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OCCURRENCE OF HIGH ENERGY ELECTRONS AND SURFACE EXPANSION M RADIANTLY
HEATED TARGET PIASMAS

by

R. L. Morse and C. W. Wielson

ABSTRACT

It is shown that limitations on collisionless electron thermal
conduction place a lower limit on the range of energies of electrons
in the surface of target plasmas which are heated by incident electro-
magnetic radiation, and that in cases of contemporary experimental
interest these energies can be hundreds of keV- It is then shown
that these high energy electrons can cause a much faster expansion
of plasma from the heated surface than would be predicted by a
single fluid theory. Numerical simulations demonstrate both effects.

I. INTRODUCTION

When electromagnetic radiation is absorbed in

the surface' of a fully ionized plasma most of the

absorbed radiation energy is deposited in the form

of electron kinetic energy. If the power density

of the incident radiation is sufficiently great

the plasma may be assumed to be approximately

collisionless, which means that the important

absorption mechanisms may be collective and that

there is no reason to expect the velocity distri-

bution of the heated electrons to be even approxi-

mately Maxwellian. The purposes of this paper are

to show, first, that in some cases of experimental

interest the absorbed energy should be expected to

come to reside uniformly throughout the target

plasma in a very non-Maxwellian low density, high

temperature tail of the electron velocity distri-

bution, and, second, that this highly non-

equilibrium electron distribution can causs its

energy to be lost, through a low density, high

velocity expansion of the plasma surface ("blow

off"), much faster than energy would be lost by a

simple, single temperature fluid expansion.

II. ABSORPTION AND COLLISIONLESS THERMAL
CONDUCTION

Hire we will not consider the many absorption

mechanisms in detail, but will instead group them

into two classes according to their statistical

properties. Absorption in the surface region of

a plasma, the main body of which is over dense,

i.e., which has a plasma frequency higher than the

incident wave frequency, occurs in layers of

restricted thickness, usually at or near the

critical surface where the wave and local plasma

frequencies are equal. In this absorption or

heating region an average electron may receive the

final velocity with which it leaves the region

from a large number of small, almost random im-

pulses of roughly equal magnitude. In such cases

we will say that the absorption region is

stochastically thick. This condition will occur

in some cases in which electrons are heated by a

broad spectrum of electric field fluctuations

caused by the development of a plasma instability.

It also occurs when electrons are heated by

multiple binary collisions with ions, which is

sometimes called inverse bremsstrahlung. Although

it has been observed that when incident power

densities are high enough to heat target plasmas

to thermonuclear temperatures the plasma tempera-

ature in the absorbing region is often so high



that collisional absorption is ineffective in hydro-

gen, collisional absorption could be sufficiently en-

hanced to be effective by the inclusion of higher Z

(ion charge) materials in the absorbing region. In

this case, however, the subsequent transport of elec-

tron energy out of the absorbing region would be more

nearly collision dominated and some of the electron

energies involved would necessarily be even higher

than those estimated below by collisionless arguments.

If on the other hand, the statistical distri-

bution of impulses is such that an average electron

receives only one relatively large impulse while it

is in the absorption or heating region then we will

say that the region is stochastically thin. This

condition occurs in particular when the absorption
2

is caused by resonance or radiation pressure.
At the power densities of interest here these

heated electrons leave the absorption region with

velocities which are much higher than the initial

mean thermal velocity of the other plasma electrons.

The electron velocity distribution which develops

near, but outside of the heating region has been

seen from numerical simulations (see Appendix) to

consist of a broad, nearly flat component of

energetic electrons streaming from the heating

region into the main body of the pl«sma and a cold

background component of electrons counter streaming

into the heating region. (This is quite different

from the velocity distributions associated with

weaker, collision dominated thermal conduction,

which are nearly Maxwellian but slightly skewed to

acquire a non-zero third moment.) For now in

modeling this collisionXess thermal conduction we

adhere to a strictly one dimensional picture of the

energy deposition and conduction process. The

coordinate x runs normal to the plasma surface.

All quantities are independent of y and z. A net

flow of energy goes in the positive x direction.

Later we will comment on consequences of relaxing

the one dimensionality. The crucial issue here is

the form of the electron velocity distribution

when it is constrained by the requirements that it

should not support beam plasma instabilities and

that it should represent zero current flow, i.e.,

J = 0 , in order to preserve charge balance. Here

we ask what distribution has the smallest value of

maximum electron energy, consistent with a given

energy flux, Q. According to the standard definition

Q = — f dv v 3flv } (l)

where f(vx) is the electron velocity distribution.

It is tempting to choose the form of f(v ) sketched

in Fig. la, which represents an energy flux in the

«VX)

(a)

(b)

(d)

Fig. 1. Energy conducting velocity distributions
(a) without thermal broadening of cold
counterstreaming electrons, (b) with
instability broadening of cold electrons,
(c) with returning hot electrons and (d)
whun hot electrons have completely excluded
cold electrons from the heating region.

positive x direction while the essentially delta

function cold electron distribution streams back

into the heating region with the necessary negative



velocity to give J = 0 . This distribution has

only a single maximum and is therefore stable to

beam instabilities within itself. However,-

simulations of this collisionless heat conduction

process, which are presented in the Appendix, show

that the interaction between the heated electrons

and the counterstreaming cold background electrons

broadens the velocity distribution of the latter to

the point where Fig. lb is a better description of

f(v ). Moreover, when ion motion is included in

the process and the ions are initially cold the

development of the more slowly growing ion acoustic

instability between the ions and the cold electrons

forces the cold electron velocity distribution to

be broadened by more than enough to include the ion

velocity, which is zero here, as shown in detail in

Ref. h. This makes the requirement for hot electrons

even a little stronger than we derive here. Hence,

we are led to the idealized form (Fig. lb)

0 < v, < vh
(2)

-vc < vK < 0

0.07

!

nn /vh ,

nc /v0 ,

In order that Jx be zero tba hot and cold components

are related by

- n0 ve) = 0 (3)

or

and from

nh
Vo = — —

n0

(1)

(5)

+ nc. Figure 2 shows ft/(nmvh'/2) as awhere n =

function of a /n, from which we see the simple but

important result that for a given Q there is a

, given byminimum value of vh, v h

_ Q
/nrnv,,-%,,,\

I 2 ) 16 - 0.0625
(6)

which is achieved when n_/n = 1/3. This appears to

give about the largest Q that can be obtained with

a given effective limit, v. , on the velocity of the

energetic electrons. It is interesting to note in

passing that one sometimes encounters "back of the

envelope" estimates in which 1.0 or 0.5 is used in

place of 0.0625 on the right side of Eq. (6), and

this of course seriously over estimates Q or under

estimates v. .

0.06

0.05

0.6

Fig. 2. Energy flux, Q, as a function of the ratio
n. /n of hot electrons to total electron
density for the velocity distribution in
Fig. lb.

As the numerical simulations show, stochasti-

cally thick absorption establishes the same electron

velocity distribution with vfa close to v h m i n for a

given it, regardless of the details of the absorption

mechanism. Hence, an example based on this optimum

is physically interesting. Suppose that an absorbed

power density, i.e., Q, of 10 1 7 w/em2 Is to be

transported In from a plasma surface through the
22 -^

density of solid hydrogen, n =>• 3 x 10 cm ,

Then Eq. (6) gives v. ^ ^ =»0.95x 10 cm/sec,

which corresponds to a maximum electron energy of

about 25 keV. If, on the other hand, this energy
21

were deposited at the critical density of n = 1 0 ,

belonging to the 1.06 u light from K '+, then the

maximum electron energy would be about 340 keV. If

the energy is deposited at the still lower critical

density of n = 10 1 9 for the 10.6 u light from C0 2

then the resulting electron energies are so large

that a relativistic treatment is required. Alterna-

tively, 10.6 u light would produce 340 keV electrons

from a power density of only 10 p w/cm . These

large electron energies should be thought of as a

consequence of the perhaps surprisingly limited

ability of physically attainable velocity distri-

butions to transport energy out of the heating

region.

It is noteworthy that the electron energies

predicted on this basis are in all non-relativistic

cases much larger than the driven energy of oscil-

lation of an electron in an incident wave field
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with a power density equal to the absorbed power
17 2

density. For example 10 W/cm at X « 1.06 u

drives an electron to about 25 keV, in contrast

with the 340 keV obtained above. Likewise for 10
2

W/cm at A = 10.6 u since both driven and trans-

port determined energies are functions of Q/n.

Since some plasma instabilities, as well as binary

collisions, are greatly depressed by thermal

energies well above the oscillating energy, the

efficiency of these absorption mechanisms may be

limited by the inability of electron transport to

remove energy from the heating region.

If the absorption region is not stochastically

thick then in principle v. can be much larger than

v. .^ and n,/n will in general be less than the

optimum value of 1/3. Collisionless thermal trans-

port velocity distributions of the kind idealized

in Fig. lb are seen in the numerical simulation

(see Appendix) of the thin, resonant absorption

process. These parameters place the conduction

process on the left end of the curve in Fig. 2.

As shown in Ref. 2 there are indeed thin absorption

processes which are capable of producing electron

energies considerably larger than (nrav̂  j^,,/2)*

These may be particularly significant when absorp-

tion occurs at near solid densities where the

electron energies produced by thick absorption are

not very large.

As the heated electrons move away from the

absorption region and into the main body of the

plasma where the density iu higher their energies

are only slightly reduced (less than V& for the

more energetic electrons when n./n = l/3) by self-

consistent electrostatic fields as is easily con-

firwi by keeping Q and f. = "./v. fixed while

passing to the limit n^/n -.0 In Eqs. (3)-(5).

If the dimensions of the target are of the

order of or large compared with the collisional

mean free path of the energetic electrons, then the

effect of these electrons will be to deposit the

absorbed energy more deeply into the target or to

a given depth in a shorter time than would be done

by diffusion of thermal electrons. In cases where

deposition of the absorbed energy in the greatest

mass of target material is desired this may be

helpful. For example the mean free path of 100 keV"

electrons in a cold hydrogen plasma with the solid
22 ^

density of 5 x 10 cm -* is about 0.5 cm.

The mean free path is, of course, shorter in higher

Z (ion charge) plasmas with the same electron den-

sity, a fact which could be used to reduce electron

range, if that were desired, by doping targets with

high Z materials. At the same time, however, in-

clusion of high Z material in the target plasma

does increase the re-radiation energy loss by

bremstrahlung.

If, on the other hand, the target plasma is

bounded by dimensions which are much smaller than

the energetic electron mean free paths, then these

electrons will distribute themselves throughout the

target in a few transit times and establish the

spatially uniform low density distribution of hot

electrons referred to in the introduction. Only

when the absorption is thick and occurs at a den-

sity not much less than that of the main body of

the plasma will the hot electron density not be

much less than the cold, and in many cases of

interest the heated electrons are then collision

dominated so that these considerations do not

apply correctly. If the heating pulse duration is

longer than the time of transit of the energetic

electrons across a bounded target then these elec-

trons will return to participate in the heating

process more than once. If, for example, the

heating pulse lasts one nano sec and the bounding

dimensions of the target are one millimeter then a

three hundred kilovolt electron would return to

the heating region many times, especially if the

heating region extends over a significant fraction

of the target surface area. At first the returning

energetic electrons modify the velocity distribution

shown in Fig. lb to the (equally Realized) form

shown in Fig. lc with smaller value of f(v) in the

returning electron tail (v < 0 ) , than in that part

of f(v) leaving the heating region, (v > 0 ) , which

reflects the usual condition that the absorption

does not occur uniformly over the entire target

surface. When the density of hot electrons in the

main body of the plasma has increased to the total

electron density in the heating region (usually the

critical density) then the cold electrons are

altogether excluded from tha heating region because,

as we discuss below in connection with surface

expansion, the cold electrons are in a sense in-

finitely polarizable. The electron velocity distri-

bution adjacent to the heating region then acquires



the form sketched in Fig. Id. From this point on no

additional cold electrons are heated in the heating

region except as a result of overall expansion of the

target. Instead the hot electrons are heated further

if the absorption continues. These phenomena can be

seen in numerical simulations like those in the

Appendix but carried further in time and with a

density gradient.

An important point is that if absorption goes

on much longer than a target transit time, depending

on how thick the absorption is, the density of the

energetic electrons rises to just the density at the

absorption region which means, as we shall show

below, that expansion causes a step in density to

occur at that point.

There are several respects in which our one

dimensional, collisionless treatment would need to

be improved in order to make good quantitative pre-

dictions of target behavior. First, if we allow

electron motions in y and z then the effective

specific heat of the electrons transporting energy

out of the absorption region can be increased.

Hence Q can be larger for a given v , depending on

the magnitude of the thermal spread in v and v ,

and thus on the degree of anisotropy of velocities

developed in the absorption region. Instability

and collisional absorption tend to produce a rela-

tively isotropic velocity distribution, but the

resonant and radiation pressure mechanisms do

accelerate electrons primarily normal to the local

target surface. However, large velocity anisotro-

pies may not be tolerated by instabilities of the

Weibel type, which has been shown by simulation

to decrease, and in many cases essentially elimi-

nate, electron velocity anisotropy. The effect

of isotropic distributions of electron velocities

is to increase Q by as much as about 3 for a given

v , or the maximum electron energy by about 2 for

a given Q, which is not enough to change the basic

qualitative conclusions reached here. The two

or three dimensional development of the electro-

static instabilities, which are shown in the appen-

dix to be caused by counter streaming between

heated and cold electrons, is expected to be, if

anything, weaker than in the one dimensional treat-

ment there, on the basis of previous simulations.

If the energy absorption is localized to a

spot on the target surface then a multidimensional

treatment of the heat transport can be expected to

introduce circulating thermo-electric currents

since it does not necessarily follow that the flux

of the hot electrons and the charge compensating

counter flow of cold electrons will be co-linear. This

current flow, together with the self consistent

magnetic fields cannot be calculated properly with-

out a multi-dimensional simulation.

Another point of realism is that even though

the hot electrons may be quite accurately regarded

as collisionless, the counter streaming cold elec->

trons may not, particularly early in time when the

electrons in the main body of the plasma have not

yet been sufficiently heated. Hence, in some cases

there will be a need to include the effective

electrical resistivity of the cold electrons flowing

through the ion background, to calculate the E

field necessary to drive the required current, and

to modify the hot electron trajectories with this

field. This of course is the first step back to-

ward collisional thermal conductivity.

Finally, at the very beginning of the heating

process the main body of the target need not even

by ionized. In this event the hot electrons cannot

leave the heating region at first because no cold

but free electrons are available to compensate their

loss. Eventually, of course, collisional thermal

conduction will cause the necessary ionization, but

on a faster time scale the hot electrons can pro-

trude into the un-ionized region by their Debye

length, which can be large, and cause ionization

and heating. Here we only speculate that this burn

through process may be important in some cases of

interest.

III. HB5H VELOCITY, LOW DENSITT SU8FACE EXRIHSION

In this section we begin with a bouaded plasma

consisting of three components: cold lone at a.

density n., cold electrons at a density n and hot

electrons at a temperature IV and a dencity n. ,

such that n + n. = n , = n.z; that is we esevae
C n © i

quasi neutrality and a. « nc in the main body of



the plasma. In practice of course the cold elec-

trons must have some temperature but by oold we

mean here that this temperature is sufficiently

low that th& cold electron pressure is much less

than the hot electron pressure. Finite cold elec-

tron pressure would cause an additional lower

velocity, higher density expansion. We shall

assume that the hot electrons have ;•. Maxwellian

velocity distribution. This is a bit arbitrary

as we can see from the electron transport studies

above, but is convenient and as representative as

any other distribution that we could choose. The

mass motion of the ions will be taken to be

sufficiently slow that the electron distribution is

always in a stationary state. Since cold electrons

are in a sense infinitely polarisable, cold elec-

trons are everywhere except at the edges of the

plasma where the total electron density, n , drops
6

below n. , and the cold electrons are totally ex-

cluded.

If we consider a half space problem in which

there is a uniform plasma where x ~> -t» and vacuum

where x -• +<», all of which is independent of y and

z then an expansion of the surface in the x direc-

tion does not modify the original Maxwellian

velocity distribution of the hot electrons and

their density in the low density region is

In practice then, since we are really interested

in bounded targets we are only following the early

phase of the expansion before it significantly in-

creases the effective volume occupied by the hot

electrons. We assume that at time t = 0 the total

density also has a uniform value, n , for x < 0

and is zero for x > 0. An initial density gradient

at the surface as in Ref. 2 will not change the

basic result. The following two step expansion

then occurs at the surface.

First, an abrupt step in cp develops from

o = 0 to en = m, < 0 right at x =0, which accele-

rates ions from rest to a velocity v, > 0. By
2

energy conservation Zecn = m.v /2. Actually if

the step in to stands fixed at x =0, while ions

stream through, then ions must have a velocity v

at x < 0, but, as will be clear from the following
2

than v. and can be neglected. Just to the right

of the step the cold electrons are excluded be-

cause the total density, n , is less than n. , and

from Eq. (7) the density of hot electrons is

— J = nh0 j (8)

The equation expressing pressure and momentum

balance across the step is then
2

nh , kT h = nhl kTh + nM — g ' , (9)

where again terms proportional to v have been

dropped. Substituting from Eq. (8) into Eq. (9)

gives

a transcendental equation with the solution

ZkTh
2.5, 0.29 and-Vj- -1.58 (U)

where c. = ZkTh/m., the ion acoustic velocity

calculated from the hot electron temperature alone.

The thickness of the step derived here would be of

the order of a Debye length if charge separation

were included in the treatment. We see that

iv. < n. , which justifies exclusion of the cold

electrons to the right of the step and gives a

sufficiently low mass flow rate through the step

to make v « v. if n. « n . We see also that v,o 1 no c 1

is much larger than the acoustic speed calculated

from the average temperature, \\0/(\0
 + n

c ) *

Once through the step the ions then continue

to accelerate as a function of time and position

as in a conventional isothermal rarefaction in the

rest frame moving with the velocity (v, - e. )• The

ion velocity is, thereforej given by

vi = v, + x / t

and the density is given by

n0 = zn, = nh j ex

The t o t a l ion energy is

(12)

(15)

c h

derivation, when
2

« n then v is much less 2Z



Substituting from Eqs. (l l) for n ^ and. v gives

"ho nij c t t

2Z"i =• 0.46

= 0.153 c,l ^

(15)

where

Since the energy density in the plasma is

(3/2)ru kTh> the basic result is that when

0.153 t̂ t approaches the size of the system then

the effective volume containing the hot electrons

has increased by approximately two, four or eight

depending on symmetry (plane, cylindrical or

spherical) and the hot electron energy has been

substantially dissipated by the low density, high

velocity blow off. Experimentally the energy

would appear in the form of ions moving away from

the surface with energies of the order of and

larger than Z times the mean hot electron energy.

If the surface density gradient which exists

when the hot electrons appear is sufficiently

gradual that the length interval from the vacuum

to the point where n = rv is substantially
6 no

greater than the hot electron Debye length thick-

ness of the step in co, then at first all of the

ions in this interval will be accelerated by the

gradient of to which follows from Eq. (8) above.

This is the behavior which is beginning to occur

in Pig. k of Ref. 2. When these ions have moved

off enough to drop the density in this interval

below n. ., then the step will establish itself

where ne = n h o and begin to eat its way back into

higher density region as more ions pass through

the step. When the electron density on the high

density side of the step is Just t^ then the ion

velocity on the high density side, which we neg-

lected above is v = (.ny)>/'
lK, )v, = 0.29 v. which

is not negligible but not large enough to make

any qualitative change if it were included in

Eqs. (8) and (9).

VJhen the density of energetic electrons has

not yet exceeded the absorption region density

then the blow off step begins on the low density

side, as seen clearly in Fig. U of Ref. 2. How-

ever, as discussed above if the absorption goes on

for much longer than a target transit time the hot

electron density, n.nQ, can rise up to but not

above the density in the heating region. This

then causes the step to occur right in the heating

region. As the step progresses into the higher

density region the density on its high side will

increase above n. while the density on the low

side will remain n ^ =- 0,29 n^. Thus at least

when there is a particular absorption density or

narrow range of densities, this absorption density

would be found only in the step, a situation which

would modify the absorption process by reducing

the thickness of the absorption region. As

collisions with the hot electrons build up the

cold electron pressure, however, this pressure

will broaden the step somewhat as it works to

cause the second lower velocity rarefaction.

In the section on electron heating above we

pointed out that the increased range of energetic

electrons could help in depositing absorbed energy

in a thicker surface layer of material. This is

important when one wishes to deliver the maximum

possible recoil impulse to the surface, from

expansion of surface material, for a given absorbed

energy. On the other hand it is very important for

some applications to note that when in a bounded

target the high energy electrons and low density

blow off occur, much less mass is blown off than in

a simple fluid expansion. The absorbed energy is,

therefore, used much less efficiently in imparting

impulse to the surface. If the bounded target is

homogeneous so that the hot electron distribution

does indeed extend uniformly throughout the target

then the situation is even worse because the ex-

pansior recoil on oue side of the target balances

that on the other side without giving any impulse

at all to the bulk of the target.

From Eq. (15) it can be seen that the rate of

energy loss by expansion can be reduced by making

the ratio m./Z. large, which can be accomplished in

principle by using high Z materials so that m. is

larger but in a low ionization state so that Z. is

effectively small.

IV. NUMERICAL SIMULATION OF THE LOW DENSITY, HEJH
VELOCITY SURFACE EXPANSION

The following one dimensional, electrostatic,
Q

Particle-In-Cell simulation shows the low density
surface expansion more graphically than the above
analytic derivation and gives us confidence in pre-
dicting the effect. Figure 5a shows the init ial
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Fig. 5. Hiase space plots of hot and cold electrons (above) and ions (below) and accompanying graphs of
t.n(x) at (a) initial time, t= 0, (b) t = 100 when ion motion has just, begun at x =0, (c) t = 500
when the formation of the step in ion velocity and (B(X) has developed and the expansion-rarefaction
motion of ions has begun and (d) t = 1500 when the expansion is well developed and considerable
cooling of the hot electrons has occurred.

phase space plots, v vs x, of electrons (above)

and ions (below). The ion to electron mass ratio

is 1000, an arbitrary number chosen large enough

that the electrons have an almost stationary

velocity distribution almost everywhere, and Z = 1.

Particles which reach the grid boundaries are re-

flected. The grid has a length of 200 Debye lengths

based on the total electron density and the thermal

velocity, vft = 1.0, of the hot electrons. The

initial ratio of hot to cold electron densities,

n, /n , is everywhere 0.1. The cold electrons

initially have a small thermal spread of 0.05,

which is necessary to prevent a small Debye length

numerical instability which gives some energy to tlie

cold electrons whether you like it or not if their

Debye length is smaller than the cell size. It was

also found to be helpful to represent the cold

electrons with simulation particles each of wniih

represent ten times more electrons than are re-

presented by the hot electron simulation particles,

in order to improve hot particle statistics. Time

units are cu " . Figure 3b shows the phase plots

and the electrostatic potential, t.o(x), at t = 100,

just as the step is beginning to form. Note that

the hot electrons have begun to protrude out into

the vacuum (the Debye length of the hot electrons

is much longer than that of the cold), the ions at

the surface have begun to accelerate and the

potential is essentially flat where there are cold

electrons, in keeping with their large polarisa-

bility. Figure 3c shows the same combination of

diagnostics at t = 500 when the ion phase plot

shows the beginning of the low density expansion

from the top of the step in ion velocity. From

Eq. (11) the velocity v1 at which the step breaks

over into the rarefaction should be 1.58 x

vi/(2 x 10 ) = 0.033 in the units of the simulation,

and this is what is seen here to within the accuracy

with which one can identify this velocity from

Fig. 3c. Also the slope of the rarefaction line in

phase space beyond the step agrees with Eq. (12),

and the ion density profile (not shown here) is in

full agreement with the analytic model, Eq.. (13).

Figure 3d shows the situation at t = 1500 when the

expansion is well developed and a large fraction of

the original hot electron energy has gone into the

expanding ions. This is reflected in the fact that

the step velocity at x =0, v^, is now noticeably

smaller than in Fig. 3c.



V. CONCLUSIONS

We have examined the process of collisionlsss

thermal conduction out of a region where energy is

deposited by absorption of electromagnetic radiation

and found lower limits on the top of the range of

energies of electrons involved in the process.

These lower limits, given approximately by Eq. (6)

above, depend only on the rate of energy absorption

and the electron density at which it is absorbed,

and not at all on the details of the absorption

process. From absorption of 10 5 w/cm at the
19 —̂$

critical electron density of 10 y em J of 10.6 u

light, electron energies up to 390 keV must occur.

The same energies must occur from the absorption

of 1017 W/cm2 at the critical density of 1021 cm"5

of 1.06 n light, because of the inverse relation-

ship between power and density in Kq. (6). Such

energetic electrons have mean free paths of centi-

meters in hydrogen plasmas with solid densities.

Consequently long lived two temperature velocity

distributions can be expected from such power in-

puts into bounded target with dimensions of the

order of a millimeter or less. In general the high

energy electrons from the surface are expected to

distribute themselves throughout the available

target volume with a density not greater than the

electron density at the point in the surface where

they are heated, and, therefore, in most cases, at

a much lower density than the rest of the colder

electrons in the main body of the target. This can

be advantageous if a uniform distribution of

electron pressure in the target is desired. The

use of high Z materials in the target is recommended

to reduce the lifetime and range of these high

energy electrons if this is desired.

As a further consequence of the occurrence of

the two temperature electron distribution, a low

density surface expansion and rarefaction is pre-

dicted with expanding ions accelerated to energies

greater than the mean energy of the high tempera-

ture electrons. This expansion is capable of

dissipating the hot electron energy much faster

than would be done by a conventional hydrodynamlc

expansion, while giving relatively little recoil

impulse to the target surface. This low density,

high velocity expansion would be moderated by the

presence in the surface of high Z, weakly ionized

material.

APPENDIX

The following numerical simulations were done by the
Q

Particle-:&i-Cell (P. I.e. ) method on a one dimen-

sional grid. The electrons move under the influence

of the self consistent electrostatic field obtained

on each time step from Poisson's equation, and are

represented by 8 x 10 simulation particles. The

ions are represented by a fixed, uniform positive

charge background. At the left boundary, x = 0,

the electric field, Ex = dep/dx, is set to zero, and

at the right end, x = 800 for all of the simulations

shown here, the potential, «, is zero. The units of
time are u> " , and the units of length are v /<»_»

pe o pe

where vQ is the velocity unit of the simulations,

and therefore the unit of velocity in which the

graphs below are labeled. If the electron velocity

distribution had the form f(v )~expl"-v /v ] then

vo/(/2») ) would be the Debye length. In these

units the time step and cell length used were both

0.2, giving a total of k x Kr cells in the grid

length of 800. There are two kinds of problems,

those in which heat enters the system and those in

which it leaves. Both situations have been simula-

lated. Here we present the "heat entering" results,

and only comment on the others below. The simula-

tions are started -with the grid filled uniformly by

a Maxwellian distribution of electrons with a

thermal velocity spread of 0.05, which is very

small in comparison with eventual velocities.

Particle motions are reflected from both ends of

the grid as they would be by space charge sheaths

in a real slab target. The energy is introduced

into the left end of the grid in the following way.

A heating or energy deposition region is chosen,

essentially arbitrarily, but in order to avoid

numerical truncation errors it should be long

enough that a heated particle does not leave the

region in one time step. In all the simulations

presented here this Interval, whose length we call

h, was x = 0 to 10, so n = 10, although in earlier

work this length was varied widely as an alternative



way of varying the effective stochastic thickness

of the heating region. On each time step each

particle in the region is given a velocity incre-

ment or impulse chosen randomly from a distribution.

This distribution can be almost arbitrary, particu-

larly in thick heating regions where the central

limit theorem guarantees that almost all such

distributions of individual impulses will tend

to build up a Maxwellian velocity distribution.

Reduced heating of more energetic electrons be-

cause collision cross section dependence on velocity

or band limits of plasma turbulence are included in

this approximation by reducing the mean magnitude

of these impulses for more energetic electrons, but

such effects were not included in the calculations

presented here. Here the impulse distribution was

specified by first making a random selection on

each time step of some fraction, F, of the particles

in the heating region. Each of the selected par-

ticles is then given an impulse, Svx, chosen ran-

domly from the interval «vx < 8vx < (vmx (« fl*t

topped distribution of 5vx's); the reminder of

the particles are given Sv = 0. Then because

this distribution of sv 's Is symmetric the average

energy increment per particle in the heating re-

gion per time step in FBKSV >/2 =

the energy flux into the grid is

Q = (nh F 6v2
nBx)/(6at) ( A 1)

where n is the density of simulation particles and

we have set m = 1 as is done for electrons in the

simulations. Here we are making no effort to put

Q into physical units since the desired results

are dlmensionless ratios. In the same units the

energy flux at any point In the grid is

Q = n<v_ (A2)

In all of the simulations presented here h = 10

and fit =0.2, and the parameters giver above make

n = 100 simulation particles per unit length.

CASE I

jto this first ease F = 1 , i . e . , al l particles
receive an impulse on each time step, and Mr

max
0.1 so that from Eq. (Al) Q = 50/6 =. 8.35 and from

setting the right sides of Al and A2 equal the

region should be <\r> = l/6 =- 0.166. These para-

meters are such that an average electron will

acquire a velocity of the order of one from of the
2

order of 10 impulses. Hence in the sense descri-

bed in the test this heating region is clearly

stochastically thick. Figure A-l shows the phase

600

steady state value of coming out of the heating

Fig. A-l. Phase plot of electrons at initial tin*
in the simulation of collisionless
thermal conduction

space of Case I at zero time. Fig. A-2 at t = 160

shows the phase space and the potential, cp(x), at

t = 160. At this early time it is easiest to see

the dominant physical phenomena involved in

collisionless energy transport. Heated electrons

stream out of the heating region to the right and

create a charge separation potential difference

which draws adjacent cold electrons back into the

heating region to neutralize the charge imbalance.

This is seen in Fig. A-2 in the potential maximum

at the left end of the grid (the electrons are

treated as negatively charged) and the downward

shift of the main strip of cold electrons to

negative velocities in this same region of the

phase plot. The large oscillations of rc(x) are not

numerical noise (as are some of the fluctuations of

the velocity moments shown below) but rather electro-

static oscillations caused by counterstreaming be-

tween the faster heated electrons, which escape the

heating region first, and the cold electrons. The

wavelength of these oscillations, which is between

5 and 10 here, is a bit difficult to resolve with

10



600

•e- 0.2

-0.2
800

Fig. A-2. The phase plot of electrons and the
electrostatic potential early in
Case I, the stochastically thick
absorption case, show the beginning
of cold electron counterstreaming and
the associated gross structure of m(x)
and v associated with the counter+
streaming instability.

the eye in Fig. A-2 but is adequately resolved

by the h x l(r cells of length 0.2. Because the

faster heated electrons move further into the cold

region sooner they establish a bump on tail velocity

distribution which is unstable to the growth of

plasma oscillations, which in turn causes' some

slowing and spreading of velocities and persist in

time because they are weakly damped. These plasma

oscillations can also be seen in the short wave-

length oscillations of the cold electrons in the

phase space plot. The bump on tail problem is

treated in detail for a homogeneous plasma in Ref.

8, in which Case IV most closely resembles the two

beam situation seen here. The shift of the peak

of an energy conducting electron velocity distribu-

tion avay from the local ion rest frame tends also

to cause the more slowly growing ion acoustic

instability, as has been pointed out by Forslund

especially when the ions are colder than the

electrons. In the situation under study here this

is essentially an unstable interaction between the

ions and the cold, counterstreaming electrons, and

is stabilized when the thermal velocity spread of

the latter is of the order of their drift velocity

with respect to the ions. A flat spot also develops

in the electron distribution at the zero, or ion,

velocity. This has been seen in other simulations

of the kind shown here but with ion motion in-

cluded and was shown previously in numerical sirau-

lations of ion acoustic turbulence. This addi-

tional heating of the cold electrons has been seen

in simulations with the hydrogen mass ratio to make

the overall electron velocity distribution signi-

ficantly more nearly bell shaped, and thus further

strengthen the need for hot electrons to transport

a given Q. The details depend on the mass ratio

and the initial ion temperature, the effect being

stronger of course with colder ions. Besides, as

we see in Figs. A-3 and A-U the interaction of hot

and cold electrons has already caused almost this

much heating of the cold electrons.

Before continuing with the simulations of the

energy transport we would like to note that several

other cases have been run with values of the heating

region parameters, h, F and Sv,^. which ranged
mix

widely but were constrained to give stochastically

thick heating and the same value of <v >, 0.166,

by Eq. (A-l). Predictably the results were vir-

tually identical outside of the heating region,

because the same almost Maxwellian velocity dis-

tribution develops inside the heating region. This

independence of the details ot energy transport

from the microscopic details of all thicl: energy

deposition processes would seem to make a broad class

of plasma turbulence collisional absorption roech-

11
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Fig. A-3. Electron phase plot , graphs of mean
thermal velocity spread, VrmSj the
thermal conduction moment, <Vx>» and
the velocity distr ibutions at i = 200
and 1*00, taken at t = 500 >n ̂  from
Case I in which absorption Is stochasti-
cally thick. The electron energies ob-
served are close to the optimum conditi-
ion, Eq. (6), in the t ex t , which corres-
ponds to the maximum of Fig. 2.

Fig. A-k. The same diagnostics as in Fig. A-3 a t
t = 1000 „• Z 1 .
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Fig. A-5. The same diagnostics at t = 500 u'
as in Fig. A-3 for the stoehasti-1*
cally thin Case II , which corresponds to
about the point njj/n =0 .1 on Fig. Note
the change of velocity scale from 42.0
in Fig. A-5 to +l".o here.

Fig. A-6. The same diagnostics as in Fig. A-5 at
t = 1000 (i. '*•pe .



anisms equivalent for target heating purposes. Also,

since many such absorption processes are quenched

by a sufficiently large electron temperature in the

absorption region, the absorption nay regulate

itself to that value of Q which is consistent with

the quenching temperature through the thermal

transport rate obtained here. In particular, as

noted in the text, the temperatures required for a

given thermal transport rate are much larger than

the driven electron energies in the corresponding

wave field and are, therefore, more difficult to

achieve through absorption than if these tempera-

tures "ere more nearly equal.

The collisionless transport process is illus-

trated by Figs. A-J and A-U which show nunerical

diagnostics at t • 500 and 1000 respectively. Fran

top to botton these diagnostics are the phase

space electron plot (showing only 1 of 5 of the

total simulation particles), the mean value of

v , <v •>, as a function of position,
x x g

<(v - <v >) ->, which we call Vrmc, as a function

of position, and the local velocity distribution

function, f(v_)> at x * 200 and '•OO. On these

graphs of f(v ) narks and numbers have been added

to the bottom which indicate the computed fraction

of the particles represented which lie to the left

of the selected velocities. These are added to

help overccwe difficulty with visual interpretation

caused by the large difference in Magnitude of the

peaks and tails of these curves and by the fluctua-

tions caused by taking a small local staple of

particles. From the phase plots and graphs of

<v% > and Vras, it is seen that the energy is

transported by a smooth, continuously rising flux

of headed electrons with no draaatic front structure,

and with «*x'> rising in the back to the value

0.166 (sows visual, snootbing of noise is required

here) required by the heating parameters. The

leading edge of the electron flux is seen to move

at almost the m»x1im electron velocity generated

in the heating region. The flow is slowed slightly

by the electrostatic turbulence caused by the counter

streaming instability and by the gross electrostatic

fields which develop to force reverse flow of the

cold electrons and maintain charge neutrality,

these electrostatic fields of course decelerate

the less strongly heated electrons met and have

the effect of filling in what would otherwise ba a

small gap in velocities between the heated electrons

which leave the heating region with only positive

velocities and the cold electrons which stream back

into the beating region with relatively small but

distinctly negative velocities. What happens is

that as the flux of heated electrons progresses

into the unheated plasna the electrostatic fields

decelerate the slower electrons and turn them back

toward the heating region, thus tending to fill in

the gap and eliminating instability. This filling

tends to flatten the velocity distribution toward

the idealized form used in the text. However, as

the heated electrons move into the higher density

of the target, where n. /n becomes much smaller and

the collision frequency may approach or even exceed

the plasma frequency, both the gross and turbulent

electrostatic fields oust be smaller and some of

the two beam structure of the velocity distribution

must reappear.

Froa the distribution function graphs in Figs.

A-3 and A-4, and particularly the distribution at

t • 1000 and x • 200, it can be seen that where the

energy flux has established itself at its steady

state value, the fraction of electrons in the tail,

n./n, is about 0.30 + 0.05, which brackets the

optimum value of n./n in Fig. 2. The effective

•sxiiw velocity of the hot electrons, defined as

v. in the text, Is about 1.9. This value of v.
h h.

together with Q - 0.166 from Above gives Q/(nav^/2)
-2

- 4.9 x 10 , which is only a little below the

•axiaun or optlnua, value of this ratio obtained

froa the analytic aodel in the text. This simula-

tion has shown then that stochastically thick #»>-

sorption gives rise to electron transport with

paraaeters close to those corresponding to the

aaxlaua of Fig. 2 In the text.

CASE II

This case is the same as Case Z in all respects

except that the maximal velocity Increment la the

heating process, 6v . has been Increased froa 0.1
max

to 3.0, and the fraction of particles in the Inter-

val x => 0 to 10 that are incremented on each time

step has been decreased fro* 1.0 to 1/900. These

changes, which place Case II clearly into the sto-

chastically thin heating region, just compensate so

as to r.««p Q, and therefore <*x >* W» same as in

Ik



Case I. Figures A-5 and A-6 show the same diagnos-

tics at t = 500 and 1000 as do A-3 arid A-4 for

Case I. Notice, however, that the velocity limits

on the phase plots and distribution graphs have

been increased from + 2 in Case I to + 4. The most

obvious difference is that the energetic electron

velocities are larger and, therefore, that the

front of the profiles of <v '•> and Vrms move more

rapidly than in Case I. This is consistent with

the same value of Q and <vx > behind the front be-

cause the specific heat of the energetic electrons

is smaller in Case H, as reflected by the smaller

values of Vrms. This in turn is a consequence of

the smaller values of '<\Jri, which can be seen from

f (vx) at t = 1000 and x =200 to be i^/n =- 0.0U, a

value well to the low density side of the optimum

of Fig. 2 in the text. From Fig. 2 the ratio

Q/tmnVg /2) should be about 0.01, which indicates

a value of v. that is larger than the v. =1.5 in

Case I by a factor of about 1-5, or 2.1». This

is consistent with f(rx) at t - 1000 and x = 200,

and, therefore, supports the approximate validity of

the analytic model for stochastically thin absorption.

The short wave length beam instability driven

oscillations of the cold electrons are also seen

here in Case II, as is the tendency of the high

energy tail to flatten and fill in at lower veloci-

ties. In f(vx) at t = 1000 and x = UOO we also see

a significant negative velocity tail of returning

high energy electrons, as in the idealized distri-

bution of Fig. lc in the text.
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