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Abstract

In order to maximize the brightness and provide suffi-
cient dynamic aperture in synchrotron radiation storage
rings, one must understand and control the linear optics.
Control of the horizontal beta function and dispersion is
important for minimizing the horizontal beam size. Con-
trol of the skew gradient distribution is important for min-
imizing the vertical size. In this paper, various methods
for experimentally determining the optics in a storage ring
will be reviewed. Recent work at the National Synchrotron
Light Source X-Ray Ring will be presented as well as work
done at laboratories worldwide.

I. Introduction

The measured optics of a storage ring never completely
agree with the predictions of computer models of the stor-
age ring design. Traditionally, accelerator physicists have
measured the horizontal and vertical betatron tunes and
the beta functions at the quadrupoles, and then adjusted
a subset of the many parameters of the computer model
to make the model electron optics better fit the measure-
ments. There was no certainty that the correct parameters
were adjusted to achieve this improved fit. The optimized
model fit the measurements better, but did not necessarily
give the true lattice of the storage ring.

This paper will review some recent work that has been
done to better understand electron storage ring optics by
using measured orbit data. The goal of the paper is to
provide an overview of recent work not a comprehensive
survey. Improvements in orbit measurement hardware in-
cluding beam position monitors (BPMs) that measure the
closed orbit to micron precision, fast digitizers capable of
storing many turns of single turn orbit measurements, and
computers capable of analyzing the large amount of data
generated make these methods of analyzing accelerator op-
tics practical.

Turn-by-turn betatron oscillations (z35,) about the
closed orbit measured at some BPM,

By cos (2mnv + ¢p), (1)
can be determined by the betatron function and phase [1]
at the BPM (B, ¢5), as well as the betatron phase for
the whole ring (271). The integer n increases by unity for
each revolution of the electron bunch, and a is the initial
amplitude. In this paper, work will be described in which
a harmonic analysis of many turns of z; ,, is taken to yield

Trn=a
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the betatron function and phase at the BPMS.[4], {51, 71,
(8] .

The shift in closed orbit at a BPM (3 ....) from changing
one of the orbit steering magnets by angle 8 also depends
only on the betatron function and phase,

YA
2sin 7y

cos (|gs — ¢.] — 7v), (2)

The.0. = 6

where (f,, ¢,) are the beta function and phase at the steer-
ing magnet. Work will be described in which this equation
is inverted to give the beta function and phase at the BPMs
and steering magnets.[10], [14]

Another approach is to determine the actual individual
magnet field gradients from orbit measurements.[11)}, [12],
[13], [15], [17], [16] The beta functions and phases are deter-
mined by the magnetic gradient distribution in the storage

ring (K(s)),

8- B KA =1, (3)
1
¢’ = 7 4

The derivatives are with respect to longitudinal position in
the ring, s. Through equations 1, 2, 3, and 4, orbit shifts
and orbit oscillations at the BPMs are determined by the
gradients in the quadrupoles. It is possible to invert this set
of equations, and determine the gradients from orbit mea-
surements. Once the magnetic field gradients are derived,
the beta functions and phases are determined everywhere
in the ring, not just at the BPMs and steering magnets.

II. Turn-by-turn orbit data
A. First turns at APS

When commissioning a storage ring, single pass orbit
measurements for the first turn or first few turns have
proven useful for diagnosing major magnet gradient er-
rors.{11], {2], [3] Figure 1 shows an example of the shift in
the first turn orbit with a steering magnet measured dur-
ing commissioning of the APS. Despite the relatively large
error in measuring the orbit with the small single-pulse
current during injection, comparison of the measured or-
bit shift to that of a fit with the computer model shows an
obvious large gradient error. This error was subsequently
confirmed when one of the quadrupoles was found to be
mistakenly connected to a sextupole power supply.
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Figure. 1. The vertical (upper plot) and horizontal (lower

plot) shifts in the first turn orbit in APS with orbit steerer
S1A:HV1 shows gradient error in quadrupole S39A:Q5.

Once the major gradient errors are eliminated and larger
single-bunch currents can be stored, harmonic analysis of
turn-by-turn betatron oscillations over hundreds or thou-
sands of turns gives the relative betatron functions and
phases at the BPMs (8 and ¢ in equation 2). The first
such work was performed at SSRL (4], [5], and was a di-
rect development of previous work using network analyzers
(see, for example [6]).

B. Multi-turn digitization at LEP

The most extensive application of this method has been
performed at CERN [7], [8], where hardware capable of
simultaneously digitizing 1024 consecutive turns at 504
BPMs has been implemented on the LEP storage ring.
The amplitude of the measured oscillation at each BPM
depends on:f; and the gain of the BPM, which is not well
known, so simply looking at the measured amplitude does
not give an accurate measure of 8;. The phase of the os-
cillation, however, is independent of the BPM gain calibra-
tions, so the betatron phases, ¢, can be measured quite
accurately. The beta function is the inverse of the deriva-
tive of the betatron phase (equation 4), so the measured
betatron phases can be used to determine the beta func-
tion. To do this, the measured phases were fit to a function
with the following form,

¢(s) = do(s) + B(s)sin [26o(s) + A(s)] + d(s), (5)

where ¢o(s) is the phase according to the MAD[9] computer
model and the functions B(s), A(s) and d(s) are slowly
varying functions. An oscillation of this form in the mea-
sured phase with respect to the model phase is to be ex-
pected from small gradient errors in the quadrupoles (see,
for example [1]). The values of B(s), A(s) and d(s) were
assumed to be constant over small sections of the ring, and
were determined by fitting #(s) to ¢; over each section.
Then the derivative of ¢(s) was taken to determine B(s).
The 20% peak-to-peak beat in the beta function in LEP
was thus accurately measured. B(s) also gives a value of

By for each BPM which, with the measured oscillation am-
plitude at each BPM, could be used to calibrate the BPM
gain.

IIL Closed orbit data

Two common ways of measuring machine optics using
closed orbit shifts are to look at the shift in closed orbit
from single steering magnets (see, for example [10], [11],
{12}, [13], [14], [15], [16]) or to make local orbit bumps using
combinations of steering magnets[17].

A. Orbit bumps in Tristan

The work at Tristan[17] is the first of two methods I will
describe in which the actual gradients of the storage ring
magnets were experimentally determined. Figure 2 shows
schematically the algorithm used to determine the Tristan
optics.
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Figure. 2. Measurement of quadrupole gradient error using
an orbit bump with betatron phase advance of «.

The magnet structure in Tristan is FODO, which is a
periodic structure in which each cell has one focusing and
one defocusing quadrupole. During the experiment, the
optics were adjusted to give w/2 betatron phase advance
per cell. Equal dipole steering kicks were given next to
two quadrupoles, separated by = in phase advance. This
should have resulted in a purely local closed orbit distor-
tion. Therefore, the residual orbit distortion around the
ring was due to errors in the quadrupole gradients inside
the local bump or to errors in the calibration of the dipole
kicks used to make the bump. By analyzing the resid-
ual orbits from all the different # bumps, the quadrupole
gradient errors (both normal and skew) could be derived.
Also, using the same bumps but with the sextupoles turned
on inside the bumps, the horizontal and vertical offsets of
the electron beam from the center of each sextupole could
be determined. In this way, the gradients in Tristan were
determined to very high precision. Using the improved
understanding of the linear optics, the measured dynamic
aperture in Tristan was predicted by the model with an
unprecedented accuracy.

The experiment at Tristan was simplified by the fact that
the optics were set up to give r phase advance between
steering kicks, so only two steering kicks were necessary to
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"+ makea local bump. In addition, the quadrupole at the cen-

ter of the bump was approximately /2 in. phase advance
from the two steering kicks, so the residual orbit from gra-
dient errors in the quadrupoles were easy to distinguish
from residual orbit distortion caused by calibration errors
in the steering kicks. It is unclear whether the local bump
method could be applied in storage rings designed for syn-
chrotron radiation, where, in general, three orbit kicks are
required for a local bump and the quadrupoles are not 7 /2
in phase advance from the orbit steering magnets.

B. Orbit response matriz analysis

Equation 1 gives a representation of the orbit response
matrix which is the change in orbit at every BPM for a
change in strength of every steering magnet. In reference
[14] a method is presented for inverting this equation to
derive the beta functions and phase advances at the BPMs
and steering magnets from the measured orbit response ma-
trix. Just as with the analysis of free betatron oscillations
at LEP, the analysis of the measured orbit response ma-
trix gives a very accurate measurement of betatron phase
advance, but the accuracy of the fit beta functions is lim-
ited by errors in the calibration of the BPMs and steering
magnets. The beta function, however, can be derived from
the fit phase advances, as was done at LEP.

In reference [16] another method of analyzing the mea-
sured response matrix data is presented in which the
quadrupole gradients are derived. The gradients in a
MAD[9] model of the NSLS X-Ray Ring were varied in or-
der to minimize the x? deviation between the model and
the measured orbit résponse matrices (Mynod and Mpeqs)-

2
2 __ Z (Mmod,z’j - Mmeas,ij)
X = 2 3
- g}
3,7

(6)

where the double sum is taken over the orbit steering mag-
nets and the BPMs. The o; are the measured noise levels
for the BPMs. The matrices include the coupling terms (i.e.
vertical orbit shifts with horizontal steering magnets and

horizontal orbit shifts with vertical steering). With this -

method the normal and skew gradients in each individual
quadrupole can be determined. These gradients, in turn,
define the beta functions and betatron phases throughout
the ring, not just at the BPMs and orbit steering magnets.
This algorithm also yields the calibrations and rotations of
the BPMs and steering magnets. For those quadrupoles
adjacent to sextupoles, the analysis was not able to dif-
ferentiate well between gradient errors in the quadrupoles
and sextupole gradients due to orbit offsets from the sex-
tupole magnetic centers. This problem was solved by first
measuring the orbit response matrix with the sextupoles
off, and then measuring the matrix with the sextupoles on.
The first matrix was used to calibrate the gradients in the
quadrupoles, and the second matrix was used to find the
gradient in the sextupoles.

Once the model was fit to the measurements to minimize
x?, the RMS difference between the model and the mea-
sured response matrices was only 1.2 um which is primarily

due to random noise in the orbit measurements. The noise
propagated to give very small error bars on the fit param-
eters and beta functions as shown in table 1. The small
error bars are a direct result of the high precision of the

BPM system at NSLS.[18]

Table 1. These RMS variations are the error bars on the
fit parameters due to random orbit measurement errors.

Parameter RMS variation
quadrupole gradients 04 %
quadrupole rotations .4 mrad

BPM gain 5%

BPM rotations .5 mrad
steering magnet calibration 5%

steering magnet rotations .8 mrad
beta functions 08 %

Tests were performed to confirm that this algorithm
could resolve small changes in the quadrupole gradients.
Figure 3 shows the results of one such test. For this test
the response matrix was measured. Then the gradients
in two of the four families of quadrupole in the X-Ray
Ring were changed, and the response matrix was measured
again. Each response matrix was analyzed separately, and
comparison of the two sets of fit parameters showed that
the algorithm did an excellent job of correctly resolving the
changes in the quadrupole gradients.
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Figure. 3. This plot shows the ratio of the fit gradients

for the 56 quadrupoles in the X-Ray Ring before and after
changing the Q1 and Q4 quadrupole family gradients. The
fitting algorithm successfully resolved the changes made in
the quadrupole gradients.

The fit parameters that were independently measured
agreed with the results from the x?2 fitting. For example,
figure 4 shows the excellent agreement between the fit BPM
rotations and the BPM rotations physically measured in
the X-Ray Ring. Also, other measured optics parameters
that were not used in the x? fitting confirmed that the fit
model is correct. For example, figure 5 shows the agree-
ment between the measured dispersion and the dispersion
predicted by the fit model.
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Figure.4. This plot compares several of the BPM rotations
found by fitting the orbit response matrix to those rotations
found by measuring the actual BPM alignment. The fit
values agree with the measured values to within the error
bars of the measurement.
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Figure. 5. The dispersion function distortions in the X-

Ray Ring are due to gradient errors, primarily from orbit
offsets in sextupoles. The fit model agrees well with the
measured dispersion.

The improved knowledge of the X-Ray Ring optics
achieved through the orbit response matrix analysis has
provided the possibility of increasing the synchrotron ra-
diation brightness. During machine studies the strengths
of the quadrupoles adjacent to sextupoles were adjusted in
order to compensate for the sextupole gradients and cor-
rect the large distortions in the dispersion shown in figure
5. The dispersion correction alone reduced the horizontal
emittance from 110 nm*rad to 70 nm*rad. A new ring lat-
tice is now (Autumn 1995) being commissioned which will
further reduce the emittance to 50 nm*rad. The under-
standing of the rotational alignment of the X-Ray elements
has also been used to improve the vertical beam size cor-
rection program.
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