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Differencing the Diffusion Equat ion o n Unstructured M e s h e s in 2-D 

Todd S. Palmer 
Lawrence Livermore National Laboratory 

Livcrmorc, California 94550 

INTRODUCTION 

During tlic last few years, there has been an increased effort to devise robust t ransport 
differencings for unstructured mcslies, specifically arbitrarily connected grids of polygons. 
Adams 1 , 2 , 3 has investigated unstructured mesh discretization techniques for the even- and 
odd-parity forms of the transport equation, and for the more traditional first-order form. 
Conversely, development of unstructured rncsh diffusion methods lias been lacking. While 
Morel 4, Kershaw 5 , Slicslakov" and others have done a great deal of work on diffusion schemes 
for logically-rectangular grids, to our knowledge there has been no work on discretizations 
of the diffusion equation on unstructured rneshes of polygons. 

In this paper, we introduce a point-centered diffusion differencing for two-dimensional 
unstructured meshes. We have designed the method to have the following attractive prop­
erties: !} the scheme is equivalent to the standard live-point point-centered scheme on an 
orthogonal mesh; 2) the method preserves the homogeneous linear solution; 3) the method 
gives second-onicr accuracy; -1) we have si rid conservation within the control volume sur­
rounding each point: and a) the numerical solution converges to the exact result as the mesh 
i> refined, regardless of I lie smoothness of the mesh. A potential disadvantage of the method 
is lli.il ilie diffusion maiiix is asytnmet ric. in general. 
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We begin with tin 1 lime-independent one-group diffusion equation, wi i i ien as two firsl 
order equal ions. 
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Figure 1: A Portion of an Unstructured Mesh. 

corners surrounding the specified point. After performing tliis integration, we obtain 
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Referring again l o Figure 2, Vr is the vo lnn i i : o f .corner c. .^ r - i /2 and /l r+i./2 are the areas of 
I In- edge-, r • )/> ;irid r 1/2 mu l t i p l i ed hy the i r respective nni l mi l ward norma] vectors. 
0J: is Lin1 average Mux in l l i r cont ro l vo] in i ]e associated w i th point j>. am] the nota t ion c G p 
refers l<> all t l ie corners r which su r round t l ie point, p. 
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Figure 2: A Corner and its Bounding Surfaces. 

Simple linear interpolations and extrapolations allow ns to write, 
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If we substitute K<|s. (7) ami (S) inlii I'.qs. (;">) an.I ((i), we (itul iliai. w can olilam a formula 
for t)>i of l.tie form 
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Figure -1: Tin: gradient calculation for A-1/2 • •4-1/3-
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We define the weights wr to be inverse length weights, 

wp = , (IS) 

where s p _ i is the distance from the point p to the zone-center z. This allows us to eliminate 
the cell center (lux in terms or the point (luxes. Morel's" cell-center method, which has 
many of the same attractive characteristics as our method, is forced to retain two kinds of 
unknowns (cell-center and cell-edge (luxes), while we have only one kind (point (luxes). 

This completely defines our unstructured diffusion method, aside from boundary con­
ditions. In general, each point is connected to every point associated with the zones sur­
rounding that point. On an orthogonal mesh, the connectivity reduces to the standard 
point-centered (ive-poinl. stencil. 

NUMERICAL RESULTS 

In this section, we presrnl the results of a few lest problems designed to demonstrate tha t 
our method preserves the linear solution and is second-order accurate. First we consider the 
following test problem in a unit cylinder. 
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Figure .r>: Kershaw's "z-incsh''. 
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Figure /: Sln.'Slakov's random in<:sh. 
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Figure 9: Contours of the solution to Kershaw's "/.-mesh" problem. 

A seeoml test problem. designed lo illustrate that lliis method is second-order accurate, 
involves llie solution of the following dillusion problem: 

() 86 _, 
' Yl: Yh 

o{i. I * 21)) - L 

,;••: ID) -• 0 . 
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where we have chosen I) lo he ~iV The ex.iei solution to lliis problem is quarlic in the z 
coordinale. 
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Finnic 10: A 10 x 10 random rrinsh. 
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CONCLUSIONS 

We have been successful in deriving and implementing a diffusion discretization for un­
structured meshes in 2-D which has many attractive properties. However there are two issues 
which must be considered and quantified: 1) the overhead involved in calculating the matrix 
on an unstructured mesh, and 2) the expense in the iterative solution of the asymmetric 
matrix. There is no question that navigating on an unstructured mesh costs more than on 
an orthogonal mesh (cither in storage or CPU time). Also, depending on the structure or 
our dilhision matrix, its solution can lake significantly longer to obtain. These concerns are 
being addressed, but are not resolved at this t ime. 
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