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VECTOR MESONS AS REGGE POLES IN PERTURBATION THEORY

Peter G. O.‘Freund
and
Reinhard Oehme

The Enrico Fermi Institute for Nucleaf Studies
and Department of Physics
The University of Chicago, Chicago, Illinois

" A most interesting problem in quantum field theory is the
question whether a particle introduced as a fixea pole 1in the
lowest order of perturbation theory stays "elementary" or whether
it becomes a member of a Regge trajectory if higher drders are

1-3

indluded._— It is the purpose of this note to show.that vector

.mesons may become Regge particles in higher orders of renormalizable

| pervturbation theory.

.1t follows from the general notions of dispersion theory

that bosons with spin larger than one must be described by moving

poles.Ll Perhaps it is characteristic that interactions involving

- such particles are not renormalizable.  As far as the possibility

of renormalization as well as the necessity of reggeization are
concerned; the vector mesons are a boundary case. .At present, an
elementary vector mesonL’L cannot be completely excluded on the basis

of general arguments. However, there are severe restrictions.

X - .
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Inlan earlier publication2 we have shown that an elementary vector
meson.cohtribution like B(s)t% to the high energy limit (ﬁ-—e oo )

Aof the elastic amplitude F(s,t) necessarily induces an imaginary
.term which corresponds to a singularity in the complex angular
momentum plane in the s—channel; ’We found that in the limit t —> oo

an expression of the form
F(s,t) ~ B(s)t + c(s)t%(8)(Pnt)B(s)

is compatible with unitarity in the techannel provided a(o) = 1
and 0 € B(o) £ 1. Here B(S) is real for s<£ O and C(s) is complex.
This result was obtained on the basis of the unitarity condition
for forward scattering (s = 0). Further restrictions on B(s) have

5

been obtained by Yamamoto” by integrating the unitarity condition
for large values of t in a symmetric way over a cone arcund the
forward direction such that the inelastic Eontribution to this
integral becomes positive definite. For 5(3)-; const. one finds
then that only 8 = 1 is allowed. With p = 1 and a(o) = 1 we have
‘a double pole of F(s,A) at A = a(s) which implies a logarithmi-

cally increasing total cross section in the t-channel.

In view of these restrictions it seenis to be more natural
to assume that vector mesons are described by Regge poles. Conse-
~quently it becomes of special interest to see whether.a reggeization
is possible in weak coupling perturbation theory. In the following
we first consider the pole due to a neutral vector meson in the
amplitude.F(s,t) for the process w+v--—9 W+W_. The partial wave

amplitudes F,(s) in the s-channel can be interpolated uniquely by
L .

the analytic function F (s,A) such that F (s,€) = E‘(s) for odd,



integer values of‘g . - If there exists a Regge trajectory assoclated
m with ‘ '
with a vector meson of mass!u(rn(:ﬂL(u,= pion mass), then we can

write
| B(s) _ ‘
F (s,\) = - 4+ 'R(s,A), (1)
»K - a(s) A

where a(ml) = 1 and where R(s,\) is not singular on the surface

_ , : : 2 . '
‘A = a{s). For real values of s in the interval 4p <£s < Sy we have
‘the eontinued elastic unitarity condition which can be evaluated

near A = q(s). - Taking the limit from above (s + io) for Muzs s<sy

it implies o 4 (5) 5%(s)
a(s) = —L 2P @

1 - 21};(3) R(‘s,a*(s) )

where

4 3 —4p.2 )'/2
S _-f<s>4-< P

Thé contribution of thé pole at A = a(s) to the high energy limit

of 'the. absorptive part in the t-channel is given by

A (s,) ~/2 b(s)ss) (3)
where
‘ T atze) -2 '
b(s). = ["'(a;) — 27T Qq B(s) (4)
\a ‘ .

- with 4q2 = s—uug. If we also assume the existence of a Sommerfeld-

Watson representation we obtain for F(s,t) the contribution

Fls,t) bls) s (1e-tTals)ygals)e, LD (g
"~ sin . ma(s) :

For reasons of simplicity we restrict ourselves to the

usual renormalizable coupling between pions and neutral vector mesons.



We expand the functions a,B,R, etc. in powers of the coupling con-
stand g2; for example |

a(s) = 1 + 82a1 + guag + g6a3_+.. Coe ' (6)
'Aé a consequence of invariance under charge-conjugation only
graphs with intermediate states in the s—chénnel corresponding
to an odd number of vector mesons can contribute to the pole
term in Eq. (1). Since the graphs with the exchahge of a single
vector meson give no contribution to At(s,t) and to F(s,\A), the
lowest order of b(s) or B(s) is'determined by the sixth order
graphs in Fig. l-d,d and the corresponding crossed diagrams.
Hence we have

B(s) = g6f33 + 8854 +o . (7)

The Born graph in Fig. la gives the contribution '

g° -qugs) (1+t/29°)
m - S

(8)
to F(s,t), and in the partial wave projection Fl(s) we have the
corresponding term

o 2 »
g 49 °(s)
S - ) - (9)

We can expand the expression (5) in powers of'g2 and compare it
with the high energy limit of the Born term (8). We find that
we must have al(s) = O and from the second order term

F(s,t) ~ - g° —bl' t (10)
Ty
we obtain the relation .
2) 1 ~ 3(s-m?)

ag(s) = (s-m o=



The'same‘result can be obtained by comparing the expansion of
F_(s,4) with Eq. (9), provided we identify the term g2Rl(s,f) in
the expansion of R(s,A) with the Born term in the t-channel, which
giQes a contribution regular in s near s = m° and in A neaf A= 1.
Note that we have imposed here the requirement thaf the pole term
(9) is completely taken up by the Regge trajectory A = a(s) of

F (s,)N). 'The possible existence of such a trajectory in perturba-

tion theory is Just what we would like to explore.

We are now in a position to consider the implications
of the elastic unitarity condition (2). We find that the first

terms in the expansions (6) and (7) must satisfy the relations

Im GQ(S) =0, Im BB(S) =0 (12)

and

In ay(s) = p(s)Bs(s) | CS)
for Mug <€ s <L 84 )where now s; = 9m2. In these equations we have
made the assumption that R(s,a*) is of order g2 or higher. Essen-
tially this implies that we do not allow a.secondary trajectory
A ='P(s) which is degenerate with a(s) in lowest order such that
W(s)

A -P(s)

*
has a zero-order contribution for A = a (s).

R(s,A) =

The function BB(S) can be computed from the high energy
limits of the sixth order graphs in Figs. lc, 1d and the related
crossed diagrams, or from the corresponding partial wave functions

near N = 1. We find
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“ 53‘(55 = <% ) "9_|0' ’o(dx’ dxzd*s d&. ’Léz ’(g:s’"a'q‘ g(xn*x?-+x6- )
S TORPRE TOIOL YR

(14)

where

As - A,m°) H(f

B = Al( 5 1

with
.Azz )(\X.L)(s

1= %2 (gt 3233%33{*3:.3:) MRy PR FP P
0% G v de T XYsi

The function ag(s) is then given by Eq. (11). Diagrams
like-Fig. le do not contribute to bﬁhbecauSe'they do not give rise
to a pole at A = 1. The function b3(s) is analytic in the cut’ |
s-plane with a branch line for real s 2>9m2. Hence we see that
the functiéns ag(s)‘and b3(s) or BB(S) satisfy thg relations (12).
It ié important to note the absence of the elastic branch line in

‘ thé lowest order contributions to the trajectory function a(s).
This is a typical réquirement of theAhnitarity condition in a

" situation where there is no coupling t6 "nonsense" amplitudes.

The sixth order term in the expansion of a(s) should
have a discontinuity along the elastic cut.4u2$'s<:§m2. Iﬁ order

to identify the graphs which are related to a3(s) we consider a



selected number of higher terms in the expansion of the high

energy -limit (5):

.F(S’t>=” -8 ﬂbd,,t * 3"“3 5"’—"""’% (-—— (15)

‘- sy ’odtb » v
,&;t)t-} _ +9 #(yy-&t>t&t*_.,,
12 o b '
-+ ¥t g --——;i“,5 (m-'@nt)tewt-l- e

The fourth order term corresponds to the Vvector meson self-energy
. graph Fig. 1lb. This graph has a two-pion intermediate state,
and the;discontinuity is consistent with the requirement (13).

After the mass renormalization has been performed the function
2

corrésponding to this graph has a simple pole at s = m~ . Since
a2(s)fJConst.(s-m2) for s-ﬁ>nﬁ§ we see from Eq. (15) that
| aﬁ(s) must also have a zero at s = mz. Of course, this is just

what we expect if a(s) shall be a trajectory through the vector-

meson pole.

The tenth order contribution in Eq. (15) is difficult
to identify; note that i1t has no elastic cut. On the other hand
it is clear that the twelfth order term proportional to a3b3 is
" connected with the graphs in Figs.lf,%énd related ones. The two-
pion discontinuity gives a contribution proportional to b32 > as
expected. However there are two unresolved questions concerning
the contfibution from the sum of all these twelfth order graphs:
1. The high energy limit of a given diagram like the ones

in Figs. 1f,g may well have a leading term proportional to t(lgt)3

or to it(lgt)2 in the absorptive part At' Such terms are due to



intermediate states in the s-channel which involve more particles
than two pions. If the simple reggeization procedure considered
here shall be successful we must assume that these terms cancel
in the sum over all twelfth order graphs.

2. Another requirement is that the function GB(S) obtained

in the high energy limit of these gfaphs must have a zero at s = m .

Summing up our considerations concerning vector mesons in
the pion pion amplitude we can say that there exists a iunction
‘ sﬁ()

) R ‘ 6)
Fls,2) A-l-gadg(s) - g6d3(s) : (16)

which satisfies the elastic unitarity equation and which contains
the vector meson pole term.. Within this framework it provides
evidenne that the perturbation expansion is compatible with the
reggeization of the fixed vector :‘meson pole introduced in the
iowest order. We note that our considerations are not applicable

to the photon because of the infrared divergences.

The possibie transformation ofT?ixed vector-meson pole
into a Regge pole as a consequence of radiative corrections can
also be studied in nucleon-antinucleon scattering. The situation
1s quite analogous to the one discussed above. In lowest order
the vector meson pole in the s-channel appears in the three
coupled trinlet amplitudes6 hi&(s,J) for J = 1, which satisfy the

unitarity equation

Jom £ (53) 5(8)2{ (SJ)f (sJ') (17)

1

2



in the elastic region MMZS s < 9m2, where M is the nucleon maés.
For reasons of simplicity we assume here that %NI< m<£ M, and we
consider only the renormalilizable coupling between neutral vector
mesons and the conserved spihor current. . At J = 1 the pole termé
are given by

{iﬁ (S)Jﬂ):ﬂco étm}

“Romr- 5

W

with y o

C,=! Cp = G/zn&) - Cpp= Ve

We see that the residue factorizes and hence there is no difficulty -
with fhe reggeization és far as the unitarity condition (17) is

concerned.

An essential feature in the perturbation expansion of the
vector meson trajectory is the fact that in the lowest :‘meénvanish-
ing order the function a(s) - 1 doesgs not have the elastic cut,
which only appeérs in the next order. This result is not changed
if we add a direct pion-pion coupling. It 1s also similar to
the situation encountered in connection with the possible nucleon
trajectory in pion-nucleon scattering.l Here we have a vector meson-

nucleon and a pion-nucleon coupling. <Assumingrn>uu we conslder

S 1)
{*_ (W)&>‘ 3:""/(“’)

which has to satisfy a decoupled elastic unitarity condition for

the amplitude

(b + M)2$ W2\< (m + M)2. From the lower order graphs we see that

we have the expansions

(W)= § + go Ao (W) + 333;0(“ (W) 4000

P(N) : 33, g:} By (W)
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where gv.and - are the vector-meson-nucleon and pion-nucleon

coupling constants respectively.. The functions alo(w) and Bll(w)
have a cut for'wh2 )2
2 2

).

(m + M)<, but not the elastic. branch point at

W = (. + M For the function'all(w),we obtain an elaStic cut

with a weight proportional to Bll(w) for (u + M)zé_wgé’(m + M)2.
These properties are in agreement with the elastic unitarity

condition for the amplitude f+(w,j);7

We would like to express our gratitude to A. P.. Balachandran

for many discussions and for his help with'the calculations.
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In lower orders of perturbation theory we know that the
nucleon cannot be on a Regge trajectory if we have'only the
pseudoscalar pion-nucleon interaction.l For scalar mesons
with g¢3 - coupling a more general proof that the pole

remains elementary has been given by Tiktopoulos [Phys. Rev.

- (to be published) ]. Essentially he shows that there are

no terms in the expansion of F(s,t) which increase as fast

tO

for t> o0 . This implies also that the function F(s,\)

has no pole at A =0 for every finitebr_*der° We note that

here elastic unitarity alone is not enough to exclude a
possible reggeization. It again only implies that the

lowest, nonvanishiﬁg term: in the expansion a(s)'= 82nQM($)+~o.

'j?ﬁ@#@%@ . . has no elastic cut, and that Eb\an+l =.P Bn+l’

Bv= 0O for *}5 n,. ete.
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Figure Caption

Fig. 1. Some Feynman graphs which are considered in connection

with the vector meson trajectory.
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