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ABSTRACT

Methods of prepa.riﬁg discrete ordinates quadrature coefficients are
described. Quadrsture sets which satisfy complete symmetry conditions
and various moment conditic;ns are derived and ta.bulated,k and critical
thiclfnesses of one-dimensional slabs, spheres and cylinde;‘é are calcu-
lated with these sets. Prescriptions for relaxing symmetry conditions
and point location requirements are discussed, and orthogonal (Legendre=
Tschebyschev) quadrature coefficients applicable in one-dimensio'nal; cy=
lindrical or two-dimensional rectangular geometry are tabulated. Re-
cipes are described for preparing bilased direction sets, and a method
of basing the bias upon material gomosition is outlined.

Preliminary computational results indicate that double Legendre and
half-range moment satisfying quadrature sets .are mostv accurate in onee~
dimensional plane geometry, while even~moment satisfying, completely sym=-
metric sets are recommended for other geometries. At the present state
of the axrt of discrete ordinates computations, résulﬁs indicate that
boundary condition treatment and, in curved geometries, the handling of
the ray=to=ray transfer (streaming) terms can affect accuracy as much as
further refinement of a.ngu_'l.a.r quadrature. Since computational results
may depend upon all three of these quantities, further work is needed

before an optimum quadrature method can be selected.
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INTRODUCTION

The evointion of the selection of numerical quadrature sets for the
numerical integration of the Boltzmann trensport equation has been

guided by two main principles:

1. Physicael symmetry
2. The arrangement of discrete directions on latitudes on

the unit sphere.

Selection of quadrature sets that satisfy the first principle guarantees
that solutions will be independent of geometrical orientations. The
first Sn quadrature set, whic_h' represented the angular variable, p, by
connected line segments, was equivalent to mechanical quadrature with
abscissae, Hys located a.symn?etrically, withv respect to u = 0, on the
interval [-1,1] (see the Appendix). Although quite aécurate in appli-
cations in homogeneous media, (1) this set did not give consistent ﬁ-

" sults when, say, slabs of vaerying composition were geometfically in-
verted. Quadrature sets that are selected accofding to the second prin=-
ciple have the distinct advantage of permitting a double angular quad-
rature to be accomplished as a single @direct sum. This report explores
methods of selecting quadrature sets that satisfy symmetry conditions
"and also examines the relaxations of symmetry that are possible when

geometric dimensionality permits.



COMPLETELY ‘SYMMETRIC QUADRATURE ‘SETS

@oorainate:systems.for:rectangdlar, cylindrical,:and spherical sym=
metries are shown in Figure 1. 1In each case the ‘direction wariable E? |
is defined with respect to»anvorthégonal‘rectangular<coorainate:frame
(u,n, t) which is locally aligned with respect to the unit wvectors of the
geometrical coordinate system. The possible orientations of the angular
direction vector a’define a unit sphere in (u,n,%) space. Complete syme
metry requirés that the (p,n,t) coordinates of points on the unit sphere
chosen to represent 5’be invariant under all 90=degree rotations about
the p, 1, or ¢ axis. Hence, each set of coordinates must be symmetric
with respect to the origin, ang, further, the set of points on each axis
mist be the same. Thus, a description of -one octant suffices to describe
the arranéement of points on the unit sphere. For n points on each axis,
[-1,1], there are n(n + 2)/8 points per octant on the unit sphere,
n =040 Tigure 2 ghows We arrungement for n = 6.  Beeausé these

points lie on the unit sphere

2 2 . 2 '
1)
2 2 2
Wy +My + 8 =1

=6
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Fig. 1. Coordinate systems for rectangular, cylindrical, and spherical
geometries.



AFig. 2. Completely symmetric point arrangement, n = 6.
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oy since the coordinates are from the same set,

2 2
p.3 + 2“1 =1
(2)
2 2
2p.2 + My o= 1

Because of the complete symmetry the indices, i, J, k, of the coordinates

of a point on the sphere sum to n/2 + 2. That is, in general,

2 2 2
pi ‘A+ p‘j + Hn/2+2_i_j = 1.0 (3)

vhere i =1,2,..., nf2; §j=1,2,...,n/2 -1i+1
The relation (3) is solved by (2,3)

M.

12 = u12 + (i =1 i=1,2,...n/2 | (%)

.where
a=2(1 - 3u,°)/(n - 2) A (5)

Hence the requirement of complete symmetry fixes all My exc;ept ) and -
the freedom of Guassian qua.drafure- is not present. 1In addition, ‘ro-
tational invariance dictates that weights for points on the unit sphere »
" be chosen ln & symmetric fashion. D;ia.grams showing points of equal
_weight are displayed in Figure 3. For a given latitude on the unit

sphere, the sum of the point weights, ;s defines a level weight, wj.



2 : 1P
3 1 V1=2Pl
1 1 V2= pl
1 ‘ w1=2P1+P2
6 2 2 v2=2p2
1 2 1 Y
1 wl'291+292
8 2 2 W2-2p2+ p3
2 3 2 vy = 2p,
1 2 2 1 W, = Py
1 vy 2;_Jl+2pe+;p3
10 2 2 Vp = 2p, + 2p >
3 %03 Wy = 2p.+ P
3 3 L
2 4 4 2 = o,
1 2 3 2 1 Vi = B
1 wl-2pl+2p2+293
12 22 Vo =2 2y v By
3 b 3 v, = 2p. + 2p
3 3 5
3 5 5 3 wh'2p3+Pb,
2 b 5 L4 2 W = 2p,
1 2 3 3 2 1 vg = By
ll} 1 . wl=2pl+2p2+%3+Ph
2 2 Vp = 2y + Bpg + 2pg
3 5 3 '"3=2p3+296+ Py
L 6 6 L "b,=2ph+2p6_
3 6 7 6 3 w5=2p3+ >
2 5 6 6 5 2 Vg =2p, and'py + 205 = Py + Pg + Iy
1 2 3 by 3 2 1 . w7= Py : .
16 l. wl=2p1+292+2p3+?ph‘
2 2 . "2=292+2p5+p7 .
3 5 3 w3=2p3+2p6+»2p8
y 6 6 & W, = 2p, + 20, + Py
» 7 8 T b4 vg = 2p + 2pg
3 6 8 8 6 3 w6=293+ p5
2 5 6 7T 6 5 2 v = 2p, '
1 2 3 4 4 3.2 1 Vg = Py
and

Ph+P5+P8=P3+P6+P7

Fig. 3.~ Points of equal weight as a function of n. The equations are

the relations between the point weights, p;, and the level weights w

. -'»\10-
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These relations are also given in Figure 3, and the level weights are
the weights corresponding to a one-dimensional angular quadrature. For
2< n< 14 there are 1'1/2 - 1 different point weights. For n > 1k the
nunber of different point weights increases rapidly. To fix the number
of different point weights at n/2 - 1, it is assumed that point weights
are chosen as & sum of & fundamental set of "axis" weights (a, 85 2 )
with i + j + k = n/2 + 2. Then, enough additional relations among the
P ‘are provided to maintain n/2 - 1 different point weights. TFor ex-
ample, the relation Py + Pg+ Pg =D, + Py + Py (n = 14) is established

by noting that the point weights maey be represented as

p3=a5+§3+51' Py =8y +8 +ag
Pg = a3 + 8 + &, ps=a5+a\.2+a,2
Pg = &) + 8y + 8y Py = a3 + a3 + ag

SUM=81+26-2+33.3+2&,++&5

Therefore, with complete symmetry, there are n/2 quantities, thé n/2 -1

Pj and Hys vhich can be selected, as opposed to n quantities in a Ga.ussian‘

quadrature. However, it is not difficult to shdw(b') that if

n(n+2)/8 n/2 :
z pj= I w,o=1 (6)

i=1 R |



that is, if the area of the octant is measured in units of n/2, then
Z w.u, =%—. - ’ ‘ (7)

so that one moment condition is satisfied ‘by‘ any completély symmetric

~ set. Hence, one can choose ul and the w, to sa.tlsfy the n/2 + 1l even=-

J
moment condrblons ’
1 2i . nf? 4 ' |
f P_...% f = 5:1%—1-.' = I w,p Ce (8)
-1 g 39

for i = 0,1,...,n/2. Completely symmetric quadrature sets (which auto-
matically satisfy the odd moments over.the entire ra.née of u because of
symmetry) obtained by satisfying (8) are given in Table I. However, for

vhich are undesirable because of

n > 22, s5uch sets lead to negative w 5"

numerical truncation errors.

2

As an alternative to matching even moments, all half-range moments

i = 0,1,...,0/2, can be matched, but this procedure leads to negative
weights for n > 12, Tab].é II displays 4séts‘ obtained by satisfying eqv_;ia,..
'tlon (9).

A method of moment ma.tching which does not lead to negative weights
is obtained by matching half-range level moments. Instead of satisfying
sxicce’ssively‘ higher mbmgnts by choice by level weight, sequences bf lower

order moments are matched by cliéosing point weights. For example, in



TABLE I

Completely Symmetric Quadrature Sets Satisfying
Even Moment Conditions.a'

%The weights given sum to 0.5.

2
My ! Y1 P3
= 1 0.3500212 0.1225148 0.3333333  0.3333333
2 0.8688903 0. 754970k 0.1666667
— 1 0.2666355 0.0710945 0.2547297 0.1761263
2 0.6815076 0. kohli527 0.1572071 0.157207L
3 0.9261808 0.8578110 0.0880631
— 1 0.2182179 0.0Lk76191 0.2117283 0.1209877
2 0.5773503 0.3333333 0.1370370 0.0907407
3 0.7867958 0.6190476 0.0907407 0.0925926
L 0.9511897 0.904k7619 0.0604938 ,
- 1 0.1672126 0.0279601 0.163981L 0.0707626"
2 0. 4595476 0.211184%0 0.1190886 0.0558811
3 0.6280191 0.3944080 0.0631890 0.0373377
L 0. 7600210 0.5776319 0.0624786 0.0502819
5 0.8722706 0. 7608559 0.0558811 0.0258513
6 0.9716377  0.94k0T799 0.0353813
1 0.1389568 0.0193090 0.1371702 0.0489872
2 0.3922893 0.1538909 0.1090850 0.0413296
3 0.5370966 0.2884727 0.04L2097 0.0212326
L 0.6504264 0.4230545 0.0643754 0.0256207
5 0. T467506 0.5576364 0.0400796 0.0360486
6 0.8319966 0.6922183 0.0392569 0.0144589
7 0.9092855 0.8268001 0.0L413296 0.0344958
8 0.9805009 0.9613820 0.0244936 0.0085179
1 0.1206033 0.0145452 0.1195893
2 0.3475743 0.1208079 0.1026829
3 0. 4765193 0.2270706 0.0282212
L 0.5773503 0.3333333 0.0739389
5 0.6630204 0.4395960 0.0181985
6 0.7388226 0.5458588 0.0471265
7 0.8075404 0.6521215 0.0313726
8 0.8708526 0.7583842 0.0270754
9 0.9298639 0.8646469 0.0332842
10 0.9853475 0.9709096 0.0185105

The point weights are those of Fig. 3.
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TABIE II

Completely Symmetric Quadrature Sets Satisfying
0dd Moment Conditions.®

My “i2 Vi Py

n =4 T — — —_—
0.2958759 0.0875k25 0.3333333 0.3333333
0.9082483 0.8249149 0.1666667

n=0 0.1838670 0.033807L 0.2178992 0.1024651
0.695051k4 0. 4830964 0.2308682 0.2308682
0.9656013 0.9323858 0.0512325

n=8 0. 1422555 0.0202366 0.1721829 0.1090122
0.5773503 0.3333333 0.2101402 0.0631708
-0. 8040087 0.6464300 0.0631708 0.2939388
0.9795543 0.9595267 0.0545061

n=- 12 0.0935899 0.0087591 0.1168911
0.4511138 . 0.2035036 .- 0.2531215
' 0.6310691 0.3982482. =0.1410287
0. 7700602 0.5929927 0.2658355
0.8875457 0.7877373 ~0.0388597
-0.9912022 0.982L4819 0.0440403

a"I‘he weights given sum to 0.5. The point weights are those of Fig. 3.

1l



Figure 2, the normalized integral of n on the unit sphere along the

latitude of u, is oJ1 - p]?/n. Defining this quantity as
2Jl - ule n = EPiui/ZTPi ’ (lo)

vwhere the point weights are those belonging to the Hys gives a sequence
of loweorder moment conditions, one for each p level. ' These moment equa-

tions for Figure 2 are then

(o, + 2, + 202N 1 = "/x

PyHy + DPphg + Piig

Poity + Pohy = (By + D)L =, %/n (11)
, [~ 3,
PiHy = 2PN - e /7

For general even n, the relations analogous to (11) give n/2 relations

for the n/2 quantities Py and by However, the last two relations

Wy + By = a1 - ”ﬁ/a-l T (122a)
- ah - s /o ™ (120)

M1

cannot both be satisfied. To obtain a consistent set of equations, Eq.
(12b), representing the smallest 1a£itudinal area, is deleted and, in-
stead, (6) is satisfied so that (7)>is also satisfied. Thus the zeroth,
second, and a sequence of firsteorder moments are matched. Then (12a)

with (4) serves to define My

«15-



“i= (n-2)L-vi1-a)-(n -5)0:

(13)
(n-5)a - (n-2)n-8)

and hence all p,. Above, & = [(h/ﬂ')‘2 - 11‘2. The remaining n/2 - 1 P
are found from equations analogous to (1l). Sets obtained in this man= -
ner sre displayed in Table III. Weights obtained in this manner are

apparently always positive.

BIASED SYMMETRIC QUADRATURE SETS

| Complete symmetry is required only in threee~dimensional geometries.
In lower dimensional geometries a i‘e].aaca,tion of symmetry reqﬁirements
allows additional degrees of ijeedom; A s;'.m?le such relaxation is to
keep the point and level arrangement of complete symmetry while' :a.'l_'l.ow:i.ngv

the points on each axis to be chosen from an independent set. In this

case the requirement that points be on the unit sphere

2 2 2

Ryt g+ g = 1.0 S " (1k)
is solved by
| umz-‘ = “12 + (m - l)_A
an = -nf + (m = 1)A
b = 8+ (m=1)a ()
a= 2= w? -0 - £ - 2)

vhere m = 1,2,...,n/2.

«lb= -



n=1.4
n=.6.
n=2=5
n =12
n =16

TABLE III

Completely Symmetric Quadrature Sets Satisfying

Level Moment Conditions.®

My

0.3120418

0.8971121

0.2390944
0.6865981

0.9410992

0.2010510
0.5773503
0. 7913565
0.9587268

0.1596536
0. 4584710
0, 6284124
0.7613203
0.87h2511
0.9741773

0. 1364305
0.3917822
0.53700L40
0.6505792
0. 7470832
0.83247h2
0.909886%
0.9812102

2
Hy

0.0975949
0.8048102

0.0571L661
0.4714169
0.885668

0.0hkol215
0.3333333
0.62624452

0.9191570

0.0254893
0.2101957
0.3949021
0.5796086
0. 7643150
0.949021%

0.0186133
0.1534933
0.2883733
0.4232533
0.5581334
0.6930134
0.8278y3L
0.9627734

Yy

0.3333333
0.1666667

0.2582459

'0.1501748

0.0915792

0.2174330
0.1283389
0. 0910220
0.0632048

0.1726823

0.1022793
0.0738241
0.0605145

0.0516366

0.0390632

'0.1h75402

0.0874396
0.0631648
0.0519818

© 0.0451381

0.0L02906
0.0361672
0.0282776

P;

0.3333333

0.1831585
0.1501748

0.1264098
0.0910232
0.07h6315 .

0.0781264
0.0516366
0.0k29194
0.0351903
0.0309047

0.0565552
0.0361572
0.0285758
0.0262421
0.0234298
0.0188960
0.0178932
0.0156931

a"I‘he weights given sum to Q.5. The point weights are those of Fig. 3.
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If complete symmetry is required, u12 = 1‘112'= glg, and equation (4) is
obtained. Requiring rota.'biona.l' symmetry a.bouf. the £ axis means that

2.__2 2. ‘ e . 2
My = Np but §l is a free parameter, say gl = bp.l . Then

b= B+ (= 1)a
e 2=t + (m-1)a | (16)

A=2[1-(2+0)2)/(a-2)

Péint weight diagrams for this case are given in Fi_gu‘.rerh. Here, two
dii‘:f‘erent. sets of level weights are defiried by theﬂ p'oiht weights, one
set corresponding to p 6r 1 levels and one set corresponding to ¢ levels.
Again i£ i;s assﬁmed that point weights are formed as a sum of basis
veights (a, 2y b, ) to maintain 2(% - 1) different point weights.

- There are now more conditions which can be satisfied and more ways in
vwhich they can be sa.jtisfied. ﬁali-r&:ge moments similar to (9) cw.id |
be matched along the ¢ axis and whole-range conditions matched along the
f u (and hence n) axis. Half.range, low-order moments could be satisfied
in the two different directions. For example, for n = 6 the low.order

moment conditions‘ are
(o) + By + p3)2J1 - uf T = Py + Doty ¥ Pahly (172)
Py N1 - L“32/“ = Pghy (17¢)

=18~



b 1 V1T Pt P

2 2 Vo = Pp up = 2P
6 1 W) =Dy + Dy + Py
2 2 Vp =Dyt By
3 %3 V3 = b3 U3 = Ayt my
8 1 V1 TP tPy+t Pyt Dy
2 2 Vo =Pyt Pyt Rg
3 4 3 W3 =P3+Pg
5 6 6 5 vy = Pg uu=2p5+2p6
10 1 Wy =P+ Dyt Pyt Py ¥ Dy
2 2 Vp =Pyt Py + P+ Py
3 4 3 W3 = Py + Pg + Py
5 6 6 5 wh=P5+p8
T8 9 8 7 Vs = Pq ug = 2py + 2pg + Py
and

Py + Pg+ Pg =P + Py + Py

12 1 wl=pl+p2+p3+p5+p7+plo
2 2 w2=p2+ph+p6+p8+pu
3 & 3 Wy = Py + g+ Py + Ppp
5 6 6 5 Wy, = Pg + Pg + Pyp
7T 8 9 8 7 Vg = Py o+ Dy
1 11 12 12 11 10 Vg = Pig u6=2(plo+pll+pl2)
and

Py +Pg+Pg =Py + P+ Py
Py # Py + Pyy = Pg + Py + Pyp

1 1 W) =Py + Dy + Pyt Pg Pyt Pyt D3
2 2 Vp =Pyt Py +Pg Pyt Pyg t Py
3 04 03 W3 = Py + Pg + Py + Pyt Pyg
5 6 6 5 Wy = Pg + Pg+ Pyp + Pig
7 8 9 8 71 W5 = Py + Ppy + Pyg
10 1 12 12 11 10 Vg = Py + Py
13 1k 15 16 15 1413 w,o=Dpyy up = 2(py3 + Py, + Pyg) + Pog
and

P3+P6 +P8 =Ph+P5 +p9
P5+P9 +Pu=P6+P7 +P12
p7+912+?lh=p8+plo+pl5
Pg+ P1p + Py5 = Pg *t Py * Pig

Fig. 4. Point weight diagrams for half-symmetry. The level weights w

apply to the p or n levels, and the level weights u, correspond to ¢
levels. Only the different u level weights are showl for each n.

~19~



\
Keeping b as & free parameter gives five (n - 1) quantities, M gnd‘

Py Py Py By to be determined. Deleting (17¢) and (18c) and(satis\,fying
the condition Z‘.p]; = l.gives five_(n - 1) e@étions. 3 (»fbul) is then
determined by (18b) and the remsining equations are linear in the'pj.

An altema.ti've is 'Eo define accumlated weights

3

W, = W,

D
. (19)
o d

U.= 2 u

sothai? Wj+l - W'j = W,j+l and Uj+l - U.j = uj+l

and Uj are separated by"the same delta as the “,j and ¢ ,j: .

and assume that the wj

A - w;-» (i - 1)a
U suy s (L=l ‘ - " (20)
a-2[1-(2+ b)u,°1/(n = 2)

Then the three indepenaent quantities Hqs Wl, and Ul can be fixed by

matching the mormalization. condition

‘nf2 | nf2 _ : ~ : ‘
Zow=2%u-=1 : _ (21)
i=1 i=1



and the two seconds=moment conditions

o2 vy, = i) bt = 1/3 (22)
i=1 i=1
for a given b. A consequence of equation (22) (but independent of the
assumption (20)) is the simpler relation
n/2-1
S oW, +U,=n-=2 (23)
=1 9 9

Sets of quadrature coefficients have been prepared using the last-
d;escx;ibed receipe, and the resulting weights were found to be positive
for the particular value of b = 2/3 used. Since such sets depend upon
b, the spread of directions s.loné the ¢ axis can be varied relative to
the 1 and 1 axes direction spreads.

In the above, the number of independent point weights has been
severely limited both by using the point arrangement of Figure 2 and by
assuming various relatioﬁships a.mong'the point weights. A genefa.l method
of choosing quadrature weights which removes these restrictioné has been
developed in the method of moments, described in Reference 5. In these
methods, directiqn. sets can be chosen so that discrete ordinates quad-
rature is equivalent to a generalized spherical harmonics method with a
given boundary condition, say a Marshak boundary condition for no in=-
coming flux. Once the direction sets are chosen, the quadrature weights

are found by satisfying a general set of moments. Here, only the case

‘..2'1_.



in vhich points are asrranged as in Figure 2 is discussed. Then, given a
' set of directions on each axis (with, however, ui2 + 1 32 + gk2 = 1),
the moment conditions for the n(n + 2)/8 point weights are given bjr the .

following tri:anglliér za.:c':ra,y(5 )

Yoo Yoo VYo .+ . Yo,n-2
VYoo Voo . .

wl'o . . ]

V2,0

n= 2, lF, 6y ..., where ¥, symbolizes a moment of the form
: - im : o

!+ 1y-om+ 1y
n Zpk”iz" Jm = é".:(L 21 irxfx +2§ )
rGIrE——)

(24)

Above, Py is a point weight corresponding to the point located by Hy and
n 5 To: ilJustra.fe, consider n = 2. Then P = 1 is the single equation
to be satisfied. When n = 4 there are threeveights and three equa:bions
Yoo Py *tPp *Py =1
| 2 2 2 Ty
Yoo PyHy Pl + Py = 1/3 - (25)

| 2 2 2
Yoo PNy * Py +Pgfy = 1/3

-&-
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Given the directions By and 7 3 the above set can be solved for' three

' point weights, that is for & completely unsymmetric choice of directions.
The above formalism contains the half-symmetric case and the completely
symmetric case. In particular, for the halfe-symmetric case only the
diagonal and belowediagonal moments of the triangular array are needed.
For n = 4 there are only two different point weightg and the moment

equations become

Yoo Pt 2P = 1

1/3

(26)

2 2 2,
Yoo My Py + (g7 + u7)m,

Forn=6 a.nd four point weights in the half-symmetric case there are

four equations

Yoo P+ 2Py + Py + 2p, =1
2 .
VYoo by + (u]_2 + by )P, + u22p3 + (4 u32)ph = 1/3
4
Vo ulhpl + (uy + u';)P2 + ughps + (ull+ + u3h)ph = 1/5

2 2 2 2
Ypp My 0y Py + (uymy

+ T W e u22n22p3 + (ul2n32 + u321112)p1+ = 1/15
| | (27)

For the n = 12 halfesymmetric case there are 12 different point weiéhts

illustrating that the mumber of different point weights is not restricted

ton - 2. For the completely symmetric case only the first columm of the

triangular array of moments need be used indicating that even-moments

matching is all that is required. The completely symmetric case is also



contained in the half-symmetric case. For example, for n = 12 and the
uil(and;hence nj) of Teble I, solution of the 12 moment equations
gives five differentrpoint.weights, gxaétly equal to those of Taple I.
Theraboveqformﬁlation is more general than previous methods since the
-direction sets can be détermined independently, and, although not il-
lustrated heré, can be extended to ﬁore general point arrangeﬁents.' Be-
cause of ﬁhe generality, the above mgthod is conveniently coded to pro=-
duce quadrature sets (a general matrix formulation can be written).
Howéver; lacking any a priori choice of directions, meaningful com=
parisions of different quadrature sets are difficult to make.

Most of the abo&e serves only to describe possible ways in which
Jthe additional degrees af freedom.obtained by relaxing symmetry can be
utilized, and no attempt has been made to exhaust possibilities or to
determine, say, optimum moment conditions or procedures for choosing
free parameters. Numerous additional symmetry relaxations are possible.
The saﬁe~number of points can be kept on each axis, but Hys Ty and gl‘
can be chosen independently; or different mimbers of po;nts can be
chosen on each axis. Level conditions'can be relaxed on one axis or all |
axes. The same number of points on each level can be used. One such
schezﬁe which is suited to orthogonal guadrature is the following. Sup-
pose the quadréture of the surface of the unit sphere is accomplished by

(for one octant)

RSV ® (28)

o



with o defined as 1 =Jl - ga sinw and p =1 - 5-2- .cos w. Then

2
1 1Lt ,
R
| lL-u -t (29)
1 1 .
SR e
0 0 1 2
-4

with u = -Jl - ge Y. This suggests that the y integration be accom=-
plished by Tschebyschev quadrature and the ¢ integration by Legendre
quadrature. Then, for example, for quadrature with three y points for
each of three t points (Figure 5) there arenine points on the unit sphere
octant,with the distribution of p (and n) points being determined by
the ¢ point selection. Now points lie on the unit sphere on ¢ levels
but not on u or n levels, and point weights are the product of Legendre
~and Tschebyschev weights. If it is argued that three y points are not
needed on each ¢ level, then a different order Tschebyschev quadrature .\
can bé used on each level as illustrated in Figure 6. This sort of
scheme gives a significant improvement over completely symmetric quad=-
rature when one-=dimensional cylindrical critical radii are calculated.
Fof a given set of ¢ levels .{gl,ge,..i,gn/e]' g, < &y <...< gn/2
and weights {wl,we, Loy /2] corresponding to a Guassian quadrature on
the ¢ interval [-1,1] the use of the same Tschebyschev quadrature on

each £ level gives the p abscissae and point weights

=2he



-gp vy

Fig. 5. Point arrangement for the same order of Tschebyschev quadrature
on each & level. The order of the quadrature need not be the same as
the number of ¢ levels.

=26m



Fig. 6. Point arrangement for different order of Tschebyschev quadra-
ture on each ¢ level. Points do not all 1lie on the same n or p levels
as in a completely symmetric arrangement.

-27-



..:J]_ - g_e' T p' =0

Hio T <21 . : 4
_ [,z 2n =23 # 1 _ i
byg = 1-¢g," cos (-——-—L—ﬂan ‘ _) P = § (30)
i=13,2,...,n/2 . j=212,...,n

Here the p.( points with zero weights are those incoming directions used

as s‘barbing directions in the cu:r:rent version of thé Sn 'discrete ordi=-
nates transport code.v The p vaJ.xieé are such that a complete quadrant

is integrated, and the weighfs are such that the ares of the quadrant

is u.nity. " For the sa.}m_e E‘i and W the use of a different order Tschebyschev
quadrature on each ¢ level (as in Figure 6) gives the p and point weights -

=--J1-g12,- o : pi=0

Hi0

_ ‘ " o (31)
A 3 on = 44 = 25 4 5_ !
iy =Wl = £y cos oy % cryeo
i= 1,2,..{,n/2 'j = 1,2,...,(n + 2= 21)

These q\wd.ra't:u.re coefficients for the gi comsponding to .
P .y and DP /2-1 Aqua.dra‘l?ure are given in Table IV through Table VII
for n = 4, 8, and 16.

Finally, quadrature schemes that are dependent upon material come
position can be-prepé;'ed.. As a simple. example consider the angular de=-

pendence of the flux of the monoenergetic transport eqlié.tion in an

«28=
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TABLE IV

Pn_l(g)Tn(p) Quadrature Sets - Same Order

TEVSet On Each t Level.

-0.5083741

0.1829577
0. 4696763
=0.9404323
0.3598878
0.8688459

~0.2790043
0.0544310
0.1550065
0.2319836
0.2736433
-0. 6044192
0.1179163
0.3357973
0.5025562
0.5928054
-0.8507736"
0.16597767
0. 4726644
0. 7073924
0.8344262
-0.9830319
0.1917800
0.5461432
0.8173612
0.9641432

0.0
0.01265357
0.01265357
0.01265357
0.01265357
0.0
0.02779763
0.02779763
0.02779763
0.02779763
0.0
0.0392133
0.0392133
0.0392133
0.0392133
0.0
0.0453355
0.0453355
0.0453355
0.0453355

£

0.8611363

0.3399810

0.9602899

0. 7966665

0.5255324

0.1834346



'IABLEV

/2 l(g)T (1) Quadrature Sets - Same Order
T Set On Each ¢ Level

i3 Py &
n=1.4 -0.6148102 0.0 - 0.7886751
i 0.2352776 0.125 '
0.5680104 0.125. -
=-0.9774159 0.0 0.2113249
0.3740408 . 0.125
, 0.9030143 0.125
4 ‘8 =0.3661187 0.0 0.9305682
‘ 0.0714262 0.0217409 B
0.2034046 0.0217409
0.3044166 0.0217409 .
0.3590838 0.0217h09
-0. 7423696 0.0 | 0.6699905
0.1448291 0.0407591
0.4124384 0.040T7591
0.6172578 0.0407591L
0.7281052 0. ol+o7591' . -
-0.9439776 0.0 0.3300095
0.1841609 . 0.0407591
0.5244158 . 0.0LkOT7R91
. 0.7848887 0.0407591
0.9258394 0.0k07591
-0.9975867 0.0 . 0.0694318
0.1946195 0.0217409 .
0.5542294 0.0217409
0.8294630 - 0.0217409 - -
"~ 0.9784k18L - 0.0217409

aFor convenience-theAsets have been ordered as they would be entered in
For brevity the negative-weighted p directions (same .
in magnitude as the positive directions) have been omitted.

\

presént Sn codes.
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n=5h
n=28
n =16

TABLE VI

Pn_l(g)Tn(p) Quadrature Sets = Different Order

a
T Set On Each & Level.

=0.5083 741

0.3594748
~0.9404323
0.3598878
0.8688459

«0. 2790043

0.1972858
-0.6044192

0.2313012

0.5584103
-0.8507736
2201964
.6015878
8217842
.9830319
.1917800

.8173612

el eoNoNoNoNoNoNe/

~0.1452095
0.1026786
-0.3282956
0.1256333
0.3033056
-0. 5006822
0.1295861
0.3540358
0. 14836218
-0.6552589
0.1278346
0.3640423
0.5448278
0.6426683

5461432 -
.9641h32

506143

955953

555953
.0

.0
.0
.0
.0
.0

COO0OO0O0O0O0000O0

1556338
1556338

.01585975
-01585975
.01585975
.0

0.01557862
0.01557862
0.01557862
0.01557862

.0
.0
.0
.0
.0
.0

OCOOO0OO0OOCOOO

3]
0.7886751

- 0.2113247

0.9602899
0. 7966665

0.525532k

0.1834346

0.9894009
0.9445750

0.8656312

0. 755404k



TABLE VI (Continued)

n = 16 continued-

~0. 7862754 0.0 0.6178762
0.1230006 0.01495960 ‘
0.3569615 0.01495960
0.5559807 0.01L95960
0. 7005765 0.01L95960
0.7765950 0.01495960 o

-0.8889436 0.0 - 0.4580168
0.116030L - . 0.01409638
0.3L01839 0.01409638
0.5411545 0.01409638
0.7052463 0.01409638
0.8212765 0.01409638
0.8813385 0.01409638

-0.9595308 - 0.0 0.2816036
0.1074405 0.01304310
0.3169175 0.01304310
0.5105032 0.01304310
0.6784908 0.01304310
0.8124567 0.01304310
0.9056836 0.01304310
0.9534967 0.01304310 .

-0.9954761 0.0 : 0.0950125
0.0975737 0.01184066
0.2889715
0. 4692641
0.6315234
0. 7695135
0.8779316.

0.9526112
0.9906826

a"For convenience the sets have been ordered as they would be entered in
present Sn codes. For brevity the negative-weighted u directions ( same.
in megnitude as the positive directions) have been omitted.



n=U4
n=28
n =16

TABLE VII

T Set On Each t Level?

uij

-0.6148102

0. 434736h
=0.9774159
0.3740L08
0.9030143

=0. 3661187
0. 2588850
-0. 7423696
0.28L40925
0.6858599

-0.94397762

0.2443193
0.6674930
.9118123
9975867
.1946195
.554229L
.8294630
.9784184

eNoNoNoNoNo

~0.1982824
0.1402068

-0. 4393147
0.1681184

0.4058737
«0.6L66T4L
0.1673716
0.4572678
0.6246394
-0.8061455

0.u272712

78704 .

0.6702855
0.7906557

kel
o

oo
§5°S

OO

253071&

779763
T79763

2614222
.02614222
.02614222

OO0 0O00000O0
O
OI’\JBO

OOOOO

226677h
0. 0226677u
0. 02266774
0.022667Th

n/2-l(§)T (w) Quadrature SetS<-D1fferent Order .

£

- 0.7886751

o.21132h9

0.9305682
0.6699905

0.3300095

0.0694318

0.9801.4493

o.8983332h

0. 76276620

| 0.59171732



'k

TABLE VII (Continued)

n = 16 continued -

0.9949885

0.00316339

-0.9128556 0.0 0. 40828268
0.1428021 0.01813k19

0. 414ho77 0.01813419

0. 6454864 0.01813419

0.8133602 0.01813419

0.9016167 0.01813419

-0.97145258 0.0 " 0.23723380
0.1268000 0.01307111

0.3717588 0.01307111

0.5913828 0.01307111

0. 7707051 0.0130711L

0.8975049 0.01307111

0.9631417 0.01307111

-0.9948151 0.0 0.10166676
0.1113917 0.00794218

0.3285724 0.00794218

0.5292775 0.00794218 -

0. 7304429 0.00794218

0.8k423356 0.00794218

0.9389910 0.00794218

0.9885625 .. 0.00794218

~0.9998029 0.0 : 0.01985507
0.0979998 0.00316339 '
0.2902275 0.00316339

0.4713038 0.00316339

0.6342682 0.00316339

0.7728581 0.00316339

0.88L7h7h 0.00316339

0.9567517 0.00316339

8For convenience the sets have been ordered as they would be entered in
present Sn codes. For brevity the negative-weighted pu directions (same
in megnitude as the positive directions) have been omitted.
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infinite medium (1sotropic scattering)

c/2
l+ﬁo

cta.nh-lho :(32)

pn)

1]

A
0

o]
I

= (z:s + vzf)/z,c

Picking a two=-point quadrature such that this angular dependence is

correctly integrated gives

W 1.0

1

(33)
2

My

1 - cl/ho2

vhich also correctly integrates up(n) and p.gjé(u); For |c = 1] K 1,

on ~ 3|l - c] so that By~ J/~/-3 which is the result obtained by re-

quiring Wl“lz = %‘- as in S,‘2 or diffusion theory quadrature. As ¢ =0
(pure absorption), Wy —1.0 indicating that to integrate a flux that
is becoming more biased in the forward direction Hq éhould'be chosen
closer to unity. As ¢ - e y —0. Using p, determined by (27) gave
improved answers in critical. slab thicknesses compared to using

b = 1A3. Higher order qaadra.turés can be obtained in a similar
manner by requiring more moments of P(u) to be satisfied. However, in
a realistic problem, material properties change as a function of energy

and position so that gains in accuracy obtained by using material de-

pendent quadrature would seemingly be offset by the more complicated



computation Inecessa.z;y for including the quaérahue coefficient material
dependence. | |

Althougli the completelyv symmetric quadre.tur'e sets-are designed for
'thre.e-djmensional geometries, one~dimensional monoenergetic critical
.thick.r’lesses were calculated using the sets of Taebles I through. III. '
‘Ihese results, for a variety of secondaries ratios ¢ = (ZS + vzf)/zt,
ave aisplayed in Tables VIII through X. Comparable calculations for
P

n=-1
re_sults were taken. Of the three sets compa.red, the set prepared by

and DP n/2-1 sets are given in Reference l from which the exact

satisfying even=moment condltlons (Table I) is particularly good in
cylindrical geometry and is better than the other two sets in spherical .
geomet:r;y. The set generated ‘o“y.ma.tching sad moments.' (Table II) is ef-
fectime._only in plane geometry where,the SB set is better than or com=
parable to the other two Sy4 sets. This behevior is analagous to that of
DP nfo-1 - sets (half-ra.nge Gauss-Legendre quadra.ture) which, due to a
comblnatlon of :f‘avorable c:.rcumstances, are pa.rticula.rly accurate in
one~dimensional plane geometry Although no complete test of the
Legendre-Tschebyschev sets was made, for c¢ = '1.02 in a cylinder the
P3T), setﬂ(Table VI) gave a critical radius of 9.0353 compared to & DP, T,
(Table VI‘I).radil'_ls of 9.0264. These results bracket the 5), results
obtained using the qua.dra.ture set from Ta.ble I.

For the general use of quadrature sets it is reconnnended that the
" .DP n/2-1 sets always be used in one-dimensional plane geometry_, _ In one=- -

dimensional . cylinders the completely syxmnetric sets of Ta.ble I or the

«36= -
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TABLE VIII

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table I.

Slabs (Half=Thickness)

5.68291 5.67065 5.66855 5.6655
3.32171 3.30659 3.302L45 3.3002
2.13864 2.11998 2.11555 2.113k4
1.32271 1.29710 1.29184 1.2893
0.78186 0. 74758 0.73964 0.7366
0.56329 0.52656 0.51579 0.5120
0.l266 . 0.40637 0.39369 0.3887
0.36551 0.33091 0.31706 0.3108
Cylinders
Sh 88 - Exact
9.03379 9.0436kL 9.0433
5.3978k 5.40970 5.4118
3.56045 3.57335 3.5783
2.27052 2.28245 2.2884
1.38380 1.39215 1.3973
1.01122 1.01642 : 1.0209
0.80073 0.80356 0.8067
0.6641Y4 0.66524 0.6673
Spheres
Sy, Sg 816 Exact
12.01730 12.02130 12.0229 12.0270
7.25660 7.26797 7.27197 7.2772
~ 4.85011 L.86577 14.86982 L.8727
3.14533 3.16268 3.16887 3.1720
1.96022 1.97657 1.98206 1.9854
1.45371 1.46828 . 1.47316 1.4761
1.16338 1.17635 1.18072 1.1833
0.97267 0.98432 0.98826 0.9906
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TABLE TX

' Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table II.

Slabs (Half-Thickness) .

.5, ~ Sg Exact
5.62241 5.66694 5.6655
3.25389 : 3.30066 3.3002
2.06750 2.11367 2.1134
1.25270 1.28847 1.2893
0.72152 0.73266 0.7366
0.51256 0.50665 © 0.5120
0.39934 0.38375 0.3887
0.32786 0.30716 0.3108

Cylinders
8.97433 9.02093 ' 9.0433
5.34554 5.38904 5.4118
3.51360 3.55496 3.5383
2.22647 2.26442 2.288%
1.34377 1.37406 1.3973
0.97458 0.99820 1.0209
0.76735 - 0.78510 0.8067
0.63367 0.6h67h 0.6673
Spheres
8), Sg Exact

11.97480 12.00510 12,0270
7.22652 7.25991 7.2772
L. 82443 4.85785 4. 8727
3.12868 3.15830 3.1720
1.9488L 1.97416 '1.9854
1.44513 1.46662 14761
1.15644 1.17508 - 1.1833

0.966837 ©0.98329 . 0.9906
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TABLE X

Monoenergetic Critical Thicknesses (MFP) Calculated
Using Quadrature Sets of Table III.

Slabs (Half-Thickness)

5.64343 5.65669 5.66343 5.6655
3.27617 3.28879 3.29616 ' 3.3002
2.0904k 2.10091 2.10884 2.113L
1.27495 S l.27710 . 1.28446 1.2893
 0.74089 0.72800 0. 73171 0.7366
0.52880 0.50853 0.50796 0.5120
0.41322 0.39012 0.38617 0.3887
0.33990 0.31624 0.31004 - 0.3108
Cylinders
S)-l' 88 ’ — Exact
8.99519 9.0303 9.0433
5.36340 5.39658 5.4118
3.53025 3.56176 3.5783
2.24195 2.27073 2.288k4
1.35734 1.38131 1.3973
0.98692 1.00622 1.0209
0.77853 0.79397 0.8067
0.64381 0.65619 0.6673
Spheres
| 5), ' Sg ' S1¢ Exact
11.99720 12.01610 12.01840 . 12.0270
7.24297 7.26417 7.26841 7.2772
4.83668 - 4.85924 4.8674h2 L. 8727
3.13624 - 3.15837 3.16669 3.1720
1.95406 . 1.97387 1.98098 1.985L4
1.44909 1.46633 1.47241 1.4761
1.15968 1.17482 1.18012 1.1833

0.96957 0.98307 0.98777 0.9906 .



'PnTn sets are recommended. In one-dimensiona.l spheres, the Dl?'n /2_1 or
the sets of Table I seem best suited. In two- or three-dimensional
geometries the completely synnnetrifc' sets of .Table I or Table IIT would
seenl best, but more compuﬁati’ona.l experience is needed. In special
situa.tions, V't_;vhe biased ha.ji‘-s&metric sets and the material dependent
sets can be useful. For the former, two=dimensional cylinders with
small height-rbo-diame-ber ratios require accurate a.ngula.r representation |
for dlrections nearly para.].lel to surfa.ces. The accurate representat:.on
ca.nbe ob:b’_ai,ne_d by proper choice of tne .paraineter b. Ii«“or'neutron or
photon transmission problems, accurate represente.tion in the inwexrd and
outward directions is needed. In these problems either the na.]i‘-
syrmnetric' or material dependent set‘s can be used to choose biased
direc‘t;ions sets- |

Fihaiiy,\ it should be mentioned tha:f;‘ recent work(5) has indicated
that proper treatment of the boundary conditions, z:w.nd,i in.cur'ved geoin=
eftries,‘ _proper handling of the ra.y-to-ra.y” transfer terms can be as
i:mportant as choice of the angular quadrature. For exe.mple, n.n pla.ne
geometry, part of the accuracy of DP /241 sets.1s due to'the fact that
the Ma.rsha.k boundary conditions for zero incom:Lng flux are sa.tisfled
Nu.merica.l experiments in which one of the Ma.rsha.k bmmda.ry conditions
was a.pproximately satisfied hawe s1gnifica.ntly improved P3 results in
plane geometry.

'Thus, the problem of choosing numerical angular quadrature sets is

indeed complicated. . The work presented in this report should serve as s



gulde to future work and permit the intelligent preparation of quadrature

sets tailored to specific needs.
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APPENDIX

The original S method(l) represented the angular flux.in plane

geometry by connected‘line segments. That is,
n
N(X,p.) = -2- [(IJ' = uj_l)N(x)uj) + (P-j - 'J')N(r)uj_l)] ‘ (A-l)
‘with
by = -1 + 2j/n j=0,1,2,...4n (4=2)

Substituting (A=1) into the transport equation for plane geometry

(isotropic sources)

n §_1‘I_(:3:§_{g2 + ol(x,u) = 8(x) ‘ (2-3)

and integrating on p from “j-l to “j gives the original Sn difference

equation

2u, + W, an. B, + 2u, aw, ' (A=k)
g J=1 J J J=1 J=1 4
( 3 ) = +( > + o(NJ. + Nj_l)

=}3=



~—

where Nj = N(k,us). To find a system of discrete ordinates equations

equivalent to (A-4) with directions given by (A=2) let

J
N.= Z b, N B : (A~5)
3 4o 91 9=

and choose boo = 1 so that ﬁb = NO. Next form linear combinations of

eqﬁa’cioﬁs (A-’h) with coefficiénts a 3k with 'ajo = 1. That is, form a
first equaﬁion.by adding the j = 1 equation of (A=) and a), times the

= 0 equation of (A-k):

< [__“.]-.3.-.'-.112 W + (“1 + ety . 3‘1_1“0) ] | (A=6)

+ oy + (1 + all)No) = (2 +a,)s

|Q:

"

Then form a second equation by adding to the j = 2 equation of (A<l)

times the j = 1 equation and a,, times the j = O equation to obtain

8.21

g {Hot ”1 Ho + 2“1 8o1 (2”1 + “o)-] 1t 2“‘o
& 3 N+ 73T T 3 %21
| | (a-7)

+ azeuél' N% + O’[N2 + (1 + a‘el)Nl + (a21 + 8'22)’NO] - (2‘ + 28, +

Proceeding in this manner to form the ,jth equation by add;ng» to the jth

equation of (A=l) a‘jk times the kth preceeding equation, k = 1,2,...,J

e ‘

a22)S



gives

+ (2u. + M. .
(s “j-l-l)gd;i]rr.
i=1 3 J-i

Hy + 2u0
¥ [_’3'"—' %531 F HoPa) Yo (a-8)

J J
+ 0[N, + Z (&, ,+2a, N, . I=[a,.+2 & a, . .]|S
[J i1 ( 3 i-1 " 7, i) J-l] ( 3J 1-1 9 1-l>

For these equations to be equivalent to a discrete ordinates system

b, + W 3=1 {(n, +2u_.)a. .
{g J=1 NJ+Z[J_11 177, 1=1

in N

J

Hs

&l &

oﬁj =8 ‘ (a-9)

the coefficients a., must be chosen so that an equation of the above

Jjk
type is formed. TFor example, in equation (A-6)

2u, + M + 24
17 Mo gl 0
(2 +a ) p.lN ( 3 )Nl + (———-3—-— + p'Oall) N, (A=10)
and
(2 + a.ll)Nl =Ny + (1 + _all)No (A-11)
2|.1.l + uo _ 4
Letting 5 gives the same coefficient for N, in (A=-10) and

(A=-11). Then if a,, satisfies

2 2
Bl () 0y Ry G

-hg-



that is, if a;; = -1/2, the coefficients of N, are the same.

Finally, since N ="b, N, + b Ny byg = 1/(2 + a)q) = 2/3 and by, =
(1°+ a.ll)/(e +a.ll) = 1/3. In _gez_leral, W:Lth by = (2“3 + p.j_l)/3 the

a.

5k mst satisfy the relations

[(“j+1-i oy gday gy v (Bugy 4 '“j-i;l)"‘fji] =3y (25,50 + 25, 5)
i ; 1’2,ooo,j - I ~‘ ’ . (A-l3)

in addition to (A-12). The b,

3k are given by

J
b, /{2 % a, . . +a, .
o /\( j=1 de1=1 73, J) .

K ) o : (A-1L)
J
b, = la. , + a. 2 X a, .., +a,,
Jk Jrk J:k"'l/ \ j-1 011 i/
Since the nriginal quadrature was trepezoidal, that is,
1 n=l1
{1 Nap = NO/2 + 121 Ny +'Nn/2)/.n : (a-15)

the '-weights associated with the -equivalent discrete ordinates quadrature

.a.re given by the identity

Nog n-10N N, n _
=+ Z —+ 5= X wNlN : S o ' :
2n‘ 4o 1 2n =0 Jg _ /
' - (A-16)
n J . - '
= Z w, X b,.N
jzo J.i=o Jl j-i



Equating coefficients NO’ Nl’ etc., gives a set of equations which may

be solved for w,.:

Following this

Bl

s

wnbnO

discrete ordinates weights and directions:

n=2

=W P k‘C)1 < D h‘C)l (o

53
-17
-1/3

2/3

5

-1
i
1/3
5/6

}T=

’ wnbn, n"'l

. whbn,n-2

(A-17)

formalism through for n = 2, 4, 6 gives the following

1/10
1/2
25

23/4ko,
13/5k
11/45
19/72
59/297



H., : " : w

2 b 3
0 -1 .. 3/8
1 =7/9 116/729
2 -4/9 60k/3645
3 -1/9 = 2l7/1458
I 2/9 - 118/729
2 5/9 257/1458

8/9 1640/12393

As is readily seen these weights axre directions of an equivalent dis-

crete ordinates system representing é, nbnsymmetric quadrature.





