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ABSTRACT

The major part of this thesis describes a detailed study of
‘electrical and thermal transport processes in tungsten. Chapter II
is concerned with low-temperature measurements of p and WT (p is the
electrical resistivity and W is the thermal resistivity) in high-
purity tungsten single crystals in the absence of a magnetic field.
The temperatufe dependence of' p and WT is found to be predominantly
quadratic, in agreement with observations in other transition metals.
It is reasonable to attribute this behavior to electron-electron scat-
tering. The validity of Matthiessen's rule for impurity and boundary
scattering is investigated to determine whetﬁer the contributions of
electron-electron scattering, Pe and WeT, can be meaningfully separated
from the total resistivities p and WT. In those samples in which
boundary scattering contributes least to tﬁe total resistivities,
Matthiessen's rule is approximately obeyed for the electrical resis-
tivity, while deviations are observed for the thermal resistivity.
For these samples, the measured values of Pe and weT yield Lorenz

numbers for electron-electron scattering, IL_ = pe/WeT, that range

e
from 0.2 x 1078 to 0.4 x 1078 WQ/K2.
Chapter III is concerned with the electrical and thermal trans-
port properties of tungsten in a strong magnetic field. Measurements
of the high-field transverse electrical and thermal conductivities,
Oxx and Myx ? of a high-purity tungsten single crystal.are presented
for the temperature range 1.5 to 6 K. The magnetic field dependences
of the conductivities conform excellently to the predictions of high-
field semiclassical magnetoresistance theory, provided that thermal
conduction by the lattice is taken into account. The results show
that the lattice thermal conductivity ié proportional to Te,.as ex-

pected for a pure metal in which the phonons are scattered principally

by the conduction electrons. The temperature dependence of the high-
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field electrical conductivity Oyx? and the corresponding electronic

contribution (u ) to the thermal conductivity My are.also measured.

e’ XX
Theoretical expresions for these quantities are derived from-semi-
claséical‘magnetoresistance theqry, allowing estimates to be made of
the'temperaﬁure depéndence associated with possible low-temperature
scattering mechanisms. Difficulties in interpreting the previous zero-
field measurements in terms of electron-electron or electron-phonon
scattering are discussed.
In Chapter IV the theory developed in Chapter III.is discussed
in greater detail and is extended to include a discussion of the longi-
tudinal magnetoresistance. Next, it is shown that several interest-
ing predictions regarding the role of electron-phonon scattéring in
the ﬁagnetoresistance of potassium can be made on the basis of semi-
classical theory.
.Lastly, in Chapter V an assessment is made of the prospect of
- using the rf size effect to detect anisotropies in the relaxétion ’

time in potassium.




I. INTRODUCTION

Over the past decade the Fermi surfaces of essentlally all of the
light metallic elements have been determined. Since the Fermi surface
is important in determining the dynamics of the conduction electrons
in a metal, this has led to a better understanding of many transport
processes. For example, the magnetic field dependence of the high-'
field magnetoresistance is determined by the topology of the Fermi sur-
face. The discovery of this fact explained the perplexing anomalies
in the magnetoresistance caused by open orbits and provided a powerful
tool for investigating Fermi surface topology in metals whose Fermi
surfaces had not yet been determined.

However, other aspects of transport brocesses, such as the temp-
erature dependence of the magnetoresistance, are determined largely
by the mechanisms that scatter the conduction electrons and to a lesser
extent by specific features of the Fermi surface. The study of these
scattering mechanisms is the logical next step in furtherlng our under-
standing of metals.

The major part of this thesis (Chapters II and III) is concerned
with the rele played by low-temperature scattering mechanisms in the
electrical and thermal transport properties of tungsten. At the time
the measurements in zero magnetic field reported in Chapter II were
completed, all the available evidence indicated that electron-electron
scattering was largely responsible for the characteristic T2 behavior
of the electrical resistivity p and its thermal counterpart WT. How-
ever, the extension of these measurements to high magnetic fields,
reported in Chapter III, has produced results that are difficult to
interpret in terms of electron-electron scattering. It seems that
until more is known about the role of electron-phonon scattering in
the transition metals, and in particular in tungsten, it may be dif-

ficult to decide whether electron-electron or electron-phonon scatter-
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ing is the dominant low-temperature scattering mechanism in fungsten;
or even possibly whether it is a combination of both.

Although the role played by electron-electron scattering in the
- transport properties of tungsten remains ambiguous, this work has pro-
duced unexpected benefits. Firstly, the high-field measurements led
to the measurement of the lattice thermal conductivity of tungsten.
To my knowledge, this measurement, together with a similar independent
measurement by Long, constitute the first convincing determinations of
-the lattice thermal conductivity of a pure metal. Secondly, some pro-
gress was made in extending high-field semiclassical theory to situa-
tions in which fhe scattering cannot be described by a relaxation time.
Thus it is shown that, under special circumstances, the high-field
electrical and thermal condﬁctivities are given by simple expressions
involving the fundamental .scattering rate. Some of these results are
also consequences of quantum transport theory (C. Herring, private
communicétion). However, apart from characte};stic quantum effects,
such as the Shubnikov-de Haaé effect, ete., tﬁe semiclassical and
quantum treatments should be equivalent. ‘Moreover, the semiclassical
approach has two useful features: i) 1t facilitates‘a convenient_com-
parison of the high-field and zero-field transport pfoperties through‘
the use qf the Kohler variational principle; and ii) It can be modi-

fied to extend the treatment to metals having open orbits.

In Chapter IV some of the theoretical results described in Chapter_

IIT are dealt with in greéter detail .and have been extended in several
instances. In Secs. B and C the Kohler variational principle is used
. to compare the high-field transverse and longitudinal magnetoresistiv-

ities. In this manner it is possible to see in a simple way the origin

of the enhancement of the resistivity in a strong magnetic field. This

approach seems to be naturally limited to situations for which the mag-
netic- field is directed along a symmetry axis. It is unclear whether

the same approach can be used to extend the treatment to situations




for which the magnetic field is arbitrafily oriented. Finally, in »
the remainder of Chapter IV some interesting predictions are made con-
cerning the role of electron-phonon scattering the magnetoresistance
'of potassium.
The last chapter (Chapter V) is not directly related to any of
‘the previous chapters. It is concerned with an assessment of the

feasibility of using the rf size effect to detect anisbtropies in the

relaxation time in potassium.-



CHAPTER II

THE LOW-TEMPERATURE ELECTRIC_AL AND THERMAL RESISTIVITIES OF TUNGSTEN
A. Introduction . ' ' ' : .
Recehtly in the low-temperature electrieal and thermal resistivi- |
ties of several transition metals (Ni, Re, Pd, Os, Pt, and Fe)l™7 have
been measured. These studies have been important in revealing a T
behavior of both theielectrical-resistivity p and the analogous thermal
transport property WT (W-'is the thermal resistivity) at low tempera-
tures. The T2 behavior of the electricel resistivity p of a number of
transition metals has been known for many years® and was first attri- |
buted to electron-electron scattering between different branches of'
_the Fermi.surface.® Since that time, the observation of the T2 be-
havior of WT at low temperetures in Ni, Re, P4, Pt, and Fe has lent
further support to the view that electron-electron scattering cah be
an important resistive mechanism in many fransition'metals.lo’1i
This chabter describes the extension of these measurements to
tungsten. In particular, itAreports a detailed study of the tempera-
- tufe dependence of p and WThin a number of high-purity tungsten single
crystals for which a'dominant T2 dependence of both p end WT is obser-
"ved in the temperature range from‘l.5 to‘6-K. In order to determine
reiiably the magnitudes of thevTZ.terms in the resistivities, it was
also necessary to examine the validity of Matthiessen's rule for elec-
tron-electron scattering--that is; the extent to which the coefficients
of the fa terms in‘thevresistivities are not affected By'other scatter-
ing mechanisms such as impurity scattering and‘boundary scattering.
Considerable effort has been devoted to estimating theoretically
the relative magnltudes of the T2 term pe in p and the T2 term W T in
WT.127 18A Because of the difflculty of estimatlng the magnitudes of : A | ]
Pe and We separately, several calculatlons have been performed that !
.give the ratio Le = pe/weT; the Lorenz ﬁumber for'electronfelectron ' ‘ . ?

scattering. The first such calculation was performed by Herringl2? in

.



connection with the measurements of Pe and weT in nickel by White and

Tainsh.! Herring argued that the assumption of a complicated Fermi
surface could result in a considerable simplification of the .collision
integral for electron-electron scattering, thus méking it possible to
obtaln an energy-dependent relaxation time. In the absénce of impurity
scattering this relaxation time leads to a va;ue of Le of 1.58 x 1078
WQ/K2, while for situations in which impurity scattering is predomi-

nant over electron-electron scattering, a value of 1.36 x 1078 wo/K®

is obtained.!® Alﬁhough his argument does not assume any particular

form for the scattering rate, Herring has noted that Le can be quite
sensitive to the angular distribution of the scattering. "It is per-
haps for this reason that agreement with experiment has not been par-
ticularly good. Measurements of the transport properties of Ni, Re, Pd,
Pt, and Fe have yielded wvarious values of Le: 1.0 for Ni,! 0.9 for
Re,®’% 1.1 for P4,%’% 0.1 for Pt,® and 1.2 for Fe,” each in units of
1078 Wo/K2.

Other models have been considered that allow calculation of Le
for a particular scattering rate. Initial progress in this direction
was made by Smith and Wilkins,'? who found solutions to the linearized
Boltzmann equation for combined electron-electron scattering and im- -

purity scattering on a spherical Fermi surface. While this model can

_be expected to appropriately describe normal electron-electron scat-

tering®® in simple metals, it cannot be applied to the transition

metals which have considerably more complicated band structures. .

‘Bennett and Ricel® have modified this calculation to describe the scat-

tering of mobile "s" electrons in one band by heavier "d" holes in

another. To make the calculation tractable they have assumed spherical

- "s" and "d" bands, and, in addition, have assumed that the current is

"

carried primarily by the "s" electrons. Although this model is still
an 6versimplification of the band structures of the transition metals,

it is, nevertheless, instructive because it exhibits certain features
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that would probébily be retained in a more realistic model. 1In parti-
cular their caléulation shows'that Le depends rather sensitively on
the angular distribution of thé electron-electron scattering. In the
linit of small-angle scattering, Le approaches zero, while for iso-
tropic scattering Le approaches a value between 1.%6 x 108 and 1.58

x 1078 WQ/K?, the exact value depending upon the amount of impurity
scattering present. For intermediate angular dependences of the scat-
“tering rate, these calculations show that Le can assume values between
zero and the valués calculated by Herring. Bennett and Rice point out
that a scattering rate corresponding to a screened Coulomb interaction
leads to values of L, between about 0.8 x 1078 and 1.0 x 10°8 Wa/K2 in
a typical transition metal; this is in reasonable agreement with the
experimental results for Ni,*© Re, Pd, and Fe, but not Pt. These cal-
culatiqns also show that significant deviations from Matthiessen's
rule can occur when impurity scattering'and electroh-electron scatter-
ing act together. The effect is largest in the thermal resistivity,
causing about a 30% increase in [WT - (WT)O] as the amount of impurity
scattering 1s increased. In the electrical resistivity, a smaller,
approximately 10% increase in [p - po] occdrs.

Other calculations have been carried out by Rice,!? and Schriempf,
Schindler, and Mills®® using a spherical two-band model for the Fermi
surface and a screened Coulomb interaction between electrons. Because
a specific scattering rate is postulated, these treatments are special
cases of the calculétion of Bennett and Rice and lead to similar re-
sults.

To my knowledge, no measurements of the thermal resistivity of
high-purity tungsten have been made in the liquid-helium temperature
range. Measurements at higher temperatures in a restricted range
(14-22 K) have been made by de Nobel,® who finds that WT can be des-
cribed by WT = (WT)o + BT with B ~ 5 x 10°° cm/WK. ’However, this

temperature range is not sufficiently large nor the data sufficiently
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precise, to distinguish between a BT® temperature dependence (electron-
phonon scattering only) and a oT? + BT® temperature dependence (elec-
tron-electron and electron-phonon scattering).

Studies of the temperature dependence of the electrical resisti-
vity of high-purity tungsten have been made by Volkenshetyn et g}.zo
and Berthel®! over a wide range of temperatures. Volkenshetyn et al.
have measured the electrical resistivity of a sample with a residual
resistance ratio (p(300K)/p(%4.2K)) of 19,000 over a temperature range
extending from 4 to 300 K. They find that at low temperatures®2 the
resistivity can be described by p = po + AT2 + BT® with A = 40 x 107183
0 cm/K2 and B = 0.8 x 10715 g em/K5. Berthel has measured the elec-
trical resistivity of a number of single-crystal tungsten rods with

residual resistance ratios (p(273K)/p(0K)) ranging from 15,000 to

330,000. -His measurements were made in two temperature ranges: 1.4 -

4.2 K and 14 - 27 K. In the 1.4 - 4.2 K range he finds that p = po

+ AT® with A = 8 x 1072 Q cm/K? in the samples which boundary scat-
tering contributes lea;t to the resistivity. In the samples in which
boundary scattering contributes significantly to the resistivity, the
coefficient A is enhanced. 1In thé 14 - é? K temperature range he finds
that p = po + C + BT® with B = o.é x 1075 g cm/KS. Thus there is
reasonable agreement between measuremehts on the magnitude of the T®

term, but a considerable lack of agreement on the size of the T? term.

Berthel®?! has pointed out that in less pure samples [p(273K)/p(0K)

; 1500] investigated earlier by other workers,®3’2% the temperature de-

M

pendence of p is considerably different from that of the pure sambles;
in fact, the electrical resistivity does not appear to exhibit a T®
behavior at any temperature. Qualitétively, the magnitude of the temp-
erature-dependent part of the resistivity increasés and the dependence
on temperature weakens és the impurity content of the sample is in-
creased. For example, in a polycrystalline tungsten sample with a

residual-resistance  ratio [p295K)/p(0K)] of 180, White and Woods2+*
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observed at T* temperature dependence above 20 X and a T2 dependence
- at lower temperatures. They measured a coefficient A of the T® term
of 100 x 10713  cm/K2, more fhan ten times larger than the coeffic—
ient measured by Berthel in high-purity single-crystal samples. The
wide variation with purity of the temperature dependence of the'elec—
trical resistivity ehphasizes the need to study deviations froh Matt-
hiessen's rule in experimental studies of tranéport processes in .
tungsten.

Size-effect studies in tungsten have been carried out by Berthel®®

and by Startsev et al.2® in order to determine the electronic mean-free

path. Startsev et al. have performed careful measurements on tungsten
single crystals of square cross section. They reduced the thickneés-‘
in small increments by more than a .factor of 20 by electroetching and ‘
were especlally careful to eliminate errors due to an inhomogenous
distribution of impurities in the samples. Although they attempted to
estimate a bulk mean—frgé_path XB from their measurements by assuming

a very simple model for the size effect, values of A, obtained in this

B
' way were not independent of sample diameter. Without a more sophis-
ticated treatment of the dc size effect than is presently available,

there is no reliable way to determine A, from the measured resistivity.

B
and specimen size. Roughly speaking, however, I estimate from the:
data of Startsev et al. that boundary scattering contributes about 60%
to the resistivity of a specimen whose thickness is 1.5 mm and whose

residual resistance ratio is 30,000.

B. Experimental Details

The cryostat shown in Figure 2.1 was designed so that the eleér
trical and thermal,resistivities could be measured during the same
experiment.

The thermal resistivity W was detefmined by the usual method of .

measuring the temperature difference AT produced between two points on



the sample by a known.heat current Q. However, rather than computing
the temperature difference directly from the measured temperatures at
the two points on the sample, as is customarily done, we have used a
-differential technique that makes a direct comparison of the tempera-
ture along the sample with the heat current on and with it off. This
technique is particularly suited to the use of small temperature differ-
ences (<30 mK), and since it is not commonly used for this type of
Ameasurement, it is useful to give a brief explanation of the method.

One end of the tungsten sample was electroplatéd with copper and
soldered securely to a copper platform, whose temperature could be reg-
ulated electronically by meané of a heater Hy; and a carbon sensing ther-
mometer Ra. Another heater.Hl, used to generate the heat current @
through the sample, was attached to the other end. In order'to measure
the reSulting temperature difference AT across the sample, two carbon
resistance thermometers,®7 R; and Ry, were soldered to copper rings elec-
tropléted to the tungsten sample about 12 cm apart. These two thermo-
meters were connected in two arms of a Wheatstone bfidge~in such a way
that R; and AR = R;-Ro could be measured directly. The bridge was oper-
ated at 85 Hz, and the null in the output was detected with a phase-lock
amplifier. During each experiment R; and AR were calibrated against a
standard germanium resistance thermometer R, attached to the copper plat-
form.2® The resistance of this thermometer was measured by means of a
specially designed four-terminal bridge described elsewhere,2® allowing
mea;urement of the absolute temperature to an accuracy of at least 5 mK.
All of the electrical leads from the sample were thermally anchored to
the copper platform. :

The thermal resistivity was measured as follows: first, AR(T,AT) =
R1(T)-Rz (T+AT) and R,(T) were measured with a heat current § flowing in
the sample. Next the heat current was reduced to zero and the tempera-
ture of the platform was adjusted by means of the regulator tc keep R;
at the same temperature, and then AR(7,0) = R;(T)-R>(T) was measured.

The temperature difference AT was calculated by the expression
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- Pumping Tube
Feedthroughs for
Electrical Leads—
7>

Copper

Heat Sink
Carbon
Resistance - Heater .H,
Thermometer Ry

Copper
Calibrated Platform
Germanium

Resistance /

Thermometer R,

Carbon Resistance
Thermometer R,

Tungsten Sample

-—YVacuum Chamber
immersed in
Liquid Helium

Carbon Resistance
Thermometer R,

——Heater Hl

Figure 2.1. Diagram of the cryostat. Electrical leads are brought
into the vacuum chamber via Epoxy feedthroughs and are anchored
thermally to the heat sink. From the heat sink, short constan-
tan wires run to the copper platform where they are again thermally
anchored. From the platform, connections are made to the sample.




AR(T, aT) - aR(T, 0) (2+1)

AT = - dRp/dT

which is vaiid ﬁrovided |dR2/dT| >> %|d®R»/dT2|(AaT) (see Appendix A).
Finally, the thermal resistivity W was calculated from W = (AT/Q)(A/L),
where A/L is the ratio of the cross-sectional area A of the specimeq

and the distance L between the copper rings. This ratio was determined
by measuring the resistance of the sample at room temperature, using a
value of 5.38 unQ cm for the room temperature resistivity to compute

‘A/L; in computing this ratio I have neglected the small change that
occurs due to contraction as the sample is cooled to liquid helium -
temperature. It was verified that the thermal resistivity W was inde-
pehdent of the heat current used for a tenfold change in heat current and
it was possible to measure W with a precision of about 1% for the samples
with diameters of 1.5 mm or smaller, and with a precision of about 8%
for the 3.0 mm samples. The peak in the thermal conductivity of each

of the samples.occurred at about 4K, and in the purest specimen the

peak value was 750 W/cm K (the room-temperature thermal conductivity

of tungsten is 1.3 W/cm K). The samples, their diameters, and otﬁer
pertinent characteristics are listed in Table 2.1.:

The electrical resistivity was measured in the customary four-
probe manner. Two fine-copper voltage leads were attdched to the
sample at the points where the thermometers were attached, and a super-
conducting wire was used as the current lead. A constant current was
passed through the sample, and the potential produced between the vol-
tage leads was measured by a Keithley 148 nanovoltmeter with an inte-
grating digital voltmeter readout. A current of 2A was used in the
1.0- and 1.5-mm-diameter samples aﬁd 4A was used in the 3.0-mm-diameter
samples. By making ﬁéésurements at different currents it was verified
that there were no measuraﬁleﬁdeviations from Ohm's law at these cur-

rent levels due to the large magnetoresistance of tungsten. In these
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Table 2.1 Characteristics of the Tungsten Samples

Surface Diameter rR/d po ' (WT)o

Sample* Condition  (mm) "R (mm7!) (107%em)  (1072K2cm/W)
W-2 mirror 1.5 59,000 39,000 0.912+.002  0.3864.004
w-3 mirror 1.5 43,000 29,000 1.231+.004  0.4914.004
-y matt 1.0 30,000 30,000 1.7804.004  0.721%.005
W-5 = matt 1.5 9,400 6,300 5.7244.006 2.2664.014
W-6 mirror 3.0 63,000 21,000 0.848:.012 0.316%.010
W-7 . mirror 3.0 95,000 32,000 0.566%.004  0.2144.010
W-8 mirror 1.5 75,000 50,000 0.6954.006 - 0.319+.002
W-8A  matt 0.8 31,000 40,000 1.748:.006  0.717+.004
W-8B  matt 1.5 -53,600__35,000 1.006+.012  0.426%.006

A B o L, = A/a po(WT)o

Sample (107 *3qem/K?) (;o'lsocm/Ks) (10 *cm/w) (10™®Wa/K2) (107%wa/k?)

W-2 6.8 £ 0.3 . 1.1 & 0.1  —-emmmemme —mmemmee 2.36 £ .03
Ww-3 7.2%0.5 1.6 £ 0.2 2.51 & .02 0.29 % .06 2.51 & .02
w-4 7.4 £0.4 1.5 £0.2 2.55 % .03 0.29 % .02 2.47 & .02
W-5 6.2 % 0.6 1.8 £ 0.3 2.91 & .08 0.21 £ .02 2.53 & .02
W-6 6.7 £1.1 1.3 £ 0.4 2.21 & .08 0.30 & .05 2.68 & .08
W-7 8.7 + 0.3 0.8 £ 0.1 2.17 % .06 0.40 % .02 2.64 % .11
w-8 ©11.0 % 0.6 1.3 £0.3 2.53 % .01 (0.44%.02) 2.18 % .02
W-BA 12.2 £ 0.6 - 0.7 £ 0.3 2.78 & .02 (0.44£.02) 2.4% & .01

"W-8B 9.7 £ 1.4 . 1.0 + 0.6 2.48 £ .03 (0.39+.06) 2.36 + .03

* . . . ,. ‘

~ All samples have a [110] axis oriented along the rod -axis except W-2
which has a [111] orientation.
The errors shown represent 95% confidence limits (two standard devia-

tions) caldulaﬁed from the rms deviation of the data from the fit.
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samples the resistivity p could be measured to a relative precision of
about 3%. An exception occurred in the sample with the smallest dia-
heter (sample W-8A). In this sample a reslstance Chat decreased
slightly with measuring current was observed. Consequently a current .
of 1A was usea Yo minimize this effect, thereby incurring an errof of
at most 2%.

Conslderable care was taken to eliminate two potential sources of
systematic error in the thermal measurements: (i) loss of heat from
the sample via the electrical leads, and (ii) loss of heat from the
sample via conduction by residual helium gas in the vacuum chamber sur-
rounding the sample. In the first case, the loss of heat through the
constantan heater and.the thermometer wires was negligible. To verify
that there was no significant heat ioss through the copper voltage
leads and the superconducting current lead, these wires were discon-
nected and the thermal resiétivity was remeasured for two samples W-3
and W-7. In.each case the measurements produced results completely
consistent with the original measurements made with the wires in place.
It was also verified that conduction through the vacuum space was heg-
ligible by changing the temperature between the walls of the chamber
and the sample; in addition, an adsorbent®® was placed in the vacuum.

chamber to adsorb residual helium gas.

C. Experimental Results

The resistivities of seven electron-beam zone-refined single-
crystal tungsten specimens were meésured. Six were oriented with the
{110] direction parallel ‘to the rod axis, and one was oriented with
the [111] direction parallel to the rod'axis (see Table 2.1).

In Figufe 2.2 the temperature-dependent part of the electrical
resistivity (p.- po) has been plotted as a function of the square of
the temperature for five tungsten specimens of various diameters and
purities, each oriented with the [110] direction parallel to the rod

axis. The most notable feature of Figure 2.2 1s the large temperature
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Figure 2.2. Variation of the temperature-dependent part of the
electrical resistivity {p - po) with T, for five single-crystal
tungsten samples, each oriented with the [110] direction paral-
1el to the rod axis. The origin of each plot has been displaced
vertically for clarity and the plots have been arranged in order
of rR/d. Each of the solid curves represents a function of the
form AT2 + BTS, determined by the method of least squares.
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debendence of the resistivity for sample W-8 compared to the other
samples. Similar results have been reported by Berthel,®! who shows
convincingly that this is due to the size effect. Following the treat-
ment of Berthel, I have used the parameter rR/d to characterize the
relative amount of boundary scattering in the samples [where s stands’
for the residual resistance ratio, p(299K)/p(0K), of a specimen dia-.
meter d]. Except in the extreme size-effect regime (where rR/d tends
to a constant value) the parameter rR/d can be expected to increase
roughly with increasing boundary scattering. As expected; sample W-8
has the largest value of rR/d, while sample W-7--which does not show
an enhancement of the temperature dependent resistivity--has the larg-
est residual resistance ratio.

The temperature dependence of the electrical resistivify of all
of the samples can be adequately described by p = po + AT® + BT® for
the temperature range covered in thisvexperiment. For those samples-
in which Matthiessen's rule is approximately obeyed, it is reasonable
to i1dentify each of these terms with the unique contributions of im-
purity and boundary scattering, electron-electron scattering, and elec-
tron-phonon scattering. Although the real situation may be more com-
plicated, there does not exist at pfesent a more soundly based expres-
sion having as few parameters; consequently I have been obliged to use
this expression to fit the data. The values of po, A, and B were
."'determined by the method of least-squares for each of the samples and
tabulated in Table 2.1. '

In Figure 2.3 the variation of WT with T2 is shown for each of
the five tungsten samples shown in Figure 2.2. The temperature depend-
ence of WT-can be described by WT = (WT)o + oI2. A BT® term in WT,
corresponding to the BT® term in p due to electron—phonoﬁ scaftering
is not evident in the data; if such a term is present, the coefficient
B would have to be smaller than 5 x 10 ® cm/WK. As shown in Table 2.1,

the -value of « varies by about 30% among the samples oriented with the
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Figure 2.3 Variation of WT - po/Lo with T2 for five single-crystal
tungsten samples, each oriented with the [110] direction parallel
to the rod axis. The origin of each plot has been disb]aced vertically
for clarity and the plots have been arranged in qrder of R Square -
data points were taken with the potential leads and current Tead
attached to the sample, while the circled points were taken in a
separate experiment with these leads disconnected.
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[110] direction'alongAthe rod axis. 1In general, the value of ¢« tends
to increase with increesing impurity content, although sample W-8 ap-
pears again to be an exception.

These measurements were performed mainly on specimens with the

-4[110].direction parallel to the rod axis; however, ohe specimen W-2

with the [111] direct;on parallel to the rod axis was also studied. .
In Figures 2.4 and 2.5, the resistivities of samples W-2 and W—B‘are
compared. Although the temperature dependences of the electrical re-
sistivities for the two samples are nearly identical, the temperature
dependences of the thermal resistivities are qualtitatively.different;
sample W-3 appears to exhibit a quadratic temperature variation whereas
sample W-2 increases at a slightly faster rate. Ordinarily, in bulk
material the resistivities of a cubic crystal, such as tungeten, must
be isotropic due to the symmetry of the lattice. However, in specimens
with significant amounts of boundary scattering, exceptions can be ex-
pected to occu;‘.s1

In Figure 2.6 the variation of the Wiedemann-Franz ratio p/WT with
temperature is showhvfor the six samples plotted in Figures 2.2-2.5,
The Wiedemann-Franz ratios of the samples in which boundary scattering
is not appreciable (W-3, W-4, w-5, and W-7) extrapolate to within a
few percent of the Lorenz number Lo = 2.44 x 1078 WQ/K2 as the temper-
ature approaches absolute zero. This behavior is expected when the.
scattefing is dominated by elastic impurity scattering.®2 On the other
hand,-semﬁle W-8, for which boundary scattering is expected to be ap-
preciable, shows a departure from the Wiedemann-Franz law that is many
times larger than the limits set by the random error in the experiment.

Further measurements on sample W-8 were performed ih an attempt
to clarify this effect. Sample W-8 was spark cut into two shorter
rods of equal length. The residual resistance ratio of each half .was
measured and was found to be essehtially the same as that of the orig-

inal sample. One side of one of the pieces was removed by electro-
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Figure 2.4. Comparison of the temperature-dependent part of the
electrical resistivity (p - po) for two single-crystal tungsten
samples with different crystalline orientations. Samples W-2 and

W-3 were oriented with the [111] and [110] directions parallel to
the rod axis.
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Figure 2.5. Comparison of WT - po/L0 for two single-crystal tungsten
samples with different crystalline orientations. - Samples W-2 and
W-3 were oriented with the [111] and [110] directions parallel to the
rod axis, respectively.
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temperature for six single-crystal tungsten specimens.
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etching to produce a épecimen with a smaller effective diameter (semi-
circular cross section) but with substantially the same mean impurity
.content. This sample was designated W-8A. The other piece was electro-
etched ﬁniformly for a short period to remove the mirror finish of
sample W-8, resulting in a sample with a matt finish identical to that
of W-8A, but with a diameter essentially the same as sample W-8. This
sample was designated W-8B.

The results of measurements of the resistivities of these two
samples are shown in Table 2.1. Most noteworthy are two facts: (1)
The Wiedemann-Franz ratio of each sample extrapolates to within a few
percent of the Lorenz number as the temperature approaches absolute
zero, and (ii) The residual resistance ratio of sample W-8B is 53,000--
significantly smaller than the 75,000 residual resistance ratio of
sample W-8. A further brief etching of the surface reduced the residual
resistance ratio of sample W-8B to only 49,000. These results indicate
that the nature of the sample surface may be important in determining
the contribution of boundary scattering to the resistivity. It is
intefesting to conjeéture that specular scattering may be responsible
for these effects. Although this could explain the sharp decrease in
the residual resistance ratio of sample W-8B after the removal of the
mirror finish, it is nof clear why the Wiedemann-Franz ratio should
also be affected. Further experiments as well as a better characteri-
zatlon of the smoothness of the sample surface would help clarify the
puzzllng behavior of this sample.

From the values of A and « determined from the electrical and
thermal resistivity measurements, I have calculated the Lorenz number
for electron-electron scattering, Le = A/wo, as shown in Table 2.1.

This ratio is probably not very meaningful for samples W-8, W-8A, and

W-8B because of the Size-effect enhancement of A. For the other

samples, L, ranges between 0.2 x 1078 and 0.4 x 1078 WQ/K2.




D. Discussion

A central problém in this investigation'has been the separation
and identification of the-scattering processes important in tungsten
at low temperatures. In order to identify each scéttering'mechanism
from the temperature dependeﬁce of the resistivity, I felt that it was
necessary to perform measurements on enough samples to be able to
assess the validity of Matthiessen's rule. The purity of the tungsten
samples that were used covered a tenfold range from 9,400 to 95,000.
The results indicate that the magnitude of the T2 term in p:iS not
substéntially affected by the presence of impurity scattering. On the
other hand, with the exception of sample W-8 for which>boundary scat-
tering is appreciable, the magnifude of the T2 term in WT appears to
increase systematically wifh increasing impurity content. These ob-
servations are in qualitative agreemeﬁt with the theoretical. calcula-
tion of Bennett and Rice.l®

I have also tried to assess the effect of boundary scattering on
thg temperature dependence of the resistivities. The temperature de-’
pendence of the electrical resistivity 1s not appreciably affected by
the presence of boundary scattering in those samples for which rR/d
< 30,000 mm !, However, for greater values of rR/d, the temperature .
dependence is enhanced. If a similar effect occurs for WT it 1s clear
that it is comparable to or smaller than the deviations from Matt- '
hiessen's rule that are ascribed to impurity scattering.

These data, and especially those of Volkenshteyn2® and Berthel2®?
ﬁhich extend to highef_temperatures, show'an apparent T° behavior of ’
p in high purity samples which is presumably a consequence of electron-
phonon.scattering. However, I have found no indication of a corres- -’
ponding T® term in WT. At low temperatures electron-phonon scattering
is confined to small angles and ié inelastic, so that the Wiedemann-
Franz ratio for this type of Scattering should be substantially smaller

than Lo, i.e., BT°/BT3 << Lo, or equivalently B >> BT2/Lo. Using the
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measured values of B, I estimate that at 6 K, 8 > 2 x 10" ¢ cm/WK.
Although a value as small as 5 x 10 ® cm/WK should be observable, I
have been unable to detect any T2 variation in WT at all.

The principal evidence for the presence of electron-electron
scattering in the transition metals is the dominant T? dependence
of both p and WT at low temperatures.32 To the extent that it is
possible to isolate the contfibution of electron-electron scattering
to the total resistivities, I have calculated the Lorenz number for
electron-electron scattering in tungsten and have obtained values rang-
ing from 0.2 x 1078 to 0.4 x 1078 wWa/K° for samples W—}, W-4, w-5,
W-6, and W-7. These values are significantly below the values cal-
culated by Herring, yet are consistent with the calculation of Bennett
and Rice,*® which does allow lower values for L,. However, it is’
doubtful that quantitative agreement with these theories should be ex-
pected in tungsten in view of the obvious shortcomings of the two-
band model for this metal. Considerable s-d hybridization of the elec-
tron wavefunctions occurs in tungsten, making the distinction between
s and d portions of the Fermi surface much less meaningful in tungsten
than, for example, in palladium. It may be significant, however, that
the theories do allow a decrease in Le below the Herring values in

accord with all the experimental results obtained to date.
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CHAPTER III
THE LATTICE THERMAL CONDUCTIVITY AND HIGH-FIELD ELECTRICAL AND THERMAL
MAGNETOCONDUCTIVITIES OF TUNGSTEN -

A. Introduction

In the previous Chapter I described measurements of the low—témp-
erature electrical and thermal resistivities of tungsten in the absence
of a magnetic field.! Like many other transition metals, p and WT
(p and W are the electrical and thermal resistivites, respectively)
exhibit a predominantly T® dependence at low.temperatures, suggesting
that the dominant low-temperature scattering mechanism is electron-
electron scattering. However, only a small amount of independent evi-
dence exists to support this interpretation.? Therefore, it was felt
that it would be useful to investigate the temperature dependence of
the electrical and thermal conductivities of tungsten in a strong mag-
netic field to provide further information about the low-temperature
scéttering mechanisms.

In this chapter measurements are presented of the transverse
electrical and thermal conductivities, Oy and Moy ? of a high-purity
tungsten crystal, oriented with the magﬁetic field along the [001]
direction. The measurements span a range of temperature from 1.5 to
6 K and a range of magnetic field strength from 2.7 to 18.8 kG. Ex-
tensive use of high-field semiclassical maghetoresistance theory3~>
is made to separate the lattice and electronic components "g and (ne)xx
from the total thermal conductﬁvity Moexc? and to interpret the temp-

erature dependences of the electronic conductivities ¢ and ("e)xx at

XX
high fields.

To provide the‘framework‘fé; analyzing these measurements the .
relevant aspects of the high—fiéld theory are presented in Sec. B.
In Sec. Bl the magnetic field dependence of the conductivities pre-
dicted by ‘the high-field theory is summarized. As shown by Lifshitz,

Azbel, and Kaganov (LAK),®’? these results reflect the topology of the
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Fermi surface and do not depend upon the nature of the scattering
méchanism. In Secs. B2 and B3 the LAK treatment is reviewed and ex-

and (’u )

tended to investigate the temperature dependence of Oyx e’ xx’

which, unlike the magnetic field dependence, is determined by the scat-
tering mechanisms. In particular-it is shown that at high fields,

with the magnetic field directed along a high-symmetry axis, each
scattering mechanism contributes in a strictly additive fashion to-

Oxx and (Ke)xx'

()

e’ XX

In this respect, high-field measurements of Oyx and
should be less ambiguous than zero-field measurements of p and
W, for which the additivity of the contributions of different scatter—
ing mechanisms (Matthiessen's rule) is only approximate. 1In addition,
simple expressions for the contributions of various scattering mech-

and (»_ )__ are derived, allowing estimates of the temp-

anisms to Oxx e xx

erature dependence of each contribution to be made. In Sec. C the
experimental results are presented, and this is followed by a discus-
sion of these results in Sec. D. Difficulties in interpreting both

the previous zero-field results and the present high—figld results in

a consisfent_manner in terms of electron-electron or electron-phonon
scattering are discussed. _Lastly, a comparison of the results reported
in this paper with similar recent measurements in tungsten by Long is

made.

B. Theory

Section Bl consists of a general consideration of the magnetic
field dependence of the high-field electrical and thermal conductivity
tensors, @(H) and ﬁ%(H).‘ The discussion is specialized to those cases
in which ﬁhe magnetic field ﬁ is oriented along a high—symmetry direc-
tion (threefold, fourfold, or sixfold symmetry.axis);,and to metals,
such'as tungsten, in which the sheets of the Fefmi-gﬁfface are closed.
It should be emphasized that these results are applicable to any scat-
tering mechanism and do not depend upon the existence of a relaxation

time. In Sec. B2 the explicit dependence of the conductivity tensor
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elements ¢ and upon the nature of the scattering mechanism
XX .

("e)xx
is considered. Finally in Sec. B3, the relationship of the high-field
.conductivities to the zero-field resistivities is explored, and esti-

mates of the temperature dependences of the high-field conductivities

are made for several scattering mechanisms.

1. High-Field Conductivity Tensors G(H) and % (H)

It is simplest to discuss first the field dependence of the elec-
trical conductivity tensor ?(ﬁ). ~With the magnetic field along a high-
symmetry direction, the conductivity tensor @(H) assumes the simple

form: o (H) = o (H), o () = -0, (H), and o, (H) = o, (H) = o (H)

= czy(H) = 0. These relations, coupled with the Onsager relation
J.i(—H) require that gxx(H) and gxy(H) be even and odd func-

cij(H) and o .
tions of H, respectively. According to semiclassical magnetoresistance

theory,® if the Fermi surface is closed, the tensor elements Oux and

. . . . .6 ‘ 2
Oxy have the following asymptotic form at high fields: Opx ™ aXX(T)/H

- nh)ec/H + a_ (T)/H3, where né and n, are the number of

and Txy v (‘i’le

electrons and holes, respectively, and axx(T) and axy(T) are generally

temperature-dependent quantities that depend upon the nature of the

Xy

scattering processes in the metal. - Since tungsten is compensated

(n_ = nh), it follows that o ~ axy(T)/Hs. At high fields, inversion

Xy
of the conductivity tensor gives:

e

a_ (1)
L XX
— 0, N e .l
Pxx Txx HZ ’ . (3-1)

where 9(H) is the electrical resistivity tensor. Equation (3:1) is-

valid at fields strong enough such that IaXXH/axyl2 >> 1, or in terms

of directly measurable quantities |pXX|2 >> |pxy|2.

The thermal conductivity tensor 7%(H) can be treated in a similar

E 457 + + e
manner. At high fields the tensor elements ("e)xx and ("e)xy have

. 2
the following asymptotic form: (“e)xx ~ AXXﬁT)/H and
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- 13 = -8 2 s
(Ke)Xy ~ LoT(n, n, Jec/H + Axy(T)/H , where Ly = 2.4%4 x 107® wq/K? is

the Lorenz number, and Axx(T) and AXy

dependent quantities that depend upon the nature of the scattéring

(T) are generally temperature-

processes in the.metall - These quantities and their electrical counter-

parts obéy the Wiedemann-Franz law if the scattering is elastic; that

‘wis, Akx/Taxx = ;5'gn§;5%¥/iaxy = Ly. If the scattering is not elastic,

thesé ratios will éeneréiiy be larger than the Lorenz. number LO.

At this‘point'only'thermal conduction by the electrons has been
considered. In fact; some heat is conducted by the phonons (lattice)
in addition to that conducted by the electrons. Assuming that the two
conduction mechanisms are independent, the conductivity tensors for
electron and phonon conduction simply add to give the total conductivity

tensor %(H). Thus, at high fields in a compensated metal, we have

14 N

) 2
X ng(T) + AXX(T)/H and x

Xy
conduc%ivity of the lattice. Letting'ﬁ(H) be the thermal resistivity

v A H®, where is the thermal
v A (TS, v "y )

tensor,® inversion of the thermal conductivity tensor at high fields

gives

. L () '
I < e J - i VS O (3e2)

Expressions for a (T) in Eq. (3.+1) and Axx(T)/T in Eq. (3+.2) are

X
derived in Sec. B2, éhowing the exblicit dependence of. these two quanti-

ties upon the scattering mechanism.

2. High-Field Expressions for o and ("e)xx

In a metal with several valence electrons, portions of the Fermi
surface will generally be distributed among one or more bands and will
therefore occupy one or more Brillouin zones. The portion of the
Fermi surface belonging to a single bandfmay consist of one or more
surfaces or sheets, which we assume to be closed. In the presence of

a magnetic field<§ along the z axis, an electron on one of these sheets

will move on the orbit formed by the intersection of this sheet with a
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plane perpendicular to the magnetic field. TFollowing the semiclassical
theory of LAK, ‘the motion of the electron in E—space can be described
in terms of its component of wave vector kz gléng the magnetic field,
its energy e, and a coordinate ¢ that measures its position on the

orbit. For a given orbit (specified by kz and e) ¢ 1s defined by

.

dk ’
_ hc I
? = %% Em gvl ’ (3-3)

calculated from an arbitrary point on the orbit. 1In this expression,
dk is an element of arc along the orbit taken in the direction of
motion, and v, is the component of velocity perpendicular to the mag-
netic field. (v, is taken to be positive if directed outward from the
orbit.) The cyclotron frequency W, is defined such that one full or-
bit corresponds to a change of ¢ by 2w. 1In general, W, will have a
different value for each orbit and will be therefore a function of kz
and e. _ (

In the semiclassical theory, the electric and magnetic fields aré
assumed not to causé interband transitions,® but interband scattering
is allowed. However, because the inclusion of interband scattering'
into the theory only complicates the formalism without altering the
principal results; we shall consider initially only intraband scatter-
ing in this section. Thus each band can be treated independently.

For simplicity we assume that the band under consideration contains
only a single sheet of the Fermi surface. TFinally, at the end of this
section we discuss the results that are obtained when these restrictions
are relaxed.

In the presence of an electric field E along the x axis in addi-
tion to the magnetic field H along the z axis, the steady state dis-
tribution function f will deviate by an amount eEx'nE from its value
fq at equilibrium. In terms of Mg and the orbit variables kz, ¢, and

¢, the linearized Boltzmann equation for electrical transport is
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Mg afy |
o 35 = (- 55 )+ W(ng), (3-4)

where,w(n) is the collision integral. For the scattering of an elec-
tron from the state K to the state k' by an impurity or a phonon,

w(n) is given bylo_

w(n) = - R']I;T z%rgg ak' (¢ - 4 )P(K, K1), (3.5)
‘where
S < ‘ :
1=(-20 (3+6)

and the integration extends over the Brillouin zone. P(E,E') is related

to the scattering rate Q(k, k') through P(K,k') = fole) 1 - fo(e')]Q(E,E') A |
= P(K',K). For the scattering of an electron from the state kK, to the
state El' by an electron which is scattered from the state Eé to the

‘state k', W(n.) is given by

LIV € Cap
wing) = kBT(4n3>-S ak, S ks g dR,
(‘Vl + 2 - ¢1' - Wz')P(El:Ezil_{l',Ez')( (3+7)

In this case P(K,,K:-;K;',K>') is related to the scattering rate
Q(El,l_{.z;il',l—{z') through P(K,,K;K,',K') = fO( el)fo( e2)[1 - fo(el')]

- fO( eé')]Q(El,E23E1':k2') = P(Ky', Kz 5Ky, Kz).

Following the treatment of LAK, at high fields the solution nE

of Eq. (3+4) can be written as a series of powers of 1/H:

Ty = 'ﬂéo) +%Tlé1) +%§né2) +oees . (3.8)

Inserting this series in Eq.,(3-4), assuming that the scattering rate . .é
Q does not depend upon H, and equating coefficients of the same power ;

of 1/H, yields
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(0)
fig}_ =0, (3+9)
w (1) iy
) T (o uf®), ao)
o (2) ~
G8) S a1, ete, e

Eq. (3+9) has the solution n(o) = C(O)(kz,e). Each coefficient must

E E
be a single-valued function of ¢. Thus n(l) is single-valued, pro-

vided that

§ w(céo))d¢ - o0, (3.12)

[

where use has been made of the fact that Qv.dg = O for closed orbits.
For either choice of the collision integral given by Eq. (3+5) or

af
(3+7), the solution of Eq. (3.12) is Céo) = (— 329). const. (see

Appendix B). The constant is determined by the condition that the
total number of electrons be conserved. This condition is satisfied
only if the constant is zero. Thus Céo) = 0.

The solution of Eq. (3:10) is

w de

“él) - Hz(_ E{Q)[Cél)(kz,é) +‘§¢vxd¢v], (313)

(1)

The function CE

(2)

nE be single-valued, that is

§W('ﬂ}(‘:l))d(p =0 . 4(3.14)

In general this equation has no simple solution. Equation (3:14) and

the condition that the total number of electrons be conserved deter-

- (1)

mine 7~/ uniquely. Finally, the solution of Eq. (3+11)-is

is determined within a constant by the condition that
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c o

(2)

The function CE can be determined by following the same procedure

(1)
B

- Once Mg has been determined, the conductivity tensor element o

used to determine C , but is not needed in this treatment.

XX
can be calculated from

O%x = ;;g S dk Vx Mg o (3°16)

where the integration extends over the Brillouin zone. If several
bands are preseht, the results for each band should be summed. Using

Eq. (3+8) for 7, Eq. (3.16) for o

<> 2nd the'fact,that ar = (-eH/hzcwc)

dk ded@, one obtains a series expression for ¢ in powers of 1/H. The

XX
term proportional to 1/H vanlshes by virtue of the fact that § v d¢g v d¢

= 0. The term proportional to 1/H® does not vanish and is given by

éxx v - 4n§h? S g de § dev,, B‘gw%(ﬂél))dw' . (3.17)

The integraliover @ can‘be simplified by integrating by parts:

4§ dgv,, 1 g w(n(l))d¢| -
[§w<n;1>>w[%;<cé1> i)

: Theifirst term on the right-hand side of Eq. (3:18) vanishes by virtue - ]
of Eq. (3+14). Direct substitution of Eq. (3.:18) into (3.17) and a .
change of variables back to Cartesian coordinates yields the simple

result:

oS T ) e
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where a . is the coefficient on the 1/H% term in ¢ él) is

related to nél) by Eq. (3+6).

X’ and

A similar expression for Akx/T can be derived in ‘the same manner.
With a temperature gradient (—VXT) and zero electric field, the linear-
-ized Boltzmann equation is

afo

- "g;")uvx + w( T]T), (3‘20.)

a1
Yo a¢T - (

where u = (e—u)/kBT and (—kaxT)nT = f - fy. Using the defining rela-

tion
KET L
(”e)xx - Z"st dic uv, My (3-21)
v

one obtains

A k.2 : '

xx _ B - (1)y,(1)
T T e ak[ -w(ngt ) gt ] (3.22)

where Axx is the coefficient of the 1/H® term in (1 ) and wél) is

e’'xx’
(1) (1)

related to nT T

by Eq. (3:6). The quantity 1 is given by

w

R G T R A

(1)

T is determined by the condition:

and the function C

§ w(nél))dw =0. (3.24)

To calculate a ., and A, /T from Egs. (3+19) and (3.+22) for a

specific scattering mechanism, it is first necessary to determine

(1) (1)

nE and nT .- In general, both quantities will depend upon the scat-
tefing mechanism through Cél) and Cél). However, if the magnetic

field is oriented along a twofold or higher}symmetry axis, and each

orbit possesses this same symmetry with respect to the rest of the

(1)

zone, Mg

and nél) are determined uniquely by symmetry and do not
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depend upon the scattering mechanism, as shown below.

In the rémainder of this section, it is assumed that f is directed
along a twofold symmetry axis. This will naturally also include the
case in which H is directed along a fourfold symmetry axis, corres-
ponding to the experimental situation considered in this paper. The
E and T subscripts on 7 can be dropped temporarily, for the arguments
given here are identical for electrical and thermal traﬁsport. With
each orbit possessing twofold symmetry about ﬁ, it follows that vx(¢+n)
= —vx(¢), and it can be shown (Appendix C) that the solution to the
Boltzmann equation must also have the same property; in particular,

ﬂ(l)(w + ) = ;n(l)(¢), or equivalently,
§ 111 (g)ag = 0 . (3.25)

(1)

This condition determines 7 uniquely. Since W[n(l)(¢ + )]

(1)(¢)], Egs. (3+14) or((3+24) will be automatically satisfied

= -W[1
by choice of n(l) that satisfies Eq. (3:25).21 ysing Egs. (3-13) and
(3.23) for nél) and nél), and the fact that v, dg = (—hcwc/eH)dky, one
can readily show that

W e - I E) e

where ﬁy is the y component -of wave vector measured from the center of
symnetry of the orbit.

If severdl scatteriﬁg processes are present simultanéously, the
collision integral w(n) in the Boltzmannvequation should be replaced

by the sum of the collision integrals for each scattering mechanism.

(1) (1)
B T

tering mechanism, it is clear that the high-field conductivities,

Since 1 and M.~ ’, given by Eq. (3:26) do not depend upon the scat-

given by Egs. (3+19) and (3+22), will be the sum of the conductivities

for each scattering mechanism, as if each acted separately;
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Having established the additivity of the high-field conductivi-
ties for different scattering mechanisms, it is possible to consider
the contribution of each mschanism separately. Using Egs. (3+19) and
(3.+22) for a,, and AXX/T, Eq. (3+26) for n(l) and nél), and Eq. (3+5)

for W(m), one obtains

qxx T <§iaj2—%_T S aK S dE'tﬁ& B EY'J?P(E’E') (327)
and
ax (i;.s)?(ae_)}_ﬁgdzgdg'[uk —urk PR(E,E). (3.28)

LA

© e

. If Eq. (3+7) is used for the collision integral W(7m), one obtains

a, = -E-Eig; T g ak; ( ar, Q dRy ! g ARy
[ﬂkly + k2y - '\Kly-’ - 1’;(123',.:]213(}—{‘1:»—.2;}?1',_’2') (3+29)
and
- @V g (en fem (e (o
(3+30)

—

N o, — - - .
[ulkly'l"ug 2y ul'kly'—uz'key'] P(kl,kg;kl',kg').

To this point, only intraband scattering has been considered.
To illustrate the considerations involved when interband scattering is
present, consider two bands, denoted by « and B, each containing a
single closed sheet of the Fermi sufface and possessing twofold sym-

metry about H. The Boltzmann equations for electrical transport are

given by,

S‘E%)Vm + wa(nEa;nEB)’ (3-31)




Mg ¥, ' |
Yep EGEE - (- 3?E>sz * WB(nEs;“Ea)‘ (3-32)

For the scattering of an electron by an impurity or phonon, Wa(na;ns)

is given: by

A e ' )
W nng) = - 2 —=[§ ey, - v )P, (R R

+,g8az'<¢a - g P (KR ). (3+33)

The first term represents intraband scattering of the type Ea - KU',

and the second term represents interband scattering of the type

Ea - Esv; The expression for WB(nB;na) can be obtained by permuting

o and,s in Eq. (3-33). An éxpression analogous to Eq. (3°33) can be
obtained for electron-electron scattering.
The results derived earlier in this section for intraband scat—

terlng hold also for comblned 1ntra- and interband scatterlna In

particular, it is shown in Appendix B that C(O) (O) . Also

néi) and nES)

are given by Eq. (3+26). Using Eq. (3+19) to calculate the contri-

are determined by Eq. (3+25) as before, and thereforg
bution to a . from eaqblband, one obtains

[Q dE{ W (“Ea ’T‘Es))‘l’Ei)}
N o

- In the case of the scattering of an electron by én‘impurity or phonon,

(3+34) becomes

axx_(lls_)z L) af € afr gk -k rPR (K1)
by a “a

Sdk‘ Bdk'[k - }?y']zp.ss(k’g'?

+ QXadR' Sedr{' [ky-kyv ]2pas(r€,1€f )], ‘ (3 -735_)
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where use has been made of the symmetry properties of the P's:
K,K1) =
ap(E.K") Pag

‘An analogous expression for Axx/T can be derived in the same manner.

-t -" — . -0l —
P KK =P (K',K), P

- ) (K',K), and P glK.E") = P,y (K,K).

The argument can also be extended to include interband electron-elec-
tron scattering, although the expressions obtained are considerably

more cumbersome.

3. High-Field Conductivities: Relationship to Zero-Field Resistivities
and their Temperature Dependence
In the first part of this section, I explore the relationship be-
tween the high-field conductivity formulae derived in Sec. B2 andvthe
zero-field resistivities given by the Kohler variational principle.
I consider initially a system whose Fermi surface‘;s a single closed
sheef, belonging to a single band. According to the Kohler variational

principle,® the zero-field. resistivity p can be written

o 5o dt) = 2 2§ adlnf(- $0)e)i] (5:36)

T2
Jx'

with J = 1/bv? gdﬁévx(-afo/ae)@. The trial function & is chosen to
minimize the right-hand side of Eq. (3+36), reducing'the-équatidn to
an'equality; In this case (F EEQ>§ represents (within a constant fac-
tor) the deviafﬁon of the distribution function f from its equilibrium
value fO' The quantity Jx represents the x component of the electri-
cal current density associated with the distribution function fo +
(—afo/ée)é. (The electric field is taken to be along the x axis.)
Generally the proper choice of & will dépend upon the scattering
-mechanism, and the additiviiy of the resistivities for different
scattering mechanisms (Matthiessen's rule) will be only approximate.

I assume that the system‘has cubic symmetry and that the z axis
is directed along a fourfold symmetry axis. A possible choice for &

is hcﬁ;, where kx is measured from the center of symmetry of the sheet,
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In almost every case,*® this will not be the best choice for §, and
Eq. (3:36) will be an inequality. However, with this choice of §, the

denominator of Eq. (3+36) can be written

JE = (Zl; %%ev (hckx))2 ec Sds fe E) (3+37)
Al

where dS is an element of the ferui surface, and #i is a unit vector

normal to the surface, directed outward from the surface if the sheet

is an electron surface, and inward if the sheet is a hole surface.

The integral 3 SdS ek is just the volume enclosed by the Fermi sur-

face, which is 42 times the number of states n enclosed. (Consequently,

the denomincator has the value (nec)2. Since the z axis is assumed to

be a fourfold symmetry axis, the trial function & hc'kX appearing in

the numerator of Eq. (3:36) can be replaced by -hcky without changing
the value of the numerator. Then it follows from Egs. (%3+19) anad

(3.26), that the numerator is identically equal to a .+ -‘Consequently,

p < pv{hckx} = axx/(nec)z. However, axx/(nec)2 is just the high-field

magnetoresistivity p of the material, so that < hek v .
XX P 0y xI 7 Pxx

This treatment can be easily generalized to systems in which por-
tions of the Fermi surface are distributed among several bands. For

example, if there are two bands « and B, the numerator of Eq. (3+386)
(1)
B

are replaced by the trial functions @ and Qs respectively. The

quantity J in Eq. (3 36) represents the total X component of ‘the cur—

is identical to Eq. (3.34), 1f ew(l) and ewE appearing in Eq. (3e34)

rent density, corresponding to the distribution function f + (- ———)

of
——Q)Q for the g band. Following the
aes ﬁ :

earlier arguments, one obtains

for the « band and £, + (-

a

= v (3+38)

[(ng - nylecP P

and for the thermai case,




A__/T .
WT < XX N W T (3+39)

XX

[Lo(ne - nh)ec]2

_where n, and n, are the numbers of electrons and holes respectively.

While these results by thehselves may not be very surprising, the
derivation is interésting because it indicates that in an uncompensated
(ne # nh) metal, the difference between the high-field magnetoresis-’
tivity and the zero-field resistiv%ty is a measure of the error pro-
duced when the trial function & = hcﬁ'X (8 = hcukx in the thermal case)
for each sheet is used to calculate the zero—fieid fesistivity by the
Kohler variational principle. If the system is compensated (ne = nh),
the right-hand sides of'Eqs. (3:38) and (3+39) diverge. This reflects
the fact that the trial function hcﬁx for each sheet yields a vanish-
ing total current,%while the correct trial function for each sheet
would give a finite total cﬁrrent.

In view of the similarity of the variational expression for p and
the expression for.aXx [for example, compare Egs. (3+36) and (3:19)1], .
it may be reasonable to expect that p and a (or WT and Axx/T in the
thermal case) would have similar temperature dependences. This is
especially evident for the simple case in which a relaxation time «

exists. In this case W(7) = -71/r and both p and a as well as WT

xx’
and Axx/T’ depend upon r in the same way: Fach is proportional to 1/r.
'In‘the remainder of this section I consider the temperature dependences
of 8y x and Axx/T expected for impurity, electron-electron, and electron-
phonon scattering.

Of these scattering mechanisms, impurity scattering is the simp-
lest to discuss. Such scattering is elasﬁic and leads to values of
&y x and Axx/T that are temperature independent and related by the
Wiedemann-Franz law: i.e., Axx/Ta.xx = Lg. .

The temperature dependence of a and AXX/T for electron-electron

XX
scattering is determined mainly by the Fermi factors contained in

P(K,,K>; Ky',K2'). This reflects the operation of the Pauli exclusion
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principle, which confines the scattering to a region within kBT of
the Fermi energy, resulting in a characteristic T® temperature depend-

ence for the high-field conductivities, a . and AXX/T. This T2 be-'

X
havior should be largely independent of the Fermi surface topology,'*
and should occur for interband as well as intraband processes.

The situation for electron-phonon scattering is much less élear.
In the simple metals in the absence ?f a magnetic field,zthe Bloch
theory, 15 which‘tfeats only normal processes, predicts a T° dependence
of p and a T3 dependence of WT at low temperatures. Umklapp proces-
ses,® not treated in the Bloch theory, must be dealt with on a metal
to metal basis,‘since‘the contribution of these processes to the re-
sistivities are sensitive tq the positions of the Bragg planes rela-
tive to the Fermi surface and to the form of the pseudopotential.
Theoretical calculations have indicated for some time that umklapp
scattering plays a dominant role in determining the electricalAre~
sistivity,'? and there is growing evidence that umklapp processes do
in fact cause serious deviations from a simple low-temperature T®
behavior in some metals.1®

While the role of the glectron—phonon scattering is still incom-
pletely understood in the simple metals, it is even less well under-
stood in the transition metals. The problem is difficult for severai
reasons. Pirst, the Fermi surface of a typical transition metal does
not generally even resemble the surface that would be defived from a
nearly-free-electron model. Secondly; the wavefunctions generally have
significant s-d character and the pseudopotential cannot yet be cal-
: culated reliably, so that the matrix element for electron-phonon scat-
tering is uncertain. Consequently, for lack of a better alternative,
experimentalists have had to assume, without much theoretical Jjustifi-
cation, that the simple T° and T® behavior for p and WT can be used to
describe electron-phonon scattering at low temperatures in transition

metals. One might expect by analogy that the contribution of electron-
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phonon scattering to a . and AXX/T would be proportional to T® and T3,
respectively, but, as far as the transition metals are concerned, it

is probably wise to apply these results with consicerable caution.

C. Experimentél Results

The tungsten sample used in.the experiment was spark-cut from a
longer 3-mm-diam zone-refined crystal, which had a residual resistivity
ratio, p(299K)/p(0K), of 63,000.1° The rod axis was parallel to the
[110] direction (taken as the x axis), and the magnetic field H was
oriented normal to the rod axis along the tOOl] diréﬁtion (z axis).
Measurements of the transverse electrical and thermal maghetoresis-
tivities Pxx and'wxx were made in the conventional potentiometric man-
ner in separate experiments.

The cryostat used was identical to the one described in the previous
chapter;except that the sample was mounted horizontallj, rather than
vertically, so that a superconducting solenoid could be used to pro-
duce a magnetic field transverse to the samble. In the thermal measure-
ments, the temperature difference created between two points on the
sample by a heat current was measured by means of two matched Allen
Bradley 56q, 1/10 W carbon resistors 'soldered to copper rings which
had been electroplated to the sample. For the electrical measurements,
the thermometers were left in place, a current lead was attached to the
free end of the sample, and potential leads were attached to the sample
at the thermometers. _

It is worth mentioning that at high magnetic fields fhe use of
ring contacts rather than point contacts will not seriously perturb -
the current distribution'in the sémple, providedvthat the sample is
compensated and the magnetic field is oriented along a high-symmetry
direction. ‘Although the rings will short-circuit the Hall electric
field locally, under these circumstances the Hali field is so small

compared to the electric field along the specimen axis that the effect

is negligible. On the other hand, if the specimen were uncompensated,
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just the reverse would be true, and the current distribution would be
seriously perturbed.

The thermometers were calibrated during each experiment (in zero
magnetic field) against a standard germanium resistance thermometer.
Small corrections for the magnetoresistance of the carbon resistors2©
were made, but were so small for the field strengths used, that they
were hardly necessary. During the thermal measurements, heat currents
of 0.1 to 1 mW were used to generate temperature differences of about
200 mK at each field, allowing measurement of wXX to a precision of
better than 2%. Ail thermometer and heater leads to the sample were
" constantan, andlthe heat leak through these leads were negligible. It
was verified that the heat lost through the vacuum surrounding the
sample was also negligible by comparing measurements taken with the
sample at different temperatures relative to its environment.

The results of the electrical measurements are summarized in Pigure
3.1. In this figure, H2/pxx is plotted against T2 for several values
of the magnetic field. The purpose of plotting the data in this manner
is first to show the field dependence of Pyxc? and second, to show the

temperature dependence of H/p _ v~ a . (Eq. (%3+1)) in the high-field

XX
1imit. It is clear from the figure that Pyx is nearly proportional to
H2, the exponent being approximately 1.96. Small deviations from thé

HZ law were observed in earlier work by Fawcett,2? butbwere not ob-
served in a more recent study by Long.2®2 It is not certéin whether

the deviations observed in this study are an intrinsic effect, or

merely an artifact caused b& the finite width of the electroplated
copper rings which were used as potential contacts. In any case, the
deviations pose no serious problem in the interpretation of the measure-

ment, and-will not be pursued further.

X is nearly quadratic,

The temperature dependence of Hz/pxx n ay

but increases at a somewhat faster rate at higher temperatures. For

this sample, the temperature dependent part of a x is roughly 30% of
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Figure 3.1. Variation of'Hz/pxx with T2 for various values of

10

the magnetic field H.




the residual part at 6 K. It is interesting to note that the zero-
field resistivity p of the same sample measured in an earlier experi-
ment showed a similar temperature dependence.! Furthermore, the temp-
erature dependent part of the zero-field resistivity was-also about
30% of the residual part at 6 K.

There is 1little doubt that the high-field regime has been reached
in'this sample at the magnetic fields used. At 13.3 kG and 4 K the
resistance had increased by nearly five orders of magnitude over its
value at zero field. Furthermore, a measurement of pxy indicated that
it was about 300 times smaller than Pyx at 13.3 kG and 4 X, so that _
Eq. (3+1) was valid for all field strengths used in this study.

The results of the thermal measurements are summarized in Figure
3.2, in which HZ/WXXT is plotted againét temperature for several values
of the magnetic field. To compare these results with Eq. (3+2), these
data have been replotted in'Figures 3.3%a and 3.35 as 1/Wxleversus
1/H? for several temperatures. The agreement with Eq. (3.2) is remark-
ablgl In particular, the intercepts give the values of "g/T at each
temperature, and these have been plotted against temperature in Figure
3.4, As can be seen from this figure, ug/T has a very plausible linear
temperature dependence given by ”g/T ~ 0,5 T mW/em-K2. According to
Eq. (3+2), the slope of each line in Figure 3 is the value of Axx/T
for that temperature. These slopes have been plotted against T3 in
Figure 3.5, demonstrating that the temperature dependent part of Axx/T
has an almost precisely T3 behavior below 6 K. In contrast, the Zero-
field measurements of WT showed .an almost precisely T2 behavior below
6 K.t

In the derivation of Eq. (3-2) I neglected thermoelectric effects
which arise due to the fact that the thermal magnetoresistivity wXx
was measured under the condition of zero electric current rather than
zZero elecf?ic field in the sample. The dominant correction due to

these effects is a term pxx(e}';y)2 that should be added to the right-
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Figure 3.2 Variation of HZ/NXXT with temperature for various values of
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Figure 3.5 Plot of Axx/T as a function of T3. The values of Axx/T

were obtained from the slopes of the lines of Fig. 3.4. The pre-
cision of each value is approximately 1%.
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hand side of Eq. (3+2). The quantities O and exy 2TC elements of
the electrical resistivity aﬁd thermoelectric power tensors, respec-
tively.22 At high fields this term becomes independent of magnetic -
field and has the value pxx(0yT/H)2, where vy is the coefficient of the
‘electronic specific heat per cm® of electrons. For the tungsten
sample used in this study, this term has the value 0.1 mW/cm-K2 at

% X.2* Since this is at least 20 times smaller than 1/W__T for all

values of the magnetic field at this temperature, the correction is

of little consequence and can be ignored.

D. Discussion
One of the principal findings of this investigation is that the

magnetic field dependences of both ¢ and Myexc follow closely the pre-

XX
dictions of the high-field semiclassical theory, provided that thermal
conduction by the lattice is taken into account. The measurements
indicate that the lattice conductivity " is proportional to T2, as
expected for a'pure metal in which the phonons are scattered principal-
ly by the conduction electrons.2® Furthermore, the temperature depend-
ence, as well as the magnitude of ng'is in good agreement with measure-
ments made on transition metal alloys.®® The first attempts to measure
the lattice conductivity of tungsten were méde over three decades agc
by de Haas and de Nobel and subsequently by de Nobel, but were hamp-
ered by the lack of specimens of sufficient purity.2?7 Very recently,
a successful measurement of the lattice conductivify has been made by
Long®® in a tungsten crystal of higher purity than was available to
de Haas and de Nobel. The measurements of Mo reported here and report-
ed by Long are in substantiai agreement, and, as shown by Long, agree
within better than a factor of 2 with reasonable theoretical estimates
of M

. The temperature dependences of the high-field electrical conduc-
tivity Oyx v aXX/H2 and the .electronic contribution to the thermal

conductivity (x.) . /T ~ (Axx/T)/H2 should reflect the scattering

Me ' xx
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mechanisms present in tungsten at low temperatures. It was shown in
Sec. B2 that with the magnetic field 3¢ along a twofold symmetry ‘axis,
By and Axx/T are composed of the sum of the contributions of the
hvarious scattering mechanisms present in the metal, as if each mechan-
ism acted separately. Furthermore, the expressions for &y and Axx/T
obtained in Sec. B2, were apart from the choice of trial function,
similar to the variational expressions for g and WT, respectively. For

this reason it was argued that the temperature dependence of a and p,

XX
as well as Axx/T and WT, would probably be similar. This appears to

be the case for the electrical quantities, a and p, but not for their

XX
thermal counterparts, Axx/T and WT. In this study, a.. appears to

X

increase nearly quadratically with temperature at low temperatures,
but at a somewhat faster rate at higher temperatures approaching 6 K.
In a previous study at zero magnetic field,! p was found to behave in
a similar fashion. On the other hand, Axx/T showed an almost precise-
ly T2 behavior in this study, while in the previous study WT showed
an almost precisely T? behavior. Although the zero-field ;esulté éan
be plausibly explained in terms of electron-electron scattéring, it
seemé unlikely that this scattering could cause a T® dependence of
AXX/T.’ It may be possible to explaih both the high-field and the zero-
field results in terms of electron-phonon scattering, but tﬁe current
understanding of the role of these processes in the transition metéls
is still too poor to assess this possibility properly. |

I have assumed that the effect of boundary scattering on the temp-~
erature dependence of 2y y and Axx/T can be neglected. Indeed, the pre-
vious measurements in zéro magnetic fieid indicated that boundary 7
scattering did not have a significant effect on the temperéturé depend-
ences of p and WT for this sample. Morecever, it seems reasohable
that the  importance of boundary scattering should decrease as the mag-
netic field is increased, since the fraction of electrons striking

the boundaries is reduced.
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There is one assumption made in Sec. B2 that should be examined
in the context of the tungsten Fermi surfacé.‘ The tungsten Fermi
sprface has portions located in the second, third, and fourth Bril-
louin zones.2® The second zone consists of an array of six small
ellipsoidal hole pockets located at N (at the centers of the <110>
zone faces), and the third zone consists of an octahedral-shaped hole
surface located at H (the <l00> zone vertex). The fourth zone con-
tains the electron "jack" centered in the zone at I In Sec. B2 it
was assumed that all orbits have at least twofold symmetry about H.
Although B was directed along a fourfold symmetry axis in the experi-
ment, there are a number of orbits that do not possess even twofold
symmetry about this same axis. ‘First, there are the orbits formed
by the intersection of the "knobs" (but not the "necks") of the elec-
tron "jack" with a plane perpendicular to the magnetic field. These
orbits occur on only a small fraction of the Fermi surface, so their
contribution to the conductivities can be neglected without much
error.3°® Second, four of the six hole éllopsoids taken individually
do not have any special symmetry with respect to the rest of the zone.
However, the surfaces are ellipsoidal, so that vx(¢ + ) = -vx(¢) for
qrbits on these surfaces. Although it does not follow that Eq. (3.25)
will hold for an arbitrary scattering mechanism, Eq. (3.25) doeé' hold
in the relaxation-time approximation. Consequently, the assumption
that n(l) for these surfaces is given by Eq. (3:26) should be a good
starting point for calculating the contribution of these sheets to the
conductivities. |

‘I now turn to the experimental results reported by Long.2® 1In
that study the extraction of the lattice thermal conductivity from the

measurements was based on the phenomenological expression:

(o) = TLa (T oy (K1) + w (1) . (3+40)
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This equation can be éhown to be a simplé consequence of the high-
field theory. Long's crystal was oriented with the magnetic field
along the [001] direction, so that-all the arguments given in Sec. B
.apply. Equation (3.40) is equivalent to Eq. (3+2), which can be
written as,

A (T)

Ta T

Yo (1) + n, (1), (341)
XX

KXX(H,T) = T(
showing that L,(T) = AXX(T)/TaXX(T). Thus the assumption made by Long
that L; does not depend upon H is well justified at high fiélds. In
Long's sample, the temperature dependent part of 8y, Was only a small
fraction of the residual part; consequently, the temperature dependence
of L, was determined by that of Axx/T' It was found in this~study that
Axx/T varies almost precisely as T2, while Long has>fit his values of
L1 to a T2 dependence. However, a T3 dependence is not inconsistent
with the data when the scatfer is taken into account. Long's measuré—
ment of ILo(T) = Axy(T)/TaXy(T) can also be understood in terms of ‘
semiclassical theory. As remarked in Sec. Bl, I, will be equal to Lo
if the scattering is elastic, but will generally be greater than Io
if the scattering is inelastic. This is borne out by his measure-
ments, which show that L, increases from a value near Io at 1.5 K to
a value appreciably greater than Lo at 4.2 K.

In summary, it is found that the magnetic field dependence of the
ﬁigh—field conductivities, Oyx and Uy CAN be understood excellently
in the context of the semiclassical magnetoresistance theory,.provided
that the thermal conductivity of the lattice "y is taken into accbunt.
A lattice thermal conductivity Hg given by Hg = 0.5 T mW/cm-K is
found experimentally, éonsistent with the view that the phonons are
scattered mainly by the conduction electrons.' The temperature depend-
ence of the high-field conductivities is shown to yield information

about low-temperature scattering mechanisms. However, when both zero-

field and high-field measurements are considered together, it is found
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that they cannot be explained plausibly in terms of electron-electron
scattering, as was previously concluded from measurements of the zero-
field resistivities.! Electron-phonon scattering may be responsible,
" but the current understanding of such scattering in the transition
metals is still too poor to explore this possibility in greater

detail.
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CHAPTER IV
A DISCUSSION AND SOME APPLICATIONS OF HIGH-FIELD SEMICLASSICAL
TRANSPORT THEORY

A. Introduction

In this chapter I explore in greater detail some of the results
of the high-field semiclassical theory presented in Chapter III. For
simpiicity the discussion is limited to electrical transport. In o
Secs, B and C the high—field transverse and longitudinal magneto-
resistances are discussed. Use is made of the Kohler variational
principle to compare the high-field resistivities to the zero-field
resistivities, so that the physical 6rigin of the increase in resis-
tance caused by a magnetic field can be seen. In Sec. D these results
are aﬁplied to electron-phonon scattering in potassium. It is shown
that under special circumstances, the temperature-dependent part of
the high-field resistivity (pxx)T should be equal to the temperature-

p;mpure when impurity

dependent part of the zero-field resistivity
scattering is dominant. In addition, it is shown that deviations
from Matthiessen's rule (at zero field) should be related to the en-
hancement of the temperature-dependent part of the resistance pro-

duced by a magnetic field.

B. The Transverse Magnetoresistance-

In this section I use a somewhat different, more direct approach
than the one used in the previous chapter. For simplicity I will
1imit the discussion primarily to systems whose Fermi surface consists
of a single closed sheet. 1In keeping with the convention used in the
previous chapters, p will always be used to mean the zero-field re-
sistivity. Tensor elements, such as Oy’ will always refer to the
high-~field values of these quantities, unless otherwise indicated.
For example, cxx(H) refers to the conductivity tensor element in a
magnetic field of arbitrary strength and oxx(O)‘refers to its zero-
field value.
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I begin by considering the entropy of thé electron system not
necessarily in equilibrium, but having a fixed total energy E and
.number of particles N. The entropy S is given by?

s - - B ( ak[t an £ + (1-£)n(1-1) ], S (4e1)

Ynd ©
In accordance with the second law of thermodynamics, the entropy is a
maximum when the system is in thermodynamic equilibrium. In this
situation the equilibrium aistribution function fO is the Fermi dis-
tribution function [1 + e(e'u)/kBT]—l, a fact that can be readily
proved by maximizing S, subject to the constraint that E and N remain
4 fixed. TUnder the influence of steady external fields, the entropy of
the electron system in the steady staté will generally be less than
the entropy corresponding to the equilibrium state, and the steady-
state d;stribution function f will generally be different from the
equilibrium distribution function fo.
Consider the time rate éf entropy S of the‘electron éysfem uhder
the influence of an electric field F in the x direction and a magnetic
field H in the z direction. In keeping with Eq. (3+6), the steady-

state distribution function f can be written as .

f
= = v - AW 0
£ - f, =eE = eEX<_ — Yo - (4.2)
Differentiating Eq. (4.1) with respect to time and keeping terms of

lowest order in ¢ yields

¢ - (e-w)d + (4.3)

- Since both S and f“ﬁust be independent of time in the steady state,
their time derivatives $ and f are zero. The equation for f is just
the Boltzmann equation, which for an isothermal system can be written

(see Eq. (3.4))
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Feendon 2o (5 n e o G

Inserting this expression in Eq. (4-3), one finds that all the terms

‘ associated with the second term in Eq. (4~3) vanish leaving

E2 2 y 2 . “af
& o= X [e® R 0, - &5_ 2 -0
§ =5 {4"3 S dk vy St T TS S ak v, ( e I
e o )
_+'1;5 g dk [—w(n)wl} = 0. | (4.5)

The first term can be shown to be zero by changing the integration

over wavevector to one over orbit variables and noting that ﬁw(aw/aw)dw

= 0.2 Equation (4+5) becomes

) E_2 . af A«
s - farv (- 50

;.fzg § dﬁ[—wfn)w]} —o. A(u.e)

It is reasonable to associate the first term in brackets with the rate
of entropy production due to the action of the electric field, and the
second term .in brackets with the rate of entropy production dpe to
scattering. In the steady state, a balancé is maintained between the
two rates in accordance with Eq. (4.6). |

The first term in brackets in Eq. (4.6) is just the negative of
the conductivity tensor element °xx(H)‘ Consequently, Eg. (4.6) can

be written
e2 ) .
-°xx(H) = = g arr-w(n)yl . (4.7)
hqud .
This is a very important result and holds for all magnetic field

strengths for which the Boltzmann equation itself is wvalid. To be of

use, it is necessary to have additional information about ¢ and 1. At
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.zero’field, one can make use of the variational principle to calculate
the zero-field resistivity p. At high fields, the distribution func-
tion is known under special circumstances, so that the high-field

value of o, can be calculated directly from Eq. (%+7). There seems

XX
to be no straightforward method for calculating ¢ or 7 at intermediate
magnetic fields, so that we shall confine our attehtion to the zero-

. field and high-field cases.

The variational principle states that the distribution function
tﬁat satisfies the zero-field Boltzmann equatlion is the one-that |
maximizes the time rate of entropy due to scattering, subject to the
constraint tﬁat the total time rate of‘entropy be zero in accordance
with Eq. (4:6). Equation (4+6) can be satisfied by a wide class . of
functions. in particular, it is satisfied by the solution w'to the
Boltzmann equation for arbitrary magnetic field, and by other func-
tions 3, which-may have no physical significance. TFor these functions,
Eq. (ﬁ-6) serves to determine their magnitude. .Uéing the variational
principle in conjunction with Egs. (4+6) and (4.7) and assuming that

the system is cubic (in which case the zero-field conductivity tensor

reduces to a scalar, and p = 1/c (O)), one can write

L e~ 20)0) ]

o s ay{e} = (4.8)

<4ﬁ S dk ev ( )(})a

This is the weli known variational expression for the zero-field resis-

tivity .2 oOf cdurse, if one chooses the actual zero-field solutibn
Iy—o to the Boltzmann equation for the trial‘fuﬁction 3, then Eq. (4.8)
reduces to an equality with p = pv{¢H=o}. On the other hand, if. one
chooses the actual solution ¢ to the Boltzmann équation in an arbitrary
magnetic field for the trial function 3, then one obtains the result
that p < pv{\ﬁ} = 1/0,,(H). This.is simply a statement of the fact that
the time rate of entropy due to scaftering is 1less in;a magnetic field

than in its absence.
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While the zeroffield distribution function,ié generally sensitive
to the scattering mechanism, Jjust the opposite is true of the high-
field distribution function. In fact,.if all orbits are closed and. the
magnetic field is directed along a twofold, threefold, or fourfold
symmetry axis, the high-field distribution function is independent of
the scattering mechanism and depends only upon Fermi sqrface geometry.

Thus, according to Eq. (3.26) at high fields,*

ey g .
e o ()R : (4.9)
The high-field conductiVity tensor element Oyx C2N be calculated by
substituting Eq. (%.:9) into Eq. (4.7), and is just ax'x/H2 in agree-
ment with the discussion in Sec. IIIB. ‘

An interesting relationship between the zero-field and high-field

cis . n .

resistivities, p an§ pxxf can be derived by evaluating pv{kx}. With
the aid of Sec. IIIB3, it is not difficult to show that for a system

with a single band

ayy/(nec)2 s (4.10)

O

IA

©
g

MEDE
)

——

1}

provided the magnetic field is directed along a twofold or higher-
symmetry axis, so that Eq. (4.9) applies. The quantity ayy/H2 is
equal to the high-field conductivify tensor elementlgyy, and the ex-

pression for a can be obtained from the expressions for Byx by re-

yy
placing -K_ with-K.. In a strong magnetic field directed along a two-
X

fold or higher-symmetry axis, is just ayy/(nec)Z, so that Eq.

Pxx
(4+10) becomes

p < pv{kx} v oxx . ()-I' '11)
It should be emphasized that this result holds for any.scattering
mechanism, umklapp processes included. It is apparent from Eq. (4'11)

that within the framework of the semiclassical theory the resistivity




increases or remains constant in a magnetic field, and that the amount

of enhancement is related to the difference between ﬁx and the actual
zero-field solution WH=O to the Boltzmann equation. No enhancemenﬁu
will occur only if ¢H=O is proportional to kx’ for then p = pV{Wﬁ=O}
= pv{ﬁk}. The only situation for which this will occur is for a sys-
'tem with a spherical Fermi surface and scattering describable by a
relaxation time. This observation forms the basis for the discussion
in Sec. D of th;é'chépter.

Throughout this whole discussion, the precise definition of the
high-field regime has been nebulous. The onset of the high-field
regime depends upon the nature of the scattering mechanism, and it is
only in the case of the simplest relaxation.mechanisms that a compact
criterion can be set down. .For example, if a relaxation time T exists,
the high-field regime is achieved when w, T > 1l for all orbits. Of
course, the operational definition we have adopted in the previous dis-
and

cussions is that the high-field regime is achieved when o o

vy’
have approached to sufficient accuracy their asymptotic values,

XX’

O’Xy

axx/Hz, ayy/Hz, and nec/H, respectively. This can be expected to
occur when the terms proportional to 1/H* in Oyx and Oyy and the term

proportional to 1/H% in o can be neglected. Expressions for these

Xy
higher-order terms can be calculated by the method of Sec. IIIB2 but
are so unwieldy that they seem to be of little préctical value.

In Figure 4.1 the distribution functions are illustrated for a
spherical and a cubical Ferml surface in zero magnetic field and in a
strong magnetié field. Since the zefo—field distribution function de-
pends strongly upon the scattering mechanism, this must be specified.

If one assumes a relaxation time-t, then ¢H=O = TV In Figure 4.2

<
the situation for two bands is illustrated; the first band contains a
" spherical electron surface and the second a spherical hole surface.

Note that at zero-field, the distribution functions are "shifted" in

-oppositg directions in K-space along the electric field, while at high




SPHERICAL CUBICAL
FERMI SURFACE FERMI SURFACE

Figure 4.1. Distribution functions for spherical and cubical Fermi
surfaces in zero magnetic field and in a strong magnetic field.
The solid 1ine represents the Fermi surface. The dotted line re-
presents the change in the distribution function caused by the
field, The change in the distribution function is positive if the
dotted line is outside the Fermi surface and negative if it is
inside.
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Figure 4.2. Distribution functions for a system with two bands. The
interpretation of the diagrams is explained in Fig. 4.1.
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fields the distribution functions are "shifted" in the same direction

in K-space perpendicular to the electric and magnetic fields.S

C. The Longitudinal Magnetoresistance’

The discussion in this section is limited to systems whose Fermi
surface consists of a single closed sheet. With the magnetic and elec-
tric fields along the z axis, the Boltzmann equation for electrical'
transport is

.af
-1 (_ -0 : .
v 3 — )vz +w(n) . | (4.12)
By following the analysis of the previous section and calculating the

time rate of entropy é, one can show that

"oy, (H) =-‘f£; S akr-w(n)el ;s (4.13)

which is the analogue of Eq. (4.7). .

Equation (%.1%) is of iittle value unless more information is
known about ¢ and 7. At zero field, we make use of the variational
principle to calculate 'the zero-field resistivity p and at high fields
we solve the Boltzmann equation to lowest order .in 1/H. However, in
contrast to the high-field distribution_funétion for a transverse mag-
netic field, the high-field distribution function .for a longitudinal
magnetic field depends strongly'upon the scattering mecﬁanism. Thus,
it is not possible to derive an explicit expression for § in a longi-
tudinal magnetic field, but it is possible to obtain an implicit ex-
pression for this quantity. With this expression it is possible to
relate the high-field longit;dinal magnetoresistivity Pz to the zero-
field resistivity p by means of the Kohler variational principle, and
to ascertain uﬁder what conditions an enhancement of the resistivity
in a longitudinal magnetic field can be expected to occur.

In the manner of Sec. IIIB2, the solution to Eq. (4:12) can be

written as a power series in'l/H. Following that treatment,
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a5 (4.14)
o0 , .
(1) £ . ' :
) AL - (- 20, +u(n), ete. (3.15)

af
_Equation (4:14%) has the solution n(o) = C(O)(kz,e) = (- 3;9>w(0)(kz,e),

(1)

which is clearly a single-valued function of ¢. 1 is single-valued
only if '
of
: 0 - w(nl0)
(- 3;-)§ v do = - §q¢ w(n'%’) . (4.16)

Note that in general Qv de # 0, whereas in the discussion of the trans-
verse magnetoresistance, use was made of the fact that vxd¢ = 0 for
closed orbits. Thus, from Eq. (4.16) it is clear that n(o) will gen-
erally be non-zero. At mégnetic fields sufficiently strong that the
higher order terms proportional to }/H,>1/H2, etc. in 7 can be neglected,

the distribution function is indgpendent of magnetic field and constant

around each orbit.

(1),

From the definition'of 9z

0, (H) =§-2;5 Sdk’ v, 0 ‘ (3.17)

one can readily show that in the high—field limit .

0py v L= (ary n(0) - &£ Sdﬁ[ 0))¢(9)]. C (4.18)
43
This is accomplished by changing the integration over wavevector'to an
integration over orbit variables, making use of Eq. (4. 16) and the fact
that w(o) does not depend upon ¢, and then changlng back to an integra—
tion over wavevector. As one might expect, Eq. (4+18) bears a strong
resemblance to Eq. (4.13). .
" To make the inversion of tﬁe conductivity tensor as simple as

possible, we assume that the z axis is directed along a twofold or
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(H) =

and pZZ(H) = 1/°zz(H)' By menipulating Eq. (4+18) suitably, one can write

L ( arf-wf(- %fe_c_;)q,(o),}&(o)]

) uﬁi o Foy (0)y Z
Z:s'g dkev, (' _ae—)‘Lf )

opx(H) = oy, (H) = o, (H) =0

higher-symmetry axis. 1In this case Oyy

_ (4.19)

Pz2

This expression has exactly the same form as the variational expres-

(o)

sion and is in fact just pv{w(o)}. Since will not necessarily be
a solution of the zero-field Boltzmann equation, it follows by the

variational principle that

p-= pv{WH=O}-5 PV{W(O)} "~ Pzy " (4.20)

.To éummarize, the high-field distribution function is independent
of magnetic field and is constant around each orbit. Generally, the -
zero-field distribution .function will vary around each orbit, while

the high-field distribution function cannot. According to Eq. (4.20)
‘this can be understood to be the origin of the enhancement of the
 resistance in a longitudinal magnetic fieid. In order for no enhance-

(o)

ment to occur, szO and § must be the same. In other words, wH=O
must be constant around each orbit, and Eq. (4:16) must be equivalent

to the zero-field Boltzmann equation (Eq. (4.:12) with w, = 0). This

can be the case only if two conditions are satisfied: 1) v, is con-
stant around each ofbit, and ii) the sééttering rate Qrdependé only ;

upon the orbit and not upon the position of fhe elecfrpn'én it.

D. Application of Semiclassidal Transport Tﬁeofy to Aspects of
the Magnetoresistance of Potassium
The magnetoresistance of potassium has puzzled physicists for
several decades. In strong magnetic fields the magnetoresistance of
potassium increases linearly with field and shows no sign of satura-

tion as predicted by semiclassical theory. while.the origin of the
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behavior is still not understood,® Taub has found recently in this
laboratory that the temperature-dependent pért of the transversé mag-
netoresistance, ascriﬁed to electron-phonon scattering, shows.a nearly
saturating behavior.” This suggests that it might Be useful to attempt
to describe the temperature-dependent part of the transverse magneto-
resistance in terms of semiclassical theory. |

In Sec. B of this chapter it was shown thgt p < pv{%x} " § (Eq.

(4.11) 3. p is the zero-field resistivity, pv{kx} is the variational

XX

expression for the zero—field resistivity evaluated using'the trial
function ﬁ#, and Pxx is the high-field transverse magnetoresistivity.
Within the framework of semiclassical transport theory, this relation
is valid under the following conditions: i) the metal is cubic and
the magnetic fleld is directed along a twofold or higher-symmetry axis;
ii) the Fermi surface consists of closed surfaces, each of which has
the above symmetry; and iii) the scattering rate Q is independeﬁt of -
magnetic field. T will assume that these conditions are met. In addi-
tion, I assume that fhé Fermi surface consists of a single closed
sheet. Eventuaily I will assume that the Fermi surface of potaésium
is sphericél, but there is no neéd to make this assumption at the
outset.

Suppose that there are two scattering mechanisms present: im-
purity and phonon scattering. The collision integral W(n) is ﬁhe_sum
ofvfhe collision integrals for impurity and phonon scattering; i.e.
win) = wimp(n) + wph(n).8 Using the variational expression (Eq. (%.8)),

it 1s possible to write

. " CoAmD v n
°v{kx} T Py p{kx} + pvp {kx} r (4.21)
imp ph - . . as . . ‘.
where oy and Py are thé variational expressions associated with
W™ and wph’ respectively. Using the additivity of ayy for different

scattering mechanisms proved in Sec. IIIB2 and the fact that Px ¥
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~a_./(nec)2, it follows that

vy 4 .
- \imp ph .
Pxx ~ (°xx) + (pxx) > (4.22)
where (pxx>lmp'and'(pxx>ph are the high-field resistivities associated
with impurity and phonon scattering, respectively. By Eq. (4.11), one

can write
TP+ Y = () (T ()

Nowll assume that the Fermi surface is spherical and that the impurity
scattering is describable by a relaxation time. If this scatteriﬁg
were acting alone, ﬁx wouid be (within a constant factor) the actual
deviation of the distribution function from equilibrium. However, if
impurity scattering is dominant, %x will still represent the actual
distribuﬁion func¢tion to an excellent approximation. (For a more criti-
' cal discussion of this point, refer to Appendix D.) Therefore, in the
impure 1imit,“pv{ﬁx} should'be equal to the actual zero-field resis-
fivity. Furthermore, pvimp{gx} should be temperature independent be-
cause the impurity scattefihg rate is not expected to depend upon
temperature. Consequently, pvph{%x} can be identified with the temp-
erature-dependent pért of the resistivity in the impufe limit, fefer—<

impure

red to as By subtracting the impurity part (pvlmp{kx} =

Pr
4(pxxv)lmp) from Eq. (4.23), one obtains,

- impure , :

where (gxx) = (pxx)ph is the temperature—dependeﬁt part of the high-
T :
field magnetoresistivity. One concludes, therefore, that the tempera-

ture dependence of the zero-field resistivity in the impure limit should

be identical to the temperature dependence of the magnetoresistivity

in the high-field limit.
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Note that in principle (pxk) can be measured in a sample of any
purity because’Matthiessen's ruleTholds in é strong magnetic field
(see Sec. IIIB2). Suppose now that one has a sample of arbitrary
purity in which one measures the temperature-dependent part of the
_high—field magnetoresistivity (pxx> and the temperature-dependent
part of the zero-field resistivity zT' Using Eq. (4-24), one can write
that |

impure _ _ .
fp TP T ("xx)T e * (425)

Thus, deviations from Matthiessen's rule in zero magnetic field,

impure
IIL

resistivity, (o .- e , produced by a strong magnetic field.®

measured by p - _pp» Should be equal to the enhancement of the

Similar predictions can be made for the temperature-dependent
part of the longitudinal magnetoresistance. Without going through
the arguments, which are analogous to those just given, one finds

that

impure ) impure

P e - (pzz) P : - (h.286)
. T

Deviations from Matthiessen's rule can be expected to occur for the

high-field longitudinal magnetoresistance because for this situation

the distribution function depends upon the nature of the scattering

mechanism.
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CHAPTER V

The RF Size Effect in Potassium

A. Introduction

The rf size effect was discovered experimentally by Gantmakher
in 1962.l Since that time the effect has been observed and studied
in a number of metals.® As a transport process, the rf size effect
has been the subject of considerable intrinsic interest. In addition
it has proved to be a poweffui tool fof measuring Fermi surfaces and
a useful technique for investigéting electron mean-free paths.

This chapter is concerned with assessing the feasibility of using
the rf size effect to detect anisotrbpies of the electron mean-free
path in potassium. In Sec. B, the current understanding of the rf
size effect for a spherical Fermi surface is summarized, and an ex-
periment for defecting ansitropies in the electron mean-free path is
proposed. 1In Sec. C the experimental aspects of this proposal are '
considered and some preiiminary results are presented. A final assess-
ment of the proposal is givén in Sec. D. -

It is useful to review briefly the rf size effect work that has
been done to date in potassium. Koch and Wagner® were the first to
study the effect in potassium, and their study was concerned mainly
with understanding the magnetic field values at which the surface im-
pedance anomalies occur. Subsequently, Peercy et al.* extended their-
étudy with improved experimental technique and presented a geometfical
model that correctly predicts the magnetic field positions of the sur-
face impedance anomalies. Once the spectroscopic aspects of fhe rf
size effect werebunderstood, investigations of the electron mean-free
path by means of the rf size effectbbecame feasible. A studj of the
temperature dependence.of the electron mean-free path in potassium was
made by Tsoi and Gantmakher.® A somewhat broader study was made by

Blaney and Parsons® who made measurements on both poly- and single-

.
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crystal specimens. In their experiment they measured a temperature-
dependent mean-free path that is in good agreement (within 15%) with
that measured by Tsoli and Gantmakher, but observed no anisotropy in
the electron mean-free path; that is, they observed that the tempera-
ture-dependent mean-free path was essentially the same from sample to
sample. Unfortunately, no information about sample orientation,vor
even the number of samples measured is given, so thaf it is difficult
to critically evaiuate their conclusion that there was no anistropy.
It seems that this conclusion could be tested more sensitively by per-
forming measurements on a single sample (a single‘érystal), whose
orientation coﬁld be varied. This forms the basis for the experiment
proposed in the next section.

Calculations of the shapes of the rf surface impedance anomalies
have been pérformed by Kaner and Faiko7 and more recently by Juras.®
While these calculations are interesting in their own right, much in-
formation about the rf size effect can be gotten from simpler consid-

erations, as discussed in the next section.

B. The RF Size Effect

1l. The Electron Trajectories

. In order to understand how the rf size effect can be used to
measure electron mean-free paths, it ié necessary first to understand
how the rf surface impedance anomalies arise, and in particular which
electron trajectories are responsible for a given anomaly. A very
complete explanation of the rf size effect in potassium has been given
by Peercy et al.* We give a discussion of the relevant aspects of
their treatment below.. '

‘The rf size effect can be observed most simply in a thin plate of

pure metal of thickness d, oriented with a static ﬁagnetic field B
parallel to the surface. An rf electric field polarized perpendicular

to H and parallel to the surface aéts to accelerate electrons in the
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skin depth. If the electron mean—frée path £ is on the ofder of - the
plate fhickness d, maﬁy 6f these electrons will follow trajectories
into the bulk of the metal, and some may reach the other side of the
plate. Under certain circumstances, these electrons can make a signi-
ficant contribution to the rf currents in -the skin depth, and can
"cause a change in the rf surface impedance of the plate. It is the
changes in the rf surface impedance, generally as a function of mag-
netic field, that is the principal observable consequence of the rf
~size effect. .

There are three conditions that must be met in order for a change
in the surface impedance to occur. Firstly, the electrons responsible
for the change in surface impedance must follow trajectories that Jjust
span the thickness of the plate from skin depth to skin depth. Second-
1y, the'electrons must be‘travelling parallel to the surface in each
skin depth in order to make an effective contribution to the rf ékin
currents and hence to the surface impedance. Thirdly, there must be
an abrupt chanée in the number of such electrons to cause a change
in the surface impedance. To illustrate this concretely, we consider
possible electron trajectories for a spherical Fermi surface as the
" magnetic field is increased from zero.

At a small finite value of the magnetic field, a small number of
electrons with non-extremal orbits on the Fermi surface will have tra-
jectories that just span the.thickness of the plate and pass through
both skin layers travelling parallel tb the surface. Although these
electrons will make a contribution to the rf current in the skin depth,
there are always a small numbér of such electrons at neighboring field
&alues, so that no measurable change in the surface impedance with
magnetic field will result. However, at the field Ho such that the
trajectories of the electréns'on the extremal.beit of the Fermi surface

just span the thickness of the plate, a large group of electrons having

nearly the same orbit diameter contribute to the currents in the skin




~7h-

depth and a change in the surface impedance will result. It is impor-
tant to note that this group of electrons has trajectories that are
focussed in the opposite skin depth; that is, a first order change in
the E—space orbit produces only a second order change in the depth of
the trajectory. As the magnetic field is increased further, the sur-
face impedance anomaly will persist until the trajectories of the
electrons on the extremal belt of the Fermi surface no longer inter-
sect both skin depths. Consequently, the fractional width AH/H of'the
anomaly will be on the order of 2s/d, where § is the skin depth.

At fields larger than Hp, other surface impedance anomalies can
occur, but via a different mechanism. For example, at the field 2Ho,
the electrons on the extremal belt of the Fermi surface which pass
through the skin depth on one side of the plate will carry current into
the bulk of the metal and will form a current sheet at a depth of rough-
ly d/2. The fields associated with this curreht sheet can in turn ac-
celerate electrons which produce currents in the skin depth on the op-
'posite side of the plate. Thus, chains of trajectories linking the
sample surfaces become possible and cause changes in the.surface im-
pedance at multiples of the fundamental field Ho.

A more complicated, but interesting situation occurs when the
static magnetic field H is tilted eut of the sample plane by an angle
®. It is customary to arrange the polarization of the rf electric
field elther perpendicular to the magnetic field g and parallel to the
sample surface or along the prOJectlon of the magnetic field 1n the
plane of the sample surface. One should note, however, that the polar-
ization of the rf electric field is ef no importance in determihing
the.positions of the rf surface impedance anomalies; rather, it serves
only to emphasize certain anomalies. For example, the perpendicular
polarization emphasizes anomalies due to electrons near the extremal
belt of the Fermi surface, since these electrons have velocities direc—

ted along the rf field as they pass through the skin depfh. Instead
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of discussing each polarization separately, it is much more convénient
to assume that all polarizations are present. This is the approach
used in the following discussion. .

It is useful to introduce some concepts used by Peercy, et al.
‘The term "effective" electrons is used to mean those electrons travel-
ling parallel to the surface in the skin depth. In this connection
the term "effective point" is used to mean that point on the electron
trajectory at which the velocity is parallel to the surface. For a
-spherical Fermi surface it is possible to unambiguously label an orbit
on the Fermi surface by the angle 6, measured with respect to the di-
rectioh of the magnefic field H. The point on the Fermi surface cor-
responding to the point ¢ = O is referred to as the "limiting point".

Peercy et al. have derived analytic expressions in terms of g and
¢ for the onset fields of the surface. impedance anomalies. While the
calculations are straightforwara exercises in analytic geometry, their
interpretation is not so transparent. A great deal can be learned,
however, from a simple piéture‘of'the possible orbits in E-space and
the corresponding trajectories in real space. In Figure 5.1 the ef-
fective points on the Fermi surface are shown; they lie on the great
circle formed by the intersection of the Fermi sphere with a plane
parallel to the sample surface. The K-space orbits are confined to
the intersection of the Fermi sphere with planes perpendicular to the
magnetic field H. Since the electron trajectories must have an effec-
tive point in each skin depth to cause a surface impedance anomaly,
the K-space orbits must begin and end on one of the effective pointsA
indicated on the Fermi sphere., In Figure 5.1 a possible orbit is
indicated, beginning at point 1 and ending at point 2. If the magnetic
field strength H and angles 8 and ¢ are chosen correctly, the real
space trajectory will have an effective point in each skin depthAas
indicated in Figure 5;1. Note that there are no effective points for

‘electrons with 8 < ¢. These electrons will always be ineffective
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Figure 5.1 Perspective drawing of a possible electron orbit in
?—space and the corresponding electron trajectory in real space.
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and therefore play a minimal role in the rf size effect.

In the discussioﬁ.of the parallel-field effect, it was convenient
to consider the changes in the rf surface impedance as the magnetic
field was increased from zero. It is also useful to do the same for
the tilted-field effect. At a small value of the magnetic field, a
small number of electrons with 8 < ¢ will have trajectories which just
span the plate. Since these electrons have no effective points on
their orbits, they will make a minimal contribution to the rf surface
impedance. However, as the magnetic field is increased further, elec-
trdns on the limiting point orbit (g = m) will just span the thickness
of the plate. Since these electrons have an effective point on the
orbit, théy can contribute significantly to the rf surface impedance,
and a change in the surface impedance will result. It is the change
from ineffective to effective behavior that is responsible for this
surface impedance anomaly. '

The next surface impedance anomaly occurs at a field slightly
greater than Hpo and is due to the focussing of the trajectories of
electrons near the extremal belt of the Fermi surface into the skin
depth on the opposite side of the plate. At higher fields, current
sheets within the bulk of the metal can be formed, and chains of tra-
jectories become possible. This aspect of the rf size effect is dis-
cussed in detail in the article by Peércy et al.

From the standpoint of measuring electron mean-free paths, it is
the limiting point orbit that is of the greatest interest. It is this
orbit that samples'the smallest portion of the Fermi surface, and
which therefore should yield information about scattering on a localized
area of the Fermi surface. ‘By using some analytic geometry it is not
difficult to show "that the onset field of the limiting point anomaly

is given by

H = Ho(—g sin 2¢) . | | (5A-1)
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Thus, H is less than Ho for tilt angles ¢ less than about 20°. Also
oﬂe can show that the length of the trajectory L between effective

points is
L = 2d/sin 20 . (5.2)

If the scattering events are random and have the same effect at each
point on the orbit, it is'dlear that the amplitude A of the surface

impedance anomaly should vary as
A « exp(-L/2) = exp(-2d4/4 sin 2¢) . (5:3)

In principle, the mean-free path £ can be deduced by measuring the
variation of the amplitude A as a function of tilt angle ¢. This method
has been used by Tsoi and Gantmakher® and Blaney and Parsons® to measure

the electron mean-free path.

2. The Electron Mean-Free Path

At this stage in the discussion it is important to clarify jusf
what is meant by the electron mean-free path. This matfer is by no |
means as simple as it may seem; it is sobering tobconsider the fact
that in almost every real situation it is impossible to rigorously
define a relaxation time or a mean-free path. Even if one tries to

approximately define a relaxation time or a mean-free path, one gen-

erélly will find that its value will depend upon the transport prop--
erty being investigated.

Our understanding of transport proéesses in mefals rests on the
Boltzmann equation for the distribution function f. In this equation

the time rate of f due to scattering has the form

Nz - == (aRG-eIREE) . (548

which is the same as Eq. (3.5). Again (—afo/ae)¢ is proportional to

_the deviation of the distribution function from equilibrium, and P(K,EK')
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is the equilibrium transition rate between the states of wavevector K
and K' allowing for occupation of these states and is equal to fo(e)(l—
fo(g'))Q(E,E'). Q(K,E') is the corresponding transition rate disre-
garding the occupatibn of the initial and final states.

A re;gxation time + exists only if one can show that '(af/at)scatt.
= (—afo/ael&/T for all transport processes; that is, for all possible
Y. vThis w{If generally occur for only special transition rates. For
example, if the scattering is- elastic and isotropic (i.e. Q(K,K') =
§( e-¢') sconst.) a relaxation time will exist. However, in this dis-
cussion it is profitable to take a more limited view. Consequently,
we shall concern ourselves mainly with experiments, like the rf size
effect{ in which ¢ is appreciable only on a small area of the Fermi
surface. If the angular region a6 over which y is appreciable is
smaller than the characteristic angle of scatter, then the second term
in the collision integral (Eq. (5+4)) can be neglected with respect to

the first. In this case one obtains a relaxation time +(K) given by

f(e)
=L = §rorore(® g, (55)

" and a mean-free path £(E) = -(B)v(E). This approximation amounts to

neglecting the scaftering into the regions in which ¢ is appreciable
with respect to the scattering out of these regions. Or stated dif-
ferently, in this approximation every collision is viewed as catastro-
phic in the sense that it will remove an electron from the group
responsible for the surface impedance anomaly.

Is this approximation justified for electron-phonon scattering in
potassium? Unfortunately, it is Jjustified only maréinally at best.
To see this, one must estimate the angular range over which ¢ is ap-
preciable and compare this with the characteristic electron-phonon
scattering angle. 1In the case of focussed trajectories, ¢ should be

appreciable over an angular range A8 on the order of V§/d, since a
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change in the E—space orbit by this amount will produce a fractional
change in the depth of the trdjectory of roughly §/d. In the case of
the unfocussed trajectory corresponding to the limiting point orbit
foreo < 20°, it seems that the angular range A6 should be on the order
of §/d. The characteristic angle of scattering for normal electron-
phonon collisions is on the order of (T/eD), which for potéssium at

1 X is about 1072, (Umklapp electron-phonon collisions are not an

important consideration here because they will be catastrophic). Since

8/d is typically also about 10 2, the argument that a typical electron-

phonoh collision will render the electron ineffective is rather tenuous
for the limiting point orbit and implausible for the focussed orbits.

Both Tsoi and Gantmakher® and Blaney and Parsons® have pointed
out this difficulty. The éxperiments, however, give a 1/T® dependence
of the electron-phonon mean-free path which suggests that each elec-
tron-phonon collision is catastrophic. Actually, this is probably not
the case; it is more likely that the 1/T® dependence arises from the
fact that a collision which is not catastrophic makes only a small con-
tribution to the collision integral due to the near cancellation of
(¢—¢') in the integrand. Thus only a fraction of the collisions will
actually determine the value of the collision integral (Eq. (5.4)).
As a result, the mean-free path deduced from the rf size effect experi-
ment can be expected to be considerably larger than that which would
be measured if all electron-phonon collisions were catastrophic. In
fact, both Tsoi and Gantmakher and Blaney and Parsons do find that the
eiectron-phonon mean-free path deduced froﬁ the rf size effect is about
an order of magnitude larger than that estimated from the dc electri-
cal resistivity. In contrast, they find that the electron-impurity
mean-free path deduced from the rf size effect is in good agreement
with that estimated from the dc electrical resistivity.

| In summary, it is difficult to claim that a unique electron-

phonon relaxation time given by Eq. (5+4) will be measured in an rf
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size-effect experiment. Consequently, the value of the electron-phonon
mean-free path deduced from the experiment may depend upon the particular
surface impedance anomaly being studied, and this should be kept in mind

when interpreting the results. .o

3. Proposed Experiment

Despite the fact that a hean—free path for electron-phonon scat-
tering may not be well defined in an rf ‘size-effect éxperiment, it is
still possible to use the effect to detect anisotropies in the scat-
tering. In this'case one measures in some sense an average of the col-
lision integral over the orbit§fesponsible for the surface impedance
anomaly. The value of this average can be expected to vary with
crystallographic Qrientation if the electron-phonon scattering rgte
Q(K,K') is anisdﬁyﬁpic. Because of the importance of umklapp electron-
phonon scatteriné near the <110> zone faces in pofassium, such aniso-
tropy can be exﬁected to be present in potassium at low temperatures.

The most straightforward method for detecting an anisotropy in
the electron-phonon scattering is to measure the amplitude A of the
limiting point surface impedance anomaly as a function of crystalline
orientation for different temperatures. A number of crystalline orien-
tations can be sampled by rotating the magnetic field about the normal
to the sample surface. In the conventional experimental arrangement,

a rectangular coil is used to produce the rf electric field, and this
coil would have to be rotated with the magnetic field to maintain con-
stant coupling with the electrons in the skin depth. This can be a
severe disadvantage, however, because it would be difficult to rotate
such a coil without disturbing the sample. Even if this could be
arranged, it would be difficult to maintain the same separation between
the coil and sample surface, and this could cause considerable ambiguity
in the results. All of these difficulties can be overcome by using

spiral coils, used extensively in acoustic work in this laboratory,®
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to genérate an rf electric field with circular symmetry in tﬁe plaﬁe

of the sample surface. With spiral coils, both the sample and spiral
coils can be fixed, allowing measurement of the amplitude of the_limit;
© ing point anomaly ‘as-*a function of crystalline orientation by rotation

of the static magnetic field alone.

C. .Experimental Technique and Some Preliminary Reéults

The preliminary measurements were made with the conventional
rectangular coil and with a pailr of spiral coils, wired in series op-
position, with the sample placed between them. With each coil arrange-
ment i1t was possible to detect the first three surface impedance
anomalies at Ho, 2Ho,.and JHo for the static magnetic field parallel
to the surface. No attempt was made to detect the surface impedance
anomalies in a tilted field because this could not be done easily with
the apparatus used. In any event, these preliminary measurements .
showed'cléarly that the observation of the rf size effect in thin
potassium plates is not difficult, so that the extension of these
measurements to tilted fields and single-crystal potassium plates
should be straightforward.

It is useful to describe the experimental technique briefly. A
0.2- to O.j—mm thick pressed plate of potassium was placed either in-
sidé a rectangular coil, or was sandwiched between two spiral coils,
and the coil arrangement was placed in one arm of a twin-T bridge.?1°
The -bridge was driven at 32 MHz and the output amplified by'ud db,
mixed with the bridge drive.signal, and filtered. Tﬁus, any deviations
of the bridge output from balance caused by changes in the rf surface
7 impedance would appear as a dc voltage after filtering. To further
enhance the signal/noise; the static magnetic field was modulated at
23 Hz énd the filtered output of the mixer was phasé—sensitivély
detected at this frequency. The full—scalé sensitivity was about 0.2
uv referred to the output of the twin-T bridge for an integration time_u'

of 1 second.
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*This system seems quite adequate for future measurements. At the
present time, a superconducting magnet system is being built that will
allow rotation of the magnetic field while maintaining a constant tilt
angle P This magnet system will consist of a solenoid and a pair of
Helmholtz qoils. The solenoid will produce a vertical field, and the
Helmholtz pair will produce a horizontal field that can be rotated in
the horizontal plane by rotating the Helmholtz pair. Thus, if the
sample surface is horizontal, the solenoid can be used to generate a
constant tilt angle. Then by rotating the Helmholtz pair, the limit-

ing point can be moved in a full circle around the Fermi surface.

D. Summary

In summary, it can be concluded that a measﬁrement of the eiectron—
phonon scattering anisotropy by means of the rf size effect is feasible
in potassium. By using spiral coils which produce all polarizatioﬁs
of the rf electric field in the plane of the sample surface, differeﬁt
crystallographic directions can be sampled by simple rotation 6f the
static magnetic field -alone. By this method the problem of comparing
meaéurements in different samples is entirely avoided. It should not
be difficult to achieve resolution of anisotropies in the scattering
of several percent, and, keeping in mind the .cautionary remarks in
Sec. B2, this experiment should yield useful information about electron-

phonon scattering in pofassium.
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APPENDIX A
Computation of the Thermal Resistivity from the Experimental Data

The quantities measured in the experiment are R;(T), AR(T, AT),

sR(T, 0), and Q. By expanding R»(T + AT) in a Taylor series in AT

about T, it follows that,

aR(T, AT) - aR(T, 0) = -R2(AT) - zR5(AT)Z + ... (A1)

where Ra = dR;/dT and Ry = d®Rz/dT2. The quadratic term in Eq. (A+l)
is typically less than 1% of the linear term for temperature differ-
ences less than 30 mK. Thus to first order, the quadratic term can be
igﬁored. In this approximationlAT is given by

ap = - OR(T, aT) - aR(T, O) (a.2)

R

The derivative Ré is calculated from an analytical fit of ‘the
resistance data. I have found it convenient to fit the data to the
formula of Clement and Quinell:34

a'-J.
T ~ Tog Ra

|

+ao + a3 log Ra . (A.3)

The data is divided into two temperature ranges: 1.5 to 4.0 K and

3.5 to 6.5 K. The data in each range ié fit by using the two points

at each end of the range and one point in the center of the range to
determine the three coefficients a_ s ao, andAal. The fits obtained

in this manner compare favorably with those obtained by a least-squares
method. The systematic deviations of the data from the fit are always
less than 5 mK. The first derivative Ré is obtained by differentiating
Eq. (A+3) with respect to temperature. One obtains,
- 1 log Ro

Rz =Rz EE

AT (A.4)
_10g R2 - a3 10g R2
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In practice,Eq.‘(A-B) is used to calculate T from the measured value
of Ra(T) = Ry(T) - AR(T, O). Then Egs. (A-2) and (A.}) are used to
calculate AT.:

There are two sources of systematic error in this method: the
first arises from the neglect of the small quadfatic term in Eq. (A.1),
and the second from the fact that the actual temperature and the temp-
erature that one calculates by Eq. (A+3) differ by a small amount ¢(T)
due to the difficulty of fitting the data within the experimental
error. . '

In the first case the effect of the quadratic term is to multiply
AT by the factor (1 - 3 B%'(AT)). The second derivative Rs can be

Rz
calculated from Eq. (A+4). One obtains

’ 2
Ra _ 2., |Ra 2a-, 1% fpt
=2 = -Z+[ZE] |1 + —[32 . (A+5)
1 T R2 3R2 :
Rz _ 2) ,

In the second case the effect of ¢(T) on WT can be calculated by
replacing T in Eq. (A+3) by T - ¢(T). One finds that to first order
in ¢ the actual value of WT is obtained by multiplying the calculated
value of W by (1 - £ + %%). Typically I find that | %% | < .02 and
|§| < .002.  The quantity ¢ and its derivative can be determined with
a precision of about 40%. Consequently, after making these correc-

tions, it is possible to reduce the total systematic error in the

thermal resistivity to a value of less than one percent.




APPENDIX B

Proof that Céo)(kz,e) = (_afo/ae)-const.

(0)

of
In this appendix I wish to show that Cy  (k,,e) = (- 3;9)-const.
Since the distinction between electrical and thermal conduction is un-

important, I drop the E and T subscripts on 1 and ¢. First in i), I

prove the result for only intraband scattering. Next in ii), I indi-

cate how the argument is extended to two bands with combined intra-

“and interband scattering.'

i) Multiplying Eq. (3:12) by (-eH/h?ch)dedew(o), integrating

(0)

over ké and ¢, noting that v is not a function of ¢ gives

o ax :
- ;.THC S_wc_z Sde §d@W(C(O))w(O) =0. (B-1)

However, dK = (-eH/n’cw,)dk,dedp, so that the integration may be
changed back to an integration over wave vector. Using Edq. (3+5) for

the collision integral, one obtains

Sd}'{ S dr{vh(o) - q,(o)']zP(E,R") -0 . ~ (B2)

Since the integrand is always positive, this .condition can be met only

(O)(k ofg

if (0) _ const., or C ,e) = (- =—) const.
Y z

de

A similar proof can be constructed for electron-electron scattering by

using Eq. (3+7) for the collision integral.

ii) Following the discussion in Sec. IIIB2, I denote the two

bands by ¢ and 8. The gquantities C&O) and Cgo) are determined by the

two conditions:

§d¢awa(cgo);céo)) =0 and '§d¢swe(cgo);0£0)? = 0. (B:3)
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(o)

Multiplying the first equation by (-eH/hacwCG)dkzadeuwa , the second
(0)

P
ing the integrations back to integrations over wave vector, one ob-

by (—eH/h?cwCB)deBdeBw ., adding the resulting equations, and chang-

tains for impurity or electron-phonon scattering,

. v (0)_ (0)1y2 Y o4 4 ((0)_, (0)1y2 .
Egadﬁgadﬁ (o, -ya ) P (E,E) + SBdESBdK (g -4 | ) Py (K.E")

+'§aaggsdﬁv§¢§°>-¢g°)')ZPUB(E,EI) -0 (Be})

where use has been made of the symmetry properties of the P's. Since

each term is positive definite, this condition can be satisfied only

wgo) = wéo) = const.

if each term vanishes separately. Therefore,
The extension to electron-electron scattering is straightforward,

though tedious.




APPENDIX C

Proof that n(¢ + m)= -1(¢)

I wish to show that if the magnetic field H is directed along a
twofold symmetry axis and the orbits have this same symmetry, that the
solution 7 to the Boltzmann equation has the property T(¢ + n) = -7(¢).
For simplicity consider electrical tfansport and intraband scaftering
given by the collision integral of Eq. (3.5). Let R} and E}' be the
vectors corresponding to a rotation of r about H of K and E'. At E},

corresponding to the point (¢ + 1) on the orbit, the collision integral

W.(nle + m)) is

- .E];T Zi? Sdﬁ}[\y(q} + TT) - \Lf'(tp + TT)]P(EI.’KI.')' ’ (C°1)

However, P(K,.,K.') = P(K,K') by virtue of the twofold rotational sym-

metry and dK_.' = dK'. Consequently, W, (n(¢ + m)) =w(n(e + n)). This

last result also holds for electron-electron scéttering, which can be

verified by repeating the same argument using Equation (3+7) for the

collision integral. Utilizing the fact that v.(o + w) = -v.(g), the
Boltzmann equation for 7(¢ + m) can be written
og et m) (0 20V, (o) 4 uln(e + m) (c2)
c . a(‘p A 'ae x (‘P T] @ M

Adding this equation to Eq. (3.4) for 1(p), and letting n, = %[n(¢)

+ e + ﬁ)], one obtains

w, — = W(n+). (C+3)

subject to the condition that 7, be a singleralued function of ¢.
Note that Ty satisfies the same equation, subject to the same boundary

condition, that is satisfied by f - f, in the absence of an electric
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field. Since f - fO is zero in this situation, and this solution is

unique, -must be zero. Therefore, n(¢ + 1) = —n(w). This property

.
depends only upon the symmetry properties of the collision integral
and is valid for interband as well as intraband scattering. TFor

thermal transport a similar argument can be constructed.



APPENDIX D
A Discussion of the Solution to the Zero-Field Boltzmann
Equation when the Dominant Scattering Mechanism is Describable

by a Relaxation Time

I assume two scattering mechanisms: one which can be described
by a relaxation time ¢ and the other which cannot. The collision
integral for the former is -7/+ and for the latter, w(n). Thus, the

zero-field Boltzmann equation is
- —)Vx = T]/‘T - W(T])'. (D'l)
I assume that the scattering mechanism describable by the relaxation

time is dominant, so that as a first approximation W(7) can be ignored

with respect to 7/ t. In this approximation

To = (- %)Vx"' (p-2)

Iterating Eq. (D.1) yields
M = Mo + (n0), (D.3)
M2 = M f~TW[TW(no)], ete. (D+4)

Assuming the crystal is cubic, the conductivity o is Jjust

o = E%g Sdﬁ V.1
= oo +{%Z§ SdE Tvxw(no) + ee. , (D.5)
where
o= 8 fek e = (e ($ee . )
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Now p = 1/c. Assuming that the term containing W(mo) in Eq. (D:5) is

small compared to gg, one obtains,

5 § el {(- )wo}wo]

_3;
4 2 (D7)
(zl— \ dE ev, (— ———)WO)

with yo = v, and po = 1/0,. The second term in Eq. (D7) is the

variational expression pv{wo}. Therefore, I have shown that when the

scattering describable by a relaxation time dominates, the contribu-

tion of the scattering mechanism not describable by a relaxation time

can be calculated using the variational expression With_the relaxation-

time trial function.

The meaning of the use of the term "dominant"” can be made more
precise by calculating the terms~of‘higher order in Eq. (D+7). One
requires that these terms be small relative to the second term in Eq.

(D.7). Specifically,

: of
i 2 § (- 2]
o - of )
= TaT (- 29) o} ]

<<1 . (D.8)

Unfortﬁnately, this expression is so complicated that it Seems to be
of little practical value. However, it is clear that the 6nset of
the regime in which the scattering mechanism describable by a.relaxa—
" . tion time is dominant depends both upon the nature of'the collision
intégral w(n) and its magnitude. In many respects the difficulty in
» defining the onset of this regime is similar to the difficulty in

defining the onset of the high-field regime.



