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-                                  CHAPTER I

INTRODUCTION
16                  -

1.1    The  Use of Space-Dependent Kinetics

Although the essential problem confronting the reactor physicist

has remained the same since the early 1940's, the emphasis of the

physicist' s approach has shifted considerably. Stated simply,   the  prob-

lem  is:      How  is  one to predict the behavior  of a neutron population  in  a

material medium?  It was this problem that Fermi faced in June of

1942,   when he derived a value  of  1.07  for the infinite medium multi -

plication factor for a uranium oxide-graphite lattice.  And it is roughly

the same problem that today' s reactor physicist must tackle. The

approach to the problem over the past few years, however, has been

-                 focused in large part on the desirability of knowing as much as possible

about when and where heat is produced in a power reactor.  Thus (as

S. Kaplan pointed out in  1966)  it is extremely important to be  able  "to

predict what the spatial distribution of the fission rate will be at all

times during the life of the reactor, under all static and dynamic oper-
1

ating conditions, and during various postulated accidental transients."

The early experiments of Fermi at Columbia University  in  1942

were designed to investigate the possibility of a neutron chain reaction.

Later that year, at Chicago, confirmation of the chain reaction was

obtained and the nuclear energy business was born. Today that busi-

ness is concerned with the design and construction of large (31,000

M       ) thermal reactors,  and with the development of fast breeder
w(e)

reactors.
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-                         The prediction of the spatial distribution of the fission rate for

these devices has involved, over the past few years, the development
'.

of methods for solving the time-dependent, multigroup diffusion equa-

tion (and various approximations to it) in one or more spatial dimen-

sions. This approach to the problem of predicting the behavior of a

neutron population in a material medium (a substantially different

approach from that of Fermi) has evolved partly because of the recog-

nition that in the large, loosely-coupled thermal reactors being designed

today the neutron population will not exhibit a spatially uniform behav-

ior in response to a localized perturbation.  In fast breeder develop-

ment, this approach is viewed as part of a necessarily strong emphasis

on safety.

The degree of sophistication with which one tackles the solution of

,. the time-dependent, multigroup neutron diffusion equation is usually

dictated by the kind of event being considered, the level of sophistica-

tion  of the computational machinery  at the reactor physicist' s disposal,

and the price the reactor physicist is willing to pay.  For a given

reactor, both the nonuniformity of the spatial redistribution of the

neutron population following a perturbation and the time scale of the

redistribution depend on the type of perturbation which has occurred.

Consequently, the methodology that one chooses to model the neutron-

ics of the reactor should be based in large part on one's knowledge of

the event, given the constraints of computational cost and accuracy
-

that then select  the "best" method  from  a  list of comparable methods.

\. This thesis is concerned with the analysis of a new approach to

solving a set of equations (the multimode kinetics equations) which
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cheaply approximate the predictions of the time-dependent, multi-

group neutron diffusion equation, along with the associated set of time-

dependent neutron precursor equations. The remainder of this chapter

involves a brief review of several of the current techniques for approx-

imating such predictions, and a-development of the point kinetics form

of the multimode kinetics equations using a time-synthesis approxima-

tion.  Chapter II begins with an analysis of the current approach to

solving these equations and goes on to develop a new approach, based

on the Pad6 (2,0) and a modified Pad6 (1,1) approximation to the expo-

nential. Some numerical results which test the new approach are given

in Chapter III. And, finally, both the conclusions concerning the worth

of the new approach and some recommendations for further work are
„

found in Chapter IV.

-

1.2 Some Current Methods of Solving the Time-Dependent,

Multigroup Diffusion Equation

Before a development of the multimode kinetics equations is begun,

it would seem wise to consider the equations they approximate. The

time-dependent, external-source-free neutron diffusion equation for

energy group g, along with the associated equation needed to deter-

mine the concentration of delayed neutron precursors belonging to
2

delayed precursor group i may be written as

-

..                                           V  ·D (Ft)  70 (/,t)-  1 g(/,t)  *g(F,t) +    )     Xi     (1-Bj)    I   vj  Efg'(r,t)  *g,(r,t)L· pg
J             g'

--.

<I.

+   Esgg, (7,0 * g.(;.t)+ 5ix. x.cic;.t)=.ill    1' Li,t))
(1. 1)

1g 1
1
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  131   vjzfg,(F,t) *g,(F,t) - Aici(Et) = -A (Ci(F,t)) i=1,2,...I (1.2)
g

.thwhere the superscript j refers to the J fissionable isotope.

In equations (1.1) and (1.2):

- -

(a)  V ' D (/, t) 94)g(r, t) is the
net leakage rate per unit volume of neu-

trons belonging to energy group g at locationr and time t.

-

(b)  Etg</' t) * (r, t) is the total neutron reaction rate per unit volume

for neutrons belonging to energy group g at location F and time t.

-

(c)  63 ig( 1-13j)   v   I    (r t)  4  ,(r, t)  is the production rate per unit
fg'  .    g

j

volume of prompt neutrons belonging to energy group g at loca-
-

tion r and time t.

(d)   x. X.C.(Rt) is the production rate per unit volume, resulting
L j l g l l
i

from the decay of delayed emitters, of neutrons belonging to energy
-

group g at location r and time t.

(e)   3   E     .(F..t)  *2(F,t) is the production rate per unit volume,  due
Z.J   sgg'
g,

to scattering, of neutrons belonging to energy group g at loca-
-6

tion r and time t.

0  (r,t)
(f) -23t Cg- j

is the rate of increase per unit volume of the num-
N g )

ber of neutrons belonging to energy group  g at location  F and

time t.
\S,
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(g)   1 01  I  vj Ej    (F, t)  4,11(F, t)  is the production rate per unit volume
fg'

j     g,
-

of delayed emitters of type i at location r and time t.

(h)  lici(r, t) is the rate of decay per unit volume of delayed emitters
-

of type i at location r and time t.

(i)   -2 (C (r, t)) is the time rate of change per unit volume of delayed
Bt   i

-

emitters of type i at location r and time t.

For G groups and I precursors, equations(1.1)and(1.2)may be

written in matrix  form as follows:

Dl(Et) 01(F, t)
--*

V.            V

DG<r, t) 4(&(r. t)
- --

j

Xpl      VJE 1(r, t)  ... vjrJG(r't)      01(i:'t)
+ I (1_Bj) i - -

j
j

XPG                                                *GICT, t)
-  -

 tl(F,t) - Esl 1(F,t) -I (F,t) -E (F.t)
s 12 slG

-21 (r,t) E  (F,t)- E (Et) . . . -E (Et)
s21           t2 s22 s2G

- E (F,t) E   (/,t) - E (r,t)sG1                           tG     sGG

1-n ° 01(/,t)*l(Fit) I  Xil vl
a

+ 1 AFi(/,t) =at (1. 3)

i

*G(/,t)                                                ,_Xicil                          O                    -1-           *G(F,t)
-    -                            VG
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eCi( r,t)T Bj[vjzj (Ft)     vjzj  t-.,1 -01(Ft)   - X.C.(Ft)=
LJ   1 L fl   ' ' ' ' fG,r'.

-1
1 1          8t

J                                                            ·

*G(F,t)
1            --

i=1,2,...I. (1.4)

Equations (1.3) and (1.4) may now be written as

9·[D(F,t)] 9[*(F,t)] + 63(1 -Bj)Ixt-  Ivj,1#(F,t)1T[ 0(F, t)]
j

I

- [A(F,t)][ *(F,t)]+   xici(F,t)[Xi] =-A [v]-1 [0(F,t)] (1. 5)
i=1

nT
aC i( r, t)

1  13  vj4(F,t)-1   [*(F, t)]  - Aici(F, t) = at i=1,2,...I. (1.6)
j

,-                    For assemblies the size of current power reactors, it is generally

assumed that equations  (1.5)  and  (1.6) are sufficient to describe  the

spatial and energy distribution  of the neutron  flux  in the reactor  as  a  func -

tion of time. Having adopted this position,  one must decide how to go

about solving the equations.

Certain parallelisms in structure exist in the development of two

general approaches to solving these equations. Since analytic solutions

of  equations  (1.5)  and  (1.6)  can be obtained  only  in  the most trivial

cases, direct approaches involve finite differencing the equations in

both space and time. Indirect approaches include those classes of

approximations generally referred to as modal methods and space-

"                                time synthesis methods. Typically, indirect methods involve    an

attempt to reduce the number of independent variables at hand.  They
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„ therefore require one to recombine trial functions and coefficients to

describe the neutron flux distribution.

In general, one may divide those direct techniques which depend

upon finite differencing in space and time into at least three general

categories. All involve the replacement of all the time derivatives and

the  Laplacian  term of equations  (1.5)  and (1.6)b y their finite difference

counterparts. This transformation results in a set of equations which

are sufficient to describe the energy group fluxes and the precursor

group concentrations at each spatial mesh point as a function of time.

Torecast equations (1.5) and(1.6) intoa finite-differenced form

in a direct manner, one typically begins by forming a set of semi-

discrete equations.  This is done by superimposing a three-dimensional

spatial mesh over the reactor of interest, integrating the resulting,

. spatially discretized form of equations (1.5) and(1.6) over the volumes

associated with each of the mesh points, and assuming that the neutron

current may be approximated by a finite difference relationship. The

resulting equations for the neutron flux at all mesh points for energy
.thgroup g and for the 1 delayed neutron precursor group may be writ-

3
ten as

I G

 [*g]=[Dg][*g]+   [F .][C.1 +   [T  ][* 1 (1.7)
gl 1 gg' g'

i=1 g 1.=  1

and
.'

  Icil - -Iki]Ici] +     [p.,][4 ,]. (1.8)
Z-/lgg»

gi = 1
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In  equations  (1.7)  and  (1.8) :

(a)  [D ][4, ] is the finite-differenced, box-integrated counterpart of theg  g

operation v  {V · D (F, t) 70 (F, t)}.   [D ] is a seven-stripe matrix

representing the process of neutron leakage across the six sides of

the mesh volume.

(b)  11 IT   ,][4.1 ,] is
the finite-differenced, box-integrated counterpart

gg.   g.

of v   ff xj  ( 1 -Bj)     vjxfg,(F, t) 0 g,(F, t) +   Esgg,(F, t) 0 g,(F,t) -e Lt e' 7
- tE  (r t) 0 (r t)>.  [T .] contains terms representing absorption

tg
. g,) gg'

and intergroup scattering processes.

-                           (c)   [F   .][C.]  is the finite-differenced, box-integrated counterpart of
gl   1

v  X.   X.Ci(r, t). The matrix product [F .][C.] concerns the transfer
g lg 1 gl   1

of delayed neutrons into group g due to decays in precursor group i.

(d) [Ai][Ci] is the finite-differenced, box-integrated counterpart to

AiCi(r, t). The matrix [Ai] contains the precursor decay constants.
G

Ce)   9  [P.,][* ,] is the finite-differenced, box-integrated counterpart
LJ    lg·   g·

to-    0 j     v   I     (r  t)  *g,(r, t)
and represents the production  rateL../       1    LJ              fg'        '

j     g,

.thof the 1 delayed precursor  due to fissions in group  g'.

The semi-discrete equations  (1.7)  and  (1.8)  may be combined  into
:

the single matrix equation

-,                                 [w] = [Al[ ] ( 1.9)
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where

[+1]

Iwrl
I el  E          U

Icil

[C I]
-

and

[Dl +Tl 11 IT12] IT G] [Fll] [Fl I]

[T21] [D +T 1

[T2G] [F21] [F2I]2   22

[A] = [TG1] [TG2] [D   + T ]  [F ] [F ]G GG Gl GI

Ipl 11 Ipl 21 IpiGl -[Al]
0

Ip2ll Ip221 Ip2G1

0

IpIll I FI 11 [FIG] -[AI]

If one assumes that all the terms of the matrix [A] are constant

over  a  time   step,     At,    then the solution  of the matrix equation  (1.9)i s

given by

[cT/(At)]  =  expc [A] at) [«0)]. (1.10)

Two of the three categories of direct, finite-differenced techniques

. involve the solution of the semi-discrete equations (1.7) and (1.8); and,

consequently, are approximations  to  (1.10). The GAKIN METHOD

(MATR]X DECOMPOSITION METHOD)4 solves the semi-discrete

A
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+                                 equation (1.9)b y splitting the matrix  [A]  into four parts:     [U], the upper

triangular part of [A]; [L], the lower triangular part of [A]; [A], that

part  of the sub-matrix diagonal  of [A] which contains the matrices  [DG];
and  [r], the remaining, sub-matrix diagonal  part  of [A] which contains

the matrices [T ] through [T    ] and -[Al] through -[AI .11                            GG

With this splitting, equation (1.9)  may be written as

-d-I w]  -  [r][w]  =  [L+U][w]  + [a][w].5 (1.11)
dt

Equation  (1.1 1)  then  may be formally integrated  over the interval

at E (t - t  ) with the following result:ptl  P

r at
[«t     )] = exp([I']at)  ['P(tp)] +  J     dt' exp((at-t,)[r]) [L+U][*(tp+t')]

ptl                       0

r At
+ J   dt' exp((at-t,)[r]) [a][«tp+t,)1. (1.12)

The GAKIN METHOD then assumes that in the first integral of

equation  (1.1 2)

[117(tp+t')]  = exp( [w]t') [ #(tp)]
(1.1 3)

where the terms  of [w] are typically found by utilizing  one' s knowledge

of the change  in [ W]  over the preceding  time  step.    In the second  inte-

gral, it is assumed that

[w(tp+t')] = exp(-[w](at-t')) [«t
)] (1.14)

P+1 .

Applying these assumptions  to the integral equation (1.1 2) yields

A
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{[I]-[w-r]-1 ([I]-exp([r-w]at)) [a]}[11,(t   )]
P+1

=  {exp( [r]at) + [e-I] -1   (exp( [w] at)  - exp( [I']at)) [L + U]}  ['P(tp)].

(1.15)

It  is essentially equation  (1.1 5)  that the GAKIN METHOD tackles

as  an  approximation to the semi-discrete equation  (1.9).

Another class of approxirnations to equation (1.10) involves  that

category of direct, finite-differenced techniques known as ALTERNATING-

DIREC TION SEMI-IMPLICIT TECHNIQUES. These techniques replace

the time derivative in equation (1.9) by two successive forward differ-

ences  over  a  time  step, At (where  At  - 2h). Typically, a change  of  var-

iables is introduced to reduce the truncation error difficulties which

plague alternating-direction splitting methods. This change of variables

is  in  fact an exponential transformation  of  the  form [ «t)]  =  exp( [0]t) [*(t)],

where  [0 ]  is a diagonal matrix whose terms are again chosen by utilizing

one's  knowledge  of the past behavior  of  [45].    If,  for  each half of the  time

step, the matrix [A] is split into two parts and the exponentials which

result from the exponential transformation are evaluated at the midpoint

of the step, a matrix equation may be developed which represents a

general, two-step, alternating-direction, semi-implicit method.6 With

[A] split arbitrarily  into  [A l]  +  [A 2]  for the first  half  of  thetime  step,

and into [A3] + [A4]  for the second half, this matrix equation may be

-              written as

                     I #( p+1,1 = [BCO, h)]I«tp)].

4                A
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In the preceding equation:

[B(n,h)]  =  exp([0]h){[I] -h([A41 -a[n])}-1 {[I] + h([A3 -Y[n])}

·  {[I] -h([A2 -a[0] )}-1  {[I]+h([All-Y[Q])lexp([0]h)

where   a  +  y  =   1.0.

The specific alternating-direction, semi-implicit technique used

depends  on the choices one makes  for A 1  through A4' along  with   a   and

y.  To see more clearly the various choices one may make, the  ma-

trix  [A] is again split  into four parts:    [U], the upper triangular  part

of [A]; [L], the lower triangular part of [A]; [T], that part of the sub-

matrix diagonal of matrix [A] which contains the matrices  [T ] through11

[T       ] ;   and  [D], the remaining sub-matrix diagonal  part  of [A] whichGG
»               contains the matrices [Dl] through [D ] and -[Al] through -[AG10

For the SYMMETRIC, ALTERNATING-DIRECTION IMPLICIT

METHOD (SADI) the following choices are made:

a=y=0.5

[All   = -  [T]  +  [U]  +  [Dl)   =  [A 4]

[A21 =    IT] + [L] + [D21 = [A31

where [Dl] contains those terms of [D] associated with diffusion in one

direction  and  one  half of  each term  in the submatrices  [A 1] through

[AI].    [D2]  is then defined by [D]  =  [Dl]  + [D2L

Using these same values of [Dl] and [D21' the splitting choices of

the NONSYMMETRIC, ALTERNATING DIREC TION IMPLICIT (NSADI)

METHOD are
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[Al] = [U] + [Dl]

[A 2]    =   [T]   +   [L]   +   [D 2]

[A 3] =   [U]   +   [D 2]

[A4] = [T] + [L] + [Dl]

with  a  =   1.0  and y  =  0.

The SYMMETRIC, ALTERNATING DIREC TION EXPLICIT

METHOD (SADE) involves the following choices:

a=y=0.5

[Al)   =    [T]   +  [U]  +  [D l)   =   [A41                                                                                                                      1

[A21  =    IT] + [L] + [D21  = [A31

where [Dl] contains those stripes of [D] which lie above the diagonal

plus one half of each term on the diagonal and where [D2] contains the

remaining terms  of [D].

The  NONSYMME TRIC, ALTERNATING DIREC TION EXPLICIT

METHOD (NSADE) is obtained by letting

a = 1.0 Y=0

[Al] = [U] + [Dl]

[A2] = [T] + [L] + [D2]

[A3] = [U] + [D2]
4

[A41 = [T] + [L] + [Dl)
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-               where [Dl] and [D2] are the same as for the SADE method.

All of these methods  have been investigated by Donald Ferguson,7

in two dimensions, and the NSADE method, which was found to be the

best overall strategy, has been extended successfully to three dimen-

sions.

The third category of direct, finite-differenced techniques to be

considered here stems not from a straightforward attack on equation

(1.9) but rather from a "point-kinetics" approach to equations  (1.5)

and (1.6). This approach, known as the 0-METHOD, is based in part

on the fact that equations (1.5) and (1.6) may be formally cast into the

following "point-kinetics" form8,9:
I

d-T=P-4T+  A.C.dt  A    Z.1 1 1
i=1 (1.15)

dC.      Bi1-= - T-X.C. i = 1,2,...I.dt A 1   1

This reduction is carried out by multiplying the terms of  equa-

tions  (1.5)  and  (1.6)  by an arbitrary weighting function and integrating

over space and energy.   In this approach,  the flux vector [ 0(r, t)] is

expressed as the product of a shape function and a scalar amplitude

function (i. e.,  [ 0(F, t)] E [S(F, t)] T(t)),  and the resulting values of A(t),

Pi(t) and p(t) are typically assumed to take on constant, average values

during the time step At.

In the 0-METHOD, the values of [ 0 ] are found in terms of [0]ptl                        P
10

by casting equation  (1.1 5)  into the following, differenced forrn:
.

t
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Tp+1 - Tp   pp - 4  r
=             1 ePT      + <1 - eP  ) T - At A    L oo P+1 00/     PJP

+   F  A.   f»p c + (1 -ep.   c.  1
4      1     loii,P+1 \ 01 / 1, PJ
1

(1.1 6)

Ci, p+1 -Ci, p  13. F
At

A  L 10  P+1
\

10/     111

= __1  4 ep  T        +  (1 - ep  )  T - 
P

-    1.    1 en.C /  n\
1  l. 11  i, p+1

11 /      1, PJ
+ 1-0..IC. -  i=l,2,...I.

The  8' s appearing in equations  (1.16) are parameters which  are

selected at each time step to improve the accuracy of the approxima-

tion.  The idea behind their use may be presented by considering the

following, somewhat trivial initial value problem which involves only

one independent variable. The problem begins by supposing that a finite

difference solution is required for

d*(t)
dt      P

=  R   * (t)

where *(t) is a scalar and R  is a constant.
P

Obviously, for this initial value problem, one may express the

solution  4 (t ) at time t exactly as
P+1 P+1

4,(t   ) = exp(R At ) 4,(t )P+1 PP

where at  - t - t . Alternatively, however, one may find *(t    )
P   P+1 P P+1

by using a difference technique which employs a weighting parameter 0.

In this case, the problem becomes
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0(tp l) - 0(tp)

At P+1=  R    P* (t         )  +  (1- OP)   0 (t  P

so that

1  +  R at (1 -eP)
0 (t       ) = *(tp).P+1 1- R  At  eP

P  P

By comparing the differenced solution to the exact, it becomes clear

that the difference technique will produce the exact result if

ep = 1         1R At
p  p  1-exp(R At )PP

Clearly, then, for this simple problem a "proper" selection of the

0 parameters can enable one to reduce the error of the finite differ-

ence approach.

Of course, in more complex problems the exact solution is not

known a priori. Fortunately, however,  the use of the e' s often yields

fairly accurate results even if they are only approximated.  And, in

fact, if one makes "good estimates" of approximate 0' s for  equa-

tions (1.16), it is quite possible to significantly reduce the error asso-

ciated with finite differencing equations  (1.1 5) .

At this point it is noted that in order to obtain equations (1.16)

from equations (1.5) and (1.6) one must "0-difference"  (1.5) and (1.6)
11

as
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 e·[Dpl e[ Mp.+11 -[A][,p+11 + I (1-BJ) [Xi-11 [.jE.ip.1 [e  ]601)
'T    7

P" J  00
7T

+ <v · [Dp] v[ *p] -[A][ *p] +   (1-Bj)[xp] vjzj I, 11(,-ep )
fp            P  J             90,j

I

+Ixtc ep.+C.   (1 -ep. 11  [xi] =Aj-[v]-1 {[ip+11 -IMpll
L    i     i, P+1  01     1,

p 01/
i=1                                        P

(1.17)

and

1 Bt[virt lT{[*   lep + [*1(1 -ep )1 -1. fc. ep. +c.     (1 -ep.,1
iPJ P+1  io    P \ 10 / j         1   l   1, p+1 11 1,P\

11 /_ 
j

=  1  {C      -C. 1 i =1,2,...I. (1.1 8)
Al:    i, p+1 1, F

If one solves equation (1.18) for C and elininates this term
i, p+1

from (1.17), the resulting 0-equation takes the same form as one de-

scribing a subcritical assembly with an extended source. This equation

is used in the 8-METHOD in the following way: Given that the values

of  [ 0 p]   and  C.
are known, the terms  P   ,   A   ,   and B. which appear

1, P p   p       lp

in equation (1.16) may be computed. A value of At  is then selected
P

and the "point-kinetics" terms previously derived are used to select

the  0' s which appear  in the e -equation mentioned above. This equation

is then used to solve for [ *Fl.1] which is, in turn, used in equation(1.18)

to find the C. .  In this manner one may step out in time, repeating
1, p+1

the procedure for each time step.

The preceding discussion of finite-difference approaches to solving
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equations (1.5) and (1.6) is not meant to be exhaustive. Rather,  the

attempt here has been to categorize broadly a few of the direct approaches

tosolving(1.5) and(1.6).  When this is done, itbecomes apparent that

the direct approaches themselves involve at least two classes of methods

- those which attempt to solve the semi-discrete diffusion equation in

the  form of equation  (1.9) and those which go about solving the finite- ·

differenced diffusion equations using the fact that they may be recast

into a "point-kinetics" form.

Although the use of a direct methodology enables one to attach error

bounds to the solution of the discretized equations  over a time step, it

may necessitate purchasing a considerable amount of computer time.

Even moderately sized problems handling a few energy groups and a few

thousand mesh points are quite expensive when more than one dimension

-              is analyzed.

To circumvent this difficulty, modal and space-time synthesis

methods have been developed to reduce the number of independent vari-

ables that must be computed and thereby reduce the length and conse-

quently the cost of the computation.

Modal methods basically begin  with the assumption  that the multi -
-

group flux vector [ 0(r, t)] can be adequately represented during a tran-

sient as a sum of predetermined fixed shapes multiplied by coefficients

which are time-dependent.  Thus, for most modal expansions, the flux

vector takes the form

K

[ 0(F, t)]  =    [*k(F)][Tk(t)]. (1.19)

k=1
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If the modal method being considered "fully collapses" the energy

groups, Il ;k(r)] is a column vector and [Tk(t)] becomes a scalar. Alter-

natively, a "non-collapsed" method treats [4,k(r)] as a diagonal

matrix  and  [ Tk(t)]  as a column vector. "Fully collapsing" implies  that

the group-to-group flux ratios are no longer completely free to vary

independently.  "Non collapsing," on the other hand, purchases this

freedom in part by increasing the number of time-dependent equations

to be solved.

In  general,   the  kind of approximation defined by equation  (1.19)   is
-

not valid at all r  and for all t.  By the very nature of the approximation,

a real, linear vector space is generated by one's choice of the trial

function [*k(r)] ·    And, the solution of the approximate equations which

result  from the application of equation  (1.19)  must  come  from  this  vec -

tor space. Unfortunately, the space cannot usually be expected to con-

tain the exact solution to the time-dependent, multigroup diffusion

equation. To circumvent this difficulty, one may apply the method of

weighted residuals (or, alternatively, variational techniques) in order

to select from the approximate solution space that solution which lies

"closest" to the exact solution.

The application of the method of weighted residuals is accomplished

by  substituting the modal approximation, equation  (1.1 9) ,   into  the  time -

dependent, multigroup diffusion equations. The terms of the resulting

set of equations are then premultiplied by a series of weighting functions

and integrated over all space. The weighting matrices, [Wp(r)] must,
of course, be of a nature and number so as to generate the exact num-

ber of equations necessary to determin'e the unknown coefficients in
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the right-hand side of equation (1.19).

The type of modal method employed is determined primarily by the

selection  of the trial functions  4,k(r).
The 4'k(r) which.*te:defined  by

72*k(r) + B *k(r) = O

are known as HELMHOLTZ MODES. They have the advantage of being
12

complete, orthogonal functions which are easily tabulated. Unfortu-

nately, however, a very large number of modes must generally be used

to describe the reactor adequately.

Before investigating other choices of trial functions, a recasting

of equations (1.5) and (1.6) isinorder. Toaccomplish this, the following

matrices are defined:

[L] - _{9 ·[D(r, t)] 9 -[A(r, t)].}

[=].1 {(1-0,) I,J] + 1 BbxA}Ivt"g]T
J                             J

T

IM,] . I '1[x,i I.i»%(F.,)-1
j

IMdl - y EMpl
4' L   1 1

Applying the definitions to equations  (1.5)  and (1.6) yields

I

[-L+M-Md][0] +   Ixil xic   =  1[v]-1 [*] (1. 20)
i   at

i= 1
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and

BC:

 M1  [0] - [Xi] Aici = [xi] -Bil i=1,2,...I (1.21)

If one denotes steady-state conditions by a "o" subscript, then
13LAMBDA MODES are defined by

[Lo][ *inl = e- [Mc ][ *n]n

and OMEGA MODES are defined by
14

d1 -L +M -M 1   XiII]        XIII]   [ 0 1Loood  wn

IMd.1 _ i[I] [Xi]CiL  011                           0

F Md   1                                  0 -XI[I] [XI CIL  oIJ

[vo]-1 [* ]
0

(.On

In            Ixilci
= CO

n      0

[I] [)(IlcI
- -

LAMBDA and OMEGA MODES have the advantage that they can be

tailored to a particular problem by using [LI] and [M ] appropriate for

that problem. Consequently the number of such modes required for an

adequate approximation is much smaller than the corresponding number

of HELMHOLTZ MODES. Unfortunately, these modes are difficult to

calculate; and, since they correspond to only one of the physical states

which the reactor experiences during a transient, they will be poor
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-                 choices if the reactor deviates substantially from that state.

All of the choices of trial functions considered so far involve a set
15of modes which correspond to only one operator. TIME SYNTHESIS

is a modal approximation that uses modes which are associated with a

set of operators. Typically, the elements of the  K, [*k(r)] matrices

are fundamental modes belonging to a set of operators chosen to repre-

sent the reactor during the course of the transient. The emphasis is

then  to  use  as  much  of  one' s knowledge and intuition about the dynamic

behavior of the reactor as possible in the selection of the set of oper-

ators.

The great advantage of synthesis procedures is that the trial functions

can be found by standard static methods and can be tailored very directly

to the problem at hand.  In many cases, therefore, few of them are re-

-               quired.  As an important result, it becomes possible to solve an ade-

quate approximation  to the space -time diffusion equation with great

, detail, accurately, and at a reasonable cost.

There are, however, some important objections to the time-

synthesis method. The modes do not form a complete set. There is

no orthogonality relationship among the modes. The selection of the

reactor conditions yielding the trial functions requires some intuitive< y
judgment about the dynamic characteristics of the reactor. In three-

dimensions, the cost to find three-dimensional trial and weight functions

may be substantial. A great deficiency is the lack of satisfactory error

bounds. Practically, care must be exercised to avoid using linearly

dependent trial functions.

The trade-off in advantages and disadvantages of the  TIME
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SYNTHESIS METHOD depends on the type of problem one is attempting

to solve. For modeling the slow removal or insertion of a control rod,

the separability of the spatial and temporal behavior of the flux is a poor

approximation.  For a small, uniform change in the boron content of

boron-poisoned coolant, the approximation would be too sophisticated.

However, for a range of interesting problems, the approximation is

quite attractive. For example, the method is well suited to describe

the flux behavior following a cold water injection, a loss of flow, or the

rapid ejection or insertion  of a control  rod.

The second category of indirect techniques for tackling equations

(1.5)  and (1.6) springs  from an attempt to circumvent the difficulties

imposed by time synthesis of finding three-dimensional trial and weight

functions for the entire reactor and of knowing a priori something

»                         about the three-dimensional temperature profile of the reactor during

the transient. Procedures belonging to this category are usually refer-

red to as SPACE-TIME SYNTHESIS methods.

The idea behind space-time synthesis methods is to extend the

notion of time-synthesis so that one may select trial functions which

apply only to a region of the reactor. A consequence of doing this is

that the coefficients of expansion become functions of position as well

as  time.

There are many types of space-time synthesis. In NODAL ANAL-

16YSIS, one partitions the reactor into several subregions, Rn.  For
.

the reactor, then, the flux is approximated by

N
I *(F, t] =   E    rn(r)[Ar)][Tcn)(t)]

n=1
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where

Fl   n CRn
rn(r) = 1

60       n ¢ Rn
17SINGLE-CHANNEL SYNTHESIS may use either continuous or discon-

tinuous trial functions. In either case, the motivation is to make use of

the axially homogeneous nature  of many reactors.     The  idea  is to extend

the synthesis methodology by representing [ 0(;, t)] as a linear combina-

tion of two-dimensional flux shapes appropriate to radial slices of the

core taken at different elevations and unknown functions of height and

time. For continuous trial functions, the assumption is

K
[0(r, t)]  =   E    Ill'k(x, y)][Tk(z, t)].

k=1

The use of discontinuous trial functions permits one to use different

sets of the expansion functions [4·'k(x, y)] at different elevations.   Thus

the flux vector is approximated as

K
[ 0(F, t)]  =   E [4 kn(x, y)][Tkn(z, t)]      zn S z 4 zn+1 n=1,2,...N.

k=1

18MULTICHANNEL SYNTHESIS   is an extension of the idea of single-

channel synthesis whereby the x-y plane is itself partitioned into M

regions Rm.  In the discontinuous trial function expansion given above

[4'k, n, In(x, y)] is defined to be [4.lk, n(x, y)] in Rm and zero elsewhere.

Thus the expansion becomes
Z  4 Z:,5 Z ;     x, y c RmK                             n      n+1

[ *(F, t)] =   I [ + (X, Y)][T, (Z, t)]
K,n,nn K,n,rn n=0,1,...N m=1,2,...M.k=1
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If  a  decision  is  made  to  use an indirect approach to solving  equa -

tions  (1.5)  and (1.6), another decision  must  then  be  made  as  to  how  one

should go about solving the resulting, approximate equations. Recalling

the structure that was observed with the development of direct approaches,

one can see that two choices are open.  One may apply an indirect ap-

proach  in a straightforward  way to equations  (1.5)  and  (1.6) and solve

the resulting equations, or one may cast such equations into a "point

kinetics"    form  and go about  the  task of solving these reformulated  equa -

tions.  In this latter approach, the development of multimode kinetics

equations of a point kinetics form has been analyzed by Fuller, Hetrick and

Meneley and shown to be the result of the application of a weighted
19

residual methodology to the spatial domain.  If the reactor is divided

ihto M channels, and for each channel it is assumed that

K

I Mm(F, t)]   =    E      [  In , k(F, t)][Trn, k(t)], (1.22)
k=1

then the following equations may be derived by applying this expansion

to the time-dependent, multigroup, multiregion diffusion equations

(along with boundary and interface conditions), premultiplying    the

resulting terms by an appropriate set of weighting functions, and per-

forming spatial integrations over each channel:

[T(t)] [A]-1 Ip_B]     Al[I] < . . . XIII] [T(t)]

-d [cl (t)] [A]-1 IBi]  -Al[I]         0    [cl(t)]

dt                                                           ·
       (1.23)

0

[CI(t)] [A]-1 IBI1 _XIII] [CI(t)]- - -
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where the size of the sub-matrices depends on the kind of group col-

lapsing scheme chosen  for the expansion  (1.22).

The  selection  of the  kind of trial functions which appear  in  (1.22)

determines the type of indirect method ·to be employed.  If the entire

reactor is treated as one channel containing a single time-independent

shape function,  then the sub-matrices  of (1.23) become scalars  and the

equation becomes merely the familiar point-kinetics equation.  If only

one channel is considered and a single shape function is defined by any

time step, p, by

[L][ *(r, p)]  =  L [M][ 0(F, p)]
P

th(where [L] and [M] are operators for the perturbed reactor in the p

time step), then the ADIABATIC METHOD is being employed.  Or,
20

if one attempts to improve on the ADIABATIC METHOD by using

r    wi(F, P-1)
[-L+M][.0(r, p)] - 1 [$(F, p-1)]

4i.' Xi +Wi(r, P- 1)

r ,-1 1= Lvl     Ar [ *cr' p) - 0(F, P- 1)]
P

to define the shape function, then the QUASI-STATIC METHOD has
21

been adopted.

Nodal methods improve on the point reactor model by considering

one spatial trial function in each channel. Thus equation (1.21) .becomes

I #InCT, t)] = [4'Ill, iCT' t)][T .(t)] m=  1,2, . . .M.
In, 1

.-

Alternatively, the reactor may be treated as one channel and omega
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-               modes on Helmholtz modes employed. Or, finally, one may choose to

adopt single-channel synthesis, multichannel synthesis, or time synthe-

sis in developing the multimode kinetics .equations of the point-kinetics

form.

This section has been concerned with a review of several of the

current techniques of approximating equations  (1.5)  and (1.6) . The

remainder of the thesis deals with one of these - the solution of the

multimode kinetics equations of the point-kinetics form.

1.3    A D evelopment  of the Multimode Kinetics Equations

In this section, the multimode kinetics equations will be developed

in a point-kinetics form by the application of time synthesis to equations

(1.5) and (1.6). There are two reasons for doing this at this time.   One

-               is to clarify the preceding discussion of using the method of weighted

residuals to develop the multimode kinetics equations in the form of

equations  (1.23). The other is  to help  set the stage for the next chapter

which will discuss how these equations are to be solved.

As discussed earlier, the application of time synthesis is

made by approximating the flux vector with the expansion given by equa-

tion  (1.19). This approximation  is then introduced into equations  (1.20)

and (1.21). The resulting equations are then premultiplied by a set of
-

arbitrary, time-independent weight functions [W (r )]
and integrated

over  space.     If the weighting functions  are the neutron importance  func -

tions, a reduction is made in the errors arising from the approximate

-                      nature of the spatial trial functions employed.

The result is
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K I
I   { fv [Wp][-L+M-Md][4'k] dv} [Tkl + ,73   Jv [wp][Xi] Xici dv
k=1 1=1

K
= 17 {fjwp][v]-1 [*k] dv} *[Tk(t)] p=1,2,...K ( 1.  24)
k=1

and

K C

71   if   [W  ]  Mel [4'k] dv [Tk] - xi Jv [wp][xi] ci dv
k=l    L v       P   L    1-1

=   fv [wp][xi] ci dv p=1,2,...K; i= 1,2, . . .I (1.2 5)

If  equation  (1.19) is applied  in a non-collapsed manner,   then  equa-

tions (1.24) and (1.25) represent G X K+G X K X I equations which can

be  used  to  find  the  G X K unknown  Tgk(t) 's  and  the  G  X K X I unknown

f dv w  (r) x. C.(F, t)'s.
- Pg 1g 1

Equations (1.24) and (1.25) may be transformed into the point-

kinetics form in several ways. This flexibility stems from the fact
Bthat in the point-kinetics formulation only

ratios like -  and T must be
specified.

Here, the following definitions are made:

Iplpk - fv [wp][-L+M][4'k] dv

Ililpk =  fv [wpl  M1  [*k] dv

-                        [A]pk E fv [wp][v]-1 [*k] dv

-                              {[A][ci]} E col.{ fv [wi][xi] ci dv . . .  fv [wk][xi][Ci] dv}
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Applying these definitions to equations( 1.29)  and (1.25) yields

d. [T] = [A]-1 [p-B][T] + E x:Ici] (1. 26)
dt i 1

  Icil = [A]-1 [Pi]LT] - ki[ci] i=1,2, . . .I (1.27)

or, equivalently, equation(1.23).

Noticing that equation  (1.23)  may be written  as

j  [*] = [A][*] ( 1.28)

leads one to conclude that if the terms of the sub-matrices of equation

(1.23) are constant over a time  step,  then the solution to the multimode

kinetics equations in a point-kinetics form over a time step  At (=t -t )              1
P+1  P

is

[*          1   =   exp(at[A] )   [ *p].
(1.29)

P+1

The next chapter discusses how one might approach solving equa-

tion  (1.26)  and the kinds of approaches  that  one may choose to approxi-

mate  equation  (1.2 9) .
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CHAPTER II

A NEW APPROACH TO SOLVING THE
MULTIMODE KINETICS EQUATIONS

The preceding chapter was concerned in part with the development

of the multimode kinetics equations and the casting of these equations

into a point-kinetics form.  It is the purpose of this chapter to present

a brief review of the current techniques used in solving such equations

and then to develop a new approach to their solution, based on approxi-

mating the exponential of equation  (1.29).

2.1  A Review of Techniques for Solving Multimode Kinetics

Equations Which Have Been Cast in a Point-Kinetics

-             Form

The following discussion of the current methods for solving the

multimode kinetics equations  in  the  form of equation (1.29) begins  with

a consideration of methods of solving the space-independent, point-

kinetics equations themselves. There are at least two good reasons

for  taking  the  time  now  to  do this. First,   as was pointed  out  in Chap-

ter I, the point-kinetics equations in fact represent a specialization of

the multimode kinetics equations produced by treating the entire reactor

as one channel containing a single, time-independent mode. Second,

since it has been demonstrated that the multimode kinetics equations

can indeed be cast as matrix generalizations of the point-kinetics

equations, there is some cause to hope that one might look to the

methodology of solving the space-independent equations in order to

obtain a few clues as to how to go about solving the multimode kinetics
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equations.     That  this  is  the  case  will be demonstrated  as the chapter

unfolds.

22.23Because of the difficulty of analytic approaches   a considerable

number of approximate methods have been devised over the years to

solve the space-independent, point-kinetics equations.  Most of these

methods  fall  into the following six categories:
24.25

(1) methods based essentially on Taylor series expansions

( 2) methods based on convolution integrals using numerical  inte-
26.27

gration

( 3) methods based on integral equation formulations and approxi-
28-31mation of the integrand

(4) methods based on some approximation of matrix exponen-
32-34

tials

35
-                                                  ( 5) methods based on extrapolation of low-order approxima tions

36.37
(6) methods based on finite differencing  '

Of these methods, only one appears to have been extended to cases

where the parameters of the point-kinetics equations are themselves
38

square matrices. Generalizing the earlier work of Brittan and

28                             39
Kaganove, Fuller, Meneley, and Hetrick have successfully em-

ployed the method of undetermined parameters in the temporal inte-

gration of the multimode kinetics equations. This approach stems

from  the  fact  that the matrix equations  (1.26)  and  (1.27)  may  be  re-

formed into a single, integral matrix equation by performing the fol-

lowing operations. First,   it is noted  that the  I   equations  (1.27)  may
I

be  substituted into (1.26) to eliminate the   E   li[Cilt)]   term and there-
i= 1

by  yield:
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I

 [T(t)] = [A]-1 [p][T(t)] -  E 31 [c (t)] (2.1)dt   ii= 1

Secondly, in order to deal with the _Sl [C (t)] terms in (2.1),  equa-
dt   i

tion  (1.2 7) is formally integrated  over the
interval   t   4 t  St            toP+1

yield:

Ici(t)] = [ci(tp)] exp [-ki(t-tp)]

rt

+ Jt   [A1-1 [Pi(t')] [T(t' )] exp[-Xict-t' )] dt' ( 2.2)

P

If one then differentiates (2.2), the resulting expression,

A- Ici(t)] = -Ai[ci(tp)] exp[-ki(t-tp)] + [A]-1 [13i(t)] [T(t)]dt

rt
-                               - A.  \   [A]-1 [Bi(t' )] [T(t' )] exp[-ki(t-t' )] dt', (2.3)

1 Jt
P

may be substituted into equation (2.1)t o obtain the following matrix,

integral equation:

I

-d [T(t)] = [A]-1 [p-B] [T(t)] + .E  Xi  [ci(tp)] exp[-ki(t-tp)]dt
1=1

rt

+ Jt   [Al-1 [Pi(t' )] [T(t' )] exp[-Ai(t-t')] dt'  ( 2.4)

P

The method of undetermined parameters is then applied to the sol-

ution of equation (2.4) by assuming that,  in the time interval t St 4t
P    P+1'

the matrices [T(t)] may be expressed as
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-                                 
                       k

[T(t)] = E [Ak]( - p)k ( 2.5)
k=0

The unknown elements of the vectors [Ak] are then found by substi-

tuting equation  (2.5)  into  (2.4) and applying the method of weighted resid -

ual to the result.  That is to say, the terms of the resulting equation

are multiplied by a set of weighting functions and integrated over the

time interval.

Typically, the application of the weighting functions forces one to require

that the residual vanish  at K points  (t l' . . .  tK) ' all lying within  the

time interval.  Thus, in stepping out in time from t  to t K integralsP   P+1,

must be evaluated.     In  this  way K simultaneous, matrix equations  are

generated, from which  the   [Ak]   may be found.

The accuracy of this procedure depends both on the degree of the

piecewise matrix polynomial  used in equation  ( 2.5)  and  on  the  kind  of

weighting functions selected fro the temporal integration. Fuller,

39
Meneley, and Hetrick chose second degree polynomials in an attempt

to balance consistency requirements and calculational effort. In con-

sidering the sensitivity  of the result  on the choice of weighting functions,

40Fuller has discussed three possibilities.. Collocation weighting uses

the Dirac delta functions, 6(t-tk); k=1, . . .K. Subdomain weighting,

38             28
which was used by Brittan and Kaganove for point kinetics, uses

the unit step functions  u(t) - u(t-tk);  4 =l, . . .K.  (Here it is suggested

(tp+1-tp)

that a good choice for the subdomains is t. =t + ; k=1,...K.)
K P k-1

2

Thirdly, Galerkin weighting uses the trial functions (t-t )k;  k =
1, . . .K a s weighting functions . Of these three choices, Galerkin
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- weighting appears  to  be  the most capable of giving accurate solutions.

-                   2.2  An Alternate Approach to the Solution of the Multimode

Kinetics Equations - The Approximation of exp (AtIA])

Recently a new method of solving the point-kinetics equations was
34developed by da N6brega which proved to be fast and accurate  and

which has the ability to reproduce all the features of space-independent

transients, including the prompt  jump. C rucial  to the success  of  this

new method was the development of an analytic technique to inver poly-

nomials  of the point-kinetics matrix. This inversion has direct applic -

ability to the Pad6 approximations for the exponential; and, because of

its success in solving the point-kinetics equations, it forms the basis
8-

for motivating one to consider the extension of the method to solving
;

..

the multimode kinetics equations.

The remainder of this chapter deals with this extension, Specifi-

cally, it deals with the application of an analytic inversion to both the          '          1

Pad6 (2,0) and a modified Pad6 (1,1) approximation to the exponential

of   equation  (1.29).     It  is  left  to  the  rest  of this section to provide  some

insight into these two approximations and to develop more clearly the

motivation behind their selection  and  use.
41Late in the nineteenth century Pad6 realized that any analytic

function

2
f(x) =a  +a x+a x + . . . (2.6)0 1 2

in the neighborhood of the origin might be approximated utilizing the
.

now classical analysis tool of rational approximation. Essentially, the
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idea is to express f(x) approximately by

n   (x)
P, q

f(x) = = r   (x)d   (x) - p, qP, q

where n (x) and d (x) are, respectively, polynomials of degree qP, q P, q

and p in x and where it is assumed that d (0) + 0.  One then selects
P, q

for each pair of positive integers p and q those polynomials n    (x)P, q

and d (x) such that a Taylor series expansion of r (x) agrees with
P, q P, q

as many terms of (2.6) as possible. The coefficients of the polynomials

n   (x) and d (x) are determined from the fact that
P, q P, q

d       (x)  f(x)  -  n       (x)  - 0( |x| P+ +1) as I x l-0P, q P, q

This equation gives rise to p+q+1 linear equations from which the

p+q+1 essential unknown
coefficients of r   q(x) may be found.

43For the function  f(x)   E exp(x), Hummel and Seebeck have found

that a Pad6 (p, q) approximation is composed of

q        (P+q-k) !  q!
n    (x) = E C+x)k
P, q

k=0  (p+q) ! k!  (q-k) !

and

p         (p+q-k)!  P!               k
d   (x)= E (-X)
P, q

k=0  (p+q) !  k!  (p-k) !

A Pad6 (2,0) approximation for exp(x) is thus given by

1exp(x) =          2
1 -x+22
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42
Varga notes that the Pad6 rational approximations for exp(x) can

can  directly.lead  one to consider matrix approximations to exp(at[A] ).

To  see  this one merely has to replace formally the x variable by At[A]

and let

exp(at [A] )  =  [dp, q( [A] at)]-1  [np, q( [A]at]  E Ep, q(at [A] )      (2.8)

Thus  one  is  led  to  the  Pad6  (2,0)  and  Pad6 (1,1) approximations  of

exp (At[A] ). These are, respectively:

-1
At

E2,0(At[A]) E [I] - at[A] + --2 [A]2  (2.9)

and

-1 r

El    1(At[A]  )  E [I]   -  - t  [A]           [I]  +  121[A]   (2.10)
'

As a final point in the development of these two matrix approxima-

tions,  it is noted that over the time interval At, the parameters of the

multimode kinetics matrix [A] may change as the physical properties

of the reactor modeled by (1.28) change.    If one
denotes  as  [A(t )]  the

matrix associated with the reactor at the beginning of the time step

when  t  =  t and refers  to the matrix At seconds later  as  [Act  +At)],
P                                                   P

then the requirement imposed  when the solution  of  (1.28) is expressed

as  (1.29)  (i. e., the requirement that [A] be constant  over a time  step)

may be maintained by assuming  that in equation  (1.29)  [A]   over  At  is

equal to    [ [A(tp)]  + [A(tp+ At)] ].    In the present work, this assumption

is made in the case of the E 2,0(At[A]) approximation.

In the case of the E 1,1(At[A] ) approximation, however, an alter-

native approach is possible. To account for the change in [A] over at,
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one may modify  the  E l,1 (at-[A] ) approximation  in the following  way:

1-1 r
El, 1(At[A]) E  [I]  - 41-[A(tp+ at] )     I + ·A [A(tp)]] (2.11)

Here,  El, 1(At[A]) clearly becomes El  1(at[A]) for constant [A].
'

Equations (2.9) and (2.11) form the· basis in the present work for

approximating the exponential of equation  (1.  29). The motivation behind

their selection will unfold in a logical manner as the following discussion

of the properties of E2,0(At[A]) and E  1(At[A]) develops.
'

The discussion begins with a mathematically precise statement of
45.

the  problem  at  hand (see Richtmyer and Morton      ).     For the purposes

of the present work, it is required that one find a one-parameter family

[*(t)] of elements of the Banach space f0  such that the equation

  [4,(t)] = [A(t)] [*(t)] 04tST (1.28)

is satisfied.  In this initial value problem, t is a real parameter,

[A(t)] is a linear operator whose domain is restricted to the set of all

real numbers, and [*(0)] E to, where [*o] is a given element of the

  space which may be used to describe the initial spatial distribution

of the neutron population  of the reactor modeled  by  (1.28).

A genuine solution to equation  (1.28)  is the family of [*(t)] which

lie in the domain of [A(t)] for each t i n the interval O f t&T and which

satisfy

[*(t+ at)1 - [*(t)]

- [A(t)] [*(t)]   - 0 as At -* 0 0*t*T
At

(2.12)

\
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The following approximation for  (1.28)  is now constricted:

[*(t     )]=[E(at] [*(tp)]ptl

where,  in the present work,  [E(At)]  may be either E2,0(At [A] )   or

E l,  1(at[A]  )   and  At  Et             -   t . Clearly,    as   At  -+   0, one would  like
P+1   P

[*(t    )1 - [*(tp)]P+1
the expression at to be an approximation to the time

derivative  ·11- [*(t)]. The implication  of this requirment  is  that,    as
dt

At-4  0, the ratio

[E(at)] [*(t)] - [*(t)]
At

be  an approximation,  in some sense,  to [Act)] [*(t)].    What is being

considered here in rather loose terms is the topic of consistency (see
44Lax and Richtmyer     ). More formally,   one may define this concept
45in the following way  :

DEFINITION  2.1. The family [E(at)] of operators provides a consis-

tent approximation for the initial value problem   [*(t)] = [A(t)] [4,(t)]
if, for every [*(t)] in some class 0 of genuine solutions whose initial

elements [*(0)] are dense in the W space,

 [E(At)] - [I] _ [A(t)]  [*Ct,1   +
0 as At-* 0 04t4Tat

(2.1 3)

-                                               Since  [4,(t)]  has been defined in equation  (2.13)  as a genuine solution,
the  condition for consistency may be modified by combining (2.12)  with

(2.13) to obtain
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[*(t+ At)]  - [E(At)] [*(t)]
-0 as At - 0 Oft#T

At

where the quantity under  the  norm is sometimes called the TRUNCA -

TION ERROR.

Equation (2.19) poses the condition for consistency in a form which

allows one to examine the consistency of [E(At)] merely by taking a

matrix power series of [E(At)] near t for small At, and then comparing

the  expansion to a Taylor series expansion  of  [*(t + At)].

To  do  this,   one has first to write the expansion  of  [41(t + At)]  as

at at
[*(t+ at)] = [*(t)] + At[4,(2)] + --2-  [*20] +      -[ifj] + ...   (2.15)3!

However, since [*(t)]  =  [A(t)] [*(t)], equation (2.1 5)  may be expressed

exactly as

2

[*(t+ At)] = { [I] + At[A(t)] +-([A(t)]2 + [A(t)] ) + . . . }  [*(t)]At
2!

(2.16)

providing [A(t)] is analytic.  If one substitutes (2.16) into equation

(2.14), it should become apparent that the requirement for con-

sistency here is that matrix power series expansion of [E(At)] agree

at least through linear terms with the expansion on the right-hand side

of equation (2.16).

Clearly, all Pad6 operators of the form E (st[A] ) for which    -
P, q

p+q>0 are by definition consistent approximations for the initial

value problem posed by equation  (1.28) . In particular, for small  At,

E       (At[A])  may be expanded as2,0
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·                                                                                                    At
E2,0(At[A])  =  [I] + At[A] + --2-[A]2 + h. o. t. (2.17)

-               For the general case, where [A] is itself a function of time, and the

constant-[A] approximation [X] = -   [ [A(t)] + [A(t+ At)] ] is adopted,  one

may express the series as

jt
E     (at[A])= [I] + At[A(t)] + -r[[A(t) 21 + [A(t)]] + h. o. t.2,0

(2.18)

Comparing (2.18) with (2.16), one finds that the approximation

E2   n(At [A] ) is indeed a consistent approximation for the initial value
,U

problem (1.28).

For  the  E1,1(at [A] ) approximation,   it is observed  that for small

enough at:

At         At
E'   (At[A])=[I] + 3-[A(t)]+ -2- [A(t+At)]1,1

at2
+ -3.-- [A(t + at)] [A(t)]

+ ·  [A(t+ at)]2.+ h. a. t.
at2

Then,  since [A(t+ At)] = [A(t)] + At[Ait)] +--2- [A(t)] + ...  one may

write

El, 1(at[A] )= [I] + at[A(t)] + ·  [[A(t)]2 + [A(t)] 1 + h. o. t.
(2.19)

which agrees through quadratic terms  with the expansion given by (2.16).
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This  establishes  E     1 (At[A])asa consistent approximation  to the initial
'

value problem of (1.28).

As a final point in this discussion of consistency, it is recalled that

a necessary condition for the existence of the expansion given by (2.16)

is  that the matrix  [A(t)]  must be analytic. Clearly, this requirement

also holds  for the expansions  (2.18)  and  (2.19).     Thus, in situations

where the elements of the matrix [A(t)] undergo a step change, one must

formally halt the consideration of the problem at that instant and begin

to consider a new initial value problem defined in terms of the proper-

ties of the matrix [A(t)] after the step change.

Given, then, that the two approximations of interest are consistent

approximations, it would be valuable if one could next assume that after

N operations on the initial value function [*I] the discrete solution

[E(at)]N [*0] will approximate the exact solution [*(N at)] to an even
Closer degree as At shrinks in size and larger numbers of operations

..

are required to "step out" in time to a fixed t.  If this occurs, one may

then say that the operator [E(At)] provides a convergent approximation

to the initial value problem.

Unfortunately, itcannot beassumed that E 2 0 (At [A] ) and E'l 1 (at [A])' '

are convergent approximations simply because  they are consistent. How -

45
ever, by using a theorem due to Lax, one may establish the conditions

under which the approximations are convergent.     Lax' s theorem states

that if the initial value problem is properly posed and a finite-difference

approximation to it is made which satisfies the consistency condition,

then stability is the necessary and sufficient condition for convergence.

To  show  that the initial value problem  (1.28) is properly posed,
.
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one must establish  that  (1) even though a genuine solution  may not exist

for some choice of initial element [*0] in the 1 space, it is possible

to approximate this [to] as closely as one wishes by another [*i] for

which a genuine solution does exist,   and  that  (2) the solution  of  (1.28)

depends continuously on the initial data.  It will now be assumed that

the first of these two conditions does exist. The second condition will

be met if the operator [A(t)] is bounded,  i. e. ,i f ||A(t) || <K for 0 4 t#T.

The criteria for the boundedness of [A(t)] stems from the definition,

given in Chapter  I,   of the matrix [A] which appears  in [A(t)]. Since  [A]

is inverted, care must be taken to avoid using linearly dependent trial

functions  in the modal expansion  of  [ 0(r, t)], thereby making [A] singu-

lar.

If this criteria  is met, equation (1.28)  may be  said  to be properly

posed and the issue of convergence hangs on stability. The concern

here is that there should be some limit on the extent to which any com-

ponent of an initial function can be amplified as one steps out in time

from t=O t o t=T. Since this numerical procedure involves a sequence

of operations which approach infinity as At approaches zero, the
1

requirement for stability may be expressed as

DEFINITION   2.2. An approximation  [E(At)]  is  said  to be stable  if,   for

some T> 0, the 00 set of operators

0<At< T
[E(at)]n

0 4 nat 4 T

is uniformly bounded.
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42
Varga points out that this condition is clearly met if the spectral

radius of [E(At)] is <1 for all t > 0.  In some problems, however, it is

possible for a component of the exact solution to grow exponentially.

In such cases (for example, a supercritical reactor) taking the spec-

tral radius of [E(at)] < 1 as a requirement is too stringent;  and, in

fact, its use would violate consistency.

Fortunately, a less stringent requirement for stability exists.

Richtmyer and Morton point out that if, for some G and some ·r > 0
46

||E(At)  | f l t Gat for  0 < At < T ( 2.20)

then stability is guaranteed,  for then  || E(At) |In 4 exp(GT),   for  0 4

nat 4 T.

For small enough At,  it is now clear that both the E2,0(at [A] )
and Ef .(At[A]) approximations are stable. Tosee this, one has only1,1

to recall that either approximation may be written as

[E(At)]  =  [I]  +  at [A] + h. o. t.

Obviously, if the elements of [A] are bounded, a sufficiently small At

exists such that

||E(at)|| = ||[I]+ At[A]+ h. o. t.|| 4 Gatt  1

The stability of the E2 n(At[A]) and E  1(At[A]) approximations
,V

is thus assured for small enough At. There remains, however, one

final topic to be considered in this discussion of the properties of these

-                two approximations.  The idea is somewhat akin to that of asymptotic

stability. Stated roughly, it is that in obtaining an approximate solu-
1 I.

tion, one would like to minimize the influence of those eigenvalues  of
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4              E2 n(At[A] ) and El 1(At[A] ) which correspond toeigenfunctions that
,U

do not approximate closely a genuine solution of the initial value problem.
I.

The question raised now is not so much what ahppens as At - 0  but,

rather,. how accurate are the approximations for economically viable

time step sizes.

To deal with this issue in a more precise way, the following theo-

rem (established by Frobenius in 1878) is introduced:   If X 1, A 2, . 'A n

are the characteristic roots, distinct or not,   of an n X n matrix  [A],  and

if G( [A] )  is any polynomial function  of [A],   then the characteristic roots

of G( [A] ) are G(11)' G(12)' . . . G(An)
The  application of this theorem to the E2 n(at[A]) approximation

,V

is straightforward. By inspection, it is clear that the eigenvalues of
1

E2 n(At[ ]) are given by at  2 '  where Xi is an eigenvalue
'V 1   -  atA.  +   -X-                     121

of  [A].

In the case of the E'
1,1(at[A]) approximation, however,   one  is

confronted with the fact that the eigenvalues and eigenvectors of
[A(tp+At)]

are not the  same as those  of [A(t )]. Consequently,  one may not,   by

inspection, claim  that the eigenvalues  of E1   1(at [A] ) are given by
'

Atlt -X
2  i, 0

(2.22)
1  - X.2   1,1

where X.    is an eigenvalue of [A(t )] and X.  . is an eigenvalue  of
1,0 1, 1

[A(t  + At)].    Yet,   in a qualitative sense,   it  can be maintained that since
P

the parameters of [A(t)] do not change very much over a time step for

computationally realistic choices of At, the eigenvectors associated
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4                           with [A(t + at)]  are  not very different from those
associated  with [A(t )].

Given that this perturbation is slight, it then seems reasonable for one
....

to conclude that within reasonably close bounds the eigenvalues of

E11,1(at[A] ) may be approximated by (2.22).

These observations enable one to glean at least some qualitative

information about the two approximations,  E 2  0( At[A] ) and E , 1 (At[A] ).
'

First, it seems clear that At must be chosen so that the denominators
At   2 \ / At

<1 +A t.t-X   i and 1 1 - -X       do not equal 0. Furthermore,1  2 i/ \       2    i, 1 /

one may now directly approach the question posed earlier of how to min-

imize the influence of those eigenvalues of E2 r,(At[A]) and El,1(At[A]),U

which corrupt the approximate solution.  To do this, however, one must

obtain some knowledge about the eigenvalue spectrum of the matrix [A(t)].

For the quite stringent case of a symmetric reactivity matrix, [p(t)],
47

- and constant, positive definite matrices  [A]  and  [Bi],   Porshing        has

analyzed the eigenvalue spectrum of [A(t)] in detail. Unfortunately, this

kind of analysis has not been accomplished as yet for more general situ-

ations.

In lieu of this, one might rely on Porsching's results to gain some

intuitive feeling for the spectrum  of [A]. For example,   it can be main-

tained that at least one of the eigenvalues of [A] will be large and negative

and that (even though the associated eigenfunction is dying away rapidly)

this eigenvalue will influence the approximation in a detrimental way.

It  is then appropriate  to  turn to the  E2,0(At [A] ) approximation to ameli-

orate this situation.    If  Xi  and  10  are two different eigenvalues  of [A],

-             and if |X.|  » |10|  i>0,  then for the E2,0(at[A]) approximation
1 11
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»         'E2. 0( atkj 1 » 'E2 0(Atxi) 1 ·   It can consequently be argued that the

influence of that large root on the solution is diminshed, thereby estab-

lishing further the motivation for one's use of E2,0(At[A] ) as an approx-

imation to the exponential.

The whole series of E (At [A] ) approximations, however, suffer
P, q

to some extent from the necessity of assuming [A] constant over a.time

48
-                       step. Da Nobrega has shown that if one uses [A] = [ [A(t )]  +P

[A(tp+ At)] 1,
the approximation is automatically limited  to a global
2error  of 0(At ). Moreover, this assumption,  when used in  any of the

E (At[A]) approximations to the exponential, results  in the reactor
P'q

model responding to a ramp reactivity insertion by considering it to be

a series of steps, each having its own small prompt jump.  This pro-

duces a scalloped effect in the solution; and, in turn, motivates one to

-
turn to  the  E      1(at [A]

) approximation  in an effort to handle  ramp  in-
'

sertions better.  This is really just a modification of the Crank-

49Nicholson method which may be thought of as imposing the require-

ment that the forward derivative of the solution at t meet the backward
P

derivative of the solution at t  + at at a point halfway through the time
P

(t    +  At)    -   tPP
step (at t = . 3.

2
29

Finally, it should be pointed out that, although Porsching has

directly applied the use of rational approximations of the Pade type

successfully to the point-kinetics equations, the direct application of

-              E2 n(At [A] ) and E; 1(at[A] ) tothe multimode kinetics equations
,U

appears quite unattractive since it would require, at each time step,

the inversion of I - At[-A] + ·At [R]2  or  I - - - [A(tp+at) ]  ,   Here
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-                 [A] may range from order (KX (1+I))2 to order (K X G X (1+I))2 depend-

ing on whether or not the groups are collapsed. (Again, K = number of
.

trial functions; G = number of groups; I = number of delayed groups.)

To get around this requirement, one would like to find (generalizing
34the work of da Nobrega   ) an analytic inversion for these two matrices.

The remainder of this chapter will describe such a generalization and

apply the result  to  the  E2,0(at[A])  and  El, 1(At[A]) approximations.

2.3  Development of an Analytic Inversion of [ [I] - 6 [A] ]

Before attempting  to  find an analytic
inversion  for  I] - At [A.] +  Azt  [A] 2- 

At
and   I] -  -2  [A(tp+at) ] , it should be noted that both matrices really involve

inversions  of a matrix  of the  form [ [I] - 6[A] ], where   6   is some number

(possibly complex).   This is obvious
in the case of  [I] - -  [A(t +At)] ; but itL

-

is  also  true  for   [I] - at [A]  + -82t [A] 2 
since this matrix  may be factored

into {[[I]-6-[A]][[I]-6[A]]}-1  = [[I]-6[A]]-1 [[I]-6[A]]-1, where 6 E

At at-y (1 -i) and 6 E -2  (1+i). This section, then, is concerned with in-

verting [ [I] - 6[A] ] where  [A] is a matrix of the form given by equa-

tion  (1.28)  and 6 i s a constant, either  real or imaginary.

This inversion may be obtained in a straightforward manner by

considering the matrix [A] with I delayed neutron groups.  In this case,

l [I] - 6[A] ] may be written as

-
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- -

-                           [I] - 6[A]-1 [P-B] -A*iII] - 6 XI[ I]

-6 [Fi] (1+6Ai)[I]
[ [I] - 6[Al ] =                                                                             0

0·
-6[ FI) (1+6XI)[n

(2. 23)

where

Ifil E [A] - 1 [Bi]

The (I+1) X (I+1) unknown matrix elements of [ [I] - 6[A] ]-1 may be found

by using the general rule of partitioned matrices to solve
- -

[I]     0

[[I]-6[A]]-1 [[I]-6[A]] = [[I]-6[A]][[I]-6[A]]-1 =
0     [I]

I                              -

(2.24)

Equation (2.24) represents (I+1) X (I+1) matrix equations in (I+1) X

(I+1) matrix unknowns. The unknown matrices  may  then be determined.

The result, which can be verified by substitution, can be written

as

-                                                                              -7C -

[I]                 [I]       k 1       [I]  . . .        XI       [I]
f t Al €+XI

1

[I-6A]-1 = <   € +A l [P'll , [6-1 1  +

-                                         1

€  +  XI   [PI]
»-     -
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-                                                                                                                                                                                                                                                                                                   -

-                                    0-                         0

c  + 1 1  [I]+                                          0                                          (2.25)

0                    -c - [I]€ +X
I

where
-

[Y]-1            0

[Y- 1]  E E=. 

0             [Y]-1
- -

and

-                                           I   1        -1
[Y]-1 =  [I] - 6[A]-1 [p] + :  € +X.  Illi] 

11

If  one then makes the following de finitions:

[u]    -   c o l.      [I]    f       1 1      I l i l l    ".     €   +   XI    I 'J.I 

1

X

[v]T E  < [I]        1 [I] I  [nl C+A·1 ... €+XI  

(2.26)
0                               0

€+X€   In

[D] E
1

O       6 [I]€+X
I
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equation (2.25) may be written as

[[I]- 6[A]]-1 =[u][vITIY-11 + [D] (2.2 7)

-1
Thus,  providing [y] exists, an analytic inversion of the matrix

[ [I] - 6]A] ]-1 does exist and is given by (2.27).   What must now be done

is to apply this inversion to the problem at hand, namely the solution of

[*       ]  =  E 2,0(at[A] )[*p]       and       [4'1       ]  =  EII, 1(at[A] )[*p].P+1 P+1

It is the purpose of the next two sections to accomplish this task.

2.4   Application of the Analytic Inversion to

[41     1 = E2,0(At[A] )[*p]P+1

This section begins with the substitution of equation (2.27) into

E 2'0(at[A]) = [[I]-6[A]]-1 [[I]-6[A]]-1.

In this way, it is discovered that                          '

E2' 0(at[A])=  [U] [V]T  IY-11 [D] [v]T  IY-11  +  [D] [B]

+ [u] [v]T [Y-1] []D] + [D] [U] [V]T [Y-11 (2.28)

where the bars denote complex conjugates of the matrices defined by

(2.26).

In spite of the emergence of complex constants in (2.28) it should

be clear that E2,0(at[A]) is real, since E2,0(at [A]) =  _[I] -at[A] +
-1

*1 IA}2-j and [A] is real. This leads one to note that if the right-
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hand side of (2.28) may be factored into its real and imaginary parts,

yielding                                                                                                         

0.
E-       (at[A])  =  [REAL]  + [IMAG] ( 2.29)2,0

it then follcAws  that the imaginary  part,   [IMAG],   must  equal  the  null

matrix [0].   One is thus motivated to reform (2.28) into (2.29) and
thereby eliminate the imaginary part of the matrix.

At this point, the following definitions are introduced:

[D ]  a  [D 1    +  i [D 21 [v]T E [vi]T - i[v2]
(2.30)

[U]  E  [ul]   -  i [u2] [Y-1] E[[a]+[b]i]

where

_                                [a] E  LI - ·At [A]-1 [p] + E  atpi(1+ atki)[Ili]  
i

[b] a  .  [A]-1 [p] - E Atpi[F.] -1
i    1J

and

1

 i E
(1+  atki) 2   +   1

Using these definitions, equation (2,28) may now be expanded to

yield the following:

.
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-i[Ul][V2]T [Y]-1 [D] -i[U2][Vl]T IYI-1 [Bl.-

-[u2][v2]T[Y]-1 [D]} + {[D][Ul][vl]T [Y]-1

+ i[D] [Ul][V2]T [Y]-1 + i[D][U2] [V11T Iyl-1

- [D] [U2] [V2]T [Y]-1} (2.31)

The  motivation for eliminating the imaginary parts  of  E 2,0(at [A])

is now stronger than ever.  To do this, however, requires that the

imaginary  and real parts of equation  (2.20) be segregated. Accordingly,

the matrices [Z] and [E] are defined in the following way:  If one

writes

Iyl-1 = I Ial+i[b]]-1 =[z]+i[e]

itcan beshown that [e] =[ab-la+b]-1 and [z] = [b-lael = [ba-lb+a]-1.

(The proof is given in Appendix I.)  [Z] is then defined as
- -

[ Z]              0

0               [ Z]
.--

and [E] is defined as   --
- -

[e]       0

0       [e]
- I

_                       Finally,  if [M..] E [Ui] [vj]'I' and  [L] E [D] [D], then equation (2.31)
1J

may be written in the form of (2.29), where
.
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[IMAG] ={[MllJ[E] + [M121[Z] + [M211[Z] - [M221[E]}

·{-[Mll][Z] + [M121[E] + [M211[E] + [M221[z]}

-{-[Mil][z] + [M121[E] + [M211[E] + [M221[z]}

· {[Mll][E] + [M121[Z] + [M211[Z] - [M221[E]}

-{[1VIll][E] + [M121[z]+ [1\ 211[Z] -[M221[E]} [Dl]

+ [Dl]{[Mll [E] + [M121[Z]+ [1\I211[z] -[M221[E]}

+ {-[Mil][Z] + [M121[E] + [M211[E] + [M221[Z]} [D2]

- [D2]{-[Ml 11 [Z]  + [M121 [E] + [M211 [E]  + [M221 [Z]}      (2.32)

and

[REAL] = {-[Mill[Z] + [Ml& [E] + [M211[E] + [M221[z]}2

+ {[Mil)[E] + [M121[Z] + [M211[Z] - [M221[E]}2

- {-[Mll][Z] + [M12][E] + [M211[E] + [M221[z]}[Dl 

- {[Mll][E] + [M121[Z] + [M211[Z] - [M221[E]}[D21

- [ D 1 ] { - [ M 1 1 1 [ Z ]  + [ M 1 2 1 [ E ]  + [ M 2 1 1 [ E ] + [ M 2 2 1 [ z ] }

+ [D21{[M111 [E] + [M121[z] + [M211 Et1 - [M221[E]} + [L]
(2.33)

[0]                      0

2Pl[I]
[L] =

0                   2PI[I]
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-                    In verifying that [IMAG] = 0, two identities arise. (The proof of

this is given in Appendix II.) Their existence stems from the way in

which [z] and [e] were defined, and the fact that [z] = [-e] + lb]-lie] -
I

E At2 Pixi [b]-1  [Ili][e]. The identities are
i=1

I

[z] le] - [e][z] -  I At2pixi[ Ie] [pil Iz]
i= 1

_  Iz) I il[e]]= 0 (2.34)

and

I

[e]2 + [z]2 +  E  atzpixi[ [e] [1:i] [e]
i= 1

+ [z] [p.][z]] = [e]+ [z] (2.3 5)
1

Although the identities (2.34) and (2.35) may indeed be used to

verify that [IMAG] = [0], their real importance here lies in their use in

the restructuring of [REAL] into a more tractable form. The result

of doing this (see Appendix III) is that the matrix [REAL] may be writ-

ten as

[REAL] = [A] + [ [ul] [vi]T - [u2] [v2]T] [ [Z] + [E] 1

+ I Iuil [v2]T + [u2][vi]T] [ [Z-E] 1 (2.36)

And, since [IMAG] = [0], one finds that

.
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[* ]={[A]+ [[Ul][Vl]T-[U2][V2]T][[Z]+ lE]]171- 1

+ I Iuil[v2]T + [u2][vi]T][[Z] -[E]]} [*p] (2.37)

For the point-kinetics case, equation (2.37) is identical with the result

given by N6brega. 34

Two final comments should be made concerning the result, given

by (2.37), of applying the analytic inversion developed in the previous

section tothe equation [*     ] = E2,0(at [A] )[*p]. First, for changes in
ptl

 a (the poison capture cross section) only the block diagonal matrices

[Z] and [E] change over At since only these matrices contain the reac-

tivity matrix  [ p]. Therefore, for transients for which  the sole change

is in Ea' only these matrices must be recomputed at each time step.

The result is a substantial savings in computation time over the amount

of work which would have been required in using [REAL] as expressed

in  equation  (2.33) . Second, although  at  each  time  step two matrices

must be inverted, the matrices are quite small. The inversions occur

when  [ Z]  and  [E] are generated and involve the inversion  of  [b]   and

[ ab - 1 a+b].     If the number of trial functions  in the modal approximation

is K  and G energy groups are considered, then the maximum size of

these matrices  is  (G X K)  X (G  X K).    For a fully collapsed approach,

their  size  is  (K)  X (K).

2.5  Application of the Analytic Inversion to [*    ] =
P+1

E'        (at [Al)[*Plptl

The application of the analytic inversion of [ [I] - 6[A] ] applies in

a  straightforward  way  to  the  E  ,  1(a t [A] ) approximation. Since
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El, 1(At [A])  =   [I]  -   1   [A(tp+At)] -I[[I]- Azt [Actp)] ,  one may substitute

Atequation(2.25), with 6=-2, directly into E   1(At [A] ) and obtain
-

E 1,1(at [A] ) = [{ [u] [v]T} ty - 11 + [D] ]  [I] +   [A (tp) ] 

= [Ml]  [I] +   [A(tp)] 
(2.38)

where the elements of [Ml] are defined by equation (2.26) and contain

those properties associated with the matrix [A] at the end of the time

step.

Applying equation (2.38) to the matrix equation [*    1 =
P+1

E£'1(at[A])[*p], yields

[4'    ] =[{[u][v]T}[Y-11 +[D]]  [*P]+   [Actp)][*p]     (2.39)Fl-l

Again, it should be noted that for transients for which the sole

change is in Ia' only the block diagonal matrix [y-1] changes over a

time  step.    Here, the situation is even simpler than for the E2,0(At [A])

approximation.  At each time step only one inversion must be made of

Iy] -1,  a matrix whose size is either (G X K) X (G X K) for an uncollapsed

treatment or (K) X (K) for a collapsed treatment (G E number of groups;

K  E number of trial functions).

In the past three sections, a generalization has been made of an
34

analytic inversion technique, developed  by da NSbrega         for the point -

kinetics matrix. It should now be clear that this generalization may be

*                 applied to the multimode kinetics equations when these equations are

placed in a point-kinetics form. Specifically, this technique has been
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·· applied successfully to two consistent and stable approximations to

the  exponential,    exp  ( At [A] ). Finally, the results  of this application

_have been used to generate the [* 1 vector of equations (1.29) from
P+1

[*p],   thus " stepping  out  in  time"    from  t    to   t  1- 1.     In  the next chapter,

several numerical studies will be presented which are intended to dem-

onstrate the efficiency of this new approach (exemplified by equations
' -         (2.37  and  (2.39)) when used to solve the multimode kinetics equations.

*.

.
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                                CHAPTER III

NUMERICAL RESULTS

In Chapter I, a set of multimode kinetics equations were developed

in a point-kinetics form by the application of time synthesis to the time-

dependent, multigroup diffusion equations. In Chapter II, it was then

observed that one may solve these equations by using a temporal inte-

gration technique which utilizes the method of undetermined parameters.

Alternatively, however, it was also found that one may approach the

solution of these equations by generalizing the space-independent, point-
39

kinetics work of da N6brega. This new approach, which involves the

application of nonanalytic inversion  of the matrix [ [I]  - 6[A] ] to

"ratios" of matrix polynomials, was applied to the E2  0(at [A] )  and
'

El    1 (at[A]) approximations  to the exponential,  exp(At [A] ),   of   equa-
-

tion (1.29),  and the results  of that application were presented  in equa-

tions (2.37) and (2.39).   It is the purpose of the present chapter to

investigate the efficiency of these results by considering several numer-

ical  examples.

To perform this investigation, two one-dimensional slab reactor

models were studied. Both reactors were described by multimodal

kinetics equations which  had been derived by the application of time .

synthesis  in a fully collapsed manner, using two trial functions.      Thus,

in these studies, the neutron flux was approximated by

[0(x, t)]  =  [*1(x)] Tl(t)  +  [02(x)] T2(t) (3.1)

.

where the vectors [*1(x)] and [02(x)] were predetermined trial functions
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and the scalars  Tl (t)  and  T2(t) were unknown amplitude functions.

For both slab reactors, the two trial functions were selected so

as to "bracket" the transient being considered.  To do this, the first
t

trial function was picked to correspond  to the initial value  of  the  prob -

lem at hand (i. e., the steady-state neutron flux distribution of the un-

perturbed reactor). The second trial function then corresponds  to  the

steady-state flux distribution of a pseudo-critical, perturbed reactor.

This trial function was found for each transient by adjusting the number

of neutrons produced per fission in order to make critical the material

composition associated with the reactor at the end of the transient.

Also, for each slab, the weighting functions used were the adjoint

functions calculated from the transpose of the operators associated

with  the two trial functions.      Both the trial functions   and  the adj oints

were calculated using a computer program, DIFFUSE, which was

written principally by William Reed. 50

The first reactor considered has the same dimension and critical

composition as the reactor considered by Fuller, Meneley, and

Hetrick. Furthermore, the analysis of this reactor paralleled the
39

numerical work of these authors in that the neutronics of the reactor

were described  with one neutron energy group  and one precursor group.

Three different reactivity insertions were analyzed for this  slab

reactor: a large negative step insertion, a positive ramp insertion

that became prompt critical, and a sub-prompt critical, positive step

insertion. The spatial neutron distribution following each of these

insertions was predicted as a function of time by both the temporal.

39integration method presented by Fuller, Meneley, and Hetrick   and



69

-              by the new method that is the thrust of the present work.

Four computer programs were used to perform and double-check

this analysis. The first, MITIM-E(2,0),  is a computer code based on

the algorithm of equation (2.37). The second, MITIM-E'(1, 1), is a
code based on the algorithm of equation (2.39). (Both MITIM-E(2,0)

and MITIM-E'(1, 1) are described in Appendix IV.) The third program,

MOVER, was adopted directly from an advancement subroutine written

by  E.   L. Fuller which utilizes the method of undetermined parameters51

in a temporal integration. Second degree, piecewise polynomials and

subdomain weighting were used in the time integration. Finally, the

fourth computer program, SPATKIN, acted as an independent check of

the solutions for the multimode kinetics equations obtained by MITIM-
.

E(2, 0),  MITIM-E'(1, 1),  and by MOVER. This program was developed
52-          by da Ntbrega and utilizes the 0-method to predict accurately the

spatial distribution of the neutron population as a function of time.

The second slab reactor considered was described by a model

composed  of two neutron energy groups  and six precursor groups.    A

positive ramp insertion was analyzed using MITIM-E( 2,0) and MITIM-

E'(1,1) and the results were compared to those obtained from GAKIN,

a direct, one-dimensional, multigroup kinetic:s code developed by K. F.
53Hansen and S. R. Johnson.

The remainder of this chapter is a presentation of the results of

these numerical studies. In section 3.1, the analysis of the first reac-

tor is presented; the analysis  of the second follows in section  3.2.

.
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3.1 Reactor Number One - One-Group Results

The first reactor considered  was  a  240 -cm   slab   with the critical

parameters given in Table  III-1.    The mesh spacingi  Ax,   is  4.0  cm.

It was noted previously that the reactor was modeled with one pre-

cursor group. The delayed neutron fraction,  13, was taken as 0.0064

and the precursor decay constant,  1,  as 0.08 sec  1.

Case 1: Large Negative Reactivity Insertion

The first of the three transients analyzed in this section was initi-

ated by the sudden insertion of a neutron absorber into Region III of the

slab  reactor. This insertion amounts to a step change in the macro-

scopic absorption cross section, Ea' in Region III from Ea = O. 194962

-1            -1cm to  0.0 2 1   cm       .

Figure  III- 1  presents the trial and weight functions selected  to

bracket this transient. The amplitudes associated with the two trial

functions are then separated at various times during the transient in

Table III-2. These results are given for various selections of At, the

size of the time step selected.

In Table III-2, the predictions of MITIM-E(2,0) and MITIM-E'(1, 1)

are compared to those of two versions of MOVER. MOVER-I selects

its own time step by requiring that the rate of growth of the amplitude

functions be within a predetermined limit specified by the selection of,

a parameter, €. MOVER-II,  on the other hand, requires the user

to select a priori the size of at.  As a consequence of this requirement,

MOVER-II provides greater utility than MOVER-I in comparing the
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Table  III- 1.

Parameters for Criticality

Parameter Region I Region II Region III Region IV Region V
(units) (0-BO cm) (60-104 cm) (104-136 crn) (136-180 cm) (180-240 crn)

D (cm) 1.69531 1.69531 1.69531 1.69531 1.69531

v Ef (cm-1) 0.0194962 0.194962 0.194962 0.194962 0.0194962

-1
E (cm ) 0.0183343 0.194962 0.194962 0.194962 0.0183343a

v (cm/sec)      106         106          106           106           106

-3
-
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Table III-2. Comparison of Amplitude Functions

MOVER I MOVER II MITIM-E(2,0) MITIM-E'(1, 1)
Time f = 10-4   E = 10-3   At = 10-3   Z t = 10-2   Ljt = 10-3   Zlt = 10-2   Z t = 10-3   Zlt = 10-2

Tl 1.0 leo 1,0 1,0 1.0 1.0 1.0 1.0

0.0

T2 0.0 0.0 0.0 0.0 Oo O 0.0 0.0 0.0

*        **
Tl .0373 .0373 .0378       -        .0385       -        .0263       -

.003
T .5696 .5700 .5690       -        .5715       -        .5784       -
2

Tl .0380 . 0-380 .0381 .6976 .0380 .0397 .0382 -.811

ool

T2 .3627 .3627 .3624 -.2685 .3637 .4013 .3619 1.03

Tl
.0381 .0381 .0381 .3471 .0381 .0381 .0381 -.6212

.03

T2 .3341 .3391 .3390 .0334 .3391 .3397 .3391 .983

Tl
.0379 .0379 .0378 .0607 .0376 .0380 .0378 .3094

,10
.3379T .3379 . 3379 .3380 .3153 .3379 .3379 .069

2

*
took 44 time steps to get to t . 002934 sec

** -1
took 19 time steps to get to t . 003098 sec LO
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efficiency of the method in that it enables one to observe how the method

fares under various choices of At, the size of the time step.

Finally, the results given in Table III-2 for MOVER-I were obtained

for two values of epsilon. In order to compare these results easily with

those of the other codes, the amplitude functions predicted by MOVER-I

were linearly interpolated to correspond to the times shown.

When one considers the results of Table III-2, at least two obser-

vations may be made immediately. First, the rather qualitative  moti-

vation given in Chapter II for using the E2,0(At [A] ) approximation

appears justified.  The step insertion of a large amount of negative

reactivity served in this case as a test of the ability of each method to

deal with troublesome, large, negative eigenvalues  of the matrix [A].
Table  III- 2 shows  that  the  E 2   n( at [A] ) approximation, acting  as  the

,V

basis for MITIM-E(2,0), responded favorably to the test,  for it shows

that this approximation was more able to yield accurate predictions of

the amplitude functions with larger time steps than the approximations

on which MITIM-E'(1, 1) and MOVER-II were based.

The second observation concerns MOVER-I.  For both values of

epsilon, accurate results were obtained. However, as noted in

Table III-2, a substantial number of time steps were required early

in the transient. Since MOVER-II was able to produce adequate results

with a much smaller number of time steps, it would seem that, at least

in this case, the self-selection of time steps is an expensive alternate

to using one's knowledge about the transient to select, a priori, the size

. of    At.
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As a check on the accuracy of the time synthesis approximation and

the multimode approach, Table  III- 3 compares the magnitude  of  the  flux

predicted by SPATKIN at t= .1 sec at various mesh points across the

reactor to the magnitude of the flux predicted at t= .1 sec by recombining

the amplitude functions   . 0378  and   .  3379 with their respective trial  func -

tions. Table III-2 and Table III-3 show that these are the amplitude

functions predicted at t= .1 sec by MOVER-I and, for a sufficiently

small time step, by MOVER-II, MITIM-E(2,0) and by MITIM-E'(1, 1)

as well.

It appears that the multimode kinetics approximation adequately de-

scribes the transient for this case.

Case 2: A Super Prompt Critical Ramp Insertion of Reactivity

The second transient considered resulted from the ramp insertion

of well over a dollar of positive reactivity in the course of a second.

For this perturbation,  Ea in Region III changed from 0.1949 L 2 cm  i  to
-1. 0185001 cm in one second.

Figure III-2 shows the two trial and weight functions selected to

bracket the transient. The amplitude functions,   Tl (t)  and  T2(t)  are  then
found at various times in Table III-4, where the predictions of MITIM-

E(2,0),  MITIM-E'(1,1) and of MOVER-II are presented at various times'

during the ramp for various choices of At, the size of the time step.

The results presented in Table III-4 indicate first that the

El,1(At[A]) approximation is more capable of handling this  ramp

reactivity insertion  than  the  E 2   n(At [A] ) approximation.     In  fact,   the
'U

results from MITIM-E(2,0) indicate that the virtue    of the E 2,0( at [A] )



Table   III- 3.

Comparison with 0-Method

Mesh Point #24 Mesh Point #32 Mesh Point #41
*

Time Method Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.160 (0.0) 1.137 (0.0)- 1.163 (0.0)

0.0

b 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

a .399 (. 99) .331 ( . 9 1 5) .433 (.46)

0,1

b .403 (0.0) .328 (0.0) .435 (0.0)

*    _ SPATKIN-MODAL% error = a = multimode kinetics b = 0-nnethodSPATKIN

Nl
0\



Normalized Trial Function (4;k(x)) and Weight Function (co (x))

11\
'.

\
\
\
\
\

3 \
039                                    I(D                                                                                                           I= \r fN N

g
49     \ HE

E S          \»4        9,0- 0-4 4
(D         M·%3        /*I

'2                                            1
/

5.
0
00

0                                       /
93

m        I
N -

/ In
/                  f1     „„

I               
        '11.

/                          E
It

I                               &-
X8 -

LL



Table III-4. Comparison of Amplitude Functions

MITIM-
MOVER II E(2.0) MITIM-E'(1. 1)

Time
at = 10-3 at = 10-2 at=5 Xlo-2 at = 10-3 at = 10-3 at = 10-2 at = 5 X 1 0 - 2

Tl 1.0 1.0 1.0 1.0 1.0 1.0 1.0

Oe 0
T 0.0 0.0 Oe 0 0.0 Oo O 0.0 0.0
2

Tl 1.027 .9903 1.047 1.027 1.027 1.032 1.0514

001
T .1289 .01789 .1088 .1286 .1289 .1239 .10622

Tl 1.2472 1.2468 1.2601 1.248 1.2473 1.248 1.268

0.3
T .5258 .5262 .51219 .5252 .5257 .5255 . 56492

Tl   .158 X 10 . 1 58 5 X 1 0 .  1596 X 1 0 .0171 . 1 582 X 10 . 16 6 2 X 10 -.320 X 103                3                3                                  3                3                4

0.8
3                3                3                                  3                3                5T   .682 X10 . 6 83 7 X 10 . 6 6 1 5 X 10 .0346 . 6 8 2 1 X 1 0 . 7163 X 10 - . 13 8 5 X 102

T l - . 113 5 X 10 - . 11 1 7 X 10 - . 1982 X 10 .5608 - . 1142 X 10 - . 236 9 X 10 . 5583 X 10
8                8               6                                 8                8               3

1.0
9                9                8                2                9                9               3T           . 43 3 7 X 10 . 43 2 7 X 10 . 1 526 X 10 . 1 766 X 10 . 43 6 4 X 10 . 9018 X 10 - . 6 99 7 X 102

IJ
00
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- approximation, namely, its ability to reduce properly the influence on

the   solution of large negative eigenvalues   of [A(t)], becomes   a  vic e

when the reactor goes supercritical, since then it damps the physically

important effect of the large positive eigenvalue equally well.

Table III-4 also seems to indicate that MOVER-II is a little better

than  MITIM-E' (1,1)i n handling this transient. Before reaching  this

conclusion, however, it is important to note that a comparison of run-

ning  times  on  the  IBM 370 model 155 reveals  that  for this problem

MITIM-E'(1, 1) takes less than half as long per time step as MOVER-II.

Although this is clearly not a conclusive argument, it does indicate

that if one is concerned with comparing accuracy for the same amount

of computational effort, the two approaches are roughly equal in their
.

ability to handle this particular transient.

Again, the results were compared to those of SPATKIN as a check

on the accuracy of the time synthesis approximation and the multimode

approach. Table III-5 compares the magnitude of the flux predicted by

SPATKIN at t=  .3 and  1.0  sec at various mesh points across the slab

to the magnitudes found by using Tl<.3) = 1.247 and T2(.3) = .526 at

t=0.3 seconds, and by using Tl(1.0) = .114 X 108 and T2(1.0) = .436 X

109 att= 1.0 seconds. As in the first problem considered, adequate

accuracy was obtained with the multimode approximation.

Case 3:  A Step Insertion of Reactivity Less than Prompt Critical

The last transient considered for this slab reactor was initiated by

the step insertion of about 2/3 of a dollar of positive reactivity.  This

perturbation was produced by changing Ea in Region III abruptly from



t

Table III-5.

Comparison with 0-Method

Mesh Point #24 Mesh Point #32 Mesh Point #41

*
Time Method Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

0.0

b 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

a 2.094 (. 192) 2.168 (. 92) 2.1 (. 244)

0.3
b 2.090 (0.0) 2.189 (0.0) 2.05 (0.0)

7 7                                   7a    52.43 X 10 (11.5) 6 0.0 5 X 10 (11.5) 48.6 4 X 10 (9.6)

1.0
7                                 7                                   7b          47.0  X 10 (0.0) 5 3.8 4 X 1 0 (0.0) 43.4 7 X 10 (0.0)

*                      SPATKIN-MODAL% error = a = multimode kinetics b = 0-methodSPATKIN                                                                                                0
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0. 194962 to O. 190472 att = 0:

Figure III-3 shows the two trial and weight functions used in equa-

tion (3.1). The amplitude functions Tl(t) and T2(t) are given in

Table III-6 at various times from t=O t o t=1.0 seconds.   As in the

preceding example, Table III-6 presents the predictions from MITIM-                 1

E(2,0), MITIM-E'(1, 1) and MOVER-II for different choices of at. These

results clearly  show the superiority  of E2,0( at [A] ) approximation  in

handling this step reactivity insertion.  Even with At = .5 seconds,

MITIM-E(2,0) provided excellent results.

Finally, the SPATKIN results are presented  at t  =  .5  and  t  =  1.0

in  Table  III- 7, along  with the results produced  from the amplitude  func -

tions Tl(.5) = -.174 and T2(. 5) = 3.796 att = .5 seconds and Tl(1.0) =

-.1999 and T2(1.0) = 4.173 att= 1.0 seconds.   As in the preceding

examples, the multimode approximation produced sufficiently accurate

results  with two trial functions.

3.2 Reactor Number Two - Two-Group Results

The second slab reactor studied here was another 240-cm slab

with the critical parameters given in Table  III-8.     The  size  of the  mesh

spacing was 2.5 cm.

This reactor consists of six precursor groups. The relevant infor-

mation about these groups is given in Table  III-9.

The transient studied for this reactor was a positive ramp, induced

by linearly decreasing E  in Region I by 1% in 1 second. Figures III-4

and III-5 show the trial and weight functions used to synthesize the flux

via equation (3.1).
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Table III-6. Comparison of Amplitude Functions

MOVER II MITIM-E(2,0) MITIM-E'(1, 1)
Time

at=10-3  At=10-2  at= 10-1 , At= .25  At= 10-2  at= 10-1   At=.25  At=...25-  at*10-,2-  at= gro-1'.At=.25

Tl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

0.0

T2 0.0 0.0 0.0 0.0 0*0 0.0 0.0 0.0 0.0 0.0 0.0

Tl    L. 1521 -.1335 .8082 -.1535 -.1447 .0217  -1.191

0.1
T 3.450 3.438 2.387 3.458 3.312 3.289 5.254
2

Tl -.1738 -.1601 .6055 .3006 -.1735 -.1754 -.1753 -.1746 -.1752 -1.098 .8786

0.5
T 3.794 3.777 3.006 2.639 3.796 3.796 3.795 3.783 3.796 4.723 1.773

2

Tl -.1984 -.1848 .4140 .7267 -.1999 -.1999 -.1999 -.1999 -.1999 .6453 .8045

1.0
T 4.171 4.154 4.140 3.217 4.173 4.173 4.172 4.171 4.173 3.329 2.761
2

5

0



Table  III- 7.

Comparison with 0-Method

Mesh Point #24 Mesh  Point #32 Mesh Point #41

*
Time Method Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

0.0

b 1.160 (0.0) 1.157 (0.0) 1.163 (0.0)

a 4.33 (. 697) 4.62 (. 435) 4.19 (. 722)

0.5
b 4.30 (0.0) 4.60 4.16

a 4.75 (. 422) 5.07 (. 59) 4.61 ( . 2 1 7)

1.0

b 4.73 (0.0) 5.04 (0.0) 4.62 (0.0)

*            SPATKIN-MODAL%= a = multimode kinetics b = 0-nnethodSPATKIN
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Table III-8.

Parameters for Criticality

Parameter Region I Region II Region III
(units) (0-40 cm) (40-200 crn) (200-240 crn)

1. 1.5D (cm) 1.5 .1.0

2D (cm) 0.5 0.5 0.5

-1                                     .01677548
v Ef (cm ) .01677548 .0083774

2    -1v E   (cm ) .3355096 .166077252 .3355096
a

El  (cm- 1) .026 .020 .026
a

.

x2 (cm-1) .18 .08 .18
a

-1E (cnn ) .015 .01 . .015
S 2-1

1

Xp
1.0 1.0 1.0

2

Xp

0.0 0.0 0.0

7

Vl (cm/sec) 1.0 X 107 1.OX10 1.0 X 107

5                  5                     5

v2 (cm/sec) 3. 0 X 10 3.0 X 10 3.0 X 10

In the above table, E  is the sum of the macroscopic fission and

- capture cross sections.
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Table III-9.

Delayed Neutron Parameters

Fractional Yield Fractional Yield
DecayD elayed into into                        -1

Group Neutron Group 1 Neutron Group 2 Constant (sec  )

-4                                   -21              2. 5  X 10 0.0 1. 24 X 10

-3 -2
2               1. 69 X 10 0.0 3.05 X 10

-3                          1.11 X 10-13                     1. 47 X 10 0.0

-3                                   -14              2. 96 X 10 0.0 3.01 X 10

-45               8. 60 X 10 Oo O 1.14

-46              3. 20 X 10 0.0 3.01
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Table III-10 then shows the predictions of Tl(t) and T2(t) made by

MITIM-E(2,0) and by MITIM-E'(1,1) during the course of the transient

for different values  of At. Again,   the  E1,1(at [A]) approximation proved

to be better than the E2,0(Zlt lA])  approximation in handling ramp inser-

tions.

The flux shapes found by recombining the trial and amplitude  func -

tions  are then compared in Table  III- 1 1 to those predicted by GAKIN.

These comparisons  are made  at t =  .5  and t  = 1.0 seconds at various

mesh points with the amplitude functions Tl<.5) = 0.342 and T2('5) =

.873 att= .5 seconds and Tl(1.0) = -.1391 and T2(1.0) = 3.187 att =

1.0  seconds. A comparison of these results indicates  that the multi-

mode approximation, fully collapsed with only two trial functions,

yielded quite satisfactory results.

In this chapter, the results of four numerical studies with two slab

reactors have been presented.  The next chapter contains the important

conclusions to be drawn from these results and ends with some recom-

mendations for future work.



1

1

Table  III- 10. Comparison of Amplitude Functions

MITIM-E(2,0) MITIM-E'(1, 1)
Time

at=.0025    at= 10-2    at= 10-1    at=.5  . at=.0025    at= 10-2    At= 10-1    at=.5

Tl 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
0.0

T2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Tl .7933 .8083 .8447 .7927 .7927 .7968
0,2

T .2722 .2523 .2043 .2729 .2729 .26932

Tl .3428 .3479 .4212 .7042 .3421 .3421 .3386 .3328
0.5

T .8724 . 8659 .7961 .3937 .8734 .8734 .8766 .88402

Tl -.4482 -.4401 -.3134 -.4493 -.4493 -.4473
0.8

T 1.929 1.918 1.751 1.930 1.930 1.929
2

Tl -1.374 -1.3773 -1.1743 -.4292 -1.391 -1.391 -1.391 -1.437
1.0 *

T 3.064 3.170 2.902 1.913 3.187 3.187 3.188 3.2542

*
Here, MITIM-E(2,0) apparently predicted T2 with more accuracy using a At of 10- 2 than it did using
At=•0025.  This is thought to be due to the fact that differences are being taken between small numbers
which are being multiplied by At. Thus, if At gets too small, roundoff error becomes a problem.

0
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Table  III- 1 1. Comparison with GAKIN Method

Mesh Point #8 Mesh Point #40 Mesh Point #56 Mesh  Point  #91

Time Method Magnitude (% error)  Magnitude (% error) Magnitude (% error) Magnitude (% error)
(sec)

a 1.8368 (0.0) . 5760 (0.0) .5379 (0.0) 1.628 (0.0)
0.0

b 1.8368 (0.0) .5760 (0.0) .5379 (0.0) 1.628 (0.0)

a 2.597 (4.17) .7121 (1.34) .5846 (1.62) 1.6684 (2.17)
-*   0.5
4           b 2.493 (0.0) . 7027 (0.0) .5753 (0.0) 1.6329 (0.0)g

a 4.629 (3.68) 1.091 (7.0) .7139 (2.3) 1.7919 (. 35)
1.0

b 4.805 (0.0) 1.1732 (0.0) .7287 (0.0) 1.7314 (0.0)

a .1521 (0.0) .07234 (0.0) .06755 (0.0) .1348 (0.0)
0.0

b .1521 (0.0) .07234 (0.0) .06755 (0.0) .1348 (0.0)

'a .2166 (4.5) .08947 (1.4) .0734 (1.52) .1381 (2.14)
N 0.5

b .2072 (0.0) .0882 (0.0) .0723 (0.0) .1352 (0.0)

AI

0           a .3891 (3.1) .1356 (7.9) .0897 (1.97) .14833 (3.43)
1.0

b .4016 (0.0) .1473 (0.0) .0915 (0.0) .1434 (0.0)

*    _ GAKIN-MODAL% error = a = multimode kinetics b = GAKIN methodGAKIN                                                                                                           2
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CHAPTER IV

CONCLUSIONS AND RECOMMENDATIONS

In Chapter III, numerical results were presented for four problems

which were designed to test the efficiency of the E2,0( At [A] )  and

El 1(At[A]) approximations described in Chapter II.   In the following
'

section of the present chapter an attempt is made to present a few con-

clusions gleaned from the numerical results of the previous chapter.

Section 4.2 then recommends several topics worthy of future consider-

ation.

4.1  Conclusions

The first conclusion that one should make from the results of Chap-

ter III is that the E 2,0( At [A] ) and E 1,1( At [A] ) approximations behaved

in such a manner as to justify the theoretical motivation behind their

selection.    For the step reactivity insertions,  the E2 n(at[A]) approx-
'U

imation proved more suited  than  the  E  ,  1(A t [A] )
in effectively damping

out the influence of those large negative eigenvalues  of [A]. (Unfortu-

nately,   this same characteristic  made the approximation grossly under -

estimate the growth of a prompt-critical reactor.)  Also, as expected,

the El, 1(at [A] ) approximation proved superior in describing ramp-

induced transients.

In addition, one may state at least two other conclusions regarding
34

-                                  the successful generalization  of da Nobrega' s  work in point kinetics

to attack the multimode kinetics equations considered by Fuller, Meneley,
-                      39and Hettick. First, it should be noted that in all the problems
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. considered adequate agreement was obtained between the predictions of

the multimodal approximations and an independent method.  More than

this, however, the E2 n(Zlt[A] ) and El 1(At[A] ) approximations seemed
,U

to be at least roughly equal to, and usually better than, the temporal
39

integration approach taken by Fuller, Meneley, and Hetrick. Only in

the second transient considered did the temporal integration approach

appear at first glance to be somewhat better than the other two approach-

es.  In more complicated models, however, the efficiency of the

E2,0(At[A]) and El, 1(zlt[A] ) approximations vis a vis the approach

taken by Fuller, Meneley, and Hetrick may increase since an increase39

in the number of precursors considered will necessitate an increase in

the number of integrals and exponentials taken in the temporal integra-

tion procedure.

Secondly, the success of the new approach investigated stemmed

not only from the characteristics of the Pad6 approximations employed,

but in large  part from the manner in which the E2,0( At [A] )  and

El, 1(at[A]) approximations were applied to the solution of the multi-

mode kinetics equations.  As a consequence of the way in which this

was done, one need only invert a relatively small matrix (at most of

order (G X K)2, where G E number of groups and K E number of trial

functions) to step out from t  to t .  Thus the application produced,P   P+1

in each case, an advancement matrix with the capability of generating

quite cheaply the vector  [*        ] in terms  of the
vector  [*p].-                                   p-1-1

4.2  Recommendations for Future Work

The present work suggests that there are at least two major areas

which require additional consideration. The first is concerned with
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-               the time synthesis approximation itself; the second is concerned with

the use of the E ( at [A] )  approximations of Chapter  II to approximate
P, q

-

accurately the exponential,   exp( At [A] ) of equation  (1.29).

' The first recommendation for future work stems from uncertainties

with the time synthesis approximation. At present, not much has been

published to indicate that there exists a very precise idea ofthe "near-

ness" of the solution space of the synthesized equations to that of the

multigroup diffusion equations.     As a result,   one  is  not  able  to  put  ade-

quate error bounds on the solutions of the synthesized equations.  Thus

there is a constant danger of encountering cases for which the synthesis

approximation gives unexpectedly poor results. It appears, then, that

a theoretically clearer notion is needed of how to select trial functions

such that the resulting solution space contains vectors which accurately

-                                 approximate the solutions  of the multigroup neutron diffusion equations.

The second recommendation for future work is concerned with the

capacity of the Pad6 matrix approximations to approximate accurately

exp( at [A] ).     In this regard, it would be valuable to extend the work of
47 .

Porsching in order to quantify the eigenvalue spectrum of the general

multimode kinetics matrix [A(t)].    If this  were  done, a precise theoret-

ical foundation could be established for specifying the accuracy of the

Pad6 matrix approximations.
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APPENDIX I

'                           Proof of Ie] = [ab-la+b]-1 and [zj = tb-lael = [ba-lb+a]-1

Proof:

Given that

tyl-1 - ta-bi]-1 = tz+ei]

prove that

Le] = [ab-la+b]-1

and that
.

[zi = tb-lael = 1.ba-lb+a]-1.

If

[a-bi]-1    =    t z+e i]

then

[a-bi] [z+eil  =  [I]

and

[az+be+(-bz+ae)i] = [IJ.

This, in turn, implies that

[az] = [I-bel (I. 1)
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and that

[bz] = [ae]. ( I.  2)

Therefore,  one may write

tz] = tb-lael. (I. 3)

Substituting this expression for  [z]  into  (I. 1) yields:

[ab-lae] = [I-bel

which may be rearranged as

[ab-la+b]le.1 = [I].

Thus one may write

Ie] = [ab-la+b]-1

and,    frorn  ( I.  3)

tz] = [a+ba-lb]-1 Q. E.D.
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APPENDIX II

Proof of Identities

Given that

[z] = [b-lael (II. 1)

te] = [b+ab-la]-1
-

(II. 2)

La] =  I - * LA ]-1 [p] + E Atpic 1+Atki)[1'il  (II. 3)
1

[b] =  1 [A]-1 [p] -   atpi[F.]1 (II. 4)
i    1J

prove that

I

[z] I e] - [el [z] -  E   At2pixi[ [el [1*i][z] - [z] t'*i] Ie j l=0    (II. 5)
i=1

and that

i 12le]2 + Czj   +      atzpixi[ tel [Fil [e]+[z][B.][z]] = le] + [z].
1

i= 1

(II. 6)

From (II. 3) and (II. 4) one may write
I

r I,
[a] = -[b] + LI + E At-piki['*i] · ( II,  7)

1
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1     r

1                                Also,   since  [a-b i]-    =  lz+eli-

tz+e.][a-bi] = [Ij = [za+eb+(ea-zb)i]
1

which implie s   that

[z] = [eab-1]. (II. 8)

Next,   substituting  (II. 7)  into  (II. 1) yields

I

[z] = -[e] + [b-le j + I Atzpixi[b]-1 Ifil [el (II. 9)
i

and substituting (II. 7) into (II. 8) yields
S

I

[z] = -[e] + [eb-1] + E Atzp X.[e] [1*il [b]-1. (II. 10)i 1
i

Applying (II. 9) and (II. 10) with I=2 t o equation (II. 5) completes the proof

of the first identity, since this yields

+Ie]2 _ [eb-le] - X At2pixi[eb.-lfie]
i

-Ie]2 + [eb-le] + E At2pixi[el*ib-le]
i

+ E Al:2piAIi[ellie] - E At2pili[ellib-le]
i                           1

-(E atZP.X. 1 (I Atzpili) [el'ib-11*ie]1 1/ \ ·
1                     1

-                        - I at2PiAi[efie] + E At2 piliteb-11*ie]
i                           1

-                                                2 \ / 2\+(I At P.X.liE A t pixi) te'lib-11'Lie]=0.1  1/ \ ·
1                   1
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-

To prove identity (II. 6), one first premultiplies (II. 9) by [b].   Thus

·                                                                                                                 I

-[b] [z] - [b] [e] + Iel| +  E   At2pixilfil [el = 0.
i=1

Substituting  (II. 1) yields

I

[-a-b] [e] + [e] +  E  Atzpixi["il [e] = 0.
i=1

Then,  premultiplying by [e], one obtains:

Ie] [-a-b] [el + Le]2 -  x  atzpixi[Fill [el = 0. ( II.  1 1)
i= 1

:

Also, from equation (II. 8), one may write

le] = [z][b][a]-1 ( II.  1 2)

and, from (II. 1)

Ie] = [a]-1 [b][z]. (II. 13)

Using (II. 12) and (II. 13) one may show that

[z][a][b]-1 = [b]-1 [a][z]. (II. 14)

Substituting (II. 11) into (II. 9) yields

I

-                     -[e ] - [ z ] + [b]-1 [z] [b] [a]- 1 +  E   At zpix i[b ] -1 [Fi-1 [z J [b] [ a- 1 j.
i=1
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Postmultiplying by [a] [b]-1, premultiplying by [e] [aj, and using (II. 14)

then yields

[z][-a-b][z] + [z]2 + x atzp.x.[z] Fi][z]= O. ( II.  1 5)11
i=1

Adding (II. 15) and (II. 11) then reveals that

Iz]2 + [e]2 +  x   atzp.x.[[z]It*il[z]+[e][1*il [e] ]
i=1 11

= [e] [a+b] [e] + [z] [a+b] [z]. (II. 16)

Substituting (II. 13) into the right hand side of (II. 16) and making use of

-                     the fact (proven in Appendix  I) that  [b] [e] = [I-[a] [z] ],  one may finally

show that

[e] [a+b] [e] + [z] [a+b] [z] = [e] + [z].

This completes the proof of the identity given by equation (II. 6).
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=                                                                    .APPENDIX  III

An Example of How [REAL] May Be Structured

Using the Identities (2.34) and (2.35)

The following example is given to show how one might go about using

the identities considered in Appendix II to restructure the matrix [REAL]

of equation (2.33). In performing the calculation two precursor groups

are considered.

With two groups of delayed neutron emitters [REAL] may be written

as
- -

[Rll] [R 12] [R 13]

[REAL]  =         [R 2 1 1 [R22] [R 2 3]          + [L] (III.  1)
y

[R31] [R32] [R33]
-                    -

where the matrix elements  [R. .] are found by expanding the right-hand
1J

side of equation (2.33).

The matrix elements defined by this expansion, however, can be

quite complicated. The procedure discloses, for example, that

2   ..2     2                     2[R111 = [z]  + lei  + at p x  [zi rid.] [z] + at p x  fel [ul] Ie]1  1L  JL 1 1 1.-3 .

+ at2pz"2{z] [Bz] [z] + at2p212[e] [1*2) Ie]

Fortunately, the identities of equations (2.34) and (2.35) may be

used to simplify considerably the derived expressions for the matrices

[Rij].  Thus [R 11] becomes, via the application of (2.35), equal to [e] +

[z].

In a similar way the remaining matrix elements of [REAL] may be
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found by expanding the right-hand  side  of  (2.33)   and then simplified

using (2.34) and (2.35).

If this is done, one finds that

[R 1 1 1 =  [z] +  [e]

[R12] = atPlxl(2+Atkl)[z] + at2pll [e]

[R 1 3 ] = a tP ZA 2 ( 2+A tk z) [z ] + a t2p 21   [e ]

[R21] = at2Plxl[Bl] [e] + atPl(2+Atll)I'*ll [z]

[R22] = at2Plxl(1-4P1-2atPlxl)Ipll[e] (III. 2)

+ at2Plxl(1+2AtPlxl)[1·il][z]
*

[R31] = at2PZAIZI *21 [e] + atP2(2+AtAZ)[1*2) [z]
-

[R321 = at2PlPXX 1((2+Atll)(2+AtAZ)-2)[1*2][z]

+ at2plp2ll(Zjt2X lx2-2)[»2] [e]

and

[R33] = at2PZA2(1-4P2-2atP2121 21 Ie]

+ atZP212(1+2AtP212) 2l[z]

It can be verified by substitution that equations (III. 2) may be written

in the  form o f (2.36).
*

..·
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APPENDIX IV

-

Description of Computer Codes

4.1 Input Specifications for MITIM-E(2,0) and MITIM-E(1, 1)

CARD 1  ( 5D12.5)

HT - Size of time step (sec.)

HX - Mesh spacing (cm.)

BETOT - Sum of effective delayed neutron fractions

TPRINT - Time at which flux is to be reconstructed and printed

TSTOP - Time at which calculation is terminated
.

CARD   2     (l o I 5)

NTF - Number of trial functions

NG - Number of neutron groups

NDG - Number of delayed neutron groups

NMP  - Number  of  me sh points

NR - Number of regions

(NMPR(I), I=l,NR) -Number of mesh points in each region

CARD 3  (4D20. 10)
'.

((VSIGF(J,K), K=l, NR)., J=l,NG) - v If for each group in each

re gion
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-

CARD 4 (4D20.10)

(((SIGSR(J, K, I), I=1, NR), K = 1, NG), J = l, NG) - E for all
SJ-K

groups   in  e ach  re gion

CARD 5 (4D20.10)

((SIGTR(J, K), K= 1, NR), J= 1, NG) - JLT, the total absorption

cross section, for each group in each region

CARD   6     (4D20.  1 0)

((Dl(J, K),K=l, NR), J=1, NG)-D, the diffusion constant, for

each group in each region
'i

CARD  7     (4D20.  1 0)

(BET(I), I= l, NDG) - Pi for each delayed group

CARD 8  (4D20. 10)

(CHIP(I), I= 1, NG) - X  for each neutron group

CARD 9  (4D20. 10)

((CHID(I, JJ, J = 1, NG), 1= 1, NDG) -xd' the fraction of neutrons

produced in each group from decay in each delayed group

CARD 10  (4D20. 10)

(V(I),I=l, NG)-v , the neutron velocity for each groupg

-
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-

CARD  11   (4D20. 10)

(LAM(I), I= 1, NDG) - k i, the decay constant, for each delayed group

Repeat Cards  12  and  13  for each trial fun-ction

Repeat Cards  12  and  13  for each neutron group

CARD 12  (6D12. 5)

(PHI(I, J), J= 1, NMP) - Value of I trial function of each mesh point
th

CARD   1 3     (6 D 1 2.  5)

th
(WPHI(I, J), J = 1, NMP) - Value of I weighting function at each mesh

point

.

CARD 14 (I5, 2D12.5)

ITP - index to perturbation

1 = step insertion

2 = ramp insertion

Templ  - time at which reactivity insertion changes  and new

time zone begins

Temp2 - time oven which ramp insertion is added

CARD 15  (4D20. 10)

((ALPHA(J, K), K= 1, NR), J = 1, NG)) - for ramp insertion,  the

total change in Et for each group in each region (leave blank

if ITP =1)
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CARD 16  (4D20. 10)

((SIGTR(J,K), K= 1, NR), J=l, NG)-for step insertion, the new

values of ET after insertion for each group in each region

(omit  if  ITP = 2)

.

-

:

-
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4,2 Code listings for MITIM-E(2,0) and MITIM-E'(1, 1)

(provided only in first six copies)
4

*

-

1


