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EFFECT OF MASSIVE NEUTRON EXPOSURE ON THE DISTORTION OF REACTOR GRAPHETE+

J. Wo Helm and J. M. Davidson
Hanford Laboratories, General Electric Company, Richland, Washington

ABSTRACT

Distortion of reactor-grade graphites was studied at varying neubtron
exposurss ranging up to 1k x 1021 neutrons pexr cm? (nvt)* at temperatures
of irradistion ranging from 425 to 800° C. This exposuré level corresponds
To approximately 100,000 megawatt days per adjacent tom of fuel (Mwd/At) in
a graphite-moderated reactor. A conventional-coke graphite, C8F, and two
needle-coke graphites, NC=7 and NC=8, were studied. At all temperatures of
irradiation the contraction rate of the samples cut parallel to the extrusion
axis increased with increasing neutron exposure. For parallel samples the
needle-coke graphites and the C8F graphite contract approximately the same
amount. In the transverse direction the rate of contraction at the higher
irradistion temperstures appears to be decreasing. Volume contracticns

derived from the linear contractions are discussed.
INTRODUCTION

Graphite is currently being used as the moderztor in a number of
production and power reactors. In all these reactors it is used to some
degree as a struchtural component. Radiation-induced dimensional changes

of the graphite moderator may therefore distort the reactor core and lead

+ Work performed for the Atomic Energy Commission under Contract AT{45=1)-1350.

Presented at the Sixth Conference on Carbon, Pittsburgh, Pa., June 17-21, 1963,
. and to be submitted for publication in Carbon.

*A1l neutron exposures refer to the number of neubtrons with energles greater

than 0.18 Mev.
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to operational problems. In those reactors using large graphite blocks,
differential distortions may also cause rupbture of the bars due to sbresses
or strains exceeding the graphite rupture 1limit.

The effects of temperature of irradiation on the distortion of nuclear
graphites have been previocusly reported<l} to neutron exposures of 2.3 x 1021 nvt.
Bince that time considerably more data have been obtained on radiation-induced
dimensional changes, and neubtron exposures have been exbtended to a maximm of

1 x 109

nvt. This exposure is equivalent to lifetime doses in many
graphite-moderated reactors. In this paper the effects of these high neutron

exposures on graphite distortion will be presented.
BACKGROUND

Different graphite types show considerable differences in distortion
behavior as a funchtion of exposure. Fig. 1 presents data on three nuclesr~
grade graphites irradiated near room temperature. The neutron exposures to
the samples have been extended to 11,000 Mwd/At since these data were

(1,2)

presented at the last two Conferences on Carbon. The properties and

manufacturing parameters of these graphites have been described previ@uslya(l?3>
The expansion observed in the transverse direction is contiouing except in
the case of the KC graphife. The flattening mzy be partly dve to an increase
in temperature in the facility where the irradisbions are carried out, The

contraction in the parallel direction continues at approximately the same

rate.
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The rate of contraction of two graphite types at lrradiastion

(1)

temperatures from L50 to 1200° € has been reported
o)
le

for exposures to a
maximum of 2.3 x 1 nvbe Tﬁa contrachbion rabe decreased W%th increasing
temperature and went through a minimum at approximately 800° ¢. The
needle~coke graphites, NC-7 and VC, contracted at a slightly lower rate
than the conventional~coke graphite, CSF, in the samples cut transverse

to the extrusion axds. There was no significant difference between the

two types parallel to the extrusion direction.
EXPERIMENTAL

Irradiation experiments are being conducted in the high-flux testing
reactors on the distortion of several types of graphite. Two needle-coke
graphites, NC~7 and NC-8, and a conventional-coke graphite, CSF, are being
studied in a series of experiments deslgnated as H-3. The NC-T graphite,
with a density of 1.70 g/em% is a prototype material for the moderator of
the Experimental Gas Cooled Reactor (EGCR), and was manufactured from a
Continental-Llake Charles needle-coke., The production-run material for
the BGCR moderator, NC-8, was also manufactured from a Continental-Lake
Charles needle coke, and has a density of 1L.72 g/cmso The transverse
samples of the BGCR graphites are taken from the outer 4 inches of the
bar, with the long axis of the sample perpendicular te the edge of the
17T by 17 in. extrusion. Three orientations of the parallel samples are
taken, the first at the cross-sectional center of the exbtrusion, the

second half-way between the center and the edge, and the third at the edge
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of the bar. These are designated as N, B2, and N3 respectively for the
NC=T7 parallel samples, and as P1l, P2, and P3 respectively for the NC=8
saxples. The transverse samples of the CSF graphite are taken along the
cross=sectional center line of the 4 by L in. extrusion. The parallel
samples are taken along the extrusion axis half-way between the center
line and the extrusion edge.

The H~3 experiments are being irradisted in the E-T position of the
General Electric Test Reactor (GETR). A cross-sectional view of the
reactor is shown in Fig. 2. The GEIR is a lightewater-mocderated reactor
using fully enriched uvranium fuel, In the B~T7 test position neutron
exposures of 2.5 x 1021 nvt are generated in four to five months.

Neutron exposures for these experiments are given in terms of
neutrons having energies greater than 0.18 Mev, whereas the exposures for
the samples presented in Fig. 1, which were irradiated in a graphite-
moderated Hanford reactor, are glven in de/At° Conversion between the
two units is not constant bub varies with the reactor spectrum under
consgideration. Considerable effort is being expénded on ﬁethcds for
measuring neubron fluxes and on a better understanding of the effect of
differences in flux spectrs on radiastlon-induced changes in graphite.

The neutron spectrum in the E-T position of the GETR is shown in Figo 3.
The spectrum, @(u), was calculated through the use of the GNU-II computer
code modified to include 20 energy groups sbove 0.18 Mev. GNU=IT is a
one=dimensional (radial) diffusion code using the continucus slowing down
theoryg(k> The dip at lethargy 2.0 is caused by the homogenization of the
beryllium located in the same radial increment as E-T. The lethargy, u,

is defined ag u = In EG/E5 where E, is 10 Mev.
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Further refinement of the spectrum is being made through use of the
2DXY code. This is a two-dimensional transpori-theory code. At present
a factor of 1.5 x 100 nst, E > 0.18 Mev = 1 Mvd/At ie being used for
converting neutron exposures generated in the E-T7 position to exposures
expected in the EGCR. B8ince use of such conversion factors must take into
account the flux spectra, they are specific to particular resctors.

The construction details of a typical H-3 capsule prior to assembly
have been described previeuslyo(l) The appearance of a capsule after
irradiation in the as-opened condition is shown in Fig. 4. Four individual
gquarter-round samples, 0.5 in. in radius and 3m7/8 in. long, are assembled
inte a cylinder and slipped into a graphite sample holder. 8Six such
asserblies are arranged along the length of the capsule. The samples are
heated solely by the gamma heating in the reactor. The healt transfer
paths from the sample to the aluminum shell are calculated by means of an
IBM 7090 computer so that the desired irradistion tempersture can be
achieved ag closely as possible. Sample temperstures are measured by
means of nine thermoccuples.

As will be noted in Fig. 4 some transport of carbon from the samples
to the ouber can-wall has been observed, particularly at the lower end
of the capsule. ZX-ray analysis shows the deposit o 53 carbon, and it
is probably a form of carbon suboxide. The mechanism for the transfer
is not known at the present time.

The primary length measurements on the samples are made from end-
to-end. The appearance of the end of a typieal irradlated sample is
shown in Fig, 5. The ends of the sampleg show no evidence of gross damage

even after irradiation in several capsules.
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HIGH TEMPERATURE CONTRACTION

The resulbs from the samples lrradisted in the first five He3
capsules are presented in Figs. 6 through 9. Neufron exposures are based
con an average flux calculated by mans of the PDQ computer cedencé) The
PDQ code is a twoe-dimensional diffusion code using conbtinuous slowing-down
theory. The sverage flux was normallized along the capsule length by the
use of flux-monitor folls of nickel, iron, and titanium, irradiated in
the first two capsules. Counting of the folls irradiated in the remaining
three capsules is in progress.

The contraction data for samples taken transverse and parallel to
the extrusion axis of the bar are shown on separate figures to reduce
the number of curves per graph and thus minimize confusion. Both
orientations for cone graphite type should be considered together.

The data for the transverse CSF samples are presented in Fig. 6.

The peak neubron flux and peak gamma heating occurred ab the capsule
mid-position so that the samples with the highest neubtron exposure are
those irradiated at the highest temperature. Over ﬁhe temperature range
studied, 425 to 800° €, a definite temperature effect on distortion
continues %o be evident. The samples irradiated at the higher
temperatures contract at & lovwer rate. These differences in rate are
attributed to the effact of temperature rather than the effect of flux
intensity. It appears that the length change of the transverse samples
at 800° C has reached a maximum;contraction of 0.85 to 0.90 per cent.
Conversely the samples irradiated at L75° C show an increasing rate

of contraction.



o Hil=SA~2926

Eigg T shows the results from the CSF graphite samples cut parallel
%o the extrusion axis. The effect of irrsdiation temperature is not as
pronounced. Semples irradiated at 625 to 800° € all show nearly the same
contraction behavior. At all irradiation tem@ava@ureg the contraction
rate ig increasing with increasing exposure. At 475° € the parallel
samples are coniracting about lwl/Q times and at 800° € 2 to 4 +imes the
transverse samples.

Fig. B presents the results for the transverse samples of the BEGCR
needle=coke graphites, NC-7 and NC-8. The effect of irradiation temperature
is again evident with the exception that the samples irradiated at 725 to
800° ¢ show the same contraction. There.is a significant difference between
the NC-T and NC-8 materials although it had originally been thought they
would be guite similar. The NC-7 conbtracts less than the CSF while the
NC-8 contrachs about the same or slightly more than the CSF. Since the
NC-T and NC-8 were made from the same raw materials and by the same
processes, there are no apparent differences in the manufacturing methods
which would indicate there should be differences in distortion behavior,

It is interesting to note that the 800° € sample expanded sigrificantly
during bthe last lrradiation period. The aa@pla shows no outward damage or
oxidation that might account for this expansion. Both the ﬁhyaisal end-
toeend length measurements and the optical hole-to-hole lenglth measurements
conflrm the results shown, The apparent crystallite size as measured by

LQ conbinued to decrease during the last irradistion pericd.
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Results from the NC-7 and NC-8 samples oriented parsllel to the
exbrugion axis are shown in Fig. 9. Por the NC~T there is né‘ﬁemperature
effect from 625 %o 800° € but the NC-8 shows some effect. The samples
irradiated at 800° C céntracted less. The contraction behavior of the
RC-7 semples is nearly identical to that of the CSF parallel samples. The
NC=8 samples contracted less at 800° € than the CSF and about the same
amount at the lower temperatures. A@ all temperstures the contraction rabe
increases with increasing exposure.

Although & large effect of neutron-flux intensity is not expected,
it is possible that part of the effect abttribubed To temperature may be
due to flux iﬁtenaiﬁy differences. However, data presented previouslle)
tend to confirm the presence of a temperature dependence on conbraction.
The contraction data at 800° ¢ were obtained from samples irradiated in
two separate experiments. in one experiment the 800° C data were obtained
at the position of maximum flux intensity, and in thé other at the position
of minimm flux intensity. A factor of 2 between the maximum and minimum
flux was nmeasured; however, the contraction rates agreed reasonsbly well.

Further information on the effect of flux intensity will be
obtained from two experiments presently underwasy. The first is a éodifiw
cation bo the H=3 experdment so that the position of maximum flux which
was formerly operating at 800° € is now operating at 450° C. Thus data
will be obitained at 450° C from samples irradiated in fluxes differing
by a factor of three. The second experiment is a re-lrradiation of
twelve samples at & controlled temperature of 650° C in fluxes varying

up to a factor of 3.
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VOIUME CONTRACTION

Using the date presented in the last four figures an investigation
was made into the conbined effect of the transverse and parallel
contractions on the change in volume. The model used was a sample of square
cross=sectlion with both width and thickness taken as transverse directions
and length taken as the parallel direction.

The resulbant equation is shown on Fig. 10 with the calculated volume
changes. The volume contraction of all three types falls into a narrow
band for each irradiation temperature with the greatest divergence at
800° ¢, The relative contraction among the three types of graphite varies
for"eaeh temperature but in all cases except at 425° C the needle=coke
graphites, NC-7 and NC-8, contract less than the CSE;° At 575° € the volume
contraction of NC=7 and NC=8 is exactly the same. It appaars.ﬁhat NC-8
may be more temperature dependent than the other two types since it
contracts at a faster rate at the lower temperatures and at a lower rate
at the higher temperatures. The NC-T7 volume change at 800° C appears to
be starting to saturate. Irradistions of these materials érs corbinuing
srd as farther information is developed these results will be exbended to

higher exposurss.
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