essential problem confronting the reactor physicist
has remained the same since the early 1940'5, the emphas.is of the
physicist's approach hés shifted considerably. Stated simply, the prob-
lem is: How is one to predict the behavior of a neutron pdpulation in a
material medium? It was this problem that Fermi faced in June of
1942, when he derived a value of 1.07 for the infinite medium multi-
plication factor for a uranium oxide-graphite lattice. And it is roughly
the same problem that today's reactor physicist must tackle. The
approach to the problem over the past few years, however, has been
focused in large part on the desirability of knowing as much as possible
about when and where heat is produced in a power reactor. Thus (as
S. Kaplan pointed out in 1966) it is extremely important to be able "to
predict what the spatial distribution of the fission rate will be at all
times during the life of the reactor, under all static and dynamic oper-
ating conditions, and during various postulated accidental transients.“l

The early experiments of Fermi at Columbia University in 1942
Wére designed to investigate the possibility of a neutron chaiﬁ reaction.
Later that year, at Chicago, confirmation of the chain reaction was

obtained and the nuclear energy business was born. Today that busi-

ness is concerned with the design and construction of large (=1, 000

Mw(e)) thermal reactors, and with the development of fast breeder

reactors.
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The prediction of the spatial distribution of the fission rate for
these devices has involved, over the past few years, the development
of methods for solving the time-dependent, multigroup diffusion equa-
tion (and various approximations to it) in one or more spatial dimen-
sions. This approach to the problem of predicting the behavior of a
neutron population in a material medium (a substantially different
approach from that of Fermi) has evolved partly because of the recog-
nition that in the large, ioosely-coupled thermal reactors being designed
today the neutron population will not exhibit a spatially uniform behav-
ior in response to a localized perturbation. In fast breeder develop-'
Ihent, this approach.is viewed as part of a necessarily strong emphasis
on safety.

The degree of sophistication with which one tackles the solution of
the time-dependent, multigroup neutron diffusibn equation is usually
dictated by the kind of event being considered, the level of sophistica-
tion of the computational machinery at the reactor physicist's disposal,
and the price the reactor physicist is Willing to pay. For a given
reactor,. both the nonuniformity of the spatial redistribution of the
neut‘ron population following a perturbation and the time scale of the
redistribution depend on the type of perturbation Wlilich has occurred.
Consequently, the‘methodology that one chooses to model the neutron-
ics of the reactor should be based in large part on ohe's knowledge of
the e\?ent, given the constraints of computational cost and accuracy
that then select the "best" method from a list of comparable methods.

» This thesis is concerned with the analysis of a new approach to

solving a set of equations (the multimode kinetics equations) which
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cheaply approxirﬁate the predictions of the time-dependent, multi-
group neutron diffusion equation, along with the associated set of time-
dependent neutron precursor equations. The remainder of this chapter
involves a brief review of several of the current techniques for approx-
imating éuch predictions, and a-development of the point kinetics form
of the multimode kinetics equations using a time-synthesis approxima-
tion. Chapter II begins with an analysis of the current approach to
solving these equations and goes on to develop a new approach, based
on the Padé (2,0) and a modified Padé (1, 1) approximation to the expo-
nential. Some numerical results which test the new approach are given
in Chapter III. And, finally, both the conclusions concerning the worth
of the new approach and some recommendatiéns for further work are

found in Chapter IV.

1.2 Some Current Methods of Solving the Time-Dependent,

Multigroup Diffusion Equation

Before a development of the multimode kinetics equations is begun,
it would seem wise to consider the equations they approximate. The
time-dependent, external-source-free neutron diffusion equation for
energy group g, along with the associated equatidn needed to deter-
mine the concent.ration'of delayed neutron precursors belonging to

delayed precursor group i may be written as2

TP (T (o4 - = = I ¢1.pd J = =
\Y Dg(r,t) V¢g(r,t) Ztg(r’t) ¢g(r,t)+ z xpg(l BY) Z v ng,(r,t) ¢g.(r,t)
i g'
¢ _(r,t)
- - - 9 g
+ z Zsgg! (r,t) ¢g.(r,t)+ z xigKiCi(r,t) =3t - (1.1)

g! i g
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iN Vs (Foe (Fh-rc.(rp-2L C.F N
Zpinng,(r,t) 00 NCFD =2 CED 171,201 (1.2)
i g

where the superscript j refers to the jth fissionable isotope.

In equations (1.1) and (1. 2):

(a) V- Dg(r_': t) chg(r—:, t) is the net leakage rate per unit volume of neu-

trons belonging to energy group g at location T and time t.

(b) Ztg(;’ t) ¢g(;’ t) is the total neutron reaction rate per unit volume

for neutrons belonging to energy group g at location r and time t.

(c) Z X%g(l’ﬁj) Z L ng'(;’ t) ¢g'(;’ t) is the production rate per unit
1 1

J g
volume of prompt neutrons belonging to energy group g at loca-

tion ; and time t.

(d) z Xig)‘ici(f:’ t) is the production rate per unit volume, resulting

1

from the decay of delayed emitters, of neutrons belonging to energy

group g at location r and time t.

“(e) Z ngg‘(;"t) <I>gv(ﬁ t) is the production rate per unit volume, due
g!
to scattering, of neutrons belonging to energy group g at loca-

tion ;and time t.

. ¢g(1", t) }
() % is the rate of increase per unit volume of the num-

ber of neutrons belonging to energy group g at location r and

time t.
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(g) Zﬁi Z " Z%g'(;’ t) ¢é(;, t) is the production rate per unit volume
j gl .

of delayed emitters of type i at location r and time t.

(h) )\iCi(r_:, t) is the rate of decay per unit volume of delayed emitters

of type i at location r and time t.

(1) Fat_ (Ci(;’ t)) is the time rate of change per unit volume of delayed

emitters of type i at location r and time t.

For G groups and I precursors, equations (1.1) and (1.2) may be

written in matrix form as follows:

Dl(r, t)

<i

+Z(1-6j)

DG(r, tl

<l

¢,(r, 1)

(r,t)
4G )

1

2l

isi @ isi (¢
b1 [v =@ . sz(r,w]

(1.3)
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ilisi (2 isi ol e 2ol L8
Zpi[v Zfl(r,t) Y ZfG(r,t)] cbl(r,t) -)\iCi(I‘,t) = "ot
j

i=1,2,...1. (1.4)

Equations (1.3) and (1. 4) may now be written as

— — - . . - T
7@ e ol ) a-pd | [VslEn ] (o o)
J_ |

I
C(AONEENTF ) ACFolyl =S T [eE] (.9)
| i=1
. I AN L 8C(r,b) |
z 5{[\;325}@,0} [e(r,t)] - NCylr,t) = — 57— i=1,2,...1. (1.6)

j

For assemblies the size of current power reactors, it is generally
assumed that equations (1. 5) and (1. 6) are sufficient to describe the
spatial and energy distribution of the neutron flux in the reactor as a func-
tion of time. Having adopted this position, one must decide how to go
about solving the equations.

Certain parallelisms in structure exist in the development of two
general approaches to solving these eqxiations. Since analytic solutions
of equations (1. 5) and (1.86) can be obtained only in the most trivial
cases, direct approaches involve finite differencing the equations in
both space and time. Indirect approaches include those classes of

appfo'xima‘tions generally referred to as modal methods and space-

. time synthesis methods. Typically, indirect methods involve an

attempt to reduce the number of independent variables at hand. They
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therefore require one tc; recombine trial functions and coefficients to
describe the neutron flux distribution.

In general, one may divide those direct techniques which depend
ﬁpon finite differencing in space and time into at least three general
categories. All involve the replacement of all the time derivatives and
the Laplacian term of equations (1. 5) and (i. 8) by their finite difference |
counterparts. This transformation results in a set of equations which
are sufficient to describe the energy group fluxes and the precursor.

. group concentrations at each spatial mesh point as a fﬁnction of time.

To recast equations (1. 5) and (1.86) into a finite-differenced form
in a direct manner, one typically begins byv forming a set of semi-
discrete equations. This is done by superimposing a three-dimensional
spatial mesh over the reactor of interest, integrating the resulting,
spatially discretized form of equations (1.5) and (1.6) over the volumes
associated with each of the meéh points, and assuming that the neutron
current may be approximated by a finite difference relationship. The
resulting equations for the neutron flux at all mesh points for energy

group g and for the ith delayéd neutron precursor group may be writ-

ten as3
| ' I G
Ly )= o ly,] + Zl [F e+ g};l [Tellegl 0.
and
G
Sic=-adc]+ ) [ el .

g'=1




(a)

(b)

(c)

(d)

(e)
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In equations (1.7) and (1. 8):

[D ][q; ] is the finite- d1fferenced box-integrated counterpart of the
operation v {V D (r t) Vq> (r, t}. [D ] is a seven-stripe matrix
representmg the process of neutron leakage across the six sides of

the mesh volume.
G _ »
z [ng,][ng,] is the finite-differenced, box-integrated counterpart
g'=1 | |

i (g is (= ~ _
| of Vg Z ng(l ﬁ) Z v zfg'(r’ t) q)gl(r: t) + Z Sgg (I‘ t) q)gl(r t)

j g' g' ,
tg(r—:’ t) <1>g(?, t)y . [ng,] contains terms representing absorption

and intergroup scattering processes.

[F ][C] is the finite-differenced, box-integrated counterpart of
Vgxlg)\lc (r,t). The matrix product [?gi][ci] concerns the transfer
of delayed neutrons into group g due to decays in precursor group i.

[A.][C.] is the finite-differenced, box-integrated counterpart to

A 1(r t). The matrix [A. ] contains the precursor decay constants.
G .

Z ,][¢ is the finite-differenced, box-integrated counterpart

to Z ﬁJ Z sz ,(r t) ¢g,(r t) and represents the production rate

J g'
of the ith delayed precursor due to fissions in group g'.

The semi-discrete equations (1. 7) and (1. 8) may be combined into

~ the single matrix equation

d _ ,
E[‘I'] = [A][¥] (1.9)
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where
' -
L,]
(9] = [g]
[c;]
[c,]
and
[D1+T11] [le] [TlG] [Fll] [FH]
[TZI] [D2+T22] [szG] [FZI]V [FZI]
[Pll] [Plz] [PIG] -[Al] ‘
' 0
[Py, [Py,] [Pyg!
: - : o
| [Py [Py, - [Pl SR ‘[Axl

" If one assumes that all the terms of the matrix [A] are constant
over a time step, At, then the solution of the matrix equation (1.9) is

given by
[w(at)] = exp([Alat) [¥(0)]. | : (1.10)

Two of the three éategories of direct, finite-differenced techniques
. involve the solution of the semi-discrete equations (1. 7) and (1. 8); and,
consequently, are approximations to (1.10). The GAKIN METHOD

(MATRIX DECOMPOSITION METHOD)? solves the semi-discrete
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equation (1.9) by splitting the matrix [A] into four parts: [U], the upper
triangular part of [A]; [L], the lower triangular part of [A]; [A], that
part of the sub-matrix diagonal of [A] which contains the matrices [DG],:
and [T'], the remaining, sub-matrix diagonal part of [A] which contains
the matrices [Tl 1] through [TGG] and :[Al] through -[AI].

With this splitting, equation (1.9) may be written as
S19 - [TI[9] = [L+Ul[9] + [a)[¥).° (1.11)

Equation (1. 11) then may be formally integrated over the interval

At = ('cp_*_1 - tp) with the following result:

At :
[ty )] =exp(T]at) [¥(t )] + S;) dt! exp((At—t')[?]) [L+ull et +th]

At |
+ g dt' exp((At-t)[T]) [Al[ w(t_+t")]. (1.12)
- Y0 P |

' The GAKIN METHOD then assumes that in the first integral of

equation (1.12)
[t +t1] = exp([w]t) [¥(t )] (1.13)

where the terms of [w] are typically found by utilizing one's knowledge
of the change in [ ¥] over the preceding time step. In the second inte-

gral, it is assumed that

[t +t0] = exp(-[wl(at-t)) [¥t ;). (1.14)

Applying these assumptions to the integral equation (1.12) yields
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{{1]-[w-T17" ([1] - exp([T - olat) [al} [t )]

- {exp([T180 +[o-11"} (exp([u]at) - exp([T1a0) [L+UJ} (% )].
(1.15)

It is essentially equation (1.15) that the GAKIN METHOD tackles
as an approximation to the semi-discrete equation (1.9).

Another class of approximations to equation (1. 10) involves that
category of direct, finite-differenced techniques known as ALTERNATING-
DIRECTION SEMI-IMPLICIT TECHNIQUES. These techniques replace
the time derivative in equation (1.9) by two successive forward differ-
‘ences over a time step, At (where At = 2h). Typically, a change of var-
iables is introduced to reduce the truncation error difficulties which
plague alternating-direction splitting methods. This change of variables
is in fact an exponential transformation of the form[i(t)] = exp([Q]t) [®(t)],
where [©2] is a diagonal matrix whose terms are again chosen by utilizing
one's knowledge of the past behavior of [y]. If, for each half of the time
step, the matrix [A] is split into two parts and the exponéntials which
‘re,sult from the exponential transformation are evaluated at the midpoint
of the step, a matrix equation may be déveloped which represents a
genéral, two-step, alternating-direction, semi-implicit me‘chod.6 With
[A] split arbitrarily into [Al] + [A,2] for the first half of the time step,
and into [AB] +[A4] for the second half, this matrix equation may be

written as

o, )] = [Ble, milw ).
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In the preceding equation:

[B(@, ] = exp([aln) {[1] - h([A,] - ole] B {m+n(la, -vieD}

- A{l1] - n([a, - ol )} {I1 +n([A]-y[2D} exp([2]b)

where e +y = 1.0.
| The specific alternating-direction, semi-implicit tecHniqué used
depends on the choices one makes for A1 through A4, along with e and
Y. To see more clearly the various choices one may make, the ma-
trix [A] is again split into four parts: [U], the upper triangular part
of [A]; [L], the lower triangular part of [A]; [T], that part of the sub-
matrix diagonal of matrix [A] Which contains the matrices [T1 1] through
[TGG]; and [D], the remaining sub-matrix diagonal part of [A] which
contains the matrices [Dl] through [DG] and -[Al] through -[AG].

FOI‘. the SYMMETRIC, ALTERNATING-DIRECTION IMPLICIT

METHOD (SADI) the following choices are made:

a=Yy=0.5

[a,]=5[T] +[U] +[D,] = [A,]

[A,] =5 [T] +[L] +[D,] = [A,]

where [Dl] contaihs those terms of [D] associated with diffusion in one
direction and one half of each term in the submatrices [A] through
[AI]. [D,] is then defined by [D] = [D,] + [D,]. -,

Using these same values of [Dl] and [DZ]’ the splitting choices of
the NONSYMMETRIC, ALTERNATING DIRECTiON IMPLICIT (NSADI)

METHOD are
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[a,]= [Uj + [Dlj

[A5] = [T] + [L] + [Dy)

[Ag]= [U] + [D,]

[A

g = [T+ [L] + D]

with ¢ = 1.0 andy = 0.
The SYMMETRIC, ALTERNATING DIRECTION EXPLICIT

METHOD (SADE) involves the following choices:

a=y=0.5
[a,]=%[T]+[Ul+[D,]=[A,]
[A,] =2 [T+ [L] +[D,] = [A,]

where [Dl] cbntains those stripes of [D] which lie above the diagonal
plus one half of each term on the diagon.al and where [D2] contains the
remaining terms of [D]. - |

. The NONSYMMETRIC, ALTERNATING DIRECTION EXPLICIT

METHOD (NSADE) is obtained by letting
a=1.0 y=0

(] = [U]+ [D,]

[a,] =[T] +[L] +[D

2] 2]

[Ag] = [U] +[D,]

(a] = [T +[L]+[D,]

4]



where [DI] and [D2] are the same as for the SADE method.

. All of these methods have been investigated by Donald Ferguson7
in two dimensions, and the NSADE method, which was found to be the
best overall strategy, has been extended successfullyl to three dimen-
sions. |

The third category of direct, finite-differenced techniques to be
considered here stems not from a straightforward attack on equation
(1.9) but rather from a "point-kinetics" approach to equations (1. 5)

"~ and (1.6). This approach, known as the 6-METHOD, is based in part

on the fact that equations (1. 5) and (1.6) may be formally cast into the

following "point-kinetics" form8’ 9:
p-p -
dr _ "
R 2 MGy
| 1=l (1.15)
ac; B .
dt_AT-)\iCi i=1,2,...1

This reduction is carried out by multiplying the terms of equa-
tions (1.5) and (1.6) by an arbitrary weighting function and integrating
over space and energy. In this abproach, the flux vector [ &(r,t)] is
expressed as the product of a shape function and a scalar amplitude
function (i.e., [ ®(r,t)] = [S(T, t)] T(t)), and the resulting values of A(t),
ﬁi(t) and p(t) are typically assumed to take on constant, average values
during the time step At.

In the 6-METHOD, the valueé of [<I>p+1] are found in terms of [‘I>p]

10
by casting equation (1. 15) into the following, differenced =~ form:



i,ptl ~ Vi,p B,
: =L epT (1- )
At A o+l ¥

n n . _
- )‘i {aﬁci’ pt1 + (1 -eii Ci, p} i=1,2,...1

The 6's appearing in equations (1. 16) are parameters which are
selected at each time step to improve the accuracy of the approxima-
" tion. The idea behind their use may be presented by considering the
following, somewhat triviél initial value problem which involves only
‘one independent variable. - The problem begins by supposing that a finite
difference solution is required for

dé(t)

ek RICH

where ¢(t) is a scalar and Rp is a constant.
Obviously, for this initial value problem, one may express the

solution ¢(tp+l) at time tp+.1 exactly as
¢(tp+l) = exp(RpAtp) ¢(tp)

where Atp = tp+l - tp' Alternatively, however, one may find ¢(tp+1)

by using a difference technique which employs a weighting parameter 6.

In this éase, the problem becomes

~
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4>(tp+1) - ¢(tp) - .
&t =R, {e ¢>(tp+1) +(1-6%) ¢(tp)}
so that
-oP
L+ Ryat (1-67)
olt ) = ot ).

. 1 -R At 6P
P P

By comparing the differenced solution to the exact, it becomes clear

that the difference technique will produce the exact result if-

1 1
oP = +
R_At °
l-e R At
PP xp( b p)

Clearly, then, for this simple problem a "pr‘o‘pér" selection of ‘the
0 parameters can enable one to reduce the error of the finite differ-
ence approach.

| Of course, in more complex problems the exact solution is not

~ known a priori. Fdrtunately, however, the use of the 8's often yields

fairly accurate results even if they are only approximated. And, in
facf, if one makes "good estimates" of apprqximate 6's for equa-
tions (1. 16), it is quite possible to significantly reduce the error asso-
ciated with finite differencing equations (1.15). |

At this point it is noted that in order to obtain equations (1. 16)
from equations (1.5) and (1. 6)'.one must ."G—difference" (1.5) and (1.6)

11
as



25

- -
{6- (0,1 918,,1-(alls,, 1+ ) a-8h [xd] [ V=] (e, j ®
| ]

#4910, FLe 1-Tale )+ ) a-pix [ visd | 11} (102
j
I '
+Z)"{ 1p+leg1 C1 p(l- 01)} [X] At {[Q [(I)]}
i=1 p
(1.17)
and
S il Lizd 17 p p p
Zﬂi[v pr:\ {[Qp.+1]eio+[¢p1(lneio)} '_)"{ i, p+1 11 C 1-65; )}
j
=Alt{ci’p+1-ci’p} i=1,2,...1. (1.18)

If one solves equation (1. 18) for C. i, ptl and eliminates this term
from (1.17), the resulting 0-equation takes the same form as one de-
scribing a subcritical assembly with an extended source. This equation
is used in the 6-METHOD in the following way: Given that the values

of [¢ ] and C i,p are known, the terms Pp’ Ap, and Bip which appear

in equation (1. 16) may be computed. A value of Atp is then selected
and the "point-kinetics" terms previously derived are used to select
the 6's which appear in the 6-equation mentioned above. This equation

is then used to solve for [® ., .] which is, in turn, used in equation(1.18)

ptl

to find the C, In this manner one may step out in time, repeating

i,ptl’

the procedure for each time step.

/

The preceding discussion of finite-difference approaches to solving
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equations (1.5) and (1.6) is not meant to be exhaustive. Rather, the
attempt here has been to categorize broadly' a few of the direct approaches
~to solving (1.5) and (1.6). When this is done, it becomes apparent.that
the direct approaches themselves involve at least two classes of methods
— those which attempt to solve the semi-discrete diffusion equation in
the form of equation (1.9) and those which go about solving the finite- .
differenced diffusion equations using the fact that they may be recast
into a "point-kinetics" form.

Although the use of a direct methodology enables one to attach ,érror
bounds to the solution of the discretized equations over a time step, it
may necessitate purchasing a considerable amount of computer time.
Even moderately sized problems handling a few energy groups and a few
thousand mesh points are quite expensive when more than one dimension
is analyzed.

To circumvent this difficulty, modal and space-time synthesis
methods have been developed to reduce the number of independent vari-

. ables that must be computed and thereby reduce the length and conse-
quently the cost of the computatién. |

Modal methods basically begin with the assumption that the multi-
group flux vector [ ®(r, t)] can be adequately represented during a tran-
sient as a sum of predetermined fixed sha.pes multiplied by coefficients
which are time-dependent. Thus, for most modal expansibns, the flux

vector takes the form

K .
[3(r,1)] = }: [y (T (0] | (1.19)
k=1



27

If the modal method being considered "fully collapses" the energy
groups, [¢k(?)] is a column vector and [Tk(t)] becomes a scalar. Alter-
natively, a "noh-collapsed" method treats [¢k(F)] as é diagonal
matrix and [T, (t)] as a column vector. "Fully collapsing" implies that

| the group-to-group flux ratios are no longer completely free to vary
independently. "Non collapsing,” on the other hand, purchases this
freedom in part by increasing the number of time-dependent equations
to be solved..

In general, the kind of appfoximation defined by equation (1.19) is
not valid at all r and for all t. By the very nature of the approxi.mation,
a réal, linear vector space is generated by one's choice of the trial
fun;:tion [¢k(;)]. And, the solution of the approximate equations which
result from the application of equati'on (1.19) must come from this vec-
tor space. Unfortunately, the space cannot usually be expected to con-
tain the exact solution to the time—depen‘den‘rc, multigroup diffusion |
equation. To circumvent this difficulty, one may apply the method of
‘weighted residuals (or, alternatively, vériational techniques) in order
to select from thev approximate solution space that solution which lies
"closest" to the exact solution.

‘The application of the method of weighted residuals is accomplished
by substituting the modal approximation, equation (1.19), into the time-
depé‘ndent, multigroup diffusion equations. Thevterms of the resulting
set of equations are then premultiplied by a series of weighting functions
and integrated over all space. The weighting matrices, [Wp(f:)] must,
of course, be of a nature and number so as to generate the exact num-

ber of equations necessary to determine the unknown coefficients in



the right-hand side of equation (1.19).

The type of modal method employed is determined primarily by the
selection of the trial functions upk(?).

The y, () which sre-defined by

vzupi{(F) + Bquk(;) =0

are known as HELMHOLTZ MODES.'? They have the advantage of being

complete, orthogonal functions which are easily tabulated. Unfortu-

nately, however, a véry large number of modes must generally be used

to describe the reactor adequately. |
Before investigating other choices of trial functions, a recasting

of equations (1.5) and (1. 6)_is in order. To accomplish this, the following

matrices are defined:

[L]=-{¥ -[DF, 0] ¥ - [AF, 0]}

0= {3 et o1

J

. AT
[Mﬂ = Z ﬁg[xi] [VJZ%(I‘, t)]
J

- 3 [

i

Applying the definitions to equations (1. 5) and (1.8) yields

I
[-L+M-Md][<§] +z [Xi] NG = %[v]_l [ 8] (1. 20)

i=1
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and

d o oC4
[Mi][ﬂ "[XJ )\ici=[xil—8—t:— i=1,2,...1 (1.21)

If one denotes steady-state conditions by a "o" subscript, then

LAMBDA MODES'? are defined by
=L
[LO][ Q)\n] - )\n [MO][ Qn]

and OMEGA MODES'? are defined by

Lol | i | | [e, ]
[MSS A1l 0 [x;1¢,
L - -~ —
[ a7 -]
[v]™ . (e ]
_ [1] [x;1C;
n 0 .. , ) S
B ]| bley

LAMBDA and OMEGA MODES have the advantage that they can be
tailored to a particular problem by using [Lo] and [MO] appropriate for
that problem. Consequently the number éf such modes required for an
adequate approximation is much smaller than the corresponding' number
of HELMHOLTZ MODES. Unfortunately, these modes are difficult to
calculate; and, since they correspond to only one of the physical states

which the reactor experiences during a transient, they will be poor
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choices if the reactor deviates substantially from that state.

All of the choices of triallfunctions considered so far involve a set
of modes which correspond to only one operator. TIME SYNTHESIS15
is a modal approximation that uses modes which are associated with a
set of operators. Typically, the elements of the K,[d,tk(?)] matrices
are fundamental modes belonging to a set of operators c‘ho.sen to repre-
sent the reactor during the course of the transient. The emphasis is
theh to use as much of one's knowledge and intuition about the dynamic
behavior of the reactor as possible in the selection o.f the set of oper-
ators.

The great advantage of éynthesis procedures is that the trial functions
can be found by standard static methods and can be tailored very directly
to the problem at hand. In many cases, therefore, few of them are re-
quired. As an important result, it becomes possible to solve an ade-
quate app‘roximation to the space-time diffusion equation with great
detail, accurately, and at a reasonable cost. |

There are, however,‘ some important objections to the time-
synthesis method. The modes do not form a complete set. There is
no orthogonality relationship among the modes. The selection of the
reactor conditions yielding the trial functions requires some intu/\itive//
judgment about the dynamic characteristics of the reactor. In thréé-
dimensions, the cost to find three-dimensional trial and weight functions
may be substantial. A great deficiency is the lack of satisfactory error
bounds. Practically, care must be exercised to avoid using linearly
dependent trial functions.

The trade-off in advantages and disadvantages of the TIME



SYNTHESIS METHOD depends on the type of problem one is attempting

to solve. For modeling the slow removal or insertion of a control rod,
the separability of the spatial and temporal behavior of the flux is a poor
approximation. For a small, uniform change in the bofon content of
boron-poisoned coolant, the approximation would be too sophisticated.
However, for a range of interesting problems, the approximation is
quite attractive. For exa.mple, the method is well suited to describe

the flux behavior following a cold water injection, a loss of flow, or the
rapid ejection or insertion of a control rod.

The second category of indirect techniques for tackling equations
(1.5) and (1.6) springs from an attempt to circumvent the difficulties
imposed by time synthesi_sA of finding three-dimensional trial and weight
functions for the entire reactor and of knowing a priori something
about the three~-dimensional temperature profile of the reactor during
the transient. Procedures belonging to this category are usually refer-
red to as SPACE-TIME SYNTHESIS methods.

The idea behind space-time synthesis methods is to extend the
notion of time-synthesis so that one may select trial functions which
apply only to a region of the reactor. A consequence of doing this is
that the coefficients of expansion become functions of position as well
as time.

There are many types of space-time synthesis. In NODAL ANAL-
YSIS,16 one partitions the reactor into several subregions, Rn’ For

the reactor, then, the flux is approximated by

- N e =)
[&(r,t] = = Tn(r)[llJ(r)][T ]

n=1
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where

SINGLE-CHANNEL SYNTH_ESIS17 may use either continuous or discon-
tinuous trial functions. In either case, the motivation is to make use of
the axially homogeneous nature of many reactors. The idea is to extend
the synthesis methodology by representing [ &(r, t)] as a linear combina-
. tion of two-dimensional flux shapes appropriate to. radial slices of the
core taken at different elevations and unknown functions o.f height and

time. For continuous trial functions, the assumption is

A

[e(r, 1] = 2 Lyl T (2, 0]
=1

The use of discontinuous trial functions permits one to use different
sets of the expansion functions [ka(x, y)] at different elevations. Thus

the flux vector is approximated as

L K .
[&(r, t)] = kél [ (o T (z.)] 2z <z<z  , n=12,...N.

MULTICHANNEL ‘SYNTHESIS18 is an extension of the idea of single-
channel synthesis whereby the x-y plane is itself partitioned into M

regions Rm. In the discontinuous trial function expansion given above

[qu, n, m(x,y)l is defined to be [qu’ (s ] in R and zero elsewhere.
Thus the expansion becomes
K Znszszn+l; X’yCRm
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If a decision is made to use an indirect appfoach to solving equa-
tions (1.5) and (1.6), another decision must then be made as to how one
should go about solving'the resulting, approximate equations. Recalling
thé structure that was observed with the development of direct approaches,
one can see that two choices are open. One may apply an indirect ap-
proach in a straightforward way to equations (1. 5) and (1.6) and solve
the resulting equations, or one may cast such equations into a "poinf
kinetics" form and go about the task of solving these reformulated equa-
tions. In this latter approach, the development of multimode kinetics
equations of a point kinetics form has been analyzed by Fuller, Hetrick and
Meneley19 and shown to be the result of the application of a weighted
residual methodology to the spatial domain. If tl;le reactor is divided

into M channels, and for each channel it is assumed that

MR

[e_(F,0]=

; (4 (00T W], (1.22)

1

then the following equations may be derived by applying this expansion
to the time-dependent, multigroup, multiregion diffusion equations
(along with boundary and interface conditions), premultiplying the
resuiting terms by an appropriate sét of weighting functions, and per-

forming spatial integrations over each channel:

[ —l — . BEE T
[Twl| (A7 [e-p]l M7 ... a0 || [T(0]
C A 1 n I C,(b)
s [1.<t>1 |l | (B, M0 | o |1 : |
S I oo :
[l | a7 gyl A || L]
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where the size of the sub-matrices depends on the kind of group col-
lapsing scheme chosen for the expansion (1. 22).
The selection of the kind of trial functions which appear in (1.22)

\

determines the type of indirect method to be employed. If the entire
\
reactor is treated as one channel containing a single time-independent
shape function, then the Sub-matri;:es of (1.23) become scalars and the
equation becomes merely the familiar point-kinetics equation. If only
one channel is considered and a single shape function is defined by any
time step, p, by

(LI &, )] = <= [MI[&(E, p)]
p .

(where [L] and [M] are operators for the perturbed reactor in the pth

time step), then the ADIABATIC METHOD2? is being employed. Or,

if one attempts to improve on the ADIABATIC METHOD by using

wi(F, p-1)

[-L+M][3(r, p)] - Z

i

~ [&(r, p-1)]
k1+wi(r’ p—l) :

= [vI™! 518, p) - &(F, p-1)]
P .

to define the shape func'tion, then the QUASI-STATIC METHOD21 has

been adopted.
Nodal methods improve on the point reactor model by considering

one spatial trial function in each channel. Thus equation (1.21) becomes

[ém(?, t)] = [q;m, i(?, t)][Tm’ ()] m=1,2,...M.

Alternatively, the reactor may be treated as one channel and omega
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modes on Helmholtz modes employed. Or, finally, one may choose to
adopt single-channel synthesis, multichannel synthesis, or time synthe-
sis in developing the multimode kinetics equations of the point-kinetics
form.

This section has been concerned with a review of several of the
current techniques of approximating equations (1. 5) and (1.6). The
remainder of the thesis deals With' one of these — the solution of the

multimode kinetics equations of the point-kinetics form.

1.3 A Development of the Multimode Kinetics Equations

In this section, the multimode kinetics eqﬁations will be developed
in a point-kineﬁcs form by the application of time synthesis to equations
(1.5) and (1.86). There are two reasons for doing this at this time. One
is to clarify the preceding discussion of using the method of weighted
residuals to develop the multimode kinetics equations in the form of
eqﬁations (1.23). The other is to help set the stage for the next chapter
which will discuss how these equations are to be solved. |

As discussed earlier, the application of time synthesis is -
made by appfdximating the flux vector with the expansion given by equa-
tion (1.19). This approximation is then introduced into equations (1. 20)
and (1.21). The resulting equations are then premultiplied by a set of
arbitrary, time-independent weight functions [Wp(;)] and integrated
over space. If the weighting functions are the neutron importance func-
tions, a reduction is made in the errors arising from the approximate
na..ture of the spatial trial functions employed.

The result is
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: I
d
1 {fv [Wp][—L+M-M ][¢k] dv} [Tk] + fl I, [ij[xi] AC, dv

MR

MMW

{f (W ]iv gl av ST 0] p=1,2,...K (1. 24)

" and

= {f [w ] [¢k] dv}[Tk] - N I W byl € av

2L - X .
T fv[Wp][Xi] C; dv p=1,2,...K; i=1,2,...1 (1. 25).

If equation (1.19) is applied in a non-collapsed manner, then equa-
tions (1.24) and (1. 25) represent G XK + G X K X I equations which can
be used to find the G X K unknown Tgk(t)'s and the G X K X I unknown
[ av ng(?) Xigci(;’ t)'s.

Equations (1.24) and (1. 25) may be transformed into the point-
kinetics form in several ways. | This flexibility stems from the fact
that in the point-kineticé formulatioh only rgtids like -jpf and Kﬁ- must be
specified.

Here, the following definitions are made:

[P1 e = 1, W I-LanILy, ] dv

I

iﬁilpk =1 W] [Mﬂ[npkj dv
(Al = o W I (9] av

ANe,} = ol £, WD) € av ... f, W lIxlic,] avk
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Applying these definitions to equations(1.29) and (1. 25) yields

< [T] = (A1 (p-pILT] 2] (1.26)
a‘it-[ci] = [A]7! [B,ILT] - A [c,] i=1,2,...1 (1.27)

or, equivalently, equation (1.23).

Noticing that equation (1. 23) may be written as
4 ] N | .
419 - [A][9] (1.28)

leads one to conclude that if the terms of the sub-matrices of equation
(1.23) are constant over a tirﬁe step, then the sqlution to the multimode
kinetics equations in a point-kinetics form over a fime step At (=tp+1-tp)
‘is

[¢p+'1] = exp(At{A]) [wp]- ' | (1- 29)

The next chapter discusses how one might approach solving equa-

)

tion (1. 26) and the kinds of approaches that one may choose to approxi-

mate equation (1. 29).
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CHAPTER I

A NEW APPROACH TO SOLVING THE
MULTIMODE KINETICS EQUATIONS

The preceding chapter was concern’ed in part with the development
of the multimode kinetics equations and the casting of these equations
into a point-kinetips form. It is the purpose of this chapter to present
a brief review of the current techniques used in solving such equations
and then to develop a new approach to their solution, based on approxi-

mating the exponential of equation (1. 29).

2.1 A Review of Techniques for Solving Multimode Kinetics

Equations Which Have Been Cast in a Point-Kinetics

Form

The following discussion of the current methods for solving the
multimode kinetics equations in the form of equation (1. 29) begins with
a consideration of methods of solving the space-independent, point-
kinetics equations themselves. There are at least two good reasons
for taking the time now to do this. First, as was pointed out in Chap4
ter I, the point—kinetics equations in fact represent a specialization of
the multimode kinetics equations produced by treating the entire reaétor
as one channel containing a single, time-independent mode. Second,
since it has been demonstrated that the m‘ultimode kinetics equations
can indeed be cast as matrix generalizations of the point-kinetics
equations, there is some cause to hope that one might look to the
methodology of solving the space-independent equations in order to

obtain a few clues as to how to go about solving the multimode kinetics
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equations. That this is the case will be demonstrated as the chapter
unfolds.

22,23 a considerable.

Because of the difficulty of analytic approaches
number of approximate methods have been devised ,over the years to
solve the space-independent, point-kinetics equations. Most of these
methods fall into the following six categorieé:

(1) methods based essentially on Taylor series expansions.24.’ 25
(2) methods based on convolution integrals using numerical inte-

gratidnzs’ 27
( 3>) methods based on integral equation formulations and approxi-

mation of the integrandza—31
(4) methods based on some approximation of matrix exponen-

tialsS2734
(5) methods based on extrapolation of low-order approxima ti‘ons3
(6) methods based on finite differencing36’ 37

Of these methods, only one appears fo have been extended to cases
where the parameters of the point-kinet‘ics equations are themselves
square matrices. Genefalizing the earlier work of Brittan38 and
Kaga.nove,28 Fuller, Meneley, and Hetrick39 have successfully em-
ployed the method of undetermined parameters in the temporal inte-
gration of the multimode kinetics equations. This approach stems
from the fact that the matrix equations (1. 26) and (1. 27) may be re-
formed into a single, integral matrix equation by performing the fol-
lowing operations. First, it is noted that the I equations (1.27) may
be substituted into (1.26) to eliminate the = Xi[Ci(t)] term and there-

i=1
by yield:
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4 1r(n] = [A]7! [pl[T(D] - z 4 1c.(1)] (2.1)
dat P ~ o at Lt .

i=1

Secondly, in order to deal with the Edf [Ci(t)] terms in (2.1), equa-

tion (1. 27) is formally integrated over the interval t_ <t <t to

ptl
yield:

[C4(0] = [Cy(t )] exp[-X(t-t )]

' t
+ g [A17! [B,(t)][T(t)] expl -\ (t-t1)] dtr (2.2)
t .
P

If one then differentiates (2. 2), the resultirig expression,

Llc,m] = MIC (k)] expl-r(t-t )] + [A17! [B,(0] [ T(1))

t | '
S W e eebyeerar, 29
p

may be substituted into equation (2. 1) to obtain the following matrix,

integral equation:

.
% [T(t)] = [A]"} [p-B1[T(D] + ifl N {[Ci(tp)] exp[-hi(t-tp)],

t .
TSR XD [T R S W) ) S Y
t ,
P
'The method of undetermined parameters is then applied to the sol-
ution of equation (2. 4) by assuming that, in the time interval tpst stp_l_l,

the matrices [ T(t)] may be expressed as



K k
[T(t)] = . (A )G-t) (2. 5)

The unknown elements of the vectors [Ak] are then found by substi-
tuting equation (2. 5) into (2.4) and applying the method of weighted resid-
ual to the result. That is to say, the terms of the resulting equation
are multiplied by a set of weighting functions and integrated over the
time interval.

Typically, the application of the weighting functions forces one to require
that the residual vanish at K points (tl’ ceo 4tK)’ all lying within the
time interval. Thus, in stepping out in time from tp to tp+1’ K integrals
must be evaluated. In this way K simultaneous, matrix equations are
generatedf from which the [Ak] may be found.

The accuracy of this procedure depends both on the degree of the
piecewise matrix polynomial used in equation (2. 5) and on the kind of
weightiﬁg functions selected fro the temporal' integration. Fuller,
Meneley, and Hetrick39 chose second degree polynomials in an attempt
to balance consistency requirements and calculational effort. In con-
sidering the sensitivity of the result on the choice of weighting functions,
Fuller40 has discussed three possibilities.. Collocation weighting uses
the Dirac delta functions, 6(t-tk); k=1,...K. Subdomain weighting,
which was used by Brittan38 and Kaganove‘28 for point kinetics, uses

the unit step functions wu(t) - u(t—tk); k=1,...K. (Here it is suggested
(tp +1—tp)
that a good choice for the subdomains is tk =t + ——— ; k=1,...K.)
. P zk'l
Thirdly, Galerkin weighting uses the trial functions (t-tp)k; k=

I,. ..Kas weighting functions. Of these three choices, Galerkin
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weighting appears to be the most capable of giving accurate solutions.

2.2 An Alternate Approach to the Solution of the Multimode

Kinetics Equations — The Approximation of exp(At[A])

Recently a new method of solving the point-kinetics equations was
developed by da Nc'>brega34 which proved to be fast and accurate and
which has the ability to reproduce all the features of space-independent

transients, including the prompt jump. Crucial to the success of this

‘new method was the development of an analytic technique to inver poly-

nomials of the point-kinetics matrix. This inversion has direct applic-
ability to the Padé approximations for the exponential; and , because of
its success in solving the point-kinetics equations, it forms the basis
for motivating one to consider the extension of the method té solving
the multimode kinetics equations.

The remainder of this chapter deals with this extension. Specifi-
cally,. it deals with the application of an analytic inversion to both the
Padé (2,0) and a- modified Padé (1, 1) approximation to the exponential
of equation (1.29). It is left to the rest of this section to provide some
insight into these two approxim'ations and to develop more clearly the
motivation behind their selection and use.

Late in the nineteenth century Padé41 realized that any analytic

function

_ ‘ 2
f(x)—ao+a1x+a2x + ... (2.6)

in the neighborhood of the origin might be approximated utilizing the

now classical analysis tool of rational approximation. Essentially, the
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idea is to express f(x) approximate'ly by

"L ® b, q(x)

where np q(x) and d

3

b q(x) are, respectively, polynomials of degree q

and p in x and where it is assumed that dp q(0) # 0. One then selects

for each pair of positive integers p and q those polynomials np q(x)

and d_ (%) such that a Taylor series expansion of r_ _(x) agrees with

p,q p.q
as many terms of (2.6) as possible. The coefficients of the polynomials

n (x) and d
Psq p

3

q(x) are determined from the fact that

>

q(x) =ﬁ('xlp+q+l) as |x| -0

3 E

dg 'q(x) f(x) - n,

This equation gives rise to p+ q + 1 linear equations from which the
p + q + 1 essential unknown coefficients of rp q(x) may be found.

For the function f(x) = exp(x), Hummel and Seebeck43 have found

that a Padé (p, q) approximation is composed of

n (x) = = (+x)
p.qd k=0 (p+q)! k! (g-k)!
and
p (ptq-k)! p! k
d_(x)= Z (-x)
p.q k=0 (p+q)! k! (p-k)!

A Padé (2, 0) approximation for exp(x) is thus given by
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Varga42 notes that the Padé rational approximations for exp(x) can
can directly lead one to consider matrix approximations to exp(At[A])..
To see this one merely has to replace formally the x variable by At[A]

and let
~ -1 -
exp(ét [A]) = [dp’ q( [A]At)] [np’ q( [A]at] = Ep, q(At [A]) (2.8)

Thus one is led to the Padé (2,0) and Padé (1, 1) approximations of

exp (At[A]). These are, respectively:

-1 .
E, o(at[al) = [[1] - At[A] + %“ [A]z] (2.9)

“and

n

B, (atla]) [m- 2] [0+ 4 a1 (2.10)

As a final point in the development of these two matrix approxima-
tions, it is noted that over- the time interval At, the parameters of the
multimode kinetics matrix [A] may change as the physicai properties
of the feactor.modeled by (1.28) .change. If one denotes as [A(tp)] the
matrix associated with the reactor at the beginning of the time step
when t = tp and refers to the matrix At seconds later as [A(tp+At)],
then the requirement imposed when the solution of (1. 28) is expressed

"as (1.29) (i.e., the requirement that [A] be constant over a time step)
may be maintained by assuming that in equation (1. 29) [A] over At is
equal to ; [[A(tp)] + [A(tp+ At)]]}. In the present work, this assumption
is made in the case of the Ez, 0(At [A]l) approximation.

In the case of the El, 1(At [A]) approximation, however, an alter-

native approach is possible. To account for the change in [A] over At,
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one may modify the E, 1(A-1:-~[A]) approximation in the following way:

' -1
El, 1(A.t[A]) = [[I] -5 [A(tp+ At]} [1 + 5 [A(tp)]} (2.11)

1,1

Equations (2.9) and (2. 11) form the basis in the present work for

Here, E' .(At[A]) clearly becomes E, 1(At_[A]) for constant [A].
approximating the exponential of equation (1.29). The motivation behind
their selection will unfold in a logical manner as the following discussion
of the properties of E,, 0(At[A]) and E} 1(At [A]) develops. -

The discussion begins with a mathematically precise statement of

45). For the purposes

the probiem at hand (see Richtmyer and Morton
of the present work, it is required that one find a one-parameter family

[y(t)] of elements of the Banach space 4 such that the equation

A

a%[tb(t)] =[A®][uD] - 0s<t<T ©(1.28)

is satisfied. In this initial value problem, t is a real parameter,
[A(t)] is a linear operator whose domain is restricted to the set of all
real numbers, and [{(0)] = Yo where [L]JO] is a given element of the
% space which may be used to describe the initial spatial distribution
of the neutron population of the reactor modeled by (1. 28).

A geﬁuine solution to equation (1. 28) is the family of [y(t)] which
lie in the domain of [A(t)] for each t in the interval 0 Sf < T and which

satisfy

-0 as At—=0 O0<t<T

[w(t+ At)] - [w(t)]
At ’

- [A W] [y(t)]
' | (2.12)
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The following approximation for (1.28) is now constricted:

Lty 1 = [E(At] [t )]

where, in the present work, [E(At)] may be either E, 0(At [A]) or

E'l, 1(At [A]) and At = tp-l-l - tp' Clearly, as At - 0, one would like
t - t
[ pr)] - Lot
the expression AL . to be an approximation to the time

derivative % [y(t)]. The implication of this requirr\nent is that, as

At -~ 0, the ratio

[E(A)] [$(t)] - [p(t)]
At

be an approximation, in some sense, to [A(t)][y(t)]. What is being
considered here in rather loose terms is the topic of consistency (see
Lax and Richtmyer44). More formally, one may define this concept

in the following Way45:

DEFINITION 2.1. The family [E(At)] of operators provides a consais-
tent approximation for the initial value problem d% [u(t)] = [A)] [y(t)]
if, for every [y(t)] in some class ¢ of genuine solutions whose initial

elements [y(0)] are dense in the & space,

[E(at)] - [1]

& —[Awl} [6d] | >0  as at-0 0<t<T

(2.13)

Since [y(t)] has been defined in equation (2.13) as a genuine solution,
the condition for consistency may be modified by combining (2. 12) with

(2.13) to obtain
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( [o(t+ AD] - [E(aD)] [u(t)]
. —{| = 0 as At~ 0 0<t<sT

At

where thé quantity under the norm is sometimes called the TRUNCA -
TION ERROR.

Equation (2. 19) poses the condition for consistency in a form which
allows one to examine the consistency of [E(at)] merely by taking a
matrix power series of [E(At)] near t for smali At, and then.comparing
‘the expansion to a Taylor series expansion of [y(t+ At)].

To do this, one has first to write the expansion of [(t+ At)] as

[p(t+ at)] = [p(t)] + At[lIJ('t)] + S5 [q»(t)] + = [¢(t)] +... (2.15)

However, since [Ll)(at)] = [A(t)][u(t)], equation (2.15) may be expressed

exactly as

- 2 :
[w(t+ at)] = { [1] + AtfA(n)] + —A;T ([A®1% + [A®]) + ...} [)]
|  (2.16)

providing [A(t)] is analytic. If one substitutes (2.16) into equation
(2.14), it should become apparent that the requirement for con-
sistency here is that matrix power series expansion of [E(At)] agree
at least through linear terms with the expansion on the right-hand side
of equation (2. 16).

Clearly, all Padé operators.of the form Ep, q(At [A]) for which
p+ q > 0 are by definition consistent approximations for the initial

value problem posed by equation (1.28). In particular, for small At,

olat [A]) may be expanded as
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@

For the general case, where [A] is itself a function of time, and the
constant-[A] approximation [K] = % [[A(t)] + [A(t+At)]] is adopted, one

may express the series as

2 .
E, o(At[AD) = [1] + at[a(®] + 2 [[A(1)) + [A(D]] + hoo.t.
(2.18)

Comparing (2.18) with (2.186), one finds that the approximation

E2, 0(At [K]) is indeed a consistent approximation for the initial value
problem (1. 28).

| For the E'l, i(At [A]) approximation, it is observed that for small

enough At:

By (at[A])=[1 + SF [A(] + SE [A(t+ an)

2
+ AL [A(t+ an] [A®)]

2
v S [A(t+ A% + h. o. t.
. 2 ..
Then, since [A(t+ At)] = [A(t)] + At[A(t)] +—A;—[A(t)] + ... one may
write

2 o
E! 1(At[A]) = [I] + At[A(t)] + LA‘Zt—[[A(t)]2 + [A(t)]] + h.o.t.

(2.19)

which agrees through quadratic terms with the expansion given by (2.16).

At? 2 |
E, O(At[A]) = [1] + At[A] +—T[A] + h.o.t. (2.17)
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This establishes Ell, 1(At [A]) as a consistent approximation to the initial
value problem of (1.28).

As a final point in this discussion of consistency, it is recalled that
a necessary condition for the existence of the expansion given by (2. 16)
is that the matrix [A(t)] must be analytic. Clearly, this requirement
also holds for the expaﬁsions (2.18) and (2.19). Thus, in situations
where the elements of the matrix [A(t)] undergo a step change, one must
formally halt the consideration of the problem at that instant and begin
to consider a new initial value problem definea in terms of the proper-
ties of the matrix [A(t)] after the step change.

Given, then, that the two approximations of interest are consistent
approximations, it would be valuable if one could next assume that after
N operations on the initial value function [LIJO] the discrete solution
[E(At)]N [xpo] will approximate the exact solution [Y(N At)] to an even
closer degree as At shrinks in size and larger numbers of operations
are required tc;- "step out" in time to a> fixed t. If this occurs, one may A
then say that the operator [E(At)] provides a convergent appro#imation
to the initial value problem.

Unfortunately, it cannot be assumed that Ez’ O(At [A]) and E'l,l(At [AD
are convergent approximations simply becéuse they are consistent. How-
ever, by using a theorem due to Lax,45 one may establish the conditions
under which the approximations are convergent. Lax's theorem states
that if the initial value problem is properly posed and a finite-difference
approximation to it is made which satisfies the consistency condition,
then stability is the necessary and sufficient condition for convergence.

To show that the initial value problem (1.28) is properly posed,
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one must establish that (1) even though a genuine solution may not exist

" for some choice of initial element [q;o] in the & space, it is possible

to approximate this [410] as closely as” one wishes by another [q;:)] for
which a genuine solutioﬁ does exist, and that (2) the solution of (‘1. 28)
depends continuously on the initial data. It will now be assumed that

the first of these two conditions does exist. The second condition will

be met if the operator [A(t)] is bounded, i.e., if “A(t) ” <Kfor0<t<T.

The criteria for the boﬁndedness of [A(t)] stems from the definition,
given in Chapter I, of the matrixr [A] which appears in [A(t)]. Since [A]
is inverted, care must be taken to avoid using linearly dependent trial
functions in the modal expansion of [&(T, t)], thereby making [A] singu-
lar.

If this criteria is met, equation (1.28) may be said to be properly
posed and the issue of convergence hangs on stability. The concern
‘here is that there should be some limit on the extent to which any com-
ponent of an initial function can be amplified as one steps out in time
fromt=0tot=T. Since this numerical procedure involves a sequence
of operation’s which approach infinity as At approaches zero, the

requirement for stability may be expressed as

DEFINITION 2.2. An approximation [E(At)] is said to be stable if, for

some T > 0, the o set of operators

0< At< T

[E(at)]™
0<nAt<T

is uniformly bounded.
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Varga42 points out that this condition is clearly met if the spectral
radius of [E(At)] is <1 for all t > 0. In some problems, however, it is
possible for a cérnponent of the exact solution to grow exponentially.

In such cases (for example, a supercritical reactor) taking the spec-
tral radius of [E(At)] <1 as a requirement is too stringent; and, in
fact, its use would violate consistency.

Fortunately, a less stringent requirement for stability exists.

Richtmyer and Morton46 point out that if, for some G and some T >0
[E(ap || <1+ cat for 0 < At <7 (2. 20)

then sfability is guaranteed, for then “.E(At) ||n < exp{(GT), for 0 <
nAt < T, | |

For small enough At, it is now clear that both the Ez’ 0(At [A])
and E'l, (At [A]) approximations are stable. To see this, one has only

to recall that either approximation may be written as
[E(At)] = [I] + At[A] + h.o. t.

Obviously, if the elements of [A] are bounded, a sufficiently small At

exists such that
|E(at) || = ||[1] + At[A] + h.o.t.|| <GAt+ 1

The stability of the E2,YO(At [A]) and Ell, L (At [A]) approximations
is thus assured for small enough At. There femains, however, one
final topic to be considered in this discussion of the properties of these
two approximations. The idea is somewhat akin to that of asymptotic
stability. Stated roughly, it is that in obtaining an approximate solu-

tion, one would like to minimize the influence of those eigenvalues of



E, 0(At [A]) and E! l(At [A]) which correspond to eigenfunctions that

do not approximate closely a genuine solution of the initial value problem.
The question raised now is notr so much what ahppens as At = 0 but,
rath.er,. how accurate are the approximations for economically viable
tifne step sizes. |

To deal with this issue in a more precise way, the following theo-
rem (established by Frobenius in 1878) is introduced: If )\1, )\2, o xn
are the characteristic roots, distinct or not, of an n X n matrix [A], and
if G([A]) is any polynomial function of [A], then the characteristic roots
of G([A]) are G(X)),G(\,),...GOV ).

The application of this theorem to the Ez, olAt [A]) approximation
is sfraightforward. By inspection, it is clear that the eigenvalues of

- 1
Ez’o(At[A]) are given by AL 2 where Xi is an eigenvalue

1 - At\, + — \.
i 2 1

of [A].

In the case of the E!
1,1

confronted with the fact that the eigenvalues and eigenvectors of [A(tp+At)]

(At[A]) approximation, however, one is

are not the same as those of [A(tp)]. Consequently, one may not, by

inspection, claim that the eigenvalues of E} (At [A]) are given by

1+ = \.
2 1,0
1____A_£)\ (2.22)
2 0,1

where \; _ is an eigenvalue of [A(tp)] and \; , is an eigenvalue of
[A(tp+ At)]. Yet, in a qualitative sense, it can be maintained that since
the parameters of [A(t)] do not change very much over a time step for

computationally realistic choices of At, the eigenvectors associated
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with [A(tp+ At)] are not very different from those associated with [A(tp)].
Given that this. perturbation is slight, it then seems reasonable for one
to conclude that within reasonably close bounds the eigenvalues of

E'l, 1(at[A]) may be approximated by (2. 22).

Theserbservations enable one to glean at least some qualitative
information about the two approximations, E2, ol At [A]) and E'l, (At [A]).
First, it séems clear that At must be chosen so that the denominators
(1 + At + — )\2) nd (1 - = )\ 1) do not equal 0 Furthermore,
one may now directly approach the question posed earlier of how to min-
imize the influence of those eigenvalues of EZ, O(At [A]) and E'l,l(At (A
which corrupt the approximate solution. To do this, however, one must
obtain some knowledge about the eigenvalue spectrum of the matrix [A(t)].

For the quite stringent case of a symmetric reactivity matrix, [p(t)],
and constant, positive definite matrices [A] and [Bi], Porshing47 has
analyzed the eigenvalue spectrum of [A(t)] in detail; Unfortunately, this
kind of analysis has not been accomplished as yet fqr more general situ-
ations.

In lieu of this, one might rely on Porsching's results to gain some
intuitive feeling for the spectrum of [Al. For example, it can be main-
tained that at least one of the eigenvalues of [A] will be 1arge and negative
and that (even though the associated eigenfunction is dying away rapidly)
this eigenvalue will influence the approximation in a detrimental way.

It is then appropriate to turn to the E2, O(At [A]) approximation to ameli-
orate this situation. If X\, and \ are two diffevrent eigenvalues of [K],

and it [\;| » [\ | i>0, then for the E, ,(At[A]) approximation
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lEz, O(At)\o)l » IEZ, olAtL) |. It can consequently be argued that the
influence of that large root on the solution is diminshed, thereby estab-
lishing further the motivation for one's use of E, (At [A]) as an approx-
imation to the exponential.

The whole series of E (at[A]) approximations, however, suffer

P, 4
to some extent from the necessity of assuming [A] constant over a.time

step. Da Nobregal}‘8 has shown that if one uses [K] e % [[A(tp)] +

.['A(tp+ At)] 1, the approximation is automatically limited to a global

error of ﬁ(AtZ). Moreover, this assumption, when used in any of ’Ehe
Ep’ q(At [A]) approximations to the exponential, results in the reactor
model responding to a ramp reactivity insertion by considering it to be
a series of steps, each having its own small prompt jump. This pro-
duces a scalloped effect in the solution; and, in turn, motivates one tec
turn to the E'l, 1(At [A]) approxirhation in an effort to handle ramp in-
sertions better. This is really just a modification of the Crank-
Nichols'orAl49 method which may be thought of as imposing the require-

ment that the forward derivative of the solution at tp meet the backward
derivative of the solution at tp + At at a point halfway through the time
(t +At) -t '
p p
step (at t = ———s—).

F{nally, it should be pointed out that, although Porsching29 has
directly applied the use of rational approximations of the Pade type
successfully to the point-kinetics equations, the direct application of
E, 0(At [A]) and EY 1(At [A]) to the multimode kinetics equations
appears quite unaitractive since it would require, at each time step,

- - At
the inversion of‘:I - At[A] + —éz-t [A]z] or [I - = [A(tp+At) ] j\ Here



55

[A] may range from order (KX (1 +1)2 to o,rder (K X G X (1+1)° depend-
ing‘r on whether or not the groups are collapsed. (Again, K = number of
trial functions; G = number of groups; I = number of delayed groups.)
To get around this requirement, one would like to find (generalizing
the work of da Nobrega34) an analytic inversion for these two m.atrices.
The remainder of this chapter will describe such a generalization and

apply the result to the E, olat [A]) and 2 (At [A]) approximations.

2.3 Devélopment of an Analytic Inversion of [[I] - 8[A]]

Before attempting to find an analytic inversion for [[I]— At[A]+ %[K] 2:]
and {[I] - —921 [A(tp+At)']:l, it should be noted that both matrices really involve
inversions of a matrix of the form [[I] - 6[A]], where & is some number

(possibly complex). This is obvious in the case of [[I] - _Aég [A(tp+At)]—‘; but it

-

is also true for [[I] - At [A] + —%[A]z] since this matrix may be factored

into {[[1] - sIA11[ 1] - 6[a11}"" = [[1 - 6[A] 17" [[1} -5[A]]7", where & =
A

5
verting [[I] - 6[A]] where [A] is a matrix of the form given by equa-

(1-i) and 5 = -Az—t (1+i). This section, then, is concerned with in-

vtioh (1.28) and & is a constant, either real or imaginary.
This inversion may be obtained in a straightforward manner by
considering the matrix [A] with I delayed neutron groups. In this case,

L[1] - 8[A]] may be written as
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M- slal o] A1 . -enT) |
-8, ( NI
(1] - (A1 = o 0
| B o 0 .
'6[“I] | (1+6>\I)[I]J

(2. 23)

where

[w] =[A17" [p,]

The (I+1) X (I+1) unknown matrix elements of [[I] - 6[A] ]_1 may be found
by using the general rule of partitioned matrices to solve ‘ |
. | (] o
-1 | -1 |
([T -6la]] © [[1]-6[A]] = [[1] -e[A)][[1] -8[A]] ~ = .
: ' 0 [1]
(2.24)
Equation (2. 24) represents (I+1) X (I+1) matrix equations in (I+1) X
(I+1) matrix unknowns. The unknown matrices may then be determined.

The result, which can be verified by sﬁbstitution, can be written

as
(r AT N
[1] ] ——[1 ... ——11
€+ N\ €+ X\
| 1 I
1
[-sa]! = ¢ [€+ 2 [kl L1671 +
1
€+ N [pl
T " )



0 [v1~?

L —

and

‘ I -1
7 = -1 (6] + = o D]

If one then makes the following definitions:

[U] = col. {[I] _6_':7\‘1 [“1] - E—_I—}—X-I _[HI]}

AT A Mo
[wT={m€+kim.u;T§[@

— ——

0 0

[D] =

€

(2. 26)
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equation (2. 25) may be written as

[(1-6[a1]7" = [U] (V)" [y'll + (D] | (2.27)

Thus, providing [\(]"1 exists, an analytic inversion of the matrix
[[1] -6]A] ]-1 does exist and is given by (2.27). What must now be done

s to apply this inversion to the problem at hand, namely the solution of

[yl = By ofatlaDlp ] and [y 1= By (at[aDly].

It\ is the purpose of the next two sections to accomplish this task.

2.4 Application of the Analytic Inversion to
[bpe1] = By glatlADly )

This section begins with the substitution of equation (2. 27) into
Ey o(at[al) = [[1]-6[a]17" [[1] - B[all"".
In this way, it is discovered that
T -1y ey o T -1 =
E, o(at[A]) = [U][V]" [y "}(UllVv]" [y "] + [D][D]

+ V1T v D1 + 1wVt 4 (2. 28)

where the bars denote complex conjugates of the matrices defined by

(2. 26).

In spite of the emergence of complex constants in (2. 28) it should
be clear that E,, 0(At[A]) is real, since E, 0(At[A]) = L[I] -At[A] +

-1
2
i\_2'§_ [A]z] and [A] is real. This leads one to note that if the right-
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hand side of (2.28) may be factored into its real and imaginary parts,
yielding

E, O(At[A]) = [REAL] + [IMAG] - (2.29)

it then follaws that the imé.ginary part, [IMAG], must equal the nu11~‘
matrix [0]. One is thus motivated to reform (2. 28) into (2. 29) and
thereby eliminate the imaginary part of the matrix.

At this point, the following definitions are introduced:

[D]=[D)]+ilDy] V1T =[v,]7 - i[V,]
| (2. 30)
[Ul =[u,] -ilu,]  [y"'1=[la]+[b]i]
where
[a] = :I - %‘5 [/\]-l [o] +zi AtPi(1+ Atki)[Hi]]
(o1 = | 407 (o) - = atpng |
and

1

P; = I
(1+Atxi) + 1

Using these definitions, equation (2. 28) may now be expanded to

yield the following:
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- 10, 1V,1 T v17H (D] - i[U,1[v,17 [y [D]
- [U,11v,1 T (17! (D1} +{[D1[u, 10V, 17 (3]
+ 101U 11,17 (W17 + 1 [D1[U,) v, 17 (v

- D1[U,[v,1 T (v171} (2.31)

The motivation for eliminating the imaginary parts of E2,0( At [A])
is now stronger than ever. To do this, however, requires that the
imaginary and real parts of equation (2. 20) be segregated. Accordingly,
" the matrices [Z)] and [E] are defined in the following way: If one

writes

(V171 = [[al+i[b]17" = [2] + ife]

1

it can be shown that [e] = [ab~ al+b]-'l and [z] = [b—lae] = [ba-1b+ a]_l.

(The proof is given in Appendix 1.) [Z] is then defined as

and [E] is defined as
[e] 0
0 [e]

Finally, if [M; ] =[U]] [vj_]T and [L] = [D][D], then equation (2.31)

may be written in the form of (2.29), where
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[IMAG] ={[M111[E] + [M121[21 + My, 121 - [Mzzj[E]}
-l 021+ [y ] [E] + My, 11E] +[M221[Z1}
- {001, )12] + [0, ] [E] + [My, 1 [E] + (M) (2]}
- {1181 + [M ,102] + [My, (2] - [My,) [E]}
- {0y JED + [ ,)02] + [My,]12] - [My,] (B} (D]
+[Dy ] {0y 1E] + [M ] 2] + [, 1 (2] —.[Mzzl [E]}
# {-[00, (2] + [M, ) [B] + (M, ] (6] + [0, (2]} D)

- D -y 2] + (M 5] [E] + [My, 1[E] + [M,,][2]}  (2.32)
and

(REAL] = {-[M,,1(Z] + (M, ;] (=] + (M, 10E] + [My,) (2]}
+ {ny 1] + [, (2] + [, 112] - [My) [E]}
- {0y 102] + (Ml [E] + [My, 1 (E] + [Mp,l[2]} [D)]
- {Im) | 1{E] + [M ] (2] + [M,))[2] - [Mp,] [E]} [Dy]
- D -y 1[2] + [ 1] + [ TR + Myl (2]}

+ [DoH{[M) 1[E] + [My 5] [2] + [My, 1[2] - [My ] [E]} + (L]

(2.33)
— =
[o] _ 0

2P1[I]

[L] =

0 2PI[I]
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In verifying that [IMAG] = 0, two identities arise. (The proof of
this is given in Appendix II.) Their existence stems from the way in
which [z] and [e] were defined, and the fact that [z] = [-e] + I.b]-1 [e] -

1 . _

= a’P o [b]! [w;][e]. The identities are

&
SIENSIRENCINEINIE
- [z][v;][e]] =0 , (2.34)
and | |
[ NG SW(BINIE
el )] = [e] + ] | .39

Although the identities (2.34) and (2. 35) may indeed be used to
verify that [IMAG] = [0], their real importance hére lies in their use in
the restrucfuring .of [REAL] into a more tractable form. The result
of doing this (see Appendix III) is that the matrix [REAL] may be writ-

ten as
[REAL] = [A] + [[U,1[V,1T - [U,][V,1T1[[2] + [E]]
+ [0V, + (U 1v, 1711 [2-E]] (2. 36)

And, since [IMAG] = [0], one finds that
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[geyd = {1A1+ L1010V, 17 - [U,]0v,1 T 10[2] + (E]]

+[UIV,IT + UM v 1710020 - [E]1} [e ] (2.37)

For the point-kinetics case, equation (2.37) is identical with the result
given by N6brega.34

Two final comments should be made concerning the result, given
by (2. 37), of applying the analytic inversion developed in the previous
sectién to the equation [l.lJp_l_l] = Ez, O(At [A] )[llJp]- First, for changes in
Za (the poison capture cross section) only.the block diagonal matrices
[Z] and [E] change over At since only these matrices contain the reac-
tivity mafrix [p]. Therefore, for transients for which the sole change
is in Ea, only these matrices must be recomputed at each time step.
The result is a substantial savings in computation time over the amount
of work which would have been required in using [REAL] as expressed
in equation (2. 33). Second, although at each time step two matrices
must be inverted, the matrices are quite small. The inversions occur
when [Z] and [E] are generated and involve the inversion of [b] and

[ab_l

a+b]. If the number of trial functions in the modal approximation
"is K and G energy groups are considered, then the maximum size of
these matrices is (G XK) X (G XK). For a fully collapsed approach,

their size is (K) X (K).

2.5 Application of the Analytic Inversion to [¢p+1] =

By (AtlADIY ]

The application of the analytic inversion of [[I] - §[A]] applies in

a straightforward way to the E} 1(A’c [A]) approximation. Since
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A _ At =1 ST "
¢ t[AD = [I] - = [A +At)]] I]-= | (tp)]:‘, one may substitute

equation (2. 25), with & = -—2-, directly into E' (At [A]) and obtain

atia]) = (ol vITH i1+ 011 + 4 8]
= [M11 [[1] .+'-Az—t [A(tp)]] (2. 38)

where the elements of [M1] are defined by equation (2. 26) gnd contain
| those properties associated with the matrix [A] at the end of the time
step. |
| Applying equation (2. 38) to the matrix e‘quation [Lpp_l_l] =
l(At[A] )[q; 1, yields |

[¢p+11-[{[U][v]T}[y'IH[Dn[w]+—-[A(t iw,l| .39

Again,’ it should be noted that for transients for which the sole
change is in Za, only the block diagonal matrix [\/—1] changes over a
time step. Here, the situation is even simpler than.for the Ez’ 0(At [A])
approximation. At each time step only one inversion must be made of |
[y]-l, a matrix whose size is either (G X K) X (G X K) for an uncollapsed
treatment or (K) X (K) for a collapsed treatment (G = number of groups;
- K = number of trial functions).

In the pas't three sections, a generalization has been made of an
analytié inversion technique, developed by da N6brega34 for the point-
kinetics matrix. It should now be clear that this generalization may be
a;pplied to the multimode kinetics equétions when these equations are

placed in a point-kinetics form. Specifically, this technique has been
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v applied successfully to two consistent and stable approximations to
the exponential, exp (At[A]). Finally, the results of this application
have been used to generate the [LppH] vector of equations (1. 29) from

[¢p], thus "stepping out in time" from tp to t In the next chapter,

ptl°
several numerical studies will be presented which are intended to dem-
onstrate the efficiency of this new approach (exemplified by equations

(2.37 and (2. 39)) whenused to solve the multimode kinetics equations.
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CHAPTER III

NUMERICAL RESULTS

In Chapter I, a set of multimode kinetics equations were developed.
in a point-kinetics form by the application of time synthesis to the time-
dependent, multigroup diffusion equations. In Chapter II‘,‘ it was then
observed that one may solve these equations by using a temporal inte-

gration technique which utilizes the method of undetermined parameters.

~ Alternatively, however, it was also found that one may approach the

solution of these equations by generalizing the Space-independvent, point~
kinetics work ef da »N6brega,‘39 This new approach, which involves the
application of ‘nonanalytic inversion of the matrix [[I] - 6[A]] to
"ratios" of matrix polynomials, was applied to the E2, O(At [A]) and

E'l, (At [A]) approximations to the exponential , exp(At[A]), of equa-
tion (1.29), and the results of that application were presented in equa-
tions (2.37) and (2.39). It is the purpose of the present chapter to
investigate the efficiency of these results by considering several numer-
ical examples.

To perform this investigation, two one-dimensional slab reactor
models were studied; Both reactors were described by multimodal
kinetics equations which had been derived By the applic_afion of time
synthesis in a fully collapsed manner, using two trial functions. Thus,

in these studies, the neutron flux was approximated by

[26c, 0] = Ly, I T, (1) + [4,()] T (1) | (3.1)

where the vectors [q;l(x)] and [¢2(x)] were predetermined trial functions

o



and the scalars Tl(t) and Tz(t) were unknown amplitude functions.

For both slab reactors, the two trial functions were selected so
~as to "bracket" the transient being considered. TQ do this, the first
trial function was picked to correspond to the initial value of the prob-
lem at hand (i.e., the steady-state neutron flux distribution of the un-
pertu;'bed reactor). The second trial function then corresponds to the
steady-state flux distribution of a pseudo-critical, pertﬁrbed reactor.
This trial function was found for each transient by adjusting the number
of neutrons produced per fission in order to make critical the material
composition associated with the reactor at the end of the transient.
Also, for each slab, the weighting functions used were the adjoint
functions calculated from the transpose of the operators associated
with the two trial functions. Both the trial functions and the adjoints
were calculated using a computer program, DIFFUSE, which was
written principally by William Reed. >0
The first reactor considered has the same dimension and critical
composition as the reactor considered by Fuller, Meneley, and
Hetrick,3? Furthermore, the analysis of this reactor paralleled the
numerical work of these authors in that.the neutronics of the reactor
were described with one neutroﬁ energy group and one precursor group.
Three different reactivity insertions were analyzed for this slab
reactor: a large negative step insertion, a positive ramp insertion
that became prompt critical, and a sub-prompt critical, positive step
insertion. The spatial neutron distribution following each of these

insertions was predicted as a function of time by both the temporal

integration method presented by Fuller, Meneley, and Hetr‘ick39 and
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by the new method that is thelthrust of the present work.

Four computer programs were used to perform and double-check
this analysis. The first, MITIM-E(2,0), is a computer code based on
the algorithm of equation (2.37). The second, MITIM-E'(l, 1), is a
code based on the algorithm of equation (2.39). (Both MITIM-E(2, 0)
and MITIM-E'(1, 1) are described in Appendix IV.) The third program,
MOVER, was adopted directly from an advancement subroutine written-

21 which utilizes the method of undetermined parameters

by E. L. Fuller
in é temporal integration. Second degree, piecewise polynomials and
subdomain weighting were used in the time integration. Finally, the
fourth computer program, SPATKIN, acted as an independent check of
the solutions for the multimode kinetics equations obtained by MITIM-
E(2,0), MITIM-E'(1, 1), and by MOVER. This program was developed
by da N6brega52 and utilizes the e—rhethod to predict accurately the
spatial distribution of the neutron population as a function of time.

The second slab reactor considered was described by a model
composed of two neutron energy groups and six precursor groups. A
positive ramp insertion was analyzed using MITIM-E(2, 0) and MITIM-
E'(1,1) and the resul’gs were compared tQ those obtained from GAKIN,

a direct, one-dimensional, multigroup kinetics code developéd by K. F.
Hansen and S. R. Johnson.53 |
The remainder of this chapter is a presentation of the results of

these numerical studies. In section 3.1, the analysis of the first reac-

tor is presented; the analysis of the second follows in section 3. 2.
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3.1 Reactor Number One — One-Group Results

The first reactor considered was a 240-cm slab  with the critical
parameters given in Table III-1. The mesh spacing, &x, is 4.0 cm.

It was noted previously that the reactor was modeled with one pre-
cursor group. The delayed neutron fraction, §, was taken as 0.0064

and the precursor decay constant, \, as 0.08 sec”l,

Case 1: Large Negative Reactivity Insertion

The first of the three transients analyzed in this section was initi-
ated by the sudden insertion of a neutron absorber into Region III of the
slab reactor. This insertion amounts to a step change in the macro-
scopic absorption cross section, Za’ in Region III from Za = (0,194962
em™! t0 0.021 em™?.

Figure III-1 presents the trial and weight functions selected to
bracket this transient. The amplitudes associated with the two trial
functions are then separated at various times during the transient in
Table III-2. These results are given for various selections of At, the
size of the time step selected. A |

In Table III-2, the predictions of >MITIM—E(2, 0) and MITIM-E'(1, 1)
are compared to those of two versions of MOVER. MOVER-I selects
its own time step by requiring that the rate of growth of the amplitude
fuﬁctions be within a predetermined limit specified by the selection of.
a parameter, €. MOVER-II, on the other hand, requires the user

to select a priori the size of At. As a consequence of this requirement,

MOVER-II provides greater utility than MOVER-I in comparing the



Parameters for Criticality

Table III-1.

~

Parameter

(units)

D (cm)

v Zf (cm-l

)

h

~ (em
a

v (cm/sec)

Region I
(0-60 cm)

1.69531

0.0194962

0.0183343

106 :

Region II Region III
(60-104 cm) (104136 cm)
1.69531 1.69531
0.194962 0.194962
0.194962 0.194962
10° 10%

Region Iv
(136-180 cm)

1.69531

0.194962 -

0.194962

108

Region V
(180-240 cm)

1.69531

0.0194962

0.0183343

108

1L



l

slab width

Normalized Trial Function (tJJk(x)) and Weight Function (w-p(x))

2L

Figure III-1. Trial and Weight Functions, Case 1



Table I1I-2, Comparison of Amplitude Functions

MOVER I MOVER II MITIM-E(2, 0) MITIM-E'(1, 1)
Time . A
€= 1074 €=10 3 aAt=10"% at= 1_0'2 at=10"0 aAt=10"2 at= 1073 at=10"2
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
.03737  .0373%* .0378 - .0385 - .0263 -
.003 |
5696 . 5700 . 5690 - .5715 - . 5784 -
.0380 .0380 .0381 .6976 .0380 .0397 .0382 -.811
.01 -
L3627 .3627 .3624 -. 2685 .3637 .4013 .3619 1.03
.0381 . 0381 .0381 L3471 .0381 .0381 .0381 -. 6212
.03 |
| L3341 3391 . 3390 .0334 .3391 .3397 .3391 . 983
0379 . 0379 .0378 . 0607 .0376 .0380 .0378 . 3094
.10 |
.3379 . 3379 .3380° .3153 .3379 .3379 .3379 .069
*took 44 time steps to get to t = . 002934 sec

**took 19 time steps to get to t

.003098 sec

€L



efficiency of the method in that it enables one to observe how the method

fares under various choices of At, the size of the time step.

Finally, the results given in Table III-2 for MOVER-I were obtained
for two values of epsilon. In order to compare these results easily with
those of the other codes, the amplitude functions predicted by MOVER-I
were linearly interpolated to correspond to the times shown.

When one considers the results of Table III-2, at least two obser-
vations may be made immediately. First, the rather qualitative moti-
vation given in Chapter II for using the E2, O(At [A]) approximation |
appears justified. The step insertion of a large amount of negative
reactivity served in this case as a test of the abilify of each method to
deal with troublesome, large, negative eigenvalues of the matrix [A].
Table III-2 shows that the Ezv’ olAt [A]) approximation, acting as the
basis for MITIM-E(2, 0)', responded favorably to the test, for it shows
that this approximation was more able to yield accurate predictions of
the amplitude functions with larger time steps than the approximations
on which MITIM-E'(1, 1) and MOVER-II were based.

The second observation concerns MOVER-I. For both values of
epsilon, accurate results were obtained. However, as noted in
Table III-2, a substantial number of time steps were required early
in the transient. ‘Since MOVER-II was able to produce adequate results
with a much smaller number of time steps, it would seem that, at least
in this case, the self-selection of time steps is an expensive alternate
to using one's knowledge about the transient to select, a Egi_o_rli_, the size

of At.
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As a check on the accuracy of the time synthesis approximation and
the’.multimode approa_mch, Table III-3 compares the magnitude of the flux
predicted by SPATKIN at t = .1 sec at various mesh points across the
reactor to the magnitude of the flux predicted att = .1 sec by recombining
the amplitude functions .0378 and . 3379 with their respective trial func-
tions., Table III-2 and Table III-3 show that these are the amplitude
functions predictéd att=.1 sec by MOVER-I and, for a sufficiently
small time step, by MOVER-II, MITIM-E(2, 0) and by MITIM—E'(I, 1)
as well. | |

It appears that the multimode kinetics approximation adequately de-

scribes the transient for this case.

Case 2: A Super Prompt Critical Ramp Insertion of Reactivity

The seéond tfansiént considered resulted from the ramp insertion
of well over a dollar of positive reactivity in the course of a second.
For this perturbation, Za in Region III changed from 0.1949.2 cm-1 to
,0185001 cm ™! in one second. |

Figure II1-2 shows the two trial and weight functions selected to
bracket the transient. The amplitude functions, Tl(t) and Tz(t) are then |
found at various times in Table III-4, where the predictions of MITIM- .
E(2,0), MITIM-E'(1,1) and of MOVER-II are presented at various times”
during the ramp for various choices of At, the size of the time step.

The results presented in Table III-4 indicate first that the
B,
reactivity insertion than the Ez’ O(At [A]) approximation. In fact, the

(At[A]) approximation is more capable of handling this ramp

results from MITIM-E(2,0) indicate that the virtue of the E, 0(At LA])



Table 11173.

Comparison with 6-Method

Mesh Point #24

Mesh Point #32

Mesh Point #41

%
Time  Method  Magnitude (% error) Magnitude (% error) Magnitude . (% error)
(sec) :
a 1.160 (0.0) 1,137 (0.0) - 1.163 (0.0)
0.0 ,
b 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)
a . 399 (. 99) .331  (.915) . 433 - (.46)
0.1 |
b .403 (0.0) . 328 (0.0) .435 (0.0)
>k% error = SPATKIN-MODAL a = multimode kinetics b = ©8-method

SPATKIN

9L



eiﬁ = w,(x)

Normalized Trial Function (qu(x)) and Weight Function (wp(x))

Figure III-2.

slab width

Trial and Weight Functions, Case 2

LL



Table III-4. Comparison of Amplitude Functions
‘ MITIM-
MOVER II E(2,0) MITIM-E!(1, 1)
. Time : ‘ ,
at=10"3 At=10"2  At=5x10"2 At =103 At =103 At=10"2  At=5x10"2
1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0
0.0 0.0 0.0 0.0 0.0 0.0 0.0
1.027 . 9903 1,047 1.027 1.027 1.032 1.0514
0.1
. 1289 .01789 .1088 . 1286 .1289 .1239 .1062
1.2472 1.2468 1.2601 1.248 1.2473 1.248 1.268
0.3
' . 5258 . 5262 .51219 . 5252 . 5257 . 5255 . 5649
3 3 ' 3 3 3 4
.158 X10 .1585X10 . 1596 X10° L0171 .1582X10°  .1662X10° --.320 X10
008
3 : 3 3 3 3 5
.682 X10 .6837X10 .6615X10 . 0346 .6821X10 .7163X10° -.1385X10
| 8 8 6 8 8 3
| -.1135X10° -.1117x10° -.1982X10 . 5608 -.1142X10° -.2369X10 . 5583 X10
1.0
9 9 8 , 2 9 9 3
.4337X10 .4327X10 .1526 X10 . 1766 X10 . 4364 X10 .9018X10° -.6997X10

8L
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approximation, namely, its a:bility to reduce properly the influence on
the solution of large negative eigenvalues'of [A(t)], becomes a vice
when the reactor goes supercritical, since then 1t damps the physically
important effect of the large positive eigenvalue equally well. |

Table ITI-4 also seems to indicate that MOVER-II is a little better
than MITIM-E'(1, 1) in handling this transient. Before reaching this
conclusion, howev‘er,v it is important to note that a comparison of run-
ning times on the IBM 370 model 155 reveals tnat for this problem
MITIM-E'(1, 1) takes less than half as long per time step as MOVER-II.
Although this is clearly not a conclusive argufnent, it does indicate
that if one is concerned with comparing accuracy for the same amount
of computational effort, the two approaches are roughly equal in their
ability to handle thi‘s particular transient.

Again, the results Were compared to those of SPATKIN as a check
on the accuracy of the time synthesis approximation and the multimode
approach. Table III-5 compares the magnitude of the flux predicted by
SPATKIN at t = .3 and 1.0 sec at various mesh‘points across the slab
to the magnitudes found by using T (.3) = 1. 247 and To(.3) = .526 at

8

t = 0.3 seconds, and by using T,(1.0) = .114 X 10" and To(1.0) = .436 X

9

107 at t = 1.0 seconds. As in the first problem considered, adequate

accuracy was obtained with the multimode approximation.

Case 3: A Step Insertion of Reactivity Less than Prompt Critical

The last transient considered for this slab reactor was initiated by
the step insertion of about 2/3 of a dollar of positive reactivity. This

perturbation was produced by changing Za in Region III abruptly from



Table III-5.

Comparison with 8-Method

Mesh Point #24 _ Mesh Point #32 Mesh Point #41

' *
Time Method  Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec) ' '

a 1.160 (0.0) 1.157 (0. 0) 1.163 (0.0)

0.0 ' ,

b 1.160 (0.0) 1,157 (0.0) 1.163 (0.0)

a 2.094 (. 192) 2.168 (.92) 2.1 (.244)
0.3

b 2.090 (0.0) 2.189 (0.0)  2.05 (0.0)

a 52.43 X10 " (11.5) 60.05X10" (11.5) 48.64 X107 (9. 6)
1.0 _ - o |
| b 47.0 X10° (0.0) 53.84X10" (0.0) 43.47X10°7 (0.0)

*% error = SPAS:I‘PIE?I-{I}/{\? DAL a= mu'ltimode_ kinetics ' b = 6-method

08
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0.194962 to0. 190472 at t = 0™,
Figure III-3 shows the two trial and weight functions used in equa-

tion (3.1). ‘The amplitude functions T(t) and T,(t) are given in

Table III-6 at various times from t =0 to t = 1.0 seconds. As in the

preceding example, Table III-6 presents the predictions from MITIM-

E(2,0), MITIM-E'(1, 1) and MOVER-II for different choices of At. These

results clearly show the superiority of Ez’ 0(At [A]) approximation in

. 5 seconds,

i

handling this ste;ﬁ reactivity insertion. Even with At
MITIM-E(2, 0) provided excellent results.

.5andt=1.0

Finally, the SPATKIN results are presented at t
in Table III-7, along with the results produced from the amplitude func-

tions Tl(' 5) = -.174 and Tz(. 5) = 3,796 att = .5 seconds and Tl(l,O) =

-.1999 and Tz(l,,O) = 4,173 at t = 1.0 seconds. As in the preceding
examples, the multimode approximation produced sufficiently accurate

results with two trial functions.

3.2 Reactor Number Two — Two-Group Results -

' The second slab reactor studied here was another 240-cm slab

with the critical parameters given in Table III-8. The size of the mesh
spacing was 2.5 cm.

This reactor consists of six precursor groups. The relevant infor-
mation about these groups is given in Table III-9.

The transient studied for this reactor was a positive ramp, induced
by linearly decreasing Zi in Region I by 1% in 1 second. Figures III-4
and ITI-5 show the trial and weight functions used to synthesize the flux

'via equation (3.1).
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Table III-6.

Comparison of Amplitude Functions

MOVER II' MITIM-E(2, 0) MITIM-E'(1,1)
Time _3 9 1 2 . | N :
At=10 At=10"°]|At=10 at=.25]at=10"2 | at=10"1] at=.25] at=.5lat=10"%| at=1071 | At= .25
. 1.0 1.0 1.0 1.0 1.0 1.0 1.0 |1.0 1.0 1.0 1.0
0.0 1
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
-.1521 -, 1335 .8082 - -.1535 | -.1447 - —_ L0217 | -1.191 -
0.1 |
3.450 3.438 2.387 - 3.458 3.312 - - 3.289 5,254 -
-.1738 | -.1601 .6055{ .8006 | -.1735| -.1754| -.1753|-.1746] -.1752 | -1,098 . 8786
005 )
3.794 3.7717 3.006 |2.639 3.796 3.796 | 3.795 |3.783 | 3.796 4,723 1.773
-.1984 | -.1848 4140] .7267 | -.1999| -.1999| -.1909|-.1999| -.1999 .6453 . 8045
1.0
4,171 4,154 4,140 {3.217 4.1173 4,173 4,172 {4.171 | 4.173 | .3.329 2.761

€8




Table II-7.

Compé.rison with 6~-Method

Mesh Point #24

Mesh Point #32

Mesh Point #41

SPATKIN

= 8-method

Time  Method  Magnitude (% error)’ Magnitude (% error) Magnitude (% error)
(sec) .
a 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)
0.0
b 1.160 - {(0.0) ' 1.157 (0.0)_ 1.163 {(0.0)
a 4.33 (.697) 4,62 (.435) 4.19 (.722)
0.5 : .
b 4. 30 (0.0) 4,60 4.16
a 4.75 (.422) 5.07 (. 59) 4.61 (.217)
1.0 v ’
b 4,73 (0.0) 5.04 (0.0) 4,62 (0.0)
,*% - SPATKIN-MODAL a = multimode kinetics

¥8
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Table III-8.

Parameters for Criticality

Parameter

(units)
D! (cm)
D2 (cm)
vE] (em™)

1

v Zz (cm™ )

h

»1 (cm™
a

Z‘z (cm™ )

]
Xp
2

P

v, (cm/sec)

v (cm/sec)

Region I Region II
(0-40 cm) (40-200 cm)
1.5 1.0
0.5 0.5
. 01677548 .0083774
. 3355096 . 166077252
.026 .020
.18 .08
.015 .01
1.0 1.0
0.0 0.0
1.0 X 10" 1.0 X 10"
3.0 X 10° 3.0 X 10°

- Region III
(200-240 cm)

1.5

0.5

.01677548

. 3355096

.026

.18

.015

1.0

0.0

1.0 X 10

3.0 X 10

In the above table, Zg is the sum of the macroscopic fission and

capture cross sections.




Table III-9.

Delayed Neutron Parameters

Delayed
Group

Fractional Yield Fractional Yield

into into
Neutron Group 1  Neutron Group 2

2.5 %1074 0.0
-3

1.69 X 10 0.0
-3

1.47 X 10 0.0
a=3

2.96 X'10 0.0

8.60 X 107% 0.0
4

3.20 X 10~

Decay

Constant (sec-l)

1.24 X 1072

3.05 X 1072

1.11 X 10"

3.01 X 107!

1.14

3.01




) and Weight Functibn (wg(x))

p

Normalized Trial Function NJE(X)

' w:(X) 5
. /.\
/7

gupi(x)* 2.0

slab width

Figure III-4. Trial and Weight Function #1, Two-Group Problem
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(x)) and Weight Function (w® (x))
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Figure III-5. Trial and Weight Function #2, Two-Group Problem
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Table III-10 then shows the predictions of Tl(t) and T,(t) made by
MITIM-E(2, 0) and by MITIM-E'(1, 1) during the course of the transient
for different values of At. Again, the Ell, 1(At [A]) approximation proved
to be better than the Ez, O(At |A]) approximation ih handling ramp inser-
tions. |

The flux shapes found by recombining the trial and amplitude func-
tions are then compared in Table ITI-11 to those predicted by GAKIN.
These comparisons are made att = .5andt =1.0 seconds at various
mesh points with the amplitude functions Tl(' 5) = 0.342 and Tz(.5) =
.8¢3 att = .5 seconds and Tl(l.O) = -,1391 and T2(1.0) = 3,187 att =
1.0 seconds. A comparison of these results indicates that the multi-
mode approximation, fully collapsed with only two trial functions,
yielded quite satisfactory results.

In this chapter, the results of four numerical studies with two slab
reactors have been presented. The next chapter contains the important
conclusions to be drawn from these results and ends With. seme recom-

mendations for future work.




Table III-10. Comparison of Amp‘litude Functions
MITIM-E(2, 0) MITIM-E(1, 1)
Time -2 - -2 -1
A =.,0025 At=10 At=10 At=.5 | At=.0025 At=10 At=10 At=.5
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0 1 | |
T, 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
) .7933 . 8083 .8447 L1927 .7927  .7968
0.2
5 . 2722 . 2523 . 2043 . 2729 . 2729 .2693
) .3428 .3479 . 4212 . 7042 .3421 . 3421 .3386  .3328
0.5 ' C
5 .8724 . 8659 .7961 . 3937 .8734 .8734 . 8766 .8840
T, -.4482 -.4401 -.3134 -.4493 -.4493 -.4473
0.8 v
5 1.929 1.918 1.751 1.930 - 1.930 1.929
. -1.374 -1.3773 -1.1743 -.4292 | -1.391 -1.391 -1.391 -1.437
1.0 «
0 3.064 3.170 2,902 1.913 3.187 3.187 3.188 . 3.254

*Here MITIM-E(2, 0) apparently predicted T, with more accuracy using a At of 10”2 than it did using

At=.0025. This is thought to be due to the fact that differences are being taken between small numbers
which are being multiplied by At. Thus, if At gets too small, roundoff error becomes a problem.

06



Table III-11. Comparison with GAKIN Method

Mesh Point #8

Mesh Point #40

Mesh Point #56

Mesh Point #91

Time Method
(sec)

*
Magnitude (% error)

Magnitude (% error)

Magnitude (% error)

Magnitude (% error)

a 1.8368 (0.0) . 5760 (0.0) . 5379 (0.0) 1.628 (0.0)

o b 1.8368 (0.0) . 5760 (0.0) . 5379 (0.0) 1.628 (0.0)

a 2. 5917 (4.17) J7121 (1.34) | .5846 (1.62) | 1.6684  (2.17)

E; %, 2.493  (0.0) . 7027 (0.0) . 5753 (0.0) | 1.6329 (0.0)
é Lo a 4.629 (3.68) 1.091 (7.0) , 7139 (2.3) | 1.7919 (.35)
b 4,805 (0.0) 1.1732 (0.0) . 7287 (0.0) 1.7314 (0.0)

a .1521 (0.0) 07232 (0.0) .06755  (0.0) .1348 (0.0)

0 .1521 (0.0) 07234  (0.0) .06755  (0.0) . 1348 (0. 0)

. a .2166 (4. 5) .08947 (1.4) .0734 (1.52) .1381 (2.14)
2 0 b .2072° - (0.0) .0882 (0.0) .0723 (0.0) . 1352 (0.0)
é a . 3891 (3.1) .1356 (7.9) 0897 (1.97) .14833  (3.43)
DR . 4016 (0.0) . 1473 (0.0) .0915 (0.0) . 1434 (0.0)

*% error = GAKIN-MODAL a-= multimode kinetics b = GAKIN method

GAKIN

16
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

In Chapter III, numerical results were presented for four problems
which were designed to test the efficiency of the Ez’ 0(At [A]) and
Ell, l(At [A]) approximations described in Chapter II. In thé following
gsection of the present chapi:er an attempt is made to present a few con-
clusions gleaned from the numerical results of the previous chapter.
Section 4. 2 then recommends severai topics worthy 6f future cbnsider-

ation.

4.1 Conclusions

The first conclusion that one should make from the results of Chap-
ter III is that the Ez, O(At [A]) and Ell, -I(At [A]) appfoximations behavéd
in such 'a manner as to justify the theoretical motivation behind their
selection. For the step ‘reactivity insertions, the Ez, 0(At [A]) approx-
imation proved more suited than the E'l, 1( At[A]) in effectivély damping
out the influence of those large negative eigenvalues of [A]. (Unfortu-
nately, this same characteristic made the approximation grosslj under -
estimate the growth' of a prompt-critical reactor.) Also, as expected,
the E'l,

induced transients.

1(Ai: [A]) approximation proved superior in describing ramp-

In addition, one may state at least two other conclusions regarding
' L 34
the successful generalization of da Nobrega's work in point kinetics

to attack the multimode kinetics equations considered by‘Fuller, Meneley,

39

and Hetrick. First, it should be noted that in all the problems
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considered adequate agreement was obtained between the predlctlons of
the multimodal approximations and an independent method. More than
thi.s, however, the E, olat [A]) and Ell, (At[A]) approximations seemed
to be at least roughly equal to, and usually better than, the temporal
integration approach taken by Fuller, Meneley, and Hetrick.,39 Only in
the second transient considered did the‘temporal integration approach
appear at first. glance to be somewhat better than the other two approach-
es. In more con‘lplicated models, however, the efficiency of the
EZ,O(At[A]) and B} 1(At[A]) approximations vis a vis the approach
taken by Fuller, Meneley, and Hetrick39 may increase since an increase
in the number of précursors considered will necéssitate an increase in
the number of integrals and expohentials taken in the temporal integra-
tion procedure.

Secondly, the success of the new approach investigated stemmed
hot only from the characteristics of the Padé approximations émployed,
but‘ in large part from the manner in which the Ez’ 0(A‘c [A]) and

l(At [A]) approximations were appiied to the solution of the multi-
mode kinetics equations. As a consequence of the way in which this
was done, one need only invert a relatively small matrix (at most of
order (G X K) , where G = number of groups and K = number of trial
functions) to step out from t to tp+1 Thus the application produced,
in each case, an adVanc_ement matrix with the capability of generating

quite cheaply the vector [qu_l_l] in terms of the vector [Lpp].

4,2 Recommendations for Future Work

The present work suggests that there are at least two major areas

which require additional consideration. The first is concerned with
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the time synthesis approximatioh itself; the second is concerned with
the use of the Ep’ q( At[A]) approximations of Chapter II to approximate
accurately the exponential, exp(At[A]) of equation (1.29).

The first recommendation for future work stems from uncertainties
with the time synthesis approximation. At present, not much has been |
published to indicate that there exists a very precise idea ofthe "near-
ness" of the solution space of the synthesized equations to that of the
multigroupdiffusion equations. As a result, one is not able to put ade-
quate error bounds on the solutions of the synthesized equations. Thus
there is a constant danger of encountering cases for which the synthesis
approximatioﬁ gives unexpectedly poor results. If appears, then, that
a theoretically clearer notion is needed of how to select trial functions
such that the resulting solution space contains vectors which accurately
approximate the solutions of the multigroup neutron diffusion equations.

The second recommendation for future work is concerned with the
capacity of the Padé matrix approximations to approximate accurately'
exp(At[A]). In this regard, it would be valuable to extend the work of
Porsching47 in order to quantify the eigenvalue spectrum of the general
multimode kinetics matrix [A(t)]. If this were done,ia p'recise theoret-

ical foundation could be established for specifying the accuracy of the

Padé matrix approximations.
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APPENDIX I

Proof of |e] = [ab_la+b]—1‘and lz] = [b_lae] = |ba”

Proof:

Given that

and that

| lz] = b~ tae] = lba~tb+al 7t

It
la-bi] ™" = [z+eil
then
la-bil [z+ei] = [1]
and

[az+be+(—-bz+ae)i] = [IJ
This, in turn, implies that

laz] = [1-be] _ (I. 1)




and that

[bz] = [ae].

Therefore, one may write

Substituting this expression for |z] into (L. 1) yields:

[ab™lae] = [1-be]

which may be rearranged as

[ab~ta+blle] = [1.

Thus one may write
[e] = [ab—1a+b]_
and, from (I. 3)

[z] = [a+ba_1b]_

1

1

99

(1. 2)

(1. 3)
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APPENDIX II

Proof of Identities

Given that

(2] = b7 ae] - )

le] = [b+ab~a]™t ~ | (IL 2)

o= [x- 88 1 ol + 3 seyinaingl] s

=[S AT ol - 2 aefu)] (w4
prove that

Alel - ella) - 3 ateplelliy]la] - allugllel) 0 a5
and that -

L+ [a+ 2 atPpp el el el ) el ] = [e] + 2.

(IL. 6)

From (II. 3) and (II. 4) one may write

[a] = ~[b] + [1 + é AtzPixi[pi]]. (IL 7)



Also, since [a—bi]_1 = [z+ei]
[z+ei][a—bi] = |1] = [za+eb+(ea-zb)i]

which implies that

[z] = [eab—l].

Next, substituting (IL. 7) into (IL. 1) yields

(o) = {e] + b7l + = arZpp ol []le]

i
and substituting (II. 7) into (IL 8) yields

. |
(2] = {e] + [eb™] + = at®P\ [e]l[n,] [b]

-1
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(11. 8)

(I1. 9)

(IL. 10)

Applying (II.9) and (IL 10) with I = 2 to equation (11. 5) completes the proof

of the first identity, since this yields

lel® - [eb7te] - z AtzPi)\i[eb_—lpie] ,
1

—[e]z + [eb—le] + = AtzPiki[epi‘b—le]
i .

2 2 -1
+ >1: at“PA lep.e] - >1: At Pi)\i[epib e]

2 2 -1
_(>1: At Pi)\i> (? At Pi)\i) [epib pie] '

2 2 -1 1
- 21; AP lepe] + ? At“PA leb pel

1

2 2 1
+(>; At Pixi) (? At Pixi> [ep o el = 0,




To prove identity (II. 6), one first premultiplies (II. 9) by (b].

. . I e
{olled - Dolled # Lol + = ar?pnlullel = o.
i=1
Sﬁbstituting (II. 1) yields
_ . | > Lo
[-a-blle] + le] + = at*PA.[u.i[e] = 0.
_ i1 itithi

Then, premultiplying by [e], one obtains:

I

le}(~a-blle] +le]? - = at®Ppfulle] = o.

=1

Also, from equation (Il 8), one may write

Using (II, 12) and (II. 13) one may show that

[z][al[b]™! = [b]7! [all2].
Substituting (II. 11) into (II. 9) yields

I

Lel - [2] + ]! [2l[b)[al™ + = at®PA (b7 [ ll=]lb]la™ ],

i=1

Thus

(I1. 11)

(I1. 12)

(IL. 13)

(IL. 14)
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Postmultiplying by [a] [b]—l, premultiplying by [ellal, and using (II. 14)
then yields
I

ll-all=] + 27 + = atppfalullal 0. (1L 15)

Adding. (II. 15) and (IL. 11) then reveals that
2 2 I 5
[2]° + [e]” + "21 At Pi)‘i[ [z] [ui][ZJ+[e] [”i] le]]
i= ,

= [e][a+b][e] + [z][a+b][=]. (I1. 16)

Substituting (I, 13) into the right hand side of (II. 16) and making use of
the fact (proven in Appendix I) that (o] [e] = [1-[a] [z]], one may finally

show that
lella+blle] + [z][a+b][z] = [e] + [=].

This completes the proof of the identity given by equation (II. 6).
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.APPENDIX III

An Example of How [REAL] May Be Structured

Using the Identities (2. 34) and (2. 35)

The following example is given to show how one might go about using
the identities considered in Appendix II to restructure the matrix [REAL]
of equation (2. 33). In performing the calculétion two precursor groups
are considered. |

With two groups of delayed neutron emitters [REAL] may be written

—[Rn] [Ry,] [R13T
[REAL] = | [R,,] R,,] [R23] + [L] - (I1L. 1)
R3] [R3p]l  [Rjsl

where the matrix elements [Rij] are found by expanding the right-hand
side of equation (2. 33).
The matrix elements defined by this expansion, however, can be

quite complicated. The procedure diScloses, for example, that
2, r 12 2 2
[R, 1= [2]" + [e]” + 6t"P N [2][][2] + at"Pyny[e] [ ][e]
2 2
+ At P27\2[-z] [pz] [z] + At -szz[e] [p.z] [e]

Fortunately, the identities of equations (2. 34) and (2. 35) may be
used to simplify considerably the derived expressions for the matrices
[Rij]' Thus [Rll] becomes, via the application of (2. 35), equal to [e] +

[z].

In a similar way the remaining matrix elements of [REAL] may be
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found by expanding the right-hand side‘ of (2. 33) and then simplified
using (2. 34) and (2. 35).

1f this is done, one finds that
[Ry,]=[z] + [e]

2 4 2
[R12] = AtP N (2+AtN 1v)[z] + at"P N [e]

[R,,5] = AtP N, (248 18,)[z] + Atszxg[e]

[R,,] = At?P X [, ][e] + AtP (2+ath )[4 ] [2]

[R,,] = at?P % (1-4P 24t P\ [k ][e] (IIL. 2)
+APP N (1424t N ) [, ] 2]

R, ] = AP [, 6] + AP, (2+a0.)1,] 2]

[R.,] = Aszlex1((2+Atx1)(2j-At)\2)—2)[p2] [z]

32
2 2
+ At7P PN (At )\IIKZ—Z)[}LZ]_[e]
and

[R

2
53] = At P2x2(1-4P2-2AtPZx2][pz] [e]

2 .
+ AP N, (142AtP M) [, ] [2]

It can be verified by substitution that equations (III. 2) may be written

in the form of (2. 36).



APPENDIX IV

Description of Computer Codes

4.1 Input ‘Specifications for MITIM-E(2, 0) and MITIM-E(1, 1)

CARD 1 (5D12.5)
HT — Size of time step (sec.)
HX — Mesh-spaciﬁg (cm.)
BETOT — Sum of effective delayed neutron fractions
TPRINT — Time at which flux is to be reconstructed and printed

TSTOP — Time at which calculation is terminated

CARD 2 (1015)
NTF — Number of trial functions
NG — Number of neutron groups
NDG — Number of delayed neutron groups
NMP — Number of mesh points
NR -—Number of regions

(NMPR(I), I=1, NR) — Number of mesh points in each region
CARD 3 (4D20.10)

((VSIGF(J,K), K=1, NR), J=1, NG) — vZ, for each group in each

region
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CARD 4 (4D20.10)

(((SIGSR(J, K, I),I=1,NR),K = 1,NG), J = 1, NG) — Zs for all
' J+-K
groups in each region

CARD 5 (4D20.10)

((SIGTR(J,K),K=1, NR), J=1, NG) ~ Z., the total absorption

cross section, for each group in each region

CARD 6 (4D20.10)

((D1(J,K),K=1, NR), J=1, NG) — D, the diffusion constant, for

each group in each region
CARD 7 (4D20.10)
(BET(I), I=1, NDG) — pi for each delayed group

- CARD 8 (4D20.10)

(CHIP(I),I=1, NG) — xp for each neutron group

CARD 9 (4D20.10)
" ((CHID(I,JJ,J=1, NG), 1= 1, NDG) —Xq’ the fraction of neutrons
produced in each group from decay in each delayed group
CARD 10 (4D20.10)

(V(1),1=1, NG) — Vg’ the neutron velocity for each group
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CARD 11 (4D20.10)

(LAM(I), I=1, NDG) — )\i’ the decay constant, for each delayed group
Repeat Cards 12 and 13 for each trial furiction
Repeat Cards 12 and 13 for each neutron group

CARD 12 (6D12,5)

(PHI(I, J), J=1, NMP) — Value of Ith trial function of each mesh point

CARD 13 (6Di12.5)
(WPHI(I,J),J=1,NMP) — Value of Ith weighting function at each mesh
point |
CARD 14 (I5,2Dl2.5)

- ITP — index to perturbation

1

step insertion

2

ramp insertion
Templ —time at which reactivity insertion changes and new
time zone begins

Temp2 — time oven which ramp insertion is added

CARD 15 (4D20.10)

((ALPHA(J,K),K=1, NR), J=1, NG)) — for ramp insertion, the
total change in 2, for each group in each region (leave blank

if ITP=1)
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CARD 16 (4D20. 10)

((SIGTR(J,K), K=1, NR), J=1, NG) —for step insertion, the new
values of ZT after insertion for each group in each region

(omit if ITP = 2)




4,2 Code listings for MITIM-E(2, 0) and MITIM-E'(1, 1) \

(provided only in first six copies)




