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ABSTRACT 

Methods of preparing discrete ordinates quadrature coefficients are 

described. Quadrature sets which satisfy complete symmetry conditions 

and various moment conditions are derived and tabulated, and critical 

thicknesses of one-dimensional slabs, spheres, and cylinders are calcu­

lated with these sets. Prescriptions for relaxing symmetry conditions 

and point location requirements are discussed, and orthogonaJ. (Legendre­

Tschebyschev) quadrature coefficients applicable in one-dimensi6nal'cy­

lindrical or two-dimensionaJ. re'cta.ngular geometry a.re tabulated. Re­

cipes a.re described for preparing biase·d direction sets, and a method 

of bas:Ulg the bias upon material composition is outlined. 

Preliminary computational results indicate that double Legendre and 

half-range moment satisfying quadrature sets are most accurate in one• 

dilliens1onal plane geometry, while even-moment satisfying, co~letely sym­

metric sets are recommended for other geometries. At the present state 

of the art Of· discrete ordinates computations, results indicate that 

boundary condition treatment and, in curved geometries, the handling of 

the ray-to-ray transfer (streaming) terms can affect accuracy as much as 

:f'Urther refinement of a.ngula.r quadrature. Since computational results 

may depend upon all three of these qua.ntities,:rurther work is needed 

before an optimum quadrature method can be selected. 
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lNTROilJCTION 

The evollltion of the selection of numerical. quadrature sets for the 

numerical. integration of the Boltzmann transport equation has been 

guided by two main principles: 

1. Physical symmetry 

2. The arrangement of discrete directions on latitudes on 

the unit sphere. 

Selection of quadrature sets that satisfy the first principle guarantees 

that solutions will be independent of geometrical orientations. The 

first Sn quadrature set, which· represented the angular variable, µ, by 

connected line segments, was equivalent to mechanical quadrature with 

abscissae, µi' located asymmetrically, with respect to µ = o, on the 

interval [-1, 1) (see the Appendix). Although quite accurate in appli­

cations in homogeneous media,(l) this set did not give consistent re-

sults when, say, slabs of va.rying composition were geometricaJJ.y in-

verted. Quadrature sets that are selected according to the second prin-

ciple have the distinct advantage of permitting a double angular quad-

rature to be accomplished as a single direct sum. This report explores 

methods of selecting quadrature sets· that satisfy symmetry conditions 

·and also examines the relaxations of symmetry that are possible when 

geometric dimensionality permits. 
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COMPLETELY~SYMMETRIC ,QUADRATURE 'SETS 

metries a.re Shown in Figure .l. 
·-+ In,each case the ·direction·\V8.riaole :n 

is ,defi·ned ·Mith respect to an orthogonal ·rectangular 'coordinate :frame 

(µ,fl, g) which :is l.ocalJ.y aligned with respect to the unit vectors cof ·fthe 

geometrica1 coordinate.system. The ·possible orientations of the a.ngula.r 

. -+ 
direction vector n define a unit sphere in (µ,fl,·s) space.. Cqm:plete sym-

metey requires that the {µ,Tl,s) coordinates of points on the unit sphere 
-+ 

chosen .to represent n be invariant under a.11 90-degree rotations about 

the µ, Tl, or s a.xis. Hence, each set of ·coordinates Im.1st be symmetric 

with respect to the origin, a.na, further, the set of points on each a.xis 

Im.1st be the same. Thus, a description of ·One octant suffices to descril)e 

the arrangement of points on the unit sphere. For n points on each axis, 

[-1, l], there a.re n(n + 2)/8 points per octant on the unit sphere, 

n "" ~, 4; • • • • Figul'e 2 shows 'l..11~ ti.:r:.r:w.igement for n = 6. liecsuse 'these 

points lie on the unit sphere 

(1) 
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o; since the coordinates a.re from the same set, 

2 2 
µ3 + 2µ1 = 1 

(2) 
2 2 

2µ2 + µl = 1 

Because of the complete synnnet~ the ind.ices, i,_j, k, of the coordinates 

of a point on the sphere sum to n/2 + 2. That is, in general, 

2 2 2 ( ) µ. + µj + µ /2 2 i . = 1.0 3 
1 · n + - -J 

where i = 1,2, ••• , n/2; j = 1,2, ••• ,n/2 - i + 1 

The relation (3) is solved by ( 2,3) 

i = 1,2, ••• n/2 (4) 

.where 

2 
6.= 2(1 - 3µ1 )/(n - 2) (5) 

Hence the requirement of complete symmetry fixes aJ.l µi except µl! and­

the freedom of Guassian quadrature is not present. In addition, ro-

tational invariance dictates that weights for points on the unit sphere 

be chosen ln a symmetric fashion. Diagrams showing points of equal 

weight are displayed in Figure 3. For a given latitude on the unit 

sphere, the sum of the point weights, pi' defines a level weight, w j. 
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P4 + P5 + Pa = P3 + p6 + P7 

Fig. 3. · Points of equal weight as a function of n. The equations are 
the relations between the point weights, pi' and the level weights w f 
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These relations a.re aJ.so given in Figure 3, and the level. weights are 

the weights corresponding to a one-dimensional. a.ngu.la.r quadrature. For 

2 < n < l.4 there are n/2 - l. different point weights. For n > l.4 the 

number of' different point weights increases rapiclly. To f'ix the number 

of' different point weights a.t n/2 - l, it is assumed that point weights 

are chosen as a sum of' a. :f'unda.mentaJ. set of' 11 axis 11 weights {a. 1 a., a. ) 
J. J K 

with i + j + k = n/2 + 2. ··Then, enough additional. relations among the 

p. are.provided to maintain n/2 - l. dif'f'erent point weights. For ex-
J . 

ample, the relation p
3 

+ p6 + p6 = p4 + p
5 

+ p
7 

(n = l.4) is established 

by noting that the point weights may be represented as 

p = 
3 a

5 
+ a3 + a.,, P]J, = all. + a4 + 8:1. 

p6 = a3 + a4 + a2 p = 
5 a5+a2+a2 

p6 = a4 + a2 + a3 P7 = a3 + a3 + a3 

Therefore, with compl.ete symmetry, there are n/2 quantities, the n/2 - l 

pj and µl.' which can be selected, as opposed to n quantities in a Gaussian 

quadrature. However, it is not d.if'ficult to sh0w(4) that if' 

n(n+2)/8 n/2 
E p = E w. = l. 

i=l. i j~l J 
(6) 
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that is_, if· the area of the octant is measured in units of 'JT./2, then 

n/2 2 l 
E w.µ. = -3 

j=l J J 
(7) 

so that one moment condition is satisfied by' any compl.etel.y symmetric 

set. Hence, one can choose ·~ and the wj to satisfy the· n/2 + 1 even• 

moment conditions 

l 2i 1 / n1· ·2 
J µ 'clµ - J 2idµ - 1 2i 

- 1 
2 -

0
. µ - 2'1 + 1 :::::: E w j µ j 

,j=p 
(8) 

for i = 0,1, ••• ,nf2. Completely symmetric quadrature .sets (which auto-

. · matica.l:cy satisfy' the odd moments over. the entire range of µ because of 
·•· 

symmetry) obtained by satisfying- (8) are given in Table I. However, for 

n > 22,such sets lead to negative wj which are undes±rabl.e! because of 
. 

numerical. truncation errors. 

As a.n aJ.ternative to matching even moments, al.1 hal.:f-ra.nge moments 

1 . 1 n/2 i 
J µidµ = i + 1 - ~ wjµj 
0 . j=l . 

(9) 

i = o, 1, ••• 1 n/2, can be· matched, bu~ this procedul-e leads to negative 

weights for n ::::_ l2~ Table II displays sets obtained· by satisfying eqtia.­

tion (9 ). 

A method of moment matching which doe.a not lead to negative weigllts 

is obtained by. matching half-range level moments. Instead of satisfying 

successively higher mome_nts by choice by level weight, sequences o:f' lower 

order moments .are matched by clioosing point weights. For e~le, in 
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TABLE I 

Completely S~tric Quadrature Sets Satisfying 

Even Moment Conditions. a 

2 
pi µi µi w. 

1 

n = 4 1 0.3500212 0.1225148 0.3333333 0.3333333 
2 0.8688903 0.7549704 0.1666667 

n = 6 1 0.2666355 0.0710945 o.2547297 0.1761263 
2 0.6815076 o.4644527 0.1572071 0.1572071 
3 0.9261808 0.8578110 0.0880631 

n = 8 
l 0.2182179 0.0476191 0.2117283 0.1209877 
2 0.5773503 0.3333333 0.1370370 o.09074o7 
3 0.7867958 0.6190476 o.09074o7 0.0925926 
4 0.9511897 0.9047619 0.0604938 

n = 12 l 0.1672126 0.0279601 0.1639814 0.0707626· 
2 o.4595476 o.2lll84o 0.1190886 0.0558811 
3 0.6280191 0.3944080 0.0631890 0.0373377 
4 0.760021.0 0.5776319 0.0624786 0.0502819 
5 0.8722706 0.7608559 0.0558811 0.0258513 
6 0.9716377 o.944o799 0.0353813 

n = 16 l 0.1389568 0.0193090 0.1371702 0.0489872 
2 0.3922893 0.1538909 0.1090850 0.0413296 
3 0.5370966 0.2884727 o.ot~42097 0.0212326 
4 0.6504264 o.4230545 0.0643754 0.0256207 
5 0.7467506 0.5576364 o.04oo796 0.0360486 
6 0.8319966 0.6922183 0.0392569 0.0144589 
7 0.9092855 o.8268oo1 0.0413296 0.0344958 
8 0.9805009 0.9613820 0.0244936 0.0085179 

n = 20 l 0.1206033 0.0145452 0.1195893 
2 0.3475743 0.1208079 0.1026829 
3 o.4765193 0.2270706 0.0282212 
4 0.5773503 0.3333333 0.0739389 
5 0.6630204 o.439596o 0.0181985 
6 0.7388226 0.5458588 0.0471265 
7 o.8o751.io4 o.65~12.L5 O.Ojlj'(26 
8 0.8708526 0.7583842 0.0270754 
9 0.9298639 o.8646469 0.0332842 

10 0.9853475 0.9709096 o.0185io5 

~e weights given sum to 0.5. The point weights are" those of Fig. 3. 
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·TABLE II 

Completely Symmetric Quadrature Sets Satisfying 

Odd Moment Conditions. a 

2 
µi µi w. pi 

n = 4 
l. __ .. _____________ 

0.2958759 0.0875425 0.3333333 0.3333333 
·0.9082483 0.8249149 0.1666667 

n ,; 6 0.1838670 0.0338071 0.2178992 0.1024651 
0.6950514 o.4830964 0.2308682 0.2308682 
0.9656013 0.9323858 0.0512325 

n ~ 8 0.1422555 0.0202366 0.1721829 0.1090122 
0.5773503 0.3333333 o.21014o2 0.0631708 
·0~8o4oo87 o.6464300 0.0631708 0.2939388 
0.9795743 0.9595267 0.0545061 

n = 12 0.0935899 0.0087591 o.u689u 
o.45lll.38. 0.2035036 0.2531215 

. o. 631.0691 0.3982482 ~0.1410287 
0.7700602 0.5929927 0.2658355 

. ,":'•· .. 0.8875457 o. 7877373 -0.0388~7 
·6.9912022 0.9824819 o.o44o 3 

aThe weights given sum to 0.5. The point weights a.re those of Fig. 3. 
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Figure 2, the normalized integral of Tl on the unit sphere along the 

latitude of µ
1 

. is 2J 1 - µi2/1f. Defining this quantity as 

(10) 

where the point weights are those belonging to the µ., gives a sequence 
/ ' 1 

of low-order moment conditions, one for each µ level. ·These moment equa-

tions for Figure 2 a.re then 

plµl + p2µ3 + plµ3 = (pl + P2 + P1)2J l - µ1
2/1t 

P2~ + p2µ2 = CP2 + P2)~l - µ22/1( 

Piµi ~ 2:pij1 - µ3
2/1t 

(11) 

For general even n,the relations analogous to (11) give n/2 relations 

for the n/2. quantities pi and µ1• However, the last two relations 

~ + µ2 = ~l - µ~2-J/1( 

µl = ~l - µ~/~1{ 

(12a) 

(12b) 

cannot both be satisfied. To obtain a consistent set of equations, Eq. 

(12b), representing the smallest latitudinal area, is deleted and, in­

stead, (6) is satisfied so that (7) is also satisfied. Thus the zeroth, 

second, and a sequence of first-order.moments are matched. Then (12a) 

with (4) serves to define µ1 
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,. 

· _ ( n - 2 )( l - ,J l - a) - ( n - 5 )a 
~- 2 (13) 

(n - 5) a - (n - 2)(n - 8) 

and hence all µi. Above, a= [(4/n)2 - 1]_2 • 

are found from equations analogous to (11). 
' . 

The remaining n/2 - l p. 
J 

Sets. obtained in this man- · 

ner are displayed in Table III. Weights obtained in this manner are 

apparently always positive. 

BIASED SYMMETRIC QUADRATURE SETS 

Complete symmetry is required only in three-dimensional geometries. 

In lower dimensional. geometries a rel.axation of' synn:netry requirements 

allows additional degrees of' freedom. A sinq;>le such relaxa.ti,on is to 

keep the point and level. arrcmgement of' complete ·syinmetry while allowing 

the points on-each-8.xis to be chosen from an illdependent set. In this 

case the requirement that points be on the unit sphere 

2. 2 2 
. µi + Tl j . + sk = i. o 

is solved by 

-

µm2 = ~2 + (m - 1.?6 

T}m2 = ·1'}12 + (m - 1)6 

sm2 = s1
2 

+ (m • 1.)6 

where m = J., 2, ... , n/2. 

(14) 

(1.5) 

. ' 
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TABLE III 

Completely S~tric Quadrature Sets Satisfying 

Level Moment Conditions. a 

2 
µi µi wi pi 

n = 4 0.3120418 0.0975949 0.3333333 0.3333333 
o.897lJ21 o.8048102 0.1666667 

n = 6. 0.2390944 0.0571661 0.2582459 0.1.831585 
0.6865981 o.47].4169 '0.1501748 0.1501748 
o.94J.D992 0.885668 0.0915792 

n = 8 0.20l0510 o.o4o4215 0.2174330 o.1264o98 
0.5773503 0.3333333 0.1283389 o.09l0232 
o. 7913565 0.6262452 0.0910220 0.0746315. 
0.9587268 0.9191570 0.0632048 

~= n = l2 0.1596536 0.0254893 . 0.1726823 0.0781264 
,. o.4584710 o.2l01957 0.1022793 0.0516366 

0.6284124 0.3949021 0.0738241 0.0429194 
o. 7613203 0.5796086 0.0605145 0.0351903 
0.8742511 0.7643150 0.0516366 0.0309047 

: 0.9741773 0.9490214 0.0390632 
n = l6 O.J.364305 0.01.86133 o.J.4754o2 0.0565552 

0.3917822 o.J.534933 0.0874396 o.036J.572 
o.537004o 0.2883733 o.063J.648 0.0285758 
0.6505792 o.4232533 0.051981.8 0.026242].· 
0.7470832 0.5581334 · o.o45J.38l 0.0234298 
0.8324742 0.6930134 o.04o2906 0.0188960 
0.9098865 0.8278934 0.0361672 0.0178932 
0.9812102 0.9627734 0.0282776 o.ol5693J. 

• 

aThe weights given sum to 0.5. The point weights a.re those of Fig. 3. 
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2 2 2 ( ) If' compl.ete symmetry is required, 1-1._ = T}l. = si , and equation 4 is 

obtained. Requiring rotational. symmetry about the s a.xis means that 

2 2 2 2 2 
µl. ·= Tli but si is a :free, para.meter, say si = bl-1._. Then 

{J.6) 

Point ':'eight diagrams for this case are given in Figure.4. Here, two 

dif'f'erent sets of l.evel. weights are defined by the poillt weights,· one 

set corresponding to µ or T} l.evel.s and one set corresponding, to s l.evel.s. 

Again it is asswned that point weights are. formed as a sum of basis 

weights {ai, aj, bk) to maintain 2(~ - l.) different point weights. 

There a.re now more conditions which can be satisfied and more ways in 

which they can be satisfied. Hill-range moments simil.a.r to (9) cou.l.d 

be matched al.ong the s a.xis a.ndwhol.e--ra.nge conditions matched al.ong the 

µ {and hence T} ) a.xis. Half ...-range, l.ow-order :moments coul.d be satisfied 

in the two different directions. For exampl.e, for n = 6 the l.oW..order 

moment conditions a.re 

(pl.: P2 + P3)~l - ~2/~ = Pi~+ p2µ2 + P3µ3 

(p2 + P4)~l. - ~2/~ = p2µl. + p4µ2 

P3 ~l. • µ32/ri = P3µJ. 

-18-' 
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3 4 3 
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io u l2 l2 u io 

i4 i 
2 2 

3 4 3 
5 6 6 5 

7 a 9 a 7 
io u l2 l2 u io 

l3 i4 i,5 l6 i5 i4 l3 

wi = Pi + P2 + P3 

w2 = P2 + P4 

w3 = P3 u3 = 2p3 + P4 

wi = Pi + P2 + P3 + P5 
w2 = P2 + P4 + p6 

w3 = P3 + p6 
W4 = P5 u4 = 2p5 + 2p6 

wl = P1 + P2 + P3 + P5 + P7 
w2 = P2 + P4 + p6 + Pa 

w3 = P3 + p6 + P9 

w4 = P5 +Pa 
w 5 = P7 u5 = 2p7 + 2pa + P9 
and 

wi = Pi + P2 + P3 + P5 + P7 + Pio 
w2 = P2 + P4 + p6 + Pa + Pu 

w3 = P3 + p6 + P9 + P12 
W4 = P5 + Pa + P12 

w5 = P7 + Pu 
w6 = Pio u6 = 2(pio + Pu + P12) 
and 

P3 + p6 + Pa = P4 + P5 + P9 

P5 + P9 + Pu = p6 + P7 + P12 

wi = Pi + P2 + P3 + P5 + P7 + Pio + P13 
w2 = P2 + P4 + p6 + Pa + Pu + Pi4 · 

w3 = P3 + p6 + P9 + P12 + Pi5 
w4 = P5 + Pa + P12 + Pi6 

w5 = P7 + Pu + Pi5 
w6 = Pio + Pi4 

w7 = P13 U., = 2(P13 + Pi4 + Pi5) + Pi6 
and 

P3 + p6 + Pa = P4 + P5 + P9 

P5 + P9 + Pu = p6 + P7 + P12 

P7 + P12 + Pi4 = Po + Pio + P15 
. Pa + P12 + Pi5 = P9 + Pu + Pi6 

Fig. 4. Point weight diagrams for ha1f-synnnetry. The level weights wi 
apply to the µ or n levels, and the level weights u. correspond to ; 
levels. Only the different u level weights are showtt for each n. 
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(2p3 + P4)~l - s12/~ = P3~ + P4µ2 + P3µ3 

I . 2 
2p2 ~1 - s2 1~ = P2µ1 + P2µ2 

P1 2J1 - s32/~ = plµl 

Keeping b as a free para.meter give·s five (n - 1) quantities, ~ and 

(l8a) 

(l.8b) 

(l8c) 

. P1, p2, p
3

, P4 to. be determined. Deleting (17c) and (l8c) and satisfying 

the condition i:pl = 1 gives five (n - 1) equations. s1· (J°b~) is then 

determined by (l8b ~ and the remaining equations. are linear in the. p .. 
. J 

An alternative is to define acCUlID.llated weights 

j 
WJ. = i: w . 

. l l. l.= 

j 

UJ. = .i: uj 
i=l 

(19) 

so that w. 1 - wj = w. 1 and u.+l - uj = u. l. and assume that thew. 
~ ~ J ~ J 

' and u. are separated by the same delta as the µ. and sj: 
J - ' . J 

·'· 

w. '= w1 + (i - 1)8 
l. . ' 

. . 2 
6 = 2 [~ ~, (2 + b)µ1 l/(n - 2) 

Then the three independent quantities ~' WJ! and u1 can be fixed by 

matching the D.Ormalization. candition · 

· n/2 . n/2 _ 
i: w =· i: u = l 

i=l i i=l i 
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and the two second-moment cond.1 tions 

1/3 (22) 

for a given b. A consequence of equation (22) (but independent of the 

assumption (20)) is the simpler rel.a.tion 

n/2-1 
~ 2W + uj 

j=l j 
= n - 2 (23) 

Sets of quadrature coefficients have been prepared using the la.st-

described receipe, and the resulting weights were found to be positive 

for the particul.a.r value of b = 2/3 used. Since such. sets depend upon 

b, the spread of directions along the ~ a.xis can be varied rel.a.tive to 

the ll and T) a.xes direction spreads. 

In the above, the mimber of independent point weights has been 

severely limited both by using the point arrangement of Figure 2 and.by 

assuming various rel.a.tionships among the point weights. A general method 

of choosing quadrature weights which removes these restrictions has been 

developed in the method of moments, described in Reference 5· In these 

methods, direction sets can be chosen so that discrete ordinates quad­

rature is equivalent to a generalized spherical harmonics method with a 

given boundary condition, say a Marshak boundary condition for no in-

coming flux. Once the direction sets are choser;the quadrature weights 

are found by satisfying a general set of moments. Here, only the case 



in· which points a.re a.rra.nged a.s in Figure 2 is di_scussed. Then, given a 

set of directions on each a.xis (with, however, ~i2 + T}j
2 + ;k

2
·= 1), 

the moment conditions fo~ the n(n + 2)/8 point weights a.re given by the 

fo:Ll.Owing tri~ array(5) 

'1roo '1ro4 *o, n-2 

n = 2, 4, 6, ... , where vlm symbolizes a mo~nt of the form 

(24) 

Above, pk is ·a point weight corresponding to th~ point iocated by µi and 
' 

T}j· To il.lustrate, cons~der n = 2. Then p1 = l is the single eciuation 

to be satisfied. When n = 4 there a.re three weights and three, equations 

. (25) 
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Given the directions µi and· 1)j the above set can be solved for three 

point weights, that is for_a completely unsymmetric choice of' directions. 

'!he above formalism contains the ha.11'-symmetric case a.nd the completely 

symmetric case. In particular, for the half-symmetric case only the 

diagonaJ. and bel.ow-diagonal moments of the triangular array a.re needed. 

For n = 4 there are only two different point weighte-, a,nd the moment 

equations become 

*oo 2p2 = 1 

2 2 . 
(~ + µ2 )p2 = 1/3 

(26) 

For n = 6 a.nd four point weights in the half-symmetric case there a.re 

four equations 

*oo pl+ 2p2· + P3 + 2p4 = 1 

2 2 2 2 
(~ 

2 
+ ~ 2)P4 l/3 *20 ~pl+ (µl + µ2 )p2 + µ2 P3 + = 

4 
CJli 

4 .4)p 4 
+ (µl 

4 4 
1/5 '1'4o µl pl + + µ2 2 + µ2 P3 + µ3 )p4 = 

*22 
2 2 ( 2 2 2 2 2 2 2 2 2 2 
~ 111 pl + ~ 11 2 + µ2 111 )p2 + µ2 11 2 P3 + (µl 113 + µ3 111 )P4 = l/l5 

(27) 

For the n = 12 half-symmetric case there a.re 12 dii'ferent point weights 

illustrating that the IDlDl.ber of different· point weights is not restricted 

to n - 2. For the completely symmetric case on1y the first column of the 

tria.ngul.a.:r array of moments need be use4 indicating that even-moments 

matching is all that is required. '!he completely symmetric case is also 
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contained in the ha.l:f;..symmetric case. For.example, for n = 12 a.nd,the 

µ1 (and hence T) j) of ,Table Ii so~tion of the 12 moment equations 

gives five diff~rent point.weights, exactly equal to those of Table I. . . .. . . 

The above,formu.la.tion is more general than previous· methods since the 

·direction sets can be determined independently, and, although not .il-

lustrated here, can be extended to more general point arrangements. Be-

cause of the generality, the above method is conveniently coded to pro­

duce quadrature sets (a general matrix formulation can be written)'. 

However, lacking any a priori choice of directions, meaningful com-

parisions of different quadrature sets are difficult to make. 

Most of the above serves only to describe possible ways in which 

the additional deg~es of freedom obtained by rel.axing symmetry can be 

utilized, and no attempt has been ma.de to exhaust possibilities or to 

determi?e, say, optimum moment conditions or procedures for choosing 

free para.meters. Numerous additional symmetry relaxations a.re possible. 

The same -number of points can be kept on each axis, but µ
1

, '1')1, and si · 
can be chosen independently; or different nilmbers of points can be 

chosen on each axis. Level. conditions can be rel.axed on one a.xis or all. 

a.xes. The same number of points on each level. can be used. One such 

scheme 'Which is. suited to orthogonal quadrature is the following.. Sup-

pose the quadrature of the surface of the unit sphere is acc.ompl.ished by 

(for one octant) 

. 2 1 .. 7t/2 .. 
A = - f ds f cb> 

1( 0 0 
(28) 



with CJ) defined as Tl = J1 - s2 sin CJ) and µ = J1 - s2 
.cos CJ). Then 

(29) 

'With µ = J 1 - s 2 
y. This suggests that the y integration be accom-

plished by Tschebyschev quadrature and the s integration by Legendre 

quadrature. Then, for example, for quadrature with three y points for 

each of' three s points (Figure 5) there are nine points on the unit sphere 

octant, 'With the distribution of' µ (and fl ) points being determined by 

the s point selection. Now points lie on the unit sphere on s levels 

but not on µ or fl levels, and point weights are the product of' Legendre 

. and TschebY'sChev weights. If it is argued that three y points are not 

needed on each s level, then a different order Tscb.ebyscb.ev quadrature 

can be used on each level as . illllstrated in Figure 6. This sort of 

scheme gives a significant improvement over co~letely symmetric quad-

rature when one-dimensional cyl.indrical critical radii are cal.cul.ated. 

For a given set of s levels . ( s1, s2, · · '.' sn/2 ) si. < £2 < · · · < sn/2 

and weights (wl., w2, ... , wn/2 ) corresponding to a Gua.ssian quadrature on 

the s interval. [-1.,1.] the use of the same Tschebyschev quadrature on 

each s l.evel gives the µ abscissae and point weights 
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Fig. 5. Point arrangement for the same order of Tschebyschev quadrature 
on each s l.evel. The order of the quadrature need not be the same as 
the number of s l.evels. 
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. ( 

Fig. 6. Point arrangement for diff'erent order of Tschebyschev quadra­
ture on each s level. Points do not al.J.'lie on the same norµ levels 
as in a completely symmetric arrangement. 
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. w. 
cos J. 

=~ 

n (30) 

i = 1, 2, .•. , n/ 2 j 1, 2, ... , n 

Here the µ points with zero weights are those incoming directions used 

as starting directi9ns in the current version of' the Sn discrete ordi­

nates transport code. The µ values are such that a complete quadrant 

is integrated, and the weights are such that the area of the quadrant 

is unity.· For the same S· and w. the use ·of' a dif'f'erent order Tschebyschev 
. . J. J. . 

quadrature on each s level {as in Figure 6) .giv:es the µ and point weights. 

cos 

i = 1,2, ... ,n/2 

(2n - 41 - 2j + 5 ) 
2n - 4i + 4 1t pi -. n + 2 - 21 

j 11 2, ... ,(n + 2 - 21) 

These quadrature coef'ficients for the s1 corresponding to 

(31) . 

Pn-l and DPn/2_1 quadrature are given in Table rJ through Table VII 

f'or n = 4, 8, and l.6. 

Fina.J..ly, quadrature schemes that are dependent upon material com­

position cari be· prepared. . As a si.Iiiple. example consider the a.ngula.r de­

pendence of the flux of the monQE!nergetic transport eq\iation in an 
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TABLE DI 

P 1(s)T (µ) Quadrature Sets - Same Order n- n 
T Set On Each s Level. n 

µij pi sj 

n = 4 -0.5083741 o.o 0.8611363 
0.1829577 0.0869637 
o.4696763 0.0869637 

-0.9404323 o.o 0.3399810 
0.3598878 0.1630363 
o.8688459 0.1630363 

n = 8 -0.2790043 o.o 0.9602899 
0.0544310 0.01265357 
0.1550065 0.01265357 
0.2319836 0.01265357 . ' 0.2736433 0.01265357 

-o.6044192 o.o 0.7966665 
0.1179163 0.02779763 
0.3357973 0.02779763 
0.5025562 0.02779763 
0.5928054 0.02779763 

-0.8507736. o.o ~ o. 5255324 
0.16597767 0.0392133 
o.4726644 0.0392133 
0.7073924 0.0392133 
0.8344262 0.0392133 

-0.9830319 o.o 0.1834346 
0.1917800 0.0453355 
0.5461432 0.0453355 
0.8173612 0.0453355 
0.9641432 0.0453355 
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TABLE V_ 

DPn/2_1(s)Tn(µ) Quaqxat~e Sets - Same Order 
-· a . 

T Set On Each s Level. _ n 

µij ~i si 

n = 4 -0.6148102 o.o 0.7886751 
o.2352776 0.125 
o.5680J.04 0.125. 

-0.9774159 o.o o.2u3249 
o.374o4o8 , 0.125 
0.9030143 0.125 

n = 8 -0.3661187 o.o 0.9365682 .. 
0.0714262· o.02174o9 
o.2034o46 o.02174o9 
0.3044166 o.02174o9 
0.3590838 o.02174o9 

-o. 7423696 o.o 0.6699905 
0.1448291 o.04o.7591 
o.4124384 0.0407591 
0.6172578 o.04o7591 
0.7281052 o.01.i07591-

-o."9439776 o.o. 0.3300095 
o.1841609 o.04o759i 
o. 52l1.hl158 . o.ol,u)7591 
6.7848887 o.04o7591 
0.9258394 o.04o7591 

-0.9975867 o.o . 0.0694318 
0.1949195 o.02i74o9 
0.5542294 o.02174o9 
0.8294630 · o.02174o9· · 

- 0.9784184 o.02174o9 -

8:For convenience the sets have been ordered as they would be entered in 

present Sn codes. For brevity the negative-weighted µ directions (same 

in magnitude as the positive directions) have been omitted. 
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TABLE VI 

Pn_1(~)Tn(µ) Quadrature Sets - Different Order 
a 

T Set On Each ~ Level. n 

µij pi ~i 

n = 4 -0.5083741 o.o 0.7886751 
0.3594748 0.1739274 

-0.9404323 o.o 0.2113247 
0.3598878 0.1630363 
o.8688459 

n = 8 -0.2790043 o.o 0.9602899 
0.1972858 0.0506143 

-o.6044192 o.o 0.7966665 
0.2313012 0.0555953 
0.5584103 0.0555953 

-0.8507736 o.o 0.5255324 
0.2201964 0.0522844 
0.6015878 0.052281~4 
o.8217842 0.0522844 

-0.9830319 o.o 0.1834346 
0.1917800 0.0453355 
0.5461432 0.0453355 
0.8173612 0.0453355 
0.9641432 0.0453355 

n = 16 -0.1452095 o.o o.9894oo9 
0.1026786 0.01357623 

-0.3282956 o.o 0.9445750 
0.1256333 0.01556338 
0.3033056 o.0~556338 

-0.5006822 o.o 0.8656312 
0.1295861 0.01585975 
o.354o358 0.01585975 
o.4836218 0.01585975 

-0.6552589 o.o o. 7554o44 
0.1278346 0.01557862 
o.364o423 0.01557862 
0.5448~78 0.01557862 
o.6426683 0.01557862 
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TAB~ VI (Continued) 

n = 16 cont.inued ·, 

µij pi ~i 

-o. 7862754 o.o 0.6178762 
0.1230006 o.014959€io 
0.3569615 o.014959€io 
0.5559807 Q.014959€io 
0.7005765 o. 01l~95g()o 
0.7765950 o.014959€io 

-0.8889436 o.o o.4580168 
0.1160304 o.014o9638 
o.34o1839 .o.014o9638 
0.5411545 o.014o9638 
0.7052463 0.01409638 
0.8212765 o.014o9638 
0.8813385 o.014o9638 

-0.9595308 o.o o.281€io36 
.0.1074405 0.01304310 
0.3169175 0.01304310 
0.5105032 0.01304310 
0.6784908 0.01304310 
0.8124567 0.01304316 
0.9056836 0.01304310 
0.9534967 0.01304310 

-0.9954761 o.o 0.0950125 
0.0975737 0.01180066 
0.2889715 
o.4692641 
0.6315234 
0.7695135 
0.8779316 
0.9526112 
0.9906826 

8l-or convenience the sets have been ordered a.a they vould be entered in 

present S codes. For brevity the negative-weighted µ directions (same. n 
:f.n magnitude a.a the positive directions) have been omitted. 
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TABLE VII 

DP n/2-1( f. )Tn (µ~ Quadrature. Sets - D~fferent Order 

Tn Set On Each f. Level. . 

µij pi f. j 
n=4 -0.6148102 o.o 0.7886751 

o.4347364 0.25 
-0.9774159 o.o 0.2113249 
o.374o4o8 0.125 
0.9030143 0.125 

n = 8 -o.366u87 o.o 0.9305682 
0.2588850 0.08696371 

-0.7423696 o.o 0.6699905 
o.284o925 0.08151814 
0.6858599 0.08151.814 

-0.94397762 o.o 0.3300095 
0.2443193 0.05434543 
0.6674930 0.05434543 
0.9118123 0.05434743 

-0.9975867 o.o 0.0694318 
0.1946195 o.02174o93 
0.5542294. o.02174o93 
0.8294630 o.02174o93 
0.9784184 o.02174o93 

n = 16 -0.1982824 o.o 0.98014493 
o.14o2o68 0.02530714 

-o. 4393147 . o.o 0.89833324 
o.168ll84 0.02779763 
o.4o58737 0.02779763 

-o.6466744 o.o 0.76276620 
0.1673716 0.02614222 
o.4572678 0.02614222 
0.6246394 0.02614222 

-0.8061455 o.o 0.59171732 
o.~72712 0.02266774 
o. 78704 . 0.02266774 
0.6702855 0.02266774 
0.7906557 0.02266774 



},, 

·. i"' 

TABLE VII (Continued) 

n = 16 continued 

µij pi sj 

-0.9128556 o.o o.40828268 
0.1428021 0.01813419 
o.4144277 0.01813419 
o.6454864 0.01813419 
0.8133602 0.01813419 
0.9016167 0.01813419 

-0.97145258 o.o 0.23723380 
0.1268000 o.01307lll 
0.3717588 o. 01307],.ll 
0~5913828 o.01307u1 
0.7707051 o.01307lll 
0.8975049 o.01307lll 
0.9631417 o.01307lll 

-0.9948151 o.o 0.10166676 
o.iu3917 0.00794218 
0.3285724 0.00794218 
0.5292775 0.00794218, . 
0.7304429 0.00794218 
o.8423356 0.00794218 
0.9389910 0.00794218 
0.9885625 . 0.0079~218 

-0.9998029 o.o 0.01985507 
0.0979998 0.00316339 
0.2902275 0.00316339 
o.4713038 0.00316339 
0.6342682 0.00316339 
0.7728581 0.00316339 
0.8817474 o.003·16339 
0.9567517 . 0.00316339 
0.9949885 0.00316339 

87or convenience the sets have been ordered as they woul.d be entered in 

present Sn codes. For brevi-:t;y the negative-weighted µ directions (same 

in magnitude as the positi-i,e directions) have been omitted. 
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infinite medium (isotropic scattering) 

¢(µ) ~ = 0 

A.o = ctanh-~0 (32) 

c = (t
6 

+ vzf)/zt 

Picking a two-point quadrature such that this angular dependence is 

correctly integrated gives 

(33) 

which also correctly integrates µp(µ) and µ2p(µ)~ For le - ll << 1, 

2 
A.0 "' 3 ll - c J so that ~ "' "j/.[3 which is the result obtained by re-

quiring w1µ1
2 

= J as in s2 or diffusion theory quadrature. As c -+ 0 

(pure absorptionh ~ -+l.O indicating that to integrate a flux that 

is becoming more biased in the forward direction µ1 should.be chosen 

closer to unity. As c -+ co µ1 -+ O. Usirig µ1 determined by (27) gave 

improved answers in critical slab thicknesses compared to using 

~ = l/.f3. Higher order quadratures can be obtained in a similar 

manner by requiring more moments of ¢(µ) to be satisfied. However, in 

a realistic problem, material properties change as a function of energy 

and position so that gains in accuracy obtained by using material de-

pendent ·quadrature would seemingly be offset by the more complicated 
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COI?IJ?Utation necessary for including the quadrature coefficient material 

. dependence. 

Although the completely synnnetric quadrature sets-are designed for 

three-dimensional geometries, one-dimensional monoenergetic critical. 

thicknesses were calculated using the sets of Tabl.es I through. III. 

These results, for a variety of secondaries ratios c = (Zs + vEf )/Et' 

a.re displayed in Tables VIII through X~ Comparabl.e calculations for 

Pn-l and DPn/2_1 sets are given in Reference 1 from which the exact 

results were taken. Of the three sets compared, the set prepared by 

satisfying even-moment conditions (Table I) is partiCU:larly good in 

cylindrical geometry .. and is better than the other two sets in spherical . 

geometry. The s~t g~nerated b~ matching odd mo~nts· (Table II) is ef­

fective only in plane geometry where the s8 set is better than or com­

pa.:ra.bl.e to the other two Sl.6 sets~ This behavior is analagous to that of 

DPn/2_1 , sets (half-range Gallss.-Legendre. quadrature) 'Which, due to a 

combinati?n of favorable circumstances, are partiCularly. accurate in 

one-dimensional plane geometry. Al.though no complete test of the 

~gend,re-Tschebyschey sets was ma.de, for c = 1. 02 in a cylinder the 

P
3

T4 set .. (Table VI) gave a critical r.aMus of 9.0353 cc:red to a. DP1 T4 
(Table VII) radius of 9.0264. These results bracket the s4 results 

obtained using the quadrature set :f"rOm Table I. 

For tJ:iegeneral use of quadrature sets it is recommended that the 

DPn/2_1 sets. always be used in one-~nsional plane geometI_'Y~· .. -._ :pi, one- . 

dimensional. cylinders the completely symmetric ·sets of Table .~ or the . ., . . .. .. ~ . : : . : . 

-36-



TABLE VIII 

Monoenergetic Critical. Thicknesses (MFP) Calculated 
Using Quadrature Sets of Table I. 

Slabs ~Half-Thickness~ 

c S4 s8 sl.6 Exact 

1.02 5.6829J. 5.67065 5.66855 5.6655 
1.05 3.32171 3.30659 3.30245 3.3002 
1.10 2.13864 2.l.1998 2.l.1555 2.l.134 
1.20 1.32271 l.29710 l.29184 1.2893 
l.4o 0.78186 0.74758 0.73964 0.7366 
l.6o 0.56329 o. 52656 o. 51579 o.5l20 
1.80 o.44266 o.4o637 0.39369 0.3887 
2.00 0.36?51 0.33091 0.31706 0.3108 

Cylinders 

c 84 88 --- Exact 

1.02 9.03379 9.04364 9.0433 
1.05 5.39784 5.4o970 5.4l.18 
1.10 3.56045 3.5'7335 3. 5783 
·1~20 2.27052 2.28245 2.2884 
l.4o 1.38380 1.39215 1.3973 
1.60 l.Ol.122 1.01642 1.0209 
1.80 0.80073 0.80356 0.8067 
2.00 o.664J.4 0.66524 0.6673 

Spheres 

c S4 s8 sl.6 Exact 

l..02 l2.0l.730 12.02130 12.0229 12.0270 
l..05 7.2566o 7.26797 7.27J.97 7.2772 
1.l.O 4.850ll 4.86577 4.86982 4.8727 
1.20 3.14533 3.J.6268 3.J.6887 3.1720 
l.4o J..96o22 l.97657 J..98206 1.9854 
J..60 1.45371 1.46828 1.47316 1.4761 
1.80 1.16338 1. l. 7635 l..18072 Ll.833 
2.00 0.97267 0.98432 0.98826 0.9906 
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TABLE IX 

Monoenergetic Critical. Thicknesses (:MFP) Calculated 
Using Quadrattire Sets of Table II. 

Slabs (Half-Thickness) 

c S4 sa Exact 

1.02 5.62241 5.66694 5.6655 
1.05 3.25389 3.30066 3.3002 
1.1.0 2.06750 2.u367 2.u34 
1.20 1. 25270 1.28847 1.2893 
1.40 0.72152 0.73266 0.7366 
1.60 0.51256 0.50665 . 0.5120 
1.80 0.39934 0.38375 0.3887 
2.00 0.32786 0.30716 0.3108 

Cylinders 

c S4 sa Exact 

1.02 8.97433 9.02093 9.0433 
1.05 5.34554 5 .38904 5.4118 
1.10 3.51360 3.55496 3.5~8~ 1.20 2.22647 2.26442 2.2 8 
1.40 1.34377 1.374~6 1.3973 
1.60 0.97458 0.99820 1.0209 
l.8o 0.76735 0.78510 0.8067 
2.00 0.63367 o.64674 0.6673 

Spheres 

c S4 sa Exact 

1.02 11.9748o 12.00510 12~0270 
1.05 7.22652 7.2599l 7.2772 
1.10 4.82443 4.85785 4.8727 
1.20 3.12868 3.15830 3.1720 
1.40 1.94884 1.97416 1.9854 
l.6o 1.44513 1.46662 1.4761 
l.8o 1.1.5644 i.17508 1.1833 
2.00 0.966837 0.98329 - 0.9906 
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TABLE X 

Monoenergetic Crit~cal Thicknesses (MFP) Calculated 
Using Quadrature Sets of Table III. 

Slabs (Ha.l:f-Thickness) 

c S4 s8 sl.6 Exact 

1.02 5.64343 5.65669 5.66343 5.6655 
1.05 3.27617 3.28879 3.29616 3.3002 
l..10 2.09044 2.10091 2.10884 2.11311. 
1.20 1.27495 1.27710 1.28446 1.2893 
l.4o o.74o89 0.72800 0.73171 0.7366 
l.6o o.5288o o.5o853 o. 50796 o.5l20 
1.80 o.41322 0.39032 0.38617 0.3887 
2.00 0.33990 0.31624 0.31004 0.3108 

Cylinders 

c S4 SB Exact ---
1.02 8.99519 9.0303 9.0433 
1.05 5.3634o 5.3965B 5.4118 
1..10 3.53025 3.56176 3.57B3 
1.20 2.24195 2.27073 2.2884 
l.4o 1.35734 1.38131 1..3973 
l.60 0.98692 l.00622 1..0209 
1.80 0.77853 0.79397 o.8067 
2.00 o.64381 0.65619 0 .. 6673 

Spheres 

c S4 SB sl.6 Exact 

1.02 ll.99720 12.01610 12.0l84o 12.0270 
1..05 7.24297 7.26417 7.26B4l 7.2772 
1.10 4.B366B l~.85924 4.86742 4~8727 
1.20 3.13624 3.15837 3.16669 3.1720 
l.4o i.954o6 1.97387 J.9Ro98 1.9854 
1.60 1.44909 1.46633 . l.47241 l.4761 . 
1.80 i.15968 1.17482 1.l8ol2 1.1833 
2.00 0.96957 0.98307 0.98777 0.9906 
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·PnTn sets a.re recommended. In one-dimensional spheres, the DPn/2_1 or 

the sets ·of Ta.bie I seem best suited. In two- or three-dimensional 

geometries the compietel.y symm.etric sets of Table I or Table III would 

seem best, but more computational experience.is .needed. In special 

situations. the biased hal.f-syrmnetric sets and the materiai dependent 

sets can be usefuL For the former, two~dimensional cylinders with 

small. heigl;l~-to-diameter ratios require accurate a.nglila.r representation 

for directions nearly paralJ.el to surfaces. 'lhe accurate representation 

can be obta~ed by proper choice of the para.meter b. For neutron or 

photon transmission problems, accurate representation in the inward and 

outward directions is needed. In these probiems either the hal.f-

symm.etri~-or materiai dependent sets can be used to choose biased 

directions ~ets,. 

Finall.y,_ it should be mentioned. that recent work(5) has indicated 

that proper treatment of the boundary conditions, and,· in curved geoin-

etries, .proper handling of the ray-to-ray transfer terms can be as 

important as choice of the angular quadrature. For exampie, in plane 

geometry, part of the accuracy or·npn/2_1 sets.is due to the fact that 

the Marshak boundary conditions for zero incoming flux a.re satisfied. 

Nwnericai experiments in which one. of t~e Marshak boundary conditions 

was approxima.tel.y satisfiedba\e signi:f'ica.ntly improved P 
3
. results in 

plane geometry. 

'Ihus, the problem of choosing numericai angular quadrature sets is 

indeed complicated •. The work presented in this report should serve as a 

•lf:O .. -. 



guide to future work and perm! t the :intelligent prepa.ra.tion of quadrature 

sets tail.ored to specific needs. 
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APPENDIX 

The original S ·method(l) represented the a.ngular flux.in plane 
, n 

geometry by connected line segments. That ic, 

N(x, µ) = .!!2 f{µ - µ. 1)N(x, µ.) + (µ. - µ)N(r, µ. 1)] (A-1) v J- J J J-

·with 

µ. = -1 + 2j/n 
J 

j = o, 11 2, ... , n 

Substituting (A-1) into the transport equation for plane geometry 

(isotropic sources) 

0N(1c, u) ( ) 
µ ~ + aN x,µ S(x) 

(A-2) 

(A-3) 

and integrating onµ fromµ. 1 toµ. gives the original S difference 
J- J , n . 

equation 

j 0 

( 
2µ . + µ . l~ dN . (µj + 2µ . i) . dN . 1 J J- __J. - J- J- ( ) 

3 ax + 3 ax + a N j + N j-1 

(A-h) 

= 2S(x) j > 0 
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·~. .,. 

where N j = N(x, µ.j). To find a system of discrete ord.iri.ates equations 

equival.ent to (A-4) with directions given by (A-2) let 

j 
NJ. = Z b •• N •• ' 

. i=O Jl. J-1. 
(A-5) 

and choose b
00 

= l so that 'N0 = N0• Next form linear combinations of 

eqtiations (A~4) vTith coefficients ajk with a.0 = 1. That· is, form a 
. . J 

first ·equation by adding the j = l equation of (A-4) anQ. 8ii times the 

j = .b equation of. (A-4) : 

(A-6) 

Then form a second equation by adding 'to the j = 2 .equati:on of (A.,:;4) 

a21 times the j = l equation and a22 times the j O equation to· obtain 

P:I:oceed.ing in this manner to form the jth equati9n by adding to the jth 

equation of (A-4) ajk times the kth preceeding equation, k = 1,2, ••• ,j 

-44-
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• 

gives 

(A-8) 

+ cJN . + 4 (a . ·. 1 + a . . )Nj ·] = (a . . + 2 4 a . . 1\ S t J i=l J,i- J,i -1 JJ i~l J,i-) 

For these equations to be equivalent to a discrete ordinates system 

aN. 
-_iJ. N=S µj dx + C1 j (A-9) 

the coefficients a.1 nn.ist be· chosen so that an equation of the above 
JC 

type is formed. For example, in equation (A-6) 

(A-10) 

and 

(A-1.1) 

2~ + µo 
Letting 

3 
= ~ gives the same coefficient for Nl. in (A-10) and 

(A-11). Then if a11 satisfies 

(A-1.2) 



that is, if' 8u_ = -1/2, the coetticients of N0 a.re the same. 

Finally, since i 1 =· b10N1 + bllNO' b10 = 1/(2 + ~) = 2/3 and b11 = 

·c1·'+ ~>1<2 +' 8u> = i/3. In general, with ii. = (2µj + µ. 1 )/3 the 
. J J-

a.k .IIDlst satisf'y the rel.ations 
J • 

reµ. 1. + 2µ .. )a .. l + (2µ. 1 +·µ .. l)a .. J = 3µ. (a .. l +a .. -) L J+ -i J-i J,i- J- J-i- Ji J J,i- J,i 

i ~ l, 2, ... , j - I (A-13) 

in addition to (A~12). The b.k are given by J . 

bJ.0 = 1/(2 ~ a .. 1 + a .. ) 
... i=l J, i- J, J . 

bJ.k = fa. k .+ a. k i)/{2 ~ a .. ·1.+ .aj .) ~ J, J, - ~ i=l J, i- J . 

(A-14) 

Sine'? th~ nrtgina.l quad:r~tl,U"e was trapezoidal, . that :i:s, 

(A-15) 

' 
the weights associated with the equivalent discrete ordinates quadrature 

1; 

are given by the identity 

n 
z wJN. 

j=O ~ 

n j 

= !: wj !: b .• Nj i 
j=O ·i=O Ji -
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Equating coefficients NO' N1, etc., gives a set of equations which may 

be solved for wj: 

l - "" n 

1 
n 

wb n nn 

wb n n,n-1 

wb 0 n n 

(A-17) 

Following this formalism through for n = 2, 4, 6 gives the following 

discrete ordinates weights and directions: 

n = 2 -j µj W. 
J 

0 -1 l/10 
l -1/3 i/2 
2 2/3 2/5 

j µj w. 
J 

n = 4 

0 -1 23/44o~ 
l -2/3 13/54 
2 -1/6 ll/45 
3 1/3 19/72 
4 5/6 59/297 

·'.' 



n::::; 6 -
j µj w. 

J 

0 -1 - -- 3/85 
1 -7/9 116/729 
2 -4/9 604/3645 
3 -1/9 247/1458 
4- 2/9 lJB/729 
5 5/9 257/1458 
6 8/9 164o/12393 

As is_ readily seen these weights a.re directions of an equivalent dis-

crete ordinates system representing a nonsymmetric quadrature • 

- I 
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