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INTRODUCTION

During the last few years, there has been an increased ellort to devise robust transport
differencings for unstructurcd meshes, specifically arbitrarily connected grids of polygons.
Adams'®? has investigaled unstructured mesh discrelization techniques for the cven- and
odd-parity forms of the transport cquation, and for the more traditional [rst-order form.
Conversely, developrent of unstructured mesh diffusion methods has been lacking. While
Morel?, Kershaw®, Shestakov® and others have done a great deal of work on diffusion schemes
for logically-rectangular grids, to our knowledge there has been no work on discretizations
of the diffusion equation on unstructured rmeshes of polygons.

In this paper, we introduce a point-centered diffusion differencing for two-dimensional
unstructured meshes. We have designed the method Lo have the following attractive prop-
arties: 1} the scheme is cquivalent o the standard five-point point-centered scheme on an
orthogonal mesh; 2) the method preserves the homogencous lincar solution; 3) the method
gives second-order aceuracy; 1) we have strict conservation within the control volume sur-
rounding cach point; and 3) the numerical solution converges to the exact result as the mesh
is retined, regardless of the smoothness of the mesh. A potential disadvantaye of the method

is that the diffusion matrix is asvonnetnie. in general.
DERIVATION OF 'THE MIETHOD

We hegin with the time-independent one-group diflusion cquation, wiitten as two first

arder eqnations,
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Figure 1: A Portion of an Unstructured Mesh.

corners surronnding the specified point. After performing this integration, we obtain

S Ay devis + A decvp + [ SVt ] 6= Y1 Qe (3)
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Referring again to Figure 2, V. is the volume of corner ¢, Ac_i72 and A4y, are the areas ol
the edges ¢ 3 1/2 and o - 1/2 multiplied by their respective unit ontward normal vectors,
@, 15 the average Tix i the control volume associated with point p, and the notation c € p
refers o all the corners ¢ which surronrnd the point p.

The next step in onr derivation is the elimination of the eduee currents oy m and Jeoy 0.
We do this by defining thenn in terms ol point-centered (hixes @, and fhixes ot the zone-centers
@, TFocusing now on the first term in T (3. we ean write
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Figure 2: A Corner and its Bounding Surfaces.

Simple linear interpolations and extrapolations allow us Lo write,

On
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[§ we substitute Bgs. (7§ and (8] inta Fgs, (3) and (6], we (ind that we can obtmmn a formuda
for ¢, of the form
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Figure 3: The gradient calewlation for Acyype - Jogise.
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We ean now go through the same steps 1o obtam a fornmbi fon e e e The fingd
result, refernng o Figure 4 s
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Figure 4: The gradient caleulation for A_yps - Jeoiga.
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We define the weights w, Lo be inverse length weights,

1

(18)

Wy, = P
where sy—. is the distance frorn the point p Lo the zone-center 2. This allows us to eliminate
the cell center flux in terms of the point fluxes. Morel’s* cell-center method, which has
many of the same aLtractive characteristics as onr method, is forced to retain two kinds of
unknowns {cell-conter and ecll-edge (uxas), while we have anly ane kind (point fuxes).

This cornpletely defines our unstructured diffusion method, aside from boundary con-
ditions. In gencral, cach point is connected to every point associated with the zones sur-
rounding that poiut. On an orthogonal rmcsh, Lhe conneetivity reduces Lo the standard
point-centered ive-point stencil.

NUMFERICAL RESULTS

In this seclion, we present Lhe resnlis of a fow Lest problems designed to demonstrate that
our method preserves the lincar solution and is second-order accurate. First we consider Lhe
following test problem in a unit evlinder,
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whoere we have chozen 12 1o be Co0 \We salve this prablem o four different meshes: 1)
S02) the all-tnangle nesh shown s Figore 6, 3)
awe 7, and (4) Shestakov's parabolic mesh, shown in
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“z-mesh”™.
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Figure 7: Shestakov's random mesh.
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Figure 9: Contawrs of the solution to Kershaw’s “z-mesh” problem.

A second test problem, designied to illnstrate that this method is second-order accurate,
involves the solution of the following dillusion problamn:
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where we Lave chasen £ 10 be 20 The exaet solintion o this problem s quartic in the 2
coordmate.
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Figure 10: A 40 x 40 random maesh.
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CONCLUSIONS

We have been successful in deriving and implementing a diffusion discretization for un-
structured meshes in 2-D which has many attractive properties. However there are two issues
which must be considered and quantified: 1) the overhead involved in calculating the matrix
on an unstructured mesh, and 2} the expense in the iterative solution ol the asymmetric
matrix. There is no question that navigating on an unstructured mesh costs more than on
an orthogoral mesh (cither in storage or CIPU time). Also, depending on the structure of
our diflusion matrix, its solution can take significantly longer to obLain. These concerns are
being addressed, but are nol resolved at this time.
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