96 (104 --9
COI\)F Pm-594 DSg(ﬂ

The Nimrod Computa,ti/onal Workbench:
A Case Study in Desktop Metacomputing

David Abramson t Ian Foster Jon Giddy § Andrew Lewis #
Rok Sosié t Robert Sutherst £ Neil White £

t School of Computing and Information Technology
Griffith University AP Ei VE D
Brisbane, QLD 4111 R 14 199
Australia . O \
{D.Abramson,R.Sosic}@cit.gu.edu.au S T I

i Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

U.S.A.
foster@mcs.anl.gov

§ Co-operative Research Centre for Distributed Systems Technology
Level 7, Gehrmann Laboratories,
University of Queensland,
St Lucia, Qld
Australia
jon@dstc.edu.au

Queensland Parallel Supercomputing Facility
Griffith University
Brisbane, Qld 4111
Australia
andrew@qpsf.edu.au

£ Co-operative Research Centre for Tropical Pest Management
Level 3, Gehrmann Laboratories,
University of Queensland,
St Lucia, Qld
Australia
n.white@ctpm.uq.edu.au

UASTER remmemmmmer

The submitted manuscript has been authored |} :
by a contractor of the U.S. Government
under contract No. W-31-109-ENG-38. | .

Accordingly, the U. S. Government retains a
1 nonexclusive, royaity-free license to publish N

or reproduce the published form of this | :
contribution, or allow others 1o do so, for | -
U. S. Government purposes.

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government nor any agency thereof, nor
any of their employees, make any warranty, express or implied, or assumes any legal liabili-
ty or responsibility for the accuracy, completeness, or usefulness of any information, appa-
ratus, product, or process disclosed, or represents that its use would not infringe privately
owned rights. Reference herein to any specific commercial product, process, or service by
trade name, trademark, manufacturer, or otherwise does not necessarily constitute or
imply its endorsement, recommendation, or favoring by the United States Government or
any agency thereof. The views and opinions of authors expressed herein do not necessar-
ily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.

The Nimrod Computational Workbench:
A Case Study in Desktop Metacomputing

Abstract

The coordinated use of geographically distributed computers, or metacomput-
ing, can in principle provide more accessible and cost-effective supercomputing than
conventional high-performance systems. However, we lack evidence that metacom-
puting systems can be made easily usable, or that there exist large numbers of
applications able to exploit metacomputing resources. In this paper, we present
work that addresses both these concerns. The basis for this work is a system called
Nimrod that provides a desktop problem-solving environment for parametric ex-
periments. We describe how Nimrod has been extended to support the scheduling
of computational resources located in a wide-area environment, and report on an
experiment in which Nimrod was used to schedule a large parametric study across
the Australian Internet. The experiment provided both new scientific results and
insights into Nimrod capabilities. We relate the results of this experiment to lessons
learned from the [-WAY distributed computing experiment, and draw conclusions
as to how Nimrod and I-WAY-like computing environments should be developed to
support desktop metacomputing.

1 Introduction

A metacomputer is a distributed collection of computers, potentially located at physically
distant sites, that can be assembled to form a logical parallel computer. This logical
computer can be used to access unique resources not accessible at a particular site, or to
assemble aggregate computational resources superior to that offered by a single site [3]. In
principle, metacomputing can both increase accessibility to supercomputing capabilities
and provide more cost-effective computing than conventional high-performance systems.

Experiments such as the I-WAY/GII Testbed [4] have demonstrated serious appli-
cations on wide-area networks. However, concerns remain regarding the viability of the
approach. Two questions appear particularly troublesome. Is there in practice a large base
of applications able to exploit geographically distributed resources connected by networks
with high latencies and low bisection bandwidth? Will programmers master the complex-
ities inherent in computing in geographically distributed, heterogeneous, internetworked
environments?

The I-WAY [9], Legion [10], and Globe [21] projects are addressing the usability is-
sue by developing system services intended to provide the illusion of a single virtual
machine. These efforts build on experience with systems such as PVM [19] that hide
machine-specific details. The LSF network operating system [22] also attempts to pro-
vide the illusion of a large processor address space. Job management systems such as
LoadLeveler [11], NQS, Codine [6] and others [12] map jobs placed in a work queue to
physically distributed processors.

While low-level system services are important, they are not in themselves a sufficient
solution to the problems of metacomputing applications and usability. We believe that
new techniques are required that integrate metacomputer resources seamlessly into the
user’s desktop, much as network file systems allow users to access files without being
aware that the bits are stored on remote servers. In this paper we describe a problem
solving environment that achieves this goal. This system, called Nimrod, combines a
specialized environment with a metacomputer scheduling system. Users interact with a
desktop interface to formulate parametric experiments, in which a user-supplied applica-
tion program is executed for a range of parameter values. This computational problem is
then decomposed automatically and scheduled transparently across local or remote com-
putational resources. Hence, Nimrod addresses both usability and applicability concerns:
it provides an easy-to-use problem solving environment, and allows an important class of
problems to access metacomputing resources.

Nimrod was originally developed to provide seamless access to a homogeneous collec-
tion of workstations located on a single local area network. In this environment, Nimrod
has proved extremely effective in application studies involving users with a wide range of
parallel programming skills [13]. In this paper, we describe extensions to Nimrod that
support its use in a metacomputing environment. ‘These extensions include support for
multiple architectures, including parallel supercomputers; new job startup mechanisms
and file transfer mechanisms, suitable for wide area network; and alternative authentica-
tion mechanisms for job creation at multiple sites. We present the results of a case study
used to evaluate the success of these extensions. In this case study, Nimrod is applied to
a challenging scientific problem, namely the execution of a biological model of an impor-
tant agricultural pest, cattle tick, using computers distributed across various Australian
High Performance Computing Centers. The experiment requires that large numbers of
relatively fine-grained tasks (jobs averaged 2 minutes) be scheduled across heterogeneous
systems (IBM SP2, SGI Power Challenge, DEC Alpha) connected by wide area networks
with high latencies.

This first experiment in desktop metacomputing demonstrated the significant potential
advantages of this approach to scientific problem solving. Operating from a desktop
environment, we were able to solve in 30 minutes a problem that would have required 6
hours on a single workstation. The experiment also revealed areas in which our approach
requires further refinement. We combine these lessons with those derived from the I-WAY
demonstration, and derive a list of future challenges that must be addressed if tools such
as Nimrod are to provide desktop access to metasupercomputing in a routine manner.
We conclude by indicating how Nimrod can be modified to meet these challenges.

2 The Nimrod Problem Solving Environment

Nimrod automates the creation and management of large parametric experiments [1,
2]. It allows a user to run a single application under a wide range of input conditions
and then to aggregate the results of these different runs for interpretation. In effect,
Nimrod transforms file-based programs into interactive “meta-applications” that invoke
user programs much as we might call subroutines.

Nimrod can be compared with optimization systems designed to locate local or global
minima of user-supplied functions across parameter spaces [5]. It is distinguished from
these systems by the fact that it does not require changes to user code. Nimrod also
has similarities with job scheduling systems such as Codine, LSF, NQS and LoadLeveler,
in that it treats individual runs of the user program as independent jobs that can be
scheduled to remote systems. However, unlike other job distribution systems, it hides
this scheduling and partitioning from the user, who thinks in terms of an experiment run
over a parameter space.

Nimrod is also distinguished from other optimization and scheduling systems by its use
of declarative experiment templates. As we describe below, parametric studies are defined
using a simple declarative syntax, which is translated automatically into a graphical user
interface. The user interacts with the experiment via this interface, and in many cases
need not write any additional software. Hence, experiments can be prototyped quickly.

2.1 Defining an Experiment

Nimrod processes a user-supplied declarative ezperiment template to obtain a graphical
control panel used to initiate, monitor, and control an experiment.- The template defines
the structure and valid ranges for input parameters, which may be supplied as command
line arguments, standard input or general input files. The control panel incorporates
sliders for variable values, lists for discrete values, radio buttons for literal values, and so
forth.

A template is defined by a file containing parameter statements defining input param-
eters. (The file can also contain script statements, defining the actions to be performed
in different phases of the computation; we describe these below.) A parameter statement
has the following syntax: :

parameter name label type [type_argument ...]

where name specifies the variable that represents the parameter in the control scripts,
label identifies the parameter to the user, and type indicates how the user will specify
the parameter. Valid types are select, switch, text, list, and range. For each type,
further arguments specify subtypes, defaults, and limits for the values.

Figure 1 illustrates the use of the parameter statement. The first statement defines a
parameter year with values specified by a user-defined list; a separate window is opened
when the user clicks on the field in the interface. The second parameter, ndip, takes at
most 7 values between 3 and 9; at run time the user chooses the number of elements, and
a list is subsequently generated. The third parameter, description, takes an arbitrary
text string. The fourth, dtype, can take any one of 4 literal constants. Figure 2 shows
the control panel generated from the template of Figure 1.

2.2 Running an Experiment
Once a control panel is defined, an experiment proceeds as follows:

1. We use the sliders and other controls provided by the control panel to select the
parameter values for which we want to run our program.

4

parameter year "List of Years" list

parameter ndip "Number of dips" range atmost 7 from 3 to 9

parameter description "Description" text

parameter dtype "Dip Type'" select anyof "nodip" "orgph" "vacci'" "pyrth"

Figure 1: Four example parameter statements, defining the input parameters year, ndip,
description, and dtype, respectively

Figure 2: Sample user interface generated by template

2. We request Nimrod to perform the specified runs. During this phase, we can use a
second status panel, also provided by Nimrod, to track the progress of our experi-
ment.

3. Finally, we examine the results of the experiment, perhaps using a scientific visual-
ization package.

The parameter choices made in the first step determine the number of runs to be performed
in the second step. For example, we may specify that parameter X is to take 5 values in
the range 0 to 100, while parameter Y takes 10 values in the range —10 to 10. Together,
these two specifications request 5 x 10 = 50 runs of our program.

Nimrod distinguishes seven phases in the second step: experiment initialization, job
setup, job execution, job cleanup, experiment termination, server initialization and server
shutdown. Most of the actions to be performed in each phase can be specified in the
experiment template using script statements. Figure 3 shows script statements for job

b

startup, job cleanup and job execution phases. In this example, file input is sent to
the remote site before the job is started and file output is returned upon termination.
The job execution script indicates how to run the program, using a shell script which
accepts the file names input and output. This figure also illustrates the use of parameter
substitution. The $ symbol indicates that parameter substitution should occur when the
script is interpreted. For example, $year will be replaced by the value of the parameter
year when the script runs. The fsubst command searches the file input and replaces
any parameters with their actual values. Hence, the application receives different values
for each run. The put and get commands are used to send files to a remote system and
to return results, respectively.

script job setup {
fsubst input nimrod.input
put nimrod.input input

}

script job cleanup {

get output output.$year.$ndip.$dtype
}

script job execute { ./run_ticklg input output }

Figure 3: Example script statements for job setup, job cleanup, and job execution

An experiment’s status panel (Figure 4) is used to initiate, monitor, and control the
experiment. One component of this panel shows the progress of individual jobs. Each
icon represents a job and indicates whether it is awaiting execution, is running, or has
completed. A special icon is displayed if the job fails, either through an error or because
the server connection is broken. The user can click on an individual icon to display job
parameters, the name of the machine on which it is running and the exact state of the
job: suspended, waiting or running. The user can also nominate selected application
scalar variables to be monitored. Their values are then extracted and displayed along
with other parameter information. This feature is useful for long-running jobs because
it allows the user to determine the exact progress of the run, for example by monitoring
the time step or computed error values within an equation solver. Variables are accessed
with the Dynascope library [18, 17], which provides a convenient method for extracting
data from remotely executing programs.

The final phase of an experiment is data aggregation and display. This functionality
is supported via a user-specified experiment completion script that can invoke external
data filters and visualization tools. A filter is often used to reduce the computed data,
and a visualization package such as AVS used to display the results.

[®][#] run05011242 [®][#] Nimrod Log

Figure 4: A Nimrod status panel

2.3 Nimrod Architecture

Nimrod uses a Client-Server architecture. A user runs a Nimrod client on their desktop
to create and manage experiments. A user can start multiple clients to run more than
one experiment concurrently. Each user also runs their own remote execution server
(RES) on each machine that can accept jobs. A RES not only manages the execution of
the application but is also responsible for transferring files between the client and server
machines. Since each user runs their own RES, the servers inherit the access privileges of-
the given user.

Nimrod does not assume a shared file system or even a global naming system for files.
When a job is initiated, the input files required for the run are transferred to the remote
system, and output files are returned after each run. A RES builds a unique location
in the target file system for each job. This avoids file name space conflicts in the event
that a machine accepts more than one job or several machines share a file system. For
efficiency reasons, it is possible to share common input files across jobs by using absolute
path names rather than local ones, in which case they are not altered by the server.

3 A Case Study

We illustrate the use of Nimrod by describing an experiment in which it is used to evaluate
control strategies for cattle tick, a major agricultural pest in Australia. This study is
interesting from a scientific perspective because it provides new results in management
strategies. From a metacomputing perspective, it is interesting because it involves a large
number of relatively short-lived tasks, and because we use Nimrod to map these tasks to

computers located across Australia. Hence, the experiment provides a challenging test of
Nimrod scalability and performance.

3.1 Experimental Design

Cattle ticks (Boophilus microplus) affect about one third of Australia’s cattle. The cost of
cattle tick management is estimated at $150 million per year, due to lowered production
and expensive control measures. There are enormous savings to be made by optimizing
the application of control measures and utilization of resistant strains. Optimal control
techniques can also help to reduce chemical resistance within tick populations and to
minimize residual pesticide levels.

Our experiment uses TICK1 [20, 14], a simulation code developed to study cattle tick
ecology. TICK1 is a climate-driven, process-based, discrete time step (weekly) model of
the population dynamics of cattle ticks. It incorporates models of various ecological and
physiological tick development processes, including on-host survival, competition between
ticks and avoidance behavior in cattle. Process rates are calculated as a function of a
number of meteorological, pasture cover and host-related variables. Herd composition
data for Australia, obtained from the Australian Bureau of Resource Economics, are
used to derive weighted average herd characteristics and stocking rates. A soil dryness
index is derived from meteorological data using a single-layer soil water model based
on [7]. Each simulation uses long-term average climate data and is run to equilibrium
(10 years) after an initialization. The model is written in FORTRAN 77 and uses NCSA
netCDF/HDF data file format [16] to handle climate surface data and simulation output.
A 50 km grid is used across Australia (2785 locations). Simulation inputs are obtained
from a commercial geographical information system; these comprise climatic (rainfall,
maximum and minimum temperature and evaporation), herd composition, stocking rate
and management strategy data. These data do not change across the scenarios considered
in this paper.

The goal of the experiment considered in this paper was to use TICK1 to design a
minimal-cost treatment strategy for all of Australia. Hence, we designed an experiment
that varied TICK1 input parameters relevant to a cost-effective strategy, namely the tim-
ing, treatment interval, and number of treatments. Three treatments were considered:
organophosphate dip, pyrethrin dip, and vaccination. Treatment effectiveness was mea-
sured in terms of a single metric that combined the costs of reduced live weight gain (kg)
and treatment.

As discussed in Section 2, Nimrod defines experiments in terms of a template that
identifies the model variables that are to be varied. In this case, four parameters are
defined: the time of the year in which treatment begins, the number of treatments after
that time, treatment frequency, and treatment type. For example, a suitable treatment
strategy might entail administering a vaccination at fortnightly intervals, up to 5 times
starting at week 15 of the year. In the actual experiment we explored the following
parameter values:

e Number of treatments = 3, 5, 7, 9

e Starting weeks = 8, 20, 33, 46

o Interval between treatments = 2, 5, 8, 12 weeks

o Treatment type = vaccination, pyrethrin, organic phosphate dip.

This range of values yielded 192 TICK1 runs, each requiring less than 2 minutes to
execute on a modern RISC microprocessor. Hence, the experiment would have taken over
six hours to run on a single workstation. While relatively short, this run was of interest
to the biologists; in fact, as we explain below, it is actually a preliminary run intended to
identify strategies to be evaluated in more complex experiments. In addition, it typifies
applications in which metacomputing converts a time consuming activity to something
that can be performed almost in real time from the desktop.

3.2 Scientific Results

Figure 5 presents some of the results obtained from the Nimrod-managed TICK1 exper-
iment, showing for each grid point the lowest cost obtained over all 192 scenarios. The
maximum cost of $2.40 per head is found in northern Australia. The regions in central
and South Australia with no cattle tick show a zero management cost. The most striking
feature of the analyses is the effect seen in the intermediate zone. These regions represent
a cost of about $1.20 per head, and further analysis indicates that this is the cost of
the cattle tick alone because there is no treatment administered in these regions. This
suggests that it is cheaper to leave the ticks untreated than to apply a treatment schedule.

The conclusions of this one experiment need to be considered carefully in the context
of the limited information which was used by the model. In particular, we used only
a rudimentary cost model; greater detail is required in terms of the herd structure and
stocking rate. For example, a more accurate model would reflect the fact that different
types of cattle have different natural resistance to ticks. In addition, we note that the
simulations performed here represent only a small proportion of the total experiment space
that needs to be explored. The timings presented here suggest that a full-scale experiment
would require 225 hours on a workstation, even before the added complication of seasonal
climate variation and tactical dipping is investigated. This same experiment could feasibly
be explored in about 3 hours on a metacomputer of the type used in our work. This will
be the basis of continuing work in the area.

3.3 Computational Approach and Results

The computational platform used for the experiment was constructed from the 78 proces-
sors listed in Table 1. Previous Nimrod experiments have used only one type of processor;
here, we use three different types of workstations, namely an IBM SP2 and several SGI
Power Challenge systems and DEC Alpha workstations. These machines represent quite
different microprocessors and computer architectures, testing Nimrod’s ability to handle
heterogeneous systems.

Nimrod can be used to move both object code and input files to each remote system.
However, in order to minimize remote storage usage, it copies these files once for each job
and deletes them upon termination. In order to reduce communication, we copied constant
input files onto remote machines just once. Hence, per-job communication requirements

9

3242

Figure 5: Variation of tick management cost across Australia: Black regions represent a
unit cost of $2.40 her head of cattle, and white pixels are zero cost

Table 1: The location and type of the machines used in the TICK1 metacomputing
experiment

| Location | Machine Type : | Number of Processors |
Australian National University SGI Power Challenge 8
University of Adelaide SGI Power Challenge 8
University of Queensland SGI Power Challenge 16
James Cook University SGI Power Challenge 8
Queensland University of Tech SGI Power Challenge 4
Griffith University (DSTC) DEC Alpha Workstations 4
Griffith University (QPSF) IBM SP2 12
University of Queensland (DSTC) | DEC Alpha Workstations 18
[Total | 78]

comprised only the parameter file, of size 400 bytes. This staging of input files could
easily be automated. The HDF output files created for each run are each about 10 MB
in size. As only a fraction of this data is required for analysis, we used a postprocessor to
extract the required data. This data was written to another file which, after compression,
occupied only about 1.5 KB. Hence, communication and storage requirements for our 192
jobs were reduced from 2 GB to about 300 KB.

In the absence of any overheads or load imbalances, the 78 processors listed in Table 1
would have completed our experiment in 7 minutes; in practice, it took about 30 minutes
of elapsed time. While significantly better than 6 hours, this is not ideal. We attribute
this relatively poor performance to Nimrod’s centralized scheduling architecture, the slow
speed of the remote job spawning mechanisms used by Nimrod, and the small sizes of
TICK1 tasks. Currently, the Nimrod scheduler is completely centralized. Furthermore,
as the scheduler is written using a mixture of Tcl and C, scheduling a single task takes a

10

relatively long time: about 3 seconds on a local area network and an average of 10 seconds
on the Internet due to network congestion. (Between Brisbane and Adelaide, it took up
to 30 seconds to start jobs.) Yet as a single TICK1 simulation runs quite quickly—in
about 2 minutes of CPU time—we would need to spawn a job every 1.5 seconds in order
to make effective use of 78 processors.

Nimrod performance can be improved substantially by making relatively minor changes
to its scheduling architecture. For example, we can provide a hierarchical scheduler that
migrates multiple tasks to subschedulers located at remote sites. To test the effectiveness
of this approach, we combined a number of TICK1 tasks together into one script, which
meant that each job ran for a much longer time. Using this technique it was possible to
schedule all 78 processors before any jobs completed.

3.4 Discussion

Creating the Nimrod experiment template was simple. It took about one hour from the
time we started developing the script to the time we had an application capable of running
on a distributed platform. This result is quite dramatic when compared to alternative
technologies, such as building a parallel program which performed the same task, or using
an existing job management system. At all times we were able to monitor the experiment
in terms of the parameter values using an automatically generated GUI without concern
for the details of the underlying computational platform.

The TICK1 experiment also revealed deficiencies in terms of the techniques used to
exploit widely dispersed workstations. In the next section we address these and highlight
some general challenges for desktop metacomputing types of applications.

4 Challenges and Technologies for Desktop Meta-
computing

In the preceding section, we discussed a large-scale experiment in which Nimrod was used
to map a moderate-sized parametric experiment across 78 processors located at eight
sites connected by the Australian Internet. We are interested in understanding what
this experiment tells us about the practicality of integrating large-scale metacomputing
systems into desktop applications. Rather than discuss Nimrod in isolation, we place
the discussion in the context of the lessons learned from the I-WAY wide-area computing
experiment. The -WAY was designed to support a rather different class of applications to
Nimrod: for the most part, tightly coupled applications with demanding network quality
of service requirements. Hence, it is interesting to understand how I-WAY and Nimrod
requirements correspond and differ.

4.1 The I-WAY Experiment

The I-WAY project [4] was conceived in early 1995 with the goal of providing a la,rgt?-
scale testbed in which innovative high-performance and geographically-distributed appli-
cations could be deployed. The testbed comprised an ATM network connecting super-

11

computers, mass storage systems, and advanced visualization devices at 17 different sites
within North America. It was deployed at the Supercomputing conference (SC’95) in San
Diego in December 1995, and used by over 60 application groups for experiments in high-
performance computing, collaborative design, and the coupling of remote supercomputers
and databases into local environments. A management and application programming en-
vironment, called I-Soft [9], provided uniform authentication, resource reservation, process
creation, and communication functions across I-WAY resources.

The I-WAY experiment was successful in demonstrating that large-scale, high-performance
metacomputing is feasible and useful. Just as importantly, it provided the first application-
oriented testbed in which to identify the critical issues affecting future progress in this
area. In the rest of this section, we review some of the lessons learned from the I-WAY
experiment and discuss how these lessons relate to desktop metacomputing systems such
as Nimrod. This discussion motivates a number of proposals for Nimrod extensions.

4.2 Network Awareness

Predictably, network latencies in metacomputing systems tend to be both high—roundtrip
times of 100s of milliseconds can be expected on a continental scale—and variable. Band-
width also tends to be scarce and unpredictable. A clear lesson from the I-WAY ex-
periment was that both applications and tools need to be able to negotiate quality of
service (QoS) requirements with a scheduler or network management system. In addi-
tion, applications and tools may need to be able to determine network properties such as
topology and delivered QoS, so that they can adapt algorithms and protocols to maximize
performance [8].

v Previous work on wide area scheduling has not really addressed these issues, and it
might appear that the coarse-grained tasks typically scheduled by such systems would
not be overly sensitive to these factors. However, the TICK1 experiment emphasizes
that similar information is important if systems such as Nimrod are to provide robust
performance across a range of problem sizes and network topologies. For example:

e Information about machine capabilities can be used to determine when cheaper
protocols for job startup are applicable.

e Information about network topology and machine capacities can allow us to stage
large input files to intermediate nodes in the network.

e Information about network bandwidth and latency can be used to control task
granularity, for example by expanding parameters in the client or the server.

We are currently building a new version of Nimrod that will apply these sorts of opti-

mizations.

4.3 Scheduling

Metacomputing systems tends to be highly heterogeneous. This leads to the need to
maintain multiple code versions, to convert between alternative data formats, and so

12

forth. However, in many respects a more serious problem is that the software and man-
agement architecture at different sites is also heterogeneous. For example, different sites
will typically employ different authentication, file system, and scheduling mechanisms. A
metacomputing system cannot impose uniform mechanisms but must interoperate with
local solutions.

Scheduling is a major area in which heterogeneity causes problems. While in local en-
vironments it is often possible to deploy a single, uniform scheduler, political and technical
constraints will typically make it infeasible to provide a single “metacomputer scheduler”
to replace the schedulers that are already in place at various sites. I-Soft addressed this
problem by adopting a two-part strategy that allowed administrators to configure ded-
icated resources into virtual machines, and allowed users to request time on particular
virtual machines. The strategy involved a (1) central scheduler daemon that managed
and allocated time on the different virtual machines on a first-come, first-served basis,
and (2) a local scheduler daemon communicating directly with the local site scheduler.
Local schedulers performed site-dependent actions in response to requests from the central
scheduler to allocate resources, create processes, and deallocate resources [9)].

Nimrod does not currently use local machine schedulers. In the TICK1 experiment, we
disabled the native schedulers (which in most cases was LSF) and required users to start
Nimrod execution servers directly. In effect, we negotiated access to remote resources
manually—via email or telephone. This technique worked well in the TICK1 experiment,
but it is clear that Nimrod must be integrated with native machine schedulers in the
future. For example, Nimrod should be able to negotiate with local schedulers to obtain
“low-grade” cycles when machines are otherwise idle. As a result of the case study, we
plan to build a new set of remote execution servers for Nimrod which make use of the
I-Soft scheduling capability.

4.4 Distributed File Systems

Metacomputing systems introduce three related requirements with a file-system flavor.
First, users and tools require access to various status data and utility programs at many
sites. Second, users running programs on remote computers must be able to access exe-
cutables and configuration data at many sites. Third, application programs must be able
to read and write potentially large data sets. These three requirements have different
characteristics. The first requires support for multiple users, consistency across sites, and
reliability. The second requires somewhat higher performance (if executables are large),
but does not require support for multiple users. The third requires, above all, high per-
formance. It seems likely that these three requirements are best satisfied with different
technologies.

In Nimrod, the file system problem is easier, but only because jobs are constrained
to fit a simple format in which the set of required files is specified ahead of time by
the user. Hence, Nimrod can operate in environments in which a global file system is not
available, moving files between between sites explicitly as they are required. Furthermore,
traffic can be reduced by staging input files and filtering and compressing output files.
These techniques worked well in the TICK1 experiment. For other applications, we can
imagine difficulties: for example, if the input files required by an application are data-

13

dependent. In these situations, distributed file system support could be invaluable as a
means of propagating and caching large files and code in a demand-driven manner. We
will investigate this issue in future research.

4.5 Security

Security is a major and multifaceted issue in metacomputing systems. Ease-of-use con-
cerns demand a uniform authentication environment that allows a user to authenticate
just once in order to obtain access to geographically distributed resources; performance
concerns require that once a user is authenticated, the authorization overhead incurred
when accessing a new resource should be small. Both uniform authentication and low-cost
authorization are complicated in scalable systems, because users will inevitably need to
access resources located at sites with which they have no prior trust relationship.

The Nimrod system used for the TICK1 study adopted a simple approach to security
problems. Each Nimrod user is required to have an account (and hence a prior trust
relationship) at every site. Execution servers are then run under the id of the user. A
magic token is used to ensure that servers accept only authorized requests, in a similar
way to X windows (XAuth [15]).

The current Nimrod approach works reasonably well across a wide range of platforms.
Because it does not require any privileges not already granted to a normal user, it does
not result in any major security difficulties. Its most significant disadvantage is the need
for a prior trust relationship. We propose to use I-Soft mechanisms to address these issues
in the future.

5 Conclusions

We have described the Nimrod problem solving environment and explained how it can
provide transparent desktop access to metacomputer resources for an important class of
applications. Users supply an application program and a declarative definition of a param-
eter study experiment; Nimrod constructs a graphical user interface for the experiment
and manages the execution of individual jobs on local and remote resources. Nimrod
has been used successfully to map a medium-scale parametric study over 78 processors
located at eight sites across Australia; the results of this study yielded new insights into
the management of an important natural pest, the cattle tick. Nimrod demonstrates that
it is indeed possible to achieve ease of use in a metacomputing environment; it also opens
an important class of applications to metacomputing. Because Nimrod is a generic tool,
it can be applied to a wide range of projects involving scientific modeling. Prototype
versions of Nimrod are currently in use by six strategically chosen users. The level of
interest to date has been most encouraging.

Our experiments also identified apparent deficiencies in the Nimrod architecture. In
an attempt to identify important issues, we have compared Nimrod requirements with
problems identified as important within the I-WAY/GII Testbed wide area networking
experiment. This comparison revealed striking similarities between Nimrod and I-WAY
requirements. While Nimrod can function effectively with extremely simple solutions to
problems of network characterization, scheduling, distributed file systems, and security,

14

it is clear that future Nimrod-like systems can benefit significantly from the techniques
proposed for the I-WAY. For example:

e Information about network characteristics can be used to optimize scheduling de-
cisions, hence improving throughput and allowing users to solve more fine-grained
problems.

o Interfaces to site schedulers can allow Nimrod to negotiate availability of resources
before starting an experiment; this information can be used to size an experiment
to meet user turn-around requirements.

¢ Simple distributed file system support providing high-performance 1/O capabilities
would allow Nimrod applications to access files in a more flexible fashion.

o Fine-grained authentication schemes that allow access to sites with which a user has
no prior trust relationship can expand dramatically the opportunities for remote
execution.

We are currently designing extensions to Nimrod that will address these and other
issues.

Acknowledgments

This paper reports the work of many people and organizations. We are grateful to Grif-
fith University, Argonne National Laboratory, the Co-operative Research Centres for Dis-
tributed Systems Technology (DSTC) and Tropical Pest Management (CTPM), and the
Queensland Parallel Supercomputing Facility. Silicon Graphics machines were made avail-
able courtesy of the Australian National University, the University of New South Wales,
the University of Adelaide, the University of Queensland, the Queensland University of
Technology and James Cook University. The Nimrod project has been funded by the
DSTC since 1994.

References

[1] D. Abramson, R. Sosi¢, J. Giddy, and M. Cope. The laboratory bench: Distributed
computing for parametised simulations. In 1994 Parallel Computing and Transputers

Conference, pages 17-27, Wollongong, Australia, 11 1994.

[2] D. Abramson, R. Sosié¢, J. Giddy, and B. Hall. Nimrod: A tool for performing
parametised simulations using distributed workstations. In Proceedings of the 4th
IEEE Symposium on High Performance Distributed Computing, 8 1995.

[3] C. Catlett and L. Smarr. Metacomputing. CACM, 35(6):44-52, 1992.

[4] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I-
WAY: Wide area visual supercomputing. Int! J. Supercomputer Applications, 1996.
in press.

15

[6] M. Eldred, D. Outka, C. Fulcher, and W. Bohnhoff. Optirrﬁza.tion of complex
mechanics simulations with object-oriented software design. In Proceedings of the
36th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materi-

als Conference, pages 2406-2415, New Orleans, LA, 4 1995.
[6] F. Ferstl. CODINE Technical Overview. Technical report, Genias, 4 1993.

[7] E. A. Fitzpatrick and H. A. Nix. A model for simulating soil water regime in alter-
nating fallow-crop systems. Agricultural Meteorology, 6:303-319, 1969.

[8] L. Foster, J. Geisler, C. Kesselman, and S. Tuecke. Multimethod communication for

high-performance metacomputing applications. Technical report, Argonne National
Laboratory, 1996.

[9] 1. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software infrastructure
for the I-WAY high-performance distributed computing experiment. In Proc. 5th
IEEE Symp. on High Performance Distributed Computing. IEEE, 1996.

[10] A. Grimshaw, W. Wulf, J. French, A. Weaver, and P. Reynolds, Jr. Legion: The
next logical step toward a nationwide virtual computer. Technical Report CS-94-21,
Department of Computer Science, University of Virginia, 1994.

[11] IBM. IBM LoadLeveler: User’s Guide. International Business Machines Corporation,
3 1993.

[12] J. Kaplan and M. Nelson. A comparison of queuing, cluster and distributed comput-
ing systems. Technical Report 109025, NASA, Langley Research Centre, Hampton,
Virginia, 23681-0001, 10 1993.

(13] A. Lewis, D. Abramson, R. Sosi¢, and J. Giddy. Tool-based parameterisation : An
application perspective. In Computational Techniques and Applications Conference, -
Melbourne, Australia, 7 1995.

[14] G. F. Maywald, M. J. Dallwitz, and R. W. Sutherst. A systems approach to cattle
tick control. In Proceedings of the 4th Biennial Conference of the Simulation Society
of Australia, pages 131-139, 1980.

[15] Linda Mui and Eric Pearce. X Window System Administrator’s Guide. O’Reilly and
Associates, Inc, Sebastopol, California, 1992.

[16] NCSA. The HDF reference manual version 3.3. Technical report, National Center
for Supercomputing Applications., 2 1994.

[17] R. Sosi¢. Design and implementation of Dynascope, a directing platform for compiled
programs. Computing Systems, 8(2):107-134, Spring 1995.

[18] R. Sosi¢. A procedural interface for program directing. Software-Practice and Ezpe-
rience, 25(7):767-787, July 1995.

[19] V. Sunderam, A. Geist, J. Dongarra, and Mancheck. The PVM concurrent com-

puting system: Evolution, experiences and trends. Journal of Parallel Computing,
20(4):531-546, 3 1994.

[20] R. W. Sutherst and M. J. Dallwitz. Progress in the development of a population
model for the cattle tick boophilus microplus. In Proceedings of the {th International
Congress of Acarology, pages 557-563, 1974.

[21] M. van Steen, P. Homburg, L. van Doorn, A. Tanenbaum, and W. de Jonge. Towards
object-based wide area distributed systems. In Proc. International Workshop on
Object Orientation in Operating Systems, pages 224-227, 1995.

[22] S. Zhou, J. Wang, X Zheng, and P Deliale. Utopia: A load sharing facility for large,
heterogeneous distributed systems. Technical Report CSRI-257, Computer Systems
Research Institute, University of Toronto, Toronto, Canada, M5S 1A1, 1992.

