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Introduction

The Large-Scale Matrix Diagonalization Methods in Chemistry theory institute was
held on May 20-22, 1996, at Argonne National Laboratory. This interdisciplinary institute
was organized by Chris Bischof and Ron Shepard and brought together 41 computational
chemists and numerical analysts. The goal was to understand the needs of the computational
chemistry community in problems that utilize matrix diagonalization techniques. This
was accomplished by reviewing the current state of the art and looking toward future
directions in matrix diagonalization techniques. This institute occurred about 20 years
after a related meeting of similar size (see Report on the Workshop August 9-11, 1978,
University of California, at Santa Cruz, edited by Cleve Moler and I. Shavitt and sponsored
by National Resource for Computation in Chemistry). During those 20 years the Davidson
method continued to dominate the problem of finding a few extremal eigenvalues for many
computational chemistry problems. Work on non-diagonally dominant and non-Hermitian
problems as well as parallel computing has also brought new methods to bear. The changes
and similarities in problems and methods over the past two decades offered an interesting
viewpoint for the success in this area.

One important area covered by the talks was overviews of the source and nature of
the chemistry problems. The numerical analysts were uniformly grateful for the efforts to
convey a better understanding of the problems and issues faced in computational chem-
istry. An important outcome was an understanding of the wide range of eigenproblems
encountered in computational chemistry. The workshop covered problems involving self-
consistent-field (SCF), configuration interaction (CI), intramolecular vibrational relaxation
(IVR), and scattering problems. In atomic structure calculations using the Hartree-Fock
method (SCF), the symmetric matrices can range from order hundreds to thousands. These
matrices often include large clusters of eigenvalues which can be as much as 25% of the spec-
trum. However, if CI methods are also used, the matrix size can be between 10% and 10°
where only one or a few extremal eigenvalues and eigenvectors are needed. Working with
very large matrices has lead to the development of out-of-core methods. In 1980 during the
early CI calculations, basis sets of order 10? were used. By the 1990s, parallel machines
have been used to solve problems with 10% basis functions. In IVR, the basis sets, if done
by brute force, are prohibitively large. In practice, a series of smaller subspaces are predi-
agonalized and a subset of these eigenvectors are used to form an accurate representation of
the contracted basis set for the full problem. The smaller subspaces can be represented with
several thousand basis functions where a few hundred to as much as 25% of the eigenvectors
of each diagonalization are keep to form the contracted basis set. In the end, contracted
basis sets can produce matrices as large as order a few tens of thousands. The symmet-
ric eigensolution performed on this matrix needs to find a few tens to a few hundreds of
the eigenvalues/eigenvectors near an energy of interest and are not usually extremal eigen-

values. In scattering problems, 20% eigensolutions of a matrix with several thousand basis




functions may be solved. Also, scattering and molecular dynamics problems can lead to the
need to solve complex symmetric eigenproblems.

Another interesting area was the description of the properties of typical matrices. Chem-
ists often refer to their matrices as sparse since only a few percent of the matrix elements are
non-zero. However, numerical analyst refer to sparse matrices if the number of non-zeros
is not proportional to the matrix size. Thus, even though the matrices have few non-zero
elements, they are not sparse in the traditional matrix theory sense. Another important
property of the matrices is that they are often diagonally dominant. This property can
greatly simplify issues in performing the eigenproblem. For example, the diagonal elements
may represent a good initial guess to the final eigenvalues of the matrix. Several speakers
noted that an important goal of the computational techniques in chemistry is to produce
matrices that are diagonally dominant. It is considered so important that techniques that
fail in this regard are often reworked to obtain diagonally dominant matrices. Thus, chem-
ists avoid even attempting to find eigensolutions to matrices lacking this property. (It
was also noted, however, that reactive scattering problems are not diagonally dominant.)
On several occasions numerical analyst commented that some of the techniques used by
chemists in finding the eigensolutions were not, in general, guaranteed to produce the right
answer. The chemists responded, however, that the well-behaved nature of the matrices
meant that the correct solutions were found.

- Another important aspect of the institute was the overviews of the computational tech-
niques used for solving eigenproblems. Several speakers noted the interesting coincidence
that this year is the 150th anniversary of the publication of Jacobi’s method for the eigen-
problem. As noted above, many computational chemistry problems, especially in SCF,
involve finding only a small subset of the spectrum. When a good preconditioner is avail-
able, as is the case in a symmetric diagonally dominant matrix, chemists typically use the
Davidson method invented by Ernest Davidson, who attended the institute. Alternative
methods are also available which apply to a greater range of problems and applications. Sev-
eral numerical analysts discussed eigensolvers which do not necessitate diagonally dominant
matrices thus avoiding the need to formulate the problem in this way. Implicitly restarted
" Arnoldi methods can be used to solve both symmetric and nonsymmetric problems. The
Jacobi-Davidson method and a truncated RQ algorithm allow for preconditioning. Both
these methods seek to generalize Davidson’s method to matrices that are nonsymmetric as
well removing one of its drawbacks. That is, if the perfect preconditioner is used, namely
the inverse of the matrix, the Davidson method stagnates. Another technique discussed was
Lanczos which is applicable to non-Hermitian problems. The numerical analysts discussed
the relationships between these various methods. In contrast to the above sparse methods,
a number of speakers gave presentations on dense techniques. A key difference between
sparse and dense techniques is that the latter ones require order n? storage, where n is the
order of the matrix. The standard technique is to use the QR method though bisection is
becoming increasingly popular due to the search for parallel methods. Alternative methods,
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such as the Invariant Subspace Decomposition Algorithm (ISDA), were also presented.

Several talks focused on software available for performing the eigenproblem. ARPACK
implements the Arnoldi method for symmetric, nonsymmetric, and complex cases. ABLE
is a matlab program which uses the Lanczos approach for the non-Hermitian eigenvalue
problem. For dense problems, LAPACK, the follow-on to EISPACK, has both symmetric
and nonsymmetric eigensolvers. For parallel computations, PelGS implements bisection
for finding the eigenvalues and uses inverse iteration to get accurate eigenvectors. PRISM
eigensolvers use the ISDA approach to find the complete eigensolution. The ScaLAPACK
and PRISM projects are both working on parallel nonsymmetric eigensolvers. P_ARPACK,
a parallel version of ARPACK, was also discussed. With a vision toward to future, the up-
coming joint NSF/ARPA initiative for Optimized Portable Application Libraries (OPALs)
which will use mathematical descriptions and manipulations to generate algorithmic vari-
ants and codes was discussed.

The interaction during the institute lead to a number of interesting ideas and observa-
tions. One area where the numerical analysts expressed interest is in creating sample test
cases that represent real chemistry problems. While the institute successfully explained
the nature of the problems, having real matrices to work with would allow for realistic
testing of new methods and ideas for the eigenproblem. Another area of future interest
is how to incorporate the insights on the nature of the problems into general eigensolvers.
For example, how can a general package include preconditioners which are as good as the
physical knowledge currently applied to specific chemistry applications? It was also noted
that problem formulation tradeoffs made by computational chemists are currently outside
the eigensolvers. It is an interesting long term question of how to more tightly integrate
these two.

Overall, the Large-Scale Matrix Diagonalization Methods in Chemistry theory institute
was considered a stimulating exercise by the participants. Everyone took advantage of
the unique opportunity for interaction between the often disjoint work of computational
chemists and numerical analysts. The interrelationships and differences between the di-
verse types of computational chemistry problems and potential eigensolvers was also made
clear. It seems clear that the challenging nature of the chemistry problems envisioned re-
quires concerted efforts by chemists, numerical analysts, and computer scientists to arrive
at workable solutions.
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MONDAY: Building 200, Room J183
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9:15

10:15

10:30
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12:00
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4:30

5:00
6:30

Introduction (C. Bischof, R. Shepard)
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G.
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A. Edelman “Interdisciplinary Scientific Computing Can Work”
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Dinner at the Weinkeller Microbrewery

TUESDAY:: Building 200, Room J183

9:00
9:45

10:15

10:45
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11:30
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G. Schatz “Time Independent Scattering Calculations”
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R. Wyatt “Computation of High-Energy Eigenstates”

Break

P. Pulay “Three-Term Recursion Relations for Large Eigenvector Problems”
S. Huss-Lederman “MPI: Why It’s Different” '
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1:15
2:00
2:30

3:00
3:30
4:00
4:30

5:00
7:00

R. J. Van De Geijn “Towards Usable and Lean Parallel Linear Algebra Libraries”
E. L. Sibert “Highly Excited Vibrational States”
V. Ortiz “Diagonalization Techniques in Electron Propagator Theory”

Break and move to MCS Bldg. 221

R. J. Harrison “EXperiments with Multilevel Diagonalization”
J. C. Light “DVR’s and FBR’s: Sparse vs. Full Representations”
S. K. Gray “Iterative Diagonalization and Wave Packet Dynamics”

Cave Demo & Drinks in Interaction Room
Conference Dinner at Connie’s Pizza

WEDNESDAY:: Building 200 Auditorium

9:00
9:30

10:00

10:30

11:00

11:30

12:00

1:15

1:45

2:15
3:00

C. Bischof “Parallel Orthogonal Matrix Reduction Techniques”

T. Carrington “Calculating the Vibrational Energy Levels of Three- and Four-Atom
Molecules with the Lanczos Algorithm”

A. F. Wagner “Quantum Dynamics Studies”

Break (Group Photo outside Bldg. 200)

R. Shepard “The Subspace Projected Approximate Matrix (SPAM) Modification of
the Davidson Method”

R. B. Lehoucq “ARPACK: General Purpose Software for the Large Scale Eigenvalue
Problem”

Lunch (Cafeteria Room 1)

J. Cullum “Matrix Eigenvalue Problems: Arnoldi versus Nonsymmetric Lanczos
Algorithms”

H. Dachsel “An Efficient Data Compression Method for the Davidson Subspace
diagonalization Scheme”

Open Discussion: “Where Are We and Where Do We Go?” led by 1. Shavitt
Meeting Adjourns
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Finding a Few Eigenvectors of Very Large Matrices

Ernest R. Davidson

Department of Chemistry
Indiana University
Bloomington, IN 46405

A brief history of the development of the “Davidson” method will be given along with
recent attempts at improvement and analysis of convergence by other workers. Examples
will be given of matrices for which it performs poorly. Suggestions will be made for im-
provements in the case that the number of eigenvectors desired is many greater than one,

but many fewer than the squart root of the matrix dimension.




Algorithmic Foundations of
Iterative Eigenvalue Solvers

D. C. Sorensen

Department of Computational and Applied Mathematics
Rice University
Houston, Texas 77005-1892

Recently, there have been a number of algorithmic developments in the numerical solu-
tion of large scale eigenvalue problems. The state of the art has advanced considerably and
numerical software has begun to emerge for the nonsymmetric problem. Greatly improved
software is also now available for symmetric and generalized problems. The algorithmic ad-
vances that have led to this improved software are based upon a better understanding of the
connection between Krylov subspace projection, subspace iteration, and the QR-iteration.
This talk will attempt to survey recent developments and relate them to the classic large
scale iterative methods that have stemmed from the original Lanczos method.

The survey will include the Implicitly Restarted Arnoldi, Rational Krylov, and Jacobi-
Davidson methods. The latter is a generalization of the well known Davidson method. It
provides a means to utilize a preconditioned iterative solution to the shift-invert equations
that needn’t be solved accurately. The development of this capability is a very promising
area of algorithmic research that could greatly increase our ability to solve very large scale
problems.




Some Current Issues in Parallel Eigensolvers for Computation Chemistry

George Fann

Molecular Science Research Center
Pacific Northwest Laboratory
Richland, WA 99352

We survey implementations and software packages for parallel computers for solving all
of the eigenvalues and eigenvectors of dense, real, standard symmetric eigensystem problems.
There are three methods that are in popular use: 1) Householder reduction to tridiagonal
form, bisection for eigenvalues, inverse iteration for tridiagonal eigenvectors (some form of
orthonormalization for eigenvectors), and back transformation of the eigenvectors; 2) block
1-sided or 2-sided Jacobi iterations; and 3) spectral methods (e.g., sign functions, invariant
subspace methods). ‘

Let n denote the dimension of the matrix. Let p denote the number of parallel processors.
If n/p > 7 the fastest method is type 1 above, Householder reduction + bisection + inverse
iteration. For degenerate clusters of eigenvalues inverse iterations using random starting
vectors can produce non-orthogonal eigenvectors and some form of orthonormalization must
be performed. In chemistry applications, degenerate clusters of eigenvalues occur in the
Fock matrices or in the current density fitting matrices. One of the fastest and most
robust solvers in this category is PNNL’s PelGS software, which performs full parallel
orthonormalization for degenerate cluster of eigenvalues. Other popular solvers of this
type that do not orthonormalize across processors are SCALAPACK’s PDSYEVX (which
orthonormalize within each processor) and Intel’s EISCUBE. Performance results on the
Intel Paragon and the SGI-Cray T3D will be given.

Recent works by Hendrickson and Jessup and also the SCALAPACK team show that
good performance and scaling are achievable with block Householder reduction algorithms
in library quality codes. Currently, the fastest and the most scalable Householder reduction
code was written by Hendrickson, Jessup and Smith; however, for n/p < 8 with fixed » and
increasing p, the speedups of all current Householder reduction algorithms stop improving on
computers such as the Intel Paragon. Recently, Singh and Parlett showed that it is possible
to remove orthogonalization in many cases. Orthonormalizations can consume as much as
60% of the solution time for the PeIGS code on completely degenerate eigen-problems. As
a consequence of Singh and Parlett’s work, faster and improved serial algorithms have also
been implemented.

For n/p < 7, the fastest, most robust and flexible method is the 1-sided block Jacobi
method from Bush of the Daresbury Laboratory.

If the ratios of computation to communication latency and bandwidth remain the same
for the next generation of parallel computers then spectral methods (e.g., PRISM or the
sign function methods) will be important because these methods are based on matrix mul-
tiplication. We present performance and scaling results for matrix multiplication (modified
van de Geijn’s sSB_.BLAS) on the NERSC’s T3D and CCSC’s Paragon.
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Interdisciplinary Scientific Computing Can Work

Alan Edelman

Department of Mathematics
Massachusetts Institute of Technology
Cambridge, MA 02139

Last year, Tomas Arias (Physics) and Alan Edelman (Math. Lab for Computer Science)
created the MIT Advanced Numerics Physics Team with the goal of interdisciplinary collab-
oration in the fields of Physics, Computational Materials Science, Parallel Computing and
Mathematics. Our mission was to create a truly interdisciplinary environment where new
algorithms would be created, real codes would be written on high performance architec-
tures, and new mathematical ideas would be studied. In this talk I will discuss the results
of these efforts.




Scaling and Squaring in Invariant ASubspace
Decomposition Methods

Xiaobai Sun

Department of Computer Science
Duke University
Durham, NC 27708-0129

The increasing gaps in access time to data in different levels of memory hierarchy have
left the room for the development of parallel solvers for dense eigenvalue problems such
as the so called invariant subspace decomposition methods. In this talk, we introduce the
matrix algebra underpinning the scaling and squaring techniques used in invariant subspace
decomposition methods. The theory leads to an automatic scaling scheme for the method
by Auslander and Tsao as a preprocess to scale the spectral into a normalized interval
or region; it also leads to stand alone algorithms for decoupling an invariant subspace by
automatically scaling and implicitly squaring the matrices involved in.
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Eigenvalue Calculations in Collision Dynamics

George Schatz

Department of Chemistry
Northwestern University
Evanston, IL 60208-3113

This talk will discuss two ways in which eigenvalue calculations are used in studying the
collisions of atoms and molecules. We first consider the conventional use of eigenvalue calcu-
lations to determine vibration/rotation energies and wavefunctions for the fragments before
and after collision. The Hamiltonian to be diagonalized is usually obtained by quadrature
over basis functions, or by DVR. It is usually dense, with dimensions of a few thousand, and
‘we typically want hundreds of eigenvalues and eigenfunctions. The second application is in
the calculation of flux correlation functions. Miller has demonstrated that the rate constant
may be obtained by summing the eigenvalues of a matrix that is roughly (H — E + ie)?,
where H is the Hamiltonian, £ the energy, and e a small constant. The eigenvalues of this
matrix are mostly large, but since it is the inverses of the eigenvalues that are summed, it is
only the few small eigenvalues that are of interest. This leads to a numerically ill-behaved
problem that has hindered practical use of this method.




Invariant Subspace Decomposition Method and Lanczos Method
for Large Scale Nonsymmetric and Complex Symmetric Eigenvalue Problems

Zhaojun Bai James Demmel

Department of Mathematics Computer Science Division
University of Kentucky University of California
Lexington, KY 40506 Berkeley, CA 94720

We will begin our presentation with a discussion of some large scale nonsymmetric and
complex symmetric eigenvalue problems we have been working on recently. These eigenvalue
problems come from quantum chemistry, physics, electrical engineering and other areas of
computational science and engineering. They are challenging from the view points of math-
ematical theory, numerical algorithms, software development and availability of computer
resources. We will discuss numerical technigues in invariant subspace decomposition method
and Lanczos method for solving these large scale eigenvalue problems. Software availability
and performance benchmarks in both serial and parallel computing environment will also

be presented.




Computation of High-Energy Molecular Eigenstates

Robert E. Wyatt

Department of Chemistry
University of Texas
Austin, TX 78712

The study of high-energy molecules is the focus of considerable effort in physical chem-
istry. On the theoretical side, the goal is to compute the interior eigenpairs associated with
the large Hamiltonian matrix. The dimension of H can range from several thousand to
several million. The present study will emphasize applications of the Lanczos algorithm
driven by a spectral filter, f(H). The filter is designed to pick out eigenvalues near a test
input energy E. A successful filter is the system Green function, (E1-H)™!. Application of
this strategy to a large molecular application will be described. In addition, results from a
parallel version of this code will be described.




Applications of Three-Term Recursion Relation and Pseudodiagonalization in
ab initio Quantum Chemistry

Peter Pulay

Department of Chemistry
University of Arkansas
Fayetteville, AR 72701

Two topics will be reviewed. The first is the inclusion of the 3-term recursion relation
familiar from the theory of conjugate gradients in the Davidson eigenvector method [1] for
large matrices (dimension over 106) [2, 3, 4, 5]. The primary goal of this is to save storage
space which is a bottleneck in full CI or large multi-reference CI calculations [6].

The second topic is the application of pseudodiagonalization, familiar from semiempirical
theory [7] in large-scale SCF (and DFT) calculations. Three recent developments will soon
eliminate the dreaded “integral bottleneck” from SCF-type theories. (1) the progress to
large molecules, enabled by increased computer power, which leads to the milder asymptotic
O(N?) scaling instead of O(N*); (2) parallelization of integral and Fock matrix calculation;
(3) new methods of constructing Coulomb and Fock matrices. Thus the O(N3) matrix
diagonalization becomes the rate-determining step for large calculations. Shepard [8] has
recently formulated a method, based on Bacskay’s second order SCF theory, which avoids
the diagonalization bottleneck. I will summarize our experience with pseudodiagonalization,
based on first-order SCF theory. This method was implemented for the parallel calculation
of NMR chemical shifts. [9]
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Towards Usable and Lean Parallel
Linear Algebra Libraries

Almadena Chtchelkanova, Carter Edwards, John Gunnels,
Greg Morrow, James Querfelt, and Robert van de Geijn

Texas Institute for Computational and Applied Mathematics
The University of Texas at Austin
Austin, TX 78712

In this talk, we introduce a new parallel library effort, as part of tlie PLAPACK and
PRISM projects, that attempts to address discrepancies between the needs of applications
and parallel libraries. A number of contributions are made, including a new approach to
matrix distribution, new insights into layering parallel linear algebra libraries, and the appli-
cation of “object based” programming techniques which have recently become popular for
(parallel) scientific libraries. We present an overview of a prototype library, the SL_library,
which incorporates these ideas. Preliminary performance data shows this more application-
centric approach to libraries does not necessarily adversely impact performance, compared
to more traditional approaches.




Highly Excited Vibrational States of Polyatomic Molecules

Edwin L. Sibert

Department of Chemistry
University of Wisconsin

Madison, WI 53706

Variational treatments of highly excited vibrational states are reviewed. Using the water
molecule as an example of three anharmonically coupled harmonic oscillators, normal mode
product basis functions are introduced to obtain a matrix representation of the Hamiltonian.
The shortcomings and advantages of this representation are discussed. Other coordinate
" choices and basis sets, in particular the discrete variable representation, are reviewed. The
vibrational states for a planar molecule of acetylene are calculated using the discrete variable
representation for the bending degrees of freedom. Perturbative treatments of molecular
vibrations are also considered. The vibrations of acetylene and carbon dioxide molecules
were used to illustrated the strengths and weaknesses of this method.
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Diagonalization Techniques in Electron Propagator Theory

J. V. Ortiz

Department of Chemistry
University of New Mexico
Albuquerque, NM 87131

Propagator methods in quantum chemistry determine transition energies and probabil-
ities without wavefunctions or total energies for individual states. Propagator poles and
residues may be obtained from a generalized eigenvalue problem where techniques devel-
oped for large configuration interaction calculations can sometimes be adapted. Solution
of the Dyson equation is equivalent to a partitioning of the eigenvalue problem occurring
in electron propagator theory. Quasiparticle approximations may be recovered by a simple
restriction of the ionization operator space. Pole search techniques for the Dyson equation
that depend on the evaluation of derivatives of the self-energy matrix are shown to be highly
efficient for outer valence ionization energies and electron affinities. In the random phase
approximation of the polarization propagator, where excitation energies and transition mo-
ments are calculated, two approaches have been taken. In the first, a generalized eigenvalue
problem with a non-positive metric matrix is considered. In the second, an ordinary eigen-
value problem with a nonsymmetric matrix is solved. Algorithms corresponding to these
distinct approaches are compared.




Experiments with Multilevel Diagonalization

Robert J. Harrison

Molecular Science Research Center
Pacific Northwest Laboratory
Richland, WA 02139

I will describe the results of some experiments using full multilevel diagonalization meth-
ods with application to matrices generated from both numerical wavefunctions and selected-

CI Hamiltonians.




DVRs and FBRs: Sparse vs. Full Representations

John Light

Department of Chemistry
The University of Chicago
Chicago, IL 60637

In quantum dynamics of molecular systems, the solutions of PDEs (the Schrodinger
equation) in up to six dimensions are desired in some finite region of coordinate space.
Basis set expansions (FBRs) produce full matrix representations of the eigenvalue prob-
lems. For direct product representations, these can be converted to sparse discrete variable
representations (DVRs) which can be solved more easily. I will discuss briefly the rela-
tion between FBRs, DVRs, collocation, and their applicability to various multidimensional
problems.




Iterative Diagonalization and Wave Packet Dynamics

Stephen K. Gray

Chemistry Division
Argonne National Laboratory
Argonne, IL 60439

Some connections between iterative diagonalization techniques and wave packet dynam-
ics are noted. A particularly interesting connection, in my view, results when wave packet
dynamics is written in the form of a (Chebyshev) three-term recursion. An old iterative
method (“spectroscopic eigenvalue analysis”) due to Lanczos is then seen to be intimately
related to the wave packet dynamics of a certain preconditioned Hamiltonian operator.
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Parallel Orthogonal Matrix Reduction Techniques

Christian Bischof

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

In the context of the PRISM (Parallel Research into Invariant Subspace Methods)
project, we are pursuing the development of algorithms and codes to compute the eigen-
decomposition of symmetric matrix and the reducton of a symmetric matrix to banded
and tridiagonal form. We give an overview of the PRISM approach and the computational
approaches used to implement invariant subspace reduction, one of the kernels at the heart
of this approach. As it turns out, the invariant subspace computation can be achieved very
efficiently through a technique called Successive Bandreduction (SBR), which efficiently
addresses general band reduction scenarios. We present results on parallel machines and
present directions of future research.




The Subspace Projected Approximate Matrix (SPAM) Modification
of the Davidson Method

R. Shepard, J. L. Tilson, A. F. Wagner, and M. Minkoff

Argonne National Laboratory
Argonne, IL 60439

A modification of the Davidson subspace expansion method, a Ritz approach, is pro-
posed in which the expansion vectors are computed from a “cheap” approximating eigen-
value equation. This approximate eigenvalue equation is assembled using projection oper-
ators constructed from the subspace expansion vectors. The method may be implemented
using an “inner/outer” iteration scheme, or it may be implemented by modifying the usual
Davidson algorithm in such a way that exact and approximate matrix-vector product com-
putations are interspersed. A multi-level algorithm is proposed in which several levels of
approximate matrices are used. Examples are presented for the single-eigenvector compu-
tation step of rational-function direct-SCF wave function optimization in which the number
of exact matrix-vector products is reduced by a factor of 3 compared to the usual Davidson

approach.




ARPACK: General Purpose Software for the Large Scale Eigenvalue Problem

Richard B. Lehoucq

Mathematics and Computer Science Division
Argonne National Laboratory
Argonne, IL 60439

An overview of the ARPACK software package along with some applications is presented.
ARPACK is a collection of Fortran77 subroutines designed to solve large scale eigenvalue
problems. The software is capable of solving large scale symmetric, nonsymmetric, and
generalized eigenproblems from significant application areas. The software is designed to
compute a few (k) eigenvalues with user specified features such as those of largest real part
or largest magnitude. Storage requirements are on the order of n*k locations. No auxiliary
storage is required. A set of Schur basis vectors for the desired k-dimensional eigenspace
is computed which is numerically orthogonal to working precision. Numerically accurate
eigenvectors are available on request.




Matrix Eigenvalue Problems:
Arnoldi Versus Nonsymmetric Lanczos Algorithms

Jane Cullum?

Mathematical Sciences Department
IBM Research Division
T. J. Watson Research Center
P.O. Box 218
Yorktown Heights, NY 10598

We consider two types of iterative procedures, Arnoldi and nonsymmetric Lanczos,
which have been developed for large scale nonsymmetric eigenvalue computations Az =
Az. We present theoretical and numerical comparisons between these methods. We prove
that, in exact arithmetic, any type of convergence behavior which can be obtained using a
nonsymmetric Lanczos procedure can also be obtained using an Arnoldi procedure but on
a different matrix and with a different starting vector. Therefore, in this global sense, the
convergence behavior of these two methods is the same.

Numerical experiments by other researchers, for example, L. Trefethen and F. Chatelin,
have demonstrated that the convergence of iterative methods for solving either Az = b or
Az = Az can be adversely affected when A is highly nonnormal. It is therefore of interest
to relate the behavior of either of these methods on any matrix to their behavior on normal
matrices. We derive two results related to such comparisons.

In practical applications, however, we are interested in comparisons of these methods
when they are applied to the same matrices, and in any changes in convergence behavior
which may occur as we vary the nonnormality of the matrices. Therefore, we use an invari-
ance property shared by both types of procedures to obtain a set of test matrices which
allows us to make such comparisons. Through a set of numerical experiments using these
test matrices, we consider the behavior of these types of procedures when they are applied
to the same matrices.

Our limited experiments indicate that a Lanczos eigenvalue method may be less sensitive
to changes in the nonnormality of the test matrices we use than an Arnoldi method is,
and that approximations generated by an Arnoldi method may behave better than those
generated by a Lanczos method when the test matrices are normal or near normal. The
experiments also illustrate that the convergence behavior of either method is a complicated
function of the choice of the starting vector, the nonnormality of the matrix, and the finite
precision of the arithmetic.

2This work was supported by NSF grant GER-9450081 while the author was visiting the University of
Maryland.




