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ABSTRACT 

P r e s s u r e drop and vibrat ion c ha ra c t e r i s t i c s were determined 

for an 8-rod fuel element model of the design intended for use 

with u ran ium carbide (UC) in the Hallam Nuclear Power Faci l i ty 

(HNPF). Measu remen t s with water as the tes t fluid were con­

ver ted to equivalent values for sodium, the HNPF coolant, using 

the pr inc ip les of dimensional s imi l i tude . Initially UC elements 

will be included in an HNPF core loading connprised p r imar i l y of 

19-rod U-Mo fuel e l emen t s . In th is core loading the UC fuel e l e ­

ment r e q u i r e s 17.5 l b / s e c of sodium coolant at a core p r e s s u r e 

drop of 11 p s i . The m e a s u r e d fuel element p r e s s u r e drop ranged 

from 0.27 to 5.6 psi over the sodium flow range from 3.5 to 

17.4 l b / s e c . The existing HNPF var iab le orifice can adjust flow 

for th is fuel element over the range from 5.7 to 21 l b / s e c at a 

core p r e s s u r e drop of 11 p s i . No significant vibrat ion of the fuel 

rods w^as induced by the flo-w of w^ater. 
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I. INTRODUCTION 

Measu remen t s of the p r e s s u r e drop a c r o s s an 8-rod UC fuel element w^ere 

requ i red to de te rmine if e lements of th is design would be proper ly cooled when 

included in an HNPF (Hallam Nuclear Power Facil i ty) core loading composed 

p r i m a r i l y of 19-rod fuel e l emen t s . In addition, studies of the vibrat ional cha r ­

ac t e r i s t i c s of the 8-rod UC fuel e lement were n e c e s s a r y to de te rmine if exces ­

sive s t r e s s e s in the fuel rod cladding would resu l t from vibrations induced by 

the flowing coolant. The re fo re , the objectives were to m e a s u r e the coolant 

p r e s s u r e drop and to de te rmine the maximuin amplitude of fuel rod vibrat ions 

under design flow condit ions. Water was used as a t es t fluid; data obtained 

were converted to equivalent values for sodium using the pr inciples of d imen­

sional s imil i tude. 

II. EIGHT-ROD FUEL ELEMENT 

The fuel element which is to uti l ize uranium carbide fuel in the HNPF is 

an 8-rod c lus te r held ver t ica l ly in a p r o c e s s tube (Figure 1). The c lus te r i s 

an assembly of eight s ta in less s teel tubes loaded with enriched uranium carbide 

fuel s lugs , which a r e placed radial ly around a cent ra l corrugated tube. Twelve 

mechanica l space r s placed 18 in. apar t and positioned by the corrugated tube 

re ta in the fuel cladding tubes in a c i r cu la r a r r a y . There is a t h e r m a l bond of 

sodium in the annular gap betw^een the fuel and cladding. Fuel rods t e rmina te 

in a guide cast ing at the bottom and a hanger casting at the top. The hanger 

fixture at taches to the p r o c e s s tube and to the var iable orifice assembly which 

is located above the fuel e lement . 

Fuel element dimensions per t inent to hydraul ic and vibrat ional c h a r a c t e r ­

i s t i c s a r e : 

a) Overa l l fuel-element length — 18 ft 5-3/8 in. -

b) F u e l - r o d length — 15 ft 4 in. 

c) Cladding OD — 0.952 in. 

d) Cladding ID — 0.932 in. 

e) Fue l slug d iameter — 0.892 in. 
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f) Fue l slug length — 2 to 6 in. 

g) P r o c e s s - t u b e OD — 4.200 in. 
2 

h) Flo^v a r e a (not including spacers ) — 6.49 in. 

i) Corruga ted tube major d iamete r — 1-5/8 in. 

j) Corruga ted tube minor d i ame te r — 1-7/16 in. 

An exper imenta l fuel e lement model w^as fabricated to the above dimensions 

and suspended ver t ica l ly in a t es t section in the hydraul ic loop. F o r the model , 

ke rosene -was ut i l ized as a bond and lead slugs w^ere substi tuted for UC. 
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III. TEST APPARATUS 

A. TEST LOOP 

The appara tus used to make the p r e s s u r e - d r o p m e a s u r e m e n t s (shown 

schemat ical ly in F igure 2) is compr i sed of two, pa ra l l e l , pipe loops attached 

to a pump capable of circulat ing 700 gpm of water with 200 ft total differential 

head. Valves in the sys tem pe rmi t individual operat ion of the two pa ra l l e l 

loops, each of which contains a flo-wmetering section and a 24-ft ve r t i ca l s e c ­

tion for p lacement of an exper imenta l fuel e lement . An 18-kw i m m e r s i o n 

hea te r ins ta l led in the in- l ine w a t e r - s t o r a g e tank provides the n e c e s s a r y heat 

for the sys t em. Mate r i a l s of const ruct ion include p las t i c -coa ted carbon s teel 

for the piping and tank, b ronze for all va lves , and 410 s ta in less s teel for the 

centrifugal pump. 

B. INSTRUMENTATION 

To de te rmine flo-w r a t e s in the t e s t sect ion, p r e s s u r e drops w e r e m e a s ­

ured a c r o s s an ASME sharp-edged orifice plate -with m a n o m e t e r s connected to 

taps in the or i f ice-pla te f langes . Orifice p r e s s u r e drops -were m e a s u r e d -with 

ei ther m e r c u r y of a 2.95 sp gr fluid in a U-tube manomete r or -with 2.95 sp gr 

fluid in an inclined m a n o m e t e r . The flo-wmeter had been previously ca l ibra ted 

against a ca l ibra ted orifice m e t e r and found to be accura te -within 1%. 

Fue l - e l emen t p r e s s u r e drops were obtained by the use of U-tube m a n o m e ­

t e r s which indicated the differential p r e s s u r e s between p iezometer r ings a t ­

tached to the p r o c e s s tube mockup. Indicating fluids used -were m e r c u r y , 

2.95 sp gr fluid, and carbon t e t r a c h l o r i d e , depending upon the magnitude of 

the p r e s s u r e drops being m e a s u r e d . 

Fue l rod vibra t ions were de te rmined by the use of 16 s t ra in gages (Budd 

Meta l -F i lm Gages) cemented to the ex te r io r length of four fuel rods (Figure 1). 

Gage locat ions were selected at points of possible maximvum rod deflection. 

All gages w e r e or iented in a d i rec t ion pa ra l l e l to the cixis of the fuel rods ; two 

gages were used at each station and the gages were posit ioned at locations 

separa ted by a 90° a r c . Lead -wires from the gages were run ver t ica l ly do-wn 

the rods and out of the fuel-channel ent rance tube through a sea l . Each gage 

*Meriann No. 3 Fluid, manufactured by the Meriajn Ins t rument Co. , Cleveland, 
Ohio. 
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Figure 2. Flow Diagram of HNPF Hydraulic Loop 
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had seven coats of waterproofing; the lead -wires, two coa ts . The gages were 

connected through individual br idge balances to a c a r r i e r amplifier and readout 

of the sys tem -was per formed -with an osc i l lograph. An osci l loscope connected 

in parallel-with the osci l lograph pe rmi ted immedia te -visual monitor ing of the 

s t ra in signal during the t e s t . 

A c i r c u l a r - s c a l e t e m p e r a t u r e indicator uti l izing a dc potent iometer c i rcui t 

ca l ibra ted for an i ron-cons tan tan thermocouple in the 0 to 300°F range was used 

to indicate sys tem t e m p e r a t u r e s . The indicator accuracy was ±1/4%. I ron-

constantan thermocouples were at tached to the loop piping and supply tank wal l . 

Thermocouples on loop piping m e a s u r e d the water t e m p e r a t u r e at the ent rance 

and exit of the t e s t sect ion. 

Bourdon gages w^ere instal led in the pump suction, pump d i scha rge , and in 

the t e s t - s e c t i o n exit region for indication of the t es t - loop p r e s s u r e s . These 

gages were only used to moni tor the fluid p r e s s u r e in the t e s t loop; readings 

-were not used in any ca lcula t ions . 
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IV. PROCEDURES 

A. T E S T P R O C E D U R E 

P r i n c i p l e s of d i m e n s i o n a l s i m i l i t u d e w e r e u t i l i z e d to p e r m i t d e t e r m i n a t i o n 

of the s o d i u m s y s t e m p r e s s u r e d r o p s fronn m e a s u r e m e n t s ob ta ined in a -water 

s y s t e m . The d y n a m i c s i m i l a r i t y r e q u i r e m e n t s which a s s u r e s i m i l a r i t y of flow 

p r o c e s s e s for the two s y s t e m s w h e r e i n c o m p r e s s i b l e f lu ids a r e c o n s i d e r e d and 

s u r f a c e t e n s i o n and g r a v i t y f o r c e s c a n be n e g l e c t e d , a r e g e o m e t r i c a l s i m i l a r i t y 

and R e y n o l d s n u m b e r s i m i l a r i t y . T h e s e r e q u i r e m e n t s w e r e m e t e x p e r i m e n t a l l y 

by e m p l o y i n g a f u l l - s c a l e m o d e l of the fuel e l e m e n t to p r o v i d e g e o m e t r i c s i m i ­

l a r i t y and by ad jus t ing the w a t e r t e m p e r a t u r e and v e l o c i t y to p r o v i d e R e y n o l d s 

n u m b e r s i m i l a r i t y to the s o d i u m s y s t e m . 

The e x a c t n a t u r e of h y d r a u l i c a l l y induced v i b r a t i o n s in p a r a l l e l r o d s u n d e r 

p a r a l l e l fluid flow i s not w e l l known. In add i t ion , the d e t e r m i n a t i o n of v i b r a ­

t i o n a l c h a r a c t e r i s t i c s of p a r a l l e l r o d s in s o d i u m s y s t e m s f r o m m e a s u r e m e n t s 

ob t a ined in a w a t e r s y s t e m h a s not b e e n s a t i s f a c t o r i l y d e s c r i b e d . It w a s ccyn-

s i d e r e d suf f ic ien t , for the p u r p o s e of t h i s w o r k , to a c c e p t the s i m i l i t u d e c o n ­

c e p t s e m p l o y e d for p r e s s u r e - d r o p flow t e s t p r o c e d u r e a s a p p l i c a b l e to the 

v i b r a t i o n - t e s t p r o c e d u r e , s i n c e e x p e r i m e n t a l fluid v e l o c i t i e s and d e n s i t y e x ­

c e e d e d t h o s e for s o d i u m , at equa l R e y n o l d ' s n u m b e r s . F o r v i b r a t i o n s t u d i e s , 

it i s i m p o r t a n t t ha t , in add i t ion to the u s e of a f u l l - s c a l e m o d e l of the fuel e l e ­

m e n t , the m o d e l sha l l a l s o be c o n s t r u c t e d of m a t e r i a l s wi th d e n s i t y a n d p h y s i c a l 

p r o p e r t i e s s i m i l a r to t h o s e to be u s e d in the a c t u a l e l e m e n t . The m o d e l fuel 

e l e m e n t u s e d in t h e s e t e s t s w a s c o n s t r u c t e d f r o m the m a t e r i a l s spec i f i ed in the 

fuel e l e m e n t d e s i g n , wi th the e x c e p t i o n of subs t i t u t i on of k e r o s e n e for the sod ium 

bond and l e a d fuel s l ugs r a t h a n than UC. The effect of t h e s e d i f f e r e n c e s on fuel 

rod v i b r a t i o n is d i s c u s s e d in a l a t e r s e c t i o n . 

W a t e r w^as h e a t e d to 1 7 0 ° F to a p p r o a c h the k i n e m a t i c v i s c o s i t y of s o d i u m 

u n d e r a v e r a g e c o r e - t e m p e r a t u r e cond i t i ons (776° F) and then w a s c i r c u l a t e d 

t h r o u g h the t e s t loop. The w a t e r w a s h e a t e d to al low s i m u l a t i o n of r e a c t o r 

R e y n o l d s n u m b e r s wi th l o w e r -water-f low r a t e s than would be r e q u i r e d if co ld 

w a t e r w e r e u s e d . W a t e r - f l o w r a t e s w e r e t hen v a r i e d to p r o v i d e the r a n g e in 

R e y n o l d s n u m b e r s equa l to t ha t found in the r e a c t o r at d i f ferent power l e v e l s . 

M e a s u r e m e n t s w e r e t a k e n of a m b i e n t t e m p e r a t u r e , w a t e r - t e m p e r a t u r e , the 

N A A - S R - 7 4 7 5 
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p r e s s u r e d r o p s a c r o s s the o r i f i c e f l o w m e t e r and the fuel e l e m e n t , and t h e r e ­

s p o n s e s of the s t r a i n g a g e s on the fuel e l e m e n t r o d s . S y s t e m p r e s s u r e w a s 

m a i n t a i n e d at a l e v e l h igh enough to p r e v e n t c a v i t a t i o n in the t e s t s e c t i o n by 

a d j u s t m e n t of a c o n t r o l va lve p o s i t i o n e d d o w n s t r e a m of the fuel e l e m e n t . F o u r 

s e p a r a t e t e s t r u n s w e r e m a d e o v e r t h e c o m p l e t e f l o w r a t e r a n g e to d e t e r m i n e 

the p r e c i s i o n of the p r e s s u r e d r o p m e a s u r e m e n t s . 

F u e l - e l e m e n t p r e s s u r e - d r o p m e a s u r e m e n t s w e r e t a k e n a c r o s s the e n t r a n c e 

and exi t of the fuel e l e m e n t a s s e m b l y and a c r o s s fuel rod s p a c e r s at l o c a t i o n s 

no ted on F i g u r e 1. 

O s c i l l o s c o p e s u r v e y and o s c i l l o g r a p h r e c o r d s w e r e t a k e n for a l l s t r a i n 

g a g e s at v a r i o u s flow^rates to d e t e r m i n e d y n a m i c v i b r a t i o n c h a r a c t e r i s t i c s . In 

add i t ion , t e s t s w e r e p e r f o r m e d to d e t e r m i n e the n a t u r a l v i b r a t i o n f r e q u e n c y of 

the fuel r o d s . To induce v i b r a t i o n of the fuel r o d s , the fuel rod h a n g e r and 

s p a c e r w e r e s t r u c k -with a r u b b e r h a m m e r V i b r a t i o n s w e r e r e c o r d e d a s o s c i l ­

l o g r a p h t r a c e s of the s t r a i n gage r e s p o n s e s . T h e s e t e s t s to d e t e r m i n e the 

n a t u r a l f r e q u e n c y of the fuel r o d s w e r e p e r f o r m e d both -with and wi thout w a t e r 

i n s i d e the p r o c e s s t u b e . 

B. M E T H O D O F C A L C U L A T I O N 

E x p e r i m e n t a l d a t a ob ta ined wi th w a t e r a s the t e s t f luid w e r e c o n v e r t e d to 

e q u i v a l e n t v a l u e s fo r s o d i u m us ing t h e p r i n c i p l e s of d i m e n s i o n a l s i m i l i t u d e . 

G e o m e t r i c s i m i l a r i t y w a s ob ta ined by u s e of a full s c a l e m o d e l . D y n a m i c s i m i ­

l a r i t y w a s t h e r e f o r e o b t a i n e d by t e s t i n g at R e y n o l d s n u m b e r s in the w a t e r s y s ­

t e m equa l to t h o s e d e v e l o p e d in the s o d i u m s y s t e m . Da ta ob ta ined in t h e s e t e s t s 

w e r e c o n v e r t e d to e q u i v a l e n t v a l u e s fo r s o d i u m by c a l c u l a t i n g A P , T and W, . 
^ y ^ Na Na a s 

fo l lows : 

^^ P^Na 
^ Na , 2 , ^ H. ,0 ' 

(V p ) j^^o 2 

a n d 

^ N a W =—^-^^ W 
Na u H ^ O H^O , 

N A A - S R - 7 4 7 5 
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w^here, 

V = kinematic v iscos i ty 

U - dynamic v iscos i ty 

p - density 

A P = p r e s s u r e drop 

W = flowrate. 

These re la t ionships obtain for equal Reynold 's numbers and a re derived 

e l sewhere ' . 
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V. RESULTS AND DISCUSSION 

A. PRESSURE LOSS 

P r e s s u r e drop m e a s u r e m e n t s were per formed pr io r to application of the 

s t ra in gages and lead w i r e s at flow ra tes equivalent to the reac tor coolant re 

qui rements f rom 20 to 150% of full power. P r e s s u r e l o s ses a re tabulated in 

Table I and p resen ted graphical ly in F igure 3. 

TABLE I 

PRESSURE LOSSES FOR THE HNPF 8-ROD 
UC FUEL ELEMENT 

Reactor Power Level 
(%) 

20 100 

Sodium flow ra te ( lb /sec) 

Overal l p r e s s u r e loss 

Entrance loss (psi) 

Exit loss (psi) 

Spacer loss (psi) 

(psi) 

3.5 

0.27 

0.007 

0.01 

0.0045 

17.4 

5.6 

0.11 

0.21 

0.095 

20-3 3 4 5 6 7 8 9 10-2 2 3 4 5 6 7 8 9 lO"' 2 3 

PRESSURE DROP (lb/sec) 

Figure 3. P r e s s u r e Drop vs Flow Rate for 
8-Rod UC Fuel Element 
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1. Fuel Bundle F r i c t ion Fac to r 

The Darcy friction factor is defined by the equation 

- - ( ^ ) - ' • 

w îth 

f = friction factor , d imensionless 

A P = p r e s s u r e drop, lb/ft 

e. = length, ft 

D = hydraulic d i ame te r , ft 

p = densi ty, lb/ft 

V - velocity, f t / s ec 
2 

g = gravi ta t ional accelera t ion , f t / sec 

F r i c t ion factors for the fuel rod bundle were calculated using p r e s s u r e 

drops measu red between taps 5 and 6 as shown on F igure 1 and are tabulated 

below. 

TABLE II 

8-ROD F U E L BUNDLE FRICTION FACTORS 

Sodium Flow Rate 
( lb/sec) 

3.5 

7.0 

10.5 

14.0 

17.4 

Reynolds 
Number 

30,000 

60,000 

90,000 

120,000 

150,000 

Fr ic t ion 
Fac tor 

0.042 

0.040 

0.038 

0.037 

0.036 

Smooth Tube 
Fr ic t ion Factor 

0.023 

0.020 

0.018 

0.017 

0.016 

The D used to calculate friction factor was based on the flow a rea and wetted 

pe r ime te r at the major d i ame te r of the cor rugated tube. 
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2. Spacer Loss 

The spacer loss was determined from measu remen t s between taps 3 and 

4 on F igure 1. The loss chargeable to the spacer is equal to the measu red loss 

from H to I minus the p r e s s u r e drop -which would occur had the re been no spacer 

between these taps . The spacer p r e s s u r e drop curve on F igure 3 was de t e r ­

mined in this -way. 

3. Entrance and Exit Losses Coefficients 

Loss coefficients -were de termined for the entrance and exit fittings on 

the fuel element. These losses (in t e r m s of velocity head) a r e plotted in F ig ­

ure 4. These coefficients do not agree well with published coefficients for equal 

flow a r ea ra t ios due to the complex geomet r ica l configuration. They a re in ap-
1 2 proximate agreement with r e su l t s f rom t e s t s on other HNPF fuel e lements ' . 

30 5 6 7 8 9 10^ 1.5 

REYNOLD'S NUMBER 
2.5 

Figure 4. Fuel Element Inlet and Exit 
P r e s s u r e Loss Coefficients 

B. VIBRATION 

1. Natural F requenc ies of Fuel Rods 

Calculated and exper imenta l ly determined natura l f requencies of the fuel 

rods a r e p resen ted in Table III. Exper imenta l values were computed from 

osci l lographic t r a c e s of s t ra in gage output. The natura l frequency of a rod is 

a function of i t s geometry , end condition, m a s s , and modulus of e las t ic i ty and 

may be calculated from 

00 = a n 
or 

NAA-SR-747 5 
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with 

CO - na tura l frequency, sec 
n 

a = numer ica l constant dependent on end conditions (in this case 1.0) n 
2 

E = modulus of elast ic i ty , lb / in . 
4 

I - moment of iner t ia about neu t ra l axis , in. 
2 2 

m = m a s s per unit length, lb / in . - s e c 

L = length between s p a c e r s , in. (in this case 18 in. ). 

TABLE III 

NATURAL FREQUENCY OF FUEL RODS 

Expe r imenta l 
(cps) 

Calculated 
(cps) 

Air 

Water 

30.5 

The model fuel rods -were loaded with lead slugs and kerosene was sub­

sti tuted for the sodium bond. Use of ke rosene would have vir tual ly no effect on 

the fundamental mode of cladding vibrat ion because there is l i t t le difference in 

density between sodium and ke rosene . F u r t h e r m o r e the bond fluid contr ibutes 

only a negligible fract ion of fuel rod m a s s as far as vibration is concerned. The 

m a s s per unit length is predominant ly de termined by the fuel slugs. The use of 

lead (density = 11.3) slugs instead of UC (density 13.6) in the model fuel element 

would theore t ica l ly inc rease the natura l frequency by 10%. 

2. Vibration of fuel Rods Under Coolant Flow 

The coolant flow pa t t e rns in the 8-rod UC fuel element were observed by 

dye injection into the flowing -water s t r eam. Dye injected near the inner surface 

of the fuel rods diffused to the outside surface in a random fashion within 18 in. 

of injection point under all flow^ conditions. While such fluid mixing is not r e ­

quired for cooling pu rposes , it does exist and therefore produces forces on the 

fuel rods in a rad ia l di rect ion. A res tor ing force is produced in deflected fuel 

rods due to the cladding elast ici ty. In addition, a damping force res is t ing rod 

motion is developed by the v iscos i ty and m a s s of the coolant. 
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The vibrat ion pa t te rn in any s t ruc tu re normal ly begins with the funda­

mental mode because this r equ i r e s the minimum energy input. Increasing in­

put force i n c r e a s e s the ampli tude of v ibra t ion in the fundamental mode until the 

point is reached where the second mode r equ i r e s l e s s input energy. At this 

point, the mode shifts from fundamental to second mode. 

3 Prev ious studies of fuel rod vibra t ion predic t such low ampli tudes of 

vibrat ion that c r i t i ca l amplitude for t rans i t ion f rom fundamental to second mode 

vibrat ion would not be expected to occur . The fuel rods -were therefore ins t ru ­

mented for studies of the fundamental mode. Very sensi t ive (<10 ^in. / in . ) 

s t ra in gage readout c i r cu i t ry was employed (with Budd Metal F i l m Gages) for 

the vibra t ion t e s t s . No d iscern ib le s t r a ins were detected in the fuel rod clad­

ding at -water flow r a t e s up to 40 l b / s e c . F o r a s t ra in of 10 /iin. / in . , the fuel 

rod cladding would deflect 0.0005 in. at the center of the 18-in. span between 

s p a c e r s . The fuel element design p e r m i t s a fuel rod to deflect about 1/8 in. 

Therefore , no geomet r ica l r e s t r a in t impeded the motion. Since no s t ra ins 

w^ere observed, it is concluded that hydraul ical ly induced vibra t ion will not 

cause damage to the fuel rods . 

C. APPLICATION OF VARIABLE ORIFICE TO 8-ROD UC F U E L ELEMENT 

The HNPF reac to r core is equipped with manually var iab le or i f ices to con­

t ro l the individual coolant channel flow r a t e s . These orif ices pe rmi t adjustment 

of channel flo^v during operat ion to provide equal exit t e m p e r a t u r e s from all 

channels . The initial core loading at the HNPF is of 18-rod fuel c l u s t e r s . With 

this core loading, the total core p r e s s u r e drop (fuel e lement plus var iab le o r i ­

fice assembly) is 11 ps i at full power operat ion. A number of 8-rod UC fuel 

e lements will be inse r ted in the predominant ly 18-rod co re at some future date. 

The predic ted coolant flow requ i rement for the 8-rod e lements in that core load­

ing is 17.4 l b / s e c at full power operat ion. The existing var iab le or if ices must 

be capable of adjusting the flow^ ra te to this value. To de te rmine the flow con­

t ro l capability of the var iab le orifice at tached to the 8-rod element , the m e a s ­

ured fuel element p r e s s u r e drop was added to the var iable orifice p r e s s u r e 
4 

drop which was de termined previously . These data a r e plotted on F igure 5 for 

different var iab le orifice posi t ions from fully inser ted to fully -withdrawn. F i g ­

ure 6 is a c r o s s plot of F igu re 5 and sho-ws flow ra te vs var iab le orifice position 

at a core r ^-rsure drop of 11 psi . The range of flow control is from 5.7 to 
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1.0 2 3 4 5 6 7 8 9 10 

PRESSURE DROP (psi) 

Figu re 5. Flow Rate vs P r e s s u r e Drop for 
8-Rod Fue l Element plus Variable 

Orifice Assembly 

21 l b / s e c -which is m o r e than adequate for use with the 8-rod fuel element in a 

predominatnly 18-rod core loading. 

A m e a s u r e of the var iab le orifice effectiveness as a flow control device is 
5 

the so-ca l l ed "sens i t iv i ty ." Sensitivity r e fe r s to the change in coolant outlet 

t e m p e r a t u r e -which re su l t s f rom an adjustment in var iable orifice position. The 

HNPF var iab le orifice r equ i r e s a total of 256 adjustments to span the 4 in. of 

orif ice t r ave l . F igu re 7 shows the orif ice sensit ivity as a function of orifice 

posit ion. It may be noted that the sensi t ivi ty is l e s s than 2 - l / 2 ° F per adjust­

ment inc rement over the ent i re range of orifice t rave l . Therefore no damage 

can resu l t to the e lements or core s t ruc tu re due to an individual adjustment. 
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Figure 6. Flow Rate vs Variable Orifice Plug 
Posit ion 8-Rod UC Fuel Element 
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Figure 7. Tempera tu re Sensitivity 
vs Orifice Posi t ion 
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VI. SUMMARY 

Hydraulic c h a r a c t e r i s t i c s of an 8-rod UC fuel element were studied using 

-water as a t e s t fluid to s imulate sodium, the coolant in the reac to r . A full size 

model was employed and the pr inciples of dimensional simili tude were used to 

convert water t es t data to equivalent values for sodium. 

P r e s s u r e drop m e a s u r e m e n t s on the fuel bundle yielded values from 0.27 to 

5.6 ps i over the flo-w range f rom 3.5 to 17.4 l b / s e c which cor responds to a power 

level range of 20% to full power. The total p r e s s u r e drop of the 8-rod bundle-

var iab le orif ice assembly -was de termined by adding the previously determined 

orifice p r e s s u r e drop to the m e a s u r e d fuel bundle drop. The range of orifice 

flow control was de termined for a core p r e s s u r e drop of 11 psi which c o r r e ­

sponds to the drop a c r o s s the HNPF core composed p r imar i l y of 19-rod e le ­

ments . This range of 5.7 to 21 l b / s e c is more than adequate to provide cooling 

for the fuel e lement . The t e m p e r a t u r e sensit ivity of the var iab le orifice attached 

to an 8-rod element -was de termined to be l e s s than 2 - l / 2 ° F per adjustment 

increment . 

No significant v ibra t ions were observed in the fuel rods during dynamic 

-water t e s t s . There fore , no significant s t r e s s e s should occur in the cladding 

due to hydraul ical ly induced vibra t ions . 
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