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Abstract
Elastic properties of polycrystalline GdZO;:

John August Haglund

A resonant frequency technique was used to determine the
effect that temperature and porosity have on the elastic
properties ‘of gadolinia, while the temperature dependencé of
thermal diffusivity was investigated by a flash method.

Young's modulus, shear modulus, and Poisson's ratio were
studied from 2.48% to 36.78% porosity to yield porosity depend-
ence curves, with the extrapolated 0% porosity values enabling
the calculation of the Debye temperature. Selected specimens
were chosen to be analyzed from room temperature to 1352°C to
determine curves for the temperature dependence of Young's
modulus, shear modulus, Poisson'g ratio, bulk modulus, and the
first (y) and second (8) .Grineisen constants.

Thefmél“diffusivity~was measured and graphed over the
temperature ;;nge 151-1347°C and the thermal conductivity was

calculated from these results.




INTRODUCTION

Gadolinium oxide (Gd203) has a great potential in the
field of nucleonics due to its enormous thermal neutron
absorption cross section of ﬁver 40,000 barns and its refrac-
tory nature. -Gadolinium oxide can be homogeneously mixed with
uo, as a "burnable poison" for use in nuclear fuels, or mixed
with alumina and shaped into pea-size spheres or -thumb-size
cylinders to be quickly introduced into a reactor to shut it
down in an emergency, thereby acting as an "atomic fire ex-
tinguisher" (1). Metallurgists have also learned how to
incorporate gadolinium oxide info austenitic stainless steels
that can be hot worked (2) for use in .nuclear control appli-
cations. |

For design considerations the elastic properties of
gadolinium oxide must be known at not only room temperature,
but also at elevated temperatures. Gadolinium oxide is often
porous as a result of the sintering process used in fabrica-
tion, and thus the variation in elasticity with pérosity is
also of prime importance. Another property which is used in
design considerations is thermal diffusivity. Since thermal
shock failure occurs under transient temperature conditions
thermal diffusivity must be taken’'into account. It is gener-
ally assumed that thermal shock resistance is directly propor-
tional to thermal diffusivity and therefore is of great

interest.



This study uses a resonant frequency technique to measure
the variations of Young's modulus, shear modulus, Pbisson's
ratio, bulk modulus, and the first (Y) and second (&) Gfﬁneisen
constants in monoclinic GdZO3 as a function of temperature and
specimen porosity. The Debye temperature is also determined
by extrapolating the data to 0% porosity. An analysis is made
of the thermal diffusivity and conductivity as a function of

temperature.



LITERATURE REVIEW

Elasticity Theory

The first reported work (3,4,5) utilizing a resonant
technique for the determination of the elastic moduli of
materials was associated with ferromagnetic or ferromagnetic-
impregnated materials to facilitate fhe electrical observation
of the vibrations. A method of supporting nearly any rigid
sample by suspending it with threads near the nodal points and
observing it in flexural resonance was later described by
Forster (6). A detailed description of the experimental tech-
nique has been given by Spinner agd Tefft (7) and, more
recently, by Marlowe (8). &

The effects of shearing forces on adjacent cross-section-
al elements of a vibrating bar were first analyzed by Timo-
shenko (9,10) in 1921. Since ‘that time there have been several
studies (11,12,13) concerning the effect of shape and elastic-
ity on the resonant flexural frequency of a vibrating bar.
Pickett (14) has given a set of equations for the computation
of correction factors to account for the effects of rotary
inertia and shear.

The equation (7) for a rectangular prism relating the
shear modulus to the fundamental resonant frequency of
torsional vibratiop is |

4L R m ftz

G = (1)

A



where G is the shear modulus,
L is the length of the specimen,
m is the mass of the specimen,

f. is the fundamental torsional frequency,

t
A is the cross-sectional area,

and R is a shape.féctor given by

a/b + h/a

Re 4(a/b) - Z.SZ(a/b)2 + 0-21(a/b)6

where a is the length of the short side
and b is the length of the long side of the cross-section.

Spinner et al.- (7,15) have studied Pickett's (14) equa-
tions relating Young's modulus to the fundamental resonant
frequency of flexural vibration for a prism with rectangular
cross-section and have developed the equation
S m ffz

Cc

E = 0.94645 (2)

where E is the Young's modulus,
m is the mass of the specimen,
ff is the fundamental flexural frequency,

c is the cross-sectional dimension perpendicular to the
direction of vibration,

and S is a shape factor given by
S = [1 + 6.5850(1+0.0752u+0.8109u2) (d/L) 2

 8.340(1+0.2023u+2.173u2) (d/L)4
1 + 6.338(1+0.14081u+1.536u%) (d/L)*

- 0.86806(d/L)471(d/L)"3



where d is the cross-sectional dimension parallel to the
direction of vibration, :

L is the length of the specimen,
and 1y is Poisson's ratio.
Since Poisson's ratio would not be known, a value would have
to be assumed and an approximate Young's modulus value calcu-
lated utilizing Equation 2. The shear ﬁodulus and the Young's

modulus approximation could then be used with the relation

W= e - 1 (3)

where all terms are previously defined, to calcﬁlate a
Poisson's ratio. A comparison of the calculated and the
assumed values of p could then be made to determine the accu-
racy of the assumption; if too much discrepancy eXisted,
another approximate Young's modulus could be calculated using
the newest value of u. This procedure could be repeated until
the desired degree of correlation existed.

The role that porosity plays in affecting the mechanical
properties of materials has been a subject of prime interest
(16,17,18,19). The éxperiméntal work done concerning the
porosity dependence of elastic properties has produced several
relations.

Aluminum oxide has been studied by Coble and Kingery (20)
at porosity levels up to about fifty peréent. Their results
showed.that aluminum oxide closely approximates the theoretical

relationships derived by Mackenzie (17), which can be written



as
G _ ) K 15(1-.}10) b . Dpz E ()
G (7-5u,)
and when combined with'Equation 3
- , S 15(1-p.)
E _ p+l - "o _ 2 ,
E = ol [1 TS,y P - DP“] ()

where G is the shear modulus,
G, is the shear ‘modulus at 0% porosity,

E is the Young's mbdulus,

E, is the Young's modulus at 0% porosity,

p is Poisson's ratio,

Mo is Poisson's ratio at 0% porosity,

P is the volume fraction porosity,

and D is a constant.
When calculating the value of D it is necessary to assume a
value for Mg and set a boundary condition. Coble and Kingery
(20) assumed that G = 0 when P = 1. Marlowe and Wilder (21),
along with Manning ét al. (22), have stated that the boundary
condition should be G = 0 at P = 0.4764 because 0.4764 is the
volume fraction porosity for primitive cubic packing of uni-
form sized spherical particles. It would then be the minimum
density that could exist for a material of that type and any
increase of porosity beyond that point would déstroy the con-
| tinuity of the solid.
Spriggs (23) proposed that the relationship between

Young's modulus and porosity was of the same form as Duck-
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worth's (24) commentary on Ryshkewitch's (25) study of the

compressive strength of refractory ceramic materials, i.e.

E/E, = e~ BP (6)

where E, Eo, and P have been previously defined,

e is.the.Naperian constant,
and- B is an empirical constant.

Spriggs and Brissette (26) went on to extend the semi-
logarithmic relationship to the shear modulus, giving the

relation

G/G, = ¢ B'P (7)

where B' is an empirical constant.

It was noted by Hasselman (27) that at no realistic value
of P would Equations 6 or 7 yield a value of zero for the
elastic moduli. Becausé of this inability'to satisfy the
boundary conditions and based on the theoretical relationship
by Hashin (19) he proposed an expression to explain the rela-

tionship between the elastic moduli and porosity of the form

=1 - cP :
MM, = 1 - TEe-TyP (8)

where M is Young's or shear modulus at temperature T,
Mo is Young's or shear modulus at room temperature,
¢ is a constant,
and P is previously defined.
A simple linear relation, advocated by Fryxell and

Chandler (28), has been proposed to have the form



M = M, (1-AP) (9)

where M, M, and P have been previously defined and A is a
constant.

When concerned with the effect that a change in tempera-
ture has on both Young's and shear moduli it is necessary to
consider thermal expansion 6f the sample in Equations 1 énd 2.
A complete recalculation of each equation is not nécessary,
however, and the moduli at a given temperature can be detef-

mined from room temperature values by the relation

£.%

1
M. = M ey : (10)
T ° fo (1+aAT).

where M; is Young's or shear modulus at temperature T,

Mo is Young's or shear modulus at room temperature,

fT is the fundamental flexural frequency at temperature
T when Mo is Young's modulus or the fundamental
torsional’ frequency at temperature T when M, is
shear modulus,

f_ is the fundamental flexural frequency at room temper-
ature when M, is Young's modulus or the fundamental
torsional frequency at room temperature whenMo is
shear modulus,

a is the coefficient of linear thermal expansion,

and AT is the difference between elevated temperature T and
room temperature.

Once the values of both Young's and shear moduli have
been calculated at the elevated temperature it is a simple

task to calculate Poisson's ratio at that temperature through



the use of Equation 3.

Characterization of the temperature dependence of the
moduli seems to yield an approximately linear dependence for
meny crystalline solids and Wachtman et al. (29) have proposed

a relation of the form
MT = MIOI - kT exp(-To/T) (11)

where MT is either Young's or shear modulus at temperature T,
AM|0| is either Young's or shear podulus at abeolute zero,
T is the elevated absolute temperature,
To is an absolute temperature cohstant,
and k is a constant.
This approaches a - linear relatioﬁ as To approaches zero.
Once Young's and shear moduli have been thoroughly
described, other elastic properties can be calculated for

isotropic materials. The adiabatic bulk modulus (30) can be

calculated from Young's and shear moduli by the equation

BT = ETGT/S(SGT-ET) (12)
where BT, ET, and GT are, respectively, bulk modulus, Young's
modulus, and shear modulus at temperature T.

The Debye temperature, an important parameter of solids,

can be defined (31) as

_h  3gqNp 1/3
Tkl 17w (13)

where 6 is the Debye temperature,

h is Planck's constant,
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is Boltzmann's constant,

=

e

is the number of atoms in the molecular formula,

2

is Avogadro's number,

P is the density,

M is the molecular weight,
and Vv_ is the mean sound velocity.

m
For isotropic materials it has been shown (32,33) that

o 1 2 1 -1/3
Vi [3‘(—3*—3')]
Vs Ve
where Vg and vy are the shear and longitudinal sound veloci-
ties having the forms

vg = ( € y1/2

+G(4G- 1/2
Ve T [:Esc-g 1
whére p is density,
G is shear modulus,
and E is Young's modulus.
With a knowledge of the specific heat, the coefficient
of linear thermal expansion, and the bulk modulus, both the
first (y) and second (§) Gruneisen constants can be calculated
(29,34) using the following relations
3a VT B

- ___C;__l (14)
R . dB ' i
_ 1 T
§ = T3 B dT (15)

T
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where a is the coefficient of linear thermal expansion,
Vo is the molar volume at temperature T,
BT is the bulk modulus at temperature T,
C.. is the specific heat at constant pressure,

and dBT/dT is the slope of the bulk modulus versus tempera-
ture curve.

The dynamic resonance principle for determining elastic
properties has been applied to several rare-earth oxides.
Yttrium oxide,‘dysﬁrosium'oxide, erbium oxide, and holmium
oxide (21,22,30,35,36) have been studied with respect to the
temperature 'and porosity dependence of Young's modulus, shear
modulus, bulk modulus, Poisson's ratio, Debye temperature, and
the first (Y) and second (6) Gruneisen constants. Otheré,
such as thorium oxide (37,38), ytterbium oxide (39), thulium
oxide, and lutetium oxide (40), have been only partly char-

acterized.

Thermal Diffusivity Theory

Thermal diffusivity is a measure of how rapidly a thermal
disturbance will travel through a sample and has been defined
(41) as

ap = A/ pCp (16)

where O is thermal diffusivity,
A is thermal conductivity,
p is density,

and C_. is the specific heat at constant pressure.



12

In 1961 Parker et al. (42) proposed a technique known as
the flash method for measuring thermal diffusivity. This
method utilizes a small, thermally insulated disk that has one
face exposed to a short pulse of energy. Thermal diffusivity
is determined by monitoring the time-temperaturé history of
the back face affer the thermal disturbance.

It has been shown (42,43,44) that the theoretical thermal
reaction of'the back face to a short pulse of energy supplied

to the front of a uniformly thick sample is of the form

V=1+2 ngl (-1)n exp(-nZW)

having V T(L,t)/TM

and W

nzaTt/LZ - (17)

where T(L,t) is the temperature of the rear face of a sample
: of thickness L after time t, '
TM is the maximum rear face temperature reached,
and Op is thermal diffusivity. |
This theoretical curve is plotted in Figure 1.
Parker et al. (42) noted that in theory when V = 0.5,
W = 1.38. Using this arbitrary, but much used, point in
Equation 17 yields _
ap = 1.38L2/n?t1/2 (18)
where tj/; is the time required for the temperature of the

rear face of the specimen to reach half jits maximum value.

The flash method of determining thermal diffusivity has
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received a great deal of consideration in the literature (44,
45,46,47). A pulséd ruby laser was used by Deem and Wood (48)
in 1962 as the energy source in a study of the thermal dif-
fusivity of stainless steel and graphite. Several authors
(49,50,51,52) have used this method to evaluate the thermal
diffusivity of radioactive and reactor materials; while Moser
+ and Kruger (53), in a study of UC, UP,.and US, were the first
to correct for porosity and obtain heat capacity data by this
method. Zhuze et al. (54) have investigated the thermal dif-
fusivities of the single crYstal rare-earth oxides YZOS;
Er,0;, Lu,0;, and Sm203,

Several relations have been found to express the tempera-
ture dependence of thermal diffusivity. In his work with

ATJ-S graphite Morrison (55) found that the best relation was

of the form

A+ 2+ S | - 9)

where arp is thermal diffusivity,
T is temperature,
and A, B, and C are constants.

‘Branscomb and Hunter (44) found a similar relation

"B _
aT=A+f (20)

Lo be representative of their work with TiBZ, ZrBz, and HfBZ.
Nakata et al. (56) observed that the best fit for the tempera-

ture dependence of thermal diffusivity for some zirconium-
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uranium hydrides was of the form

ap = A + BT + CT? | (21)
while for others it was . U .
ap = A * BT + CT? + DT . (22)

where D is a constant. Weeks ég él. (57) also found that
Equation 22 was the optimal fit for their SNAP fuel data.
Thermal conductivity.can be easily calculated from
Equation 16 once the thermal diffusivity is known, since heat
capacity data are usually available. This is a very desir-
able way to determine thermal conductivity, especially at high
tempefatureé, since it requires only simple measurements of
length and time rather than the inherently less accurate
measurements of temperature gradients and heat fluxes required

for standard thermal conductivity determinations.
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EXPERIMENTAL PROCEDURE

Specimen Preparation and Characterization

‘ The gadolinium oxide was provided by Ames Laboratory as
clinker from the calcined oxalate and was reduced to a powder
by hand grinding with a Diamonite mortar and pestle. It was
foﬁnd to have a purity of better than 99.75%; a sémiquantifa—
tive analysis of the powder was performed by the Ames Labora-

tory Spectrographic Group and the results appear in Table I.

Table I. Spectrographic analysis of impurities

Element Concentration Element Concentration

(ppm) (ppm)
Al <10 Mg <20
Ca ‘ <10 Nd 100
Cr <10 . Ni <20
Cu ' <20 ‘ Si <20
Dy <50 Sm <100
Eu <100 ' Ta <200
Fe 60 Th " <500
Gd constituent w <500
Ho . <200 . Y <500

The elastic property measurements utilized prismatic
bars made bf first recalcining the material at 740°C for 40
minutes and then mechanically pressing it in a steel, doﬁble-
action die at 3000 psi followed by isostatic pressing at
30,000 psi. Sintering was accomplished by placing the bars
on zirconia setters in a graphite-susceptor induction furnace
and firing them in an air atmosphere at a variety of tempera-

tures from 1695°C to 1950°C. They were then fired at 1200°C
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under an air étmosphere in an electric resistance furnace to
eliminate the'graphite contamination acquired during the
sintering process.

X-ray measurements were made to confirm that the crystal-
lographic form was monoclinic and analysis of the-microstruc-'
ture indicated that the average grain size after firing was
apprbximately 13 microns.

A surface grinder was used to machine the specimen sur-
faces flat and parallel within 0.001 cm. The bulk densities
were computed from the dimensions and masses of the specimens
after drying them at 740°C. The volume fraction porosities
of the sintered bars were calculated using the relation
porosity = 1 - (measured density/theoretical density). ~The
theoretical density of monoclinic gadolinium oxide was calcu-
lated to be 8;348 :g/cm~3 based on the lattice parameters given
by Stecura (58).

Append%x.A gives the dimensions, density, and volume
fraction porosity for each of the sintered specimens.

Fabrication of specimens for the thermal diffusivity
measufements included the same preliminary preparation as
used for the elastié property measurements, except that a 3/4
“inch diameter cylindrical disk was produced rather than a-
rectangular bar. The specimens were fired under vacuum in a
furnace using a tungsten mesh heating element at various tem-

peratures in the range 1850-1980°C.
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A surface grinder was used to machine the cylinder to a
thickness of approximately 0.5 cm with ends flaf and parallel
to within 0.001 cm. The specimen configuration proposed by
Branscomb.(43,44) was adopted. This required that the whole
cylinder be ground to a diameter of about 1.27 cm followed by
a further reduction to a diameter of about 1.11 cm along two-
thirds of the cylinder length. This procedure formed a lip on
the cylinder end having‘a 3:1 ratio of cylinder length to 1lip
thickness. The reason for this lip-type specimen was to form
a light seal with the support system to avoid damaging the
detector by directly exposing it to the laser beam. As a
precaution against direct transmission of the laser beam
thfough the specimen to the detector, each specimen was coated
with a thin layer of colloidal platinum suspended in an
organic base (Englehard No. 6082) to absorb the incident
light.

Appendix B gives the densities, volume fraction porosi-
ties, and thicknesses of the specimens before application of

the colloidal platinum.
Elasticity Measurements

The Forster (6) technique, which was mentioned earlier,
was used to observe the sonic resonance of the specimens in
this study. |

A block diagram of the equipment is given in Figure 2.

A sinusoidal electrical signal was produced by a wide range
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Figure 2. Block diagram of resonant frequency equipment.
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(5 to 50,000 heftz) variable frequency oscillator (Hewlett;
Packard model 200CD) that supplied a signal not only to a
- power amplifier (Heathkit model EA-3, 14 watts) for amplifica-
tion and control, but also to an electronic frequency counter
(Hewlett-Packard model 5223L) for exact monitoring of the
input signal. The amplified signal was converted to mechan-
icalivibrétion by the driver, a magnetic transcription cutting
head (A#tatic type M41-8).

The coupling of thé signal from the driver to the pickup
was accomplished by suépending the specimen between them.
Cotton suspending threads were used for the room temperature
work while carbon yarn (Hitco) was used for the high tempera-
ture readings. |

A high-output piezoelectric phonograph cartridge (Astatic
62-1) was used to convert the mechanical vibratioh transmitted
through the sample back to electrical impulses. 'A'pickup
amplifier (designed and built by Ames Laboratory Instrumenta-
:tion Group) waslused toxamplify the signal before it was fed
to a vacuum tube voltmeter (Hewlett-Packard model 400D), which
was used to gauge the amplitude of the transmitted signal.

As a visual aid in observing resonance of the sample an oscil-
loscope (Hewlett-Packard model 130 BR) was introduced into the
system in such a way that the output of the power amplifier

" was applied to the horizontal plates of the scope while the
outpﬁt of the pickup amplifier was applied to the vertical

plates.
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fhe elevated temperature elasticity data were taken under
vacuum at pressures less than 53(10-5 torr. The specimen was
suspended in a manually-controlled carbon-rod resistance
furnace, and the temperature was 'sensed by a Pt-Pt 10% Rh
thermocouple having the measuring junction near the center of
the Specimen.A Thérmal equilibrium was ensured by monitoring
the thermocouple output with a millivolt recorder. A more
detailed description of the furnace and vacuum system can be
found in the work by Marlowe (8).

The resonant frequency was determined approximately by
varying the signal from the oscillator until the suspended
specimen vibrated in resonance producing a Lissajous pattern
on the oscilloscope. Further tuning of the oscillator to givé
maximum deflection on the vacuum tube voltmeter allowed the
exact‘resonant frequency‘to_be'read on the frequency counter.

The type of resonant vibrational mode associated with
each resonant frequency peak was determined by probing the
specimen while vibrating. Three non-longitudinal, funda-
mental resonant vibrational modes can be associated with a
rectangular prism (59) and are illustrated in Figure 3. The
relative amplitudes of vibrational displacement are indicated
by arrows and nodes are shown as dotted lines.

Only the torsional vibration and one type of flexural
vibration are required for the calculation of the elastic
moduli, but the other acts as a good check on the homogeneity

and isotropy of the sample (7). The frequencies associated
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with the flatwise flexural and the torsional modes of vibra-
tion were measured, along with the physical dimensions and

mass of the- specimen.

Thermal Diffusivity Measurements

The flash method, as descfibed eaflier, requires a short
pulse of energy to be absorbed by one face of a specimen while
the thermal history of the opposite face is noted. The source
of energy in this study was a water-cooled ruby laser (Korad
model K-l) having a maximum energy rating of_25‘jou1¢s with a
500 microsecond peak width.

The specimen was positioned in a vacuum furnace utilizing
a tantalum heating element operating under a pressure of
7x10"5 torr. Temperature of the specimen was measured with
a Pt-Pt 10% Rh thermocouple. ‘

A front-surface mirror was used to direct the laser beam
onto the front surface of the specimen. An optical detector
in the form of a photovoltaic indium antimonide infrared
detector (American Electronic Laboratories, Inc.)'was uscd to
monitor the temperature of the rear face of the specimen. The
output of the detector was enhanced by an amplifier (designed
and built by Ames Laboratory Instrumentation Group) before it
was supplied to a recorder (Honeywell Visicorder model 906C)
used to produce a time versus temperature plot.

A block diagram of the equipment is given in Figure 4

and a more detailed description is given in the work of
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Figure 4. Block diagram of thermal diffusivity equipment.
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Branscomb (43,44).

Alignment of the equipment was necessary before inserting'
the sample\into the furnace to ensure that the most intense
portion of the laser beam fell on the specimen. This was
accomplished by reflecting an ordinary light beam off the
front face of the ruby crystal. The front-surface mirror was
then adjusted until the image of the.end of the ruby, as |
_observed by sighting down through the furnace tube, appeared
to be centered within the tube.

Alignment of the detector unit was necessary after the
specimen was placed in the furnace to ensure that it was
recording the temperature of the rear face of the specimen.
'This was accomplished by -heating the specimen to red heat and
positioning‘the detector so that the recorder deflected a
maximum amount.

The initial and maximum values of the rear face tempera-
ture were taken to be the middle of the band of noise on the
recorder trace. Using the instant fhe laser flashed as time
zero, the value tl/Z was defined as the elapsed time for the

rear face temperature to reach half its maximum value.
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RESULTS AND DISCUSSION

Room Temperature Elastic Properties

The shear and Young's moduli of the specimens at room
temperature were calculated from their masses, dimensions, and
fundamental flexural and torsional resonant freduencies using
Equations 1 and 2. These éalculated values were then uSediin
Equation 3 to yield Poisson's ratio. This information is tab-
ulated in Appendix A, and the calculated elastic properties
are plotted as a function of porosity in Figure 5.

A least-squares technidue was used to fit the Young's and
shear moduli data to Equations 4-9, which represent several of
the theories and empirical relationships that have been suc-
cessful in describing the porosity dependence of elastic
moduli; the resulting curves are superimposed on the data
points of Figure 5. The expressions best describing the data
were taken to be those which‘provided the smallest standard
error of estimate of the fit and, in both cases, were found
to be linear of the form

E = 1502.6(1-1.7573P) (23)
and

G = 588.5(1-1.7543P) ' (24)
respectively for Young's and shear moduli.

Figure 6 shows the rel#tive Young's modulus (E/Eo) and
shear modulus (G/Go) versus porosity for gadolinia, and‘indi—

cates how they compare to other rare-earth oxides studied by
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Manning et al. (22) and Powell et al. (39). 1In all cases, the
values obtained for‘GdZO3 were larger than those obtained for
the other rare earths. A possible explanation of this is that
GdZO3 possesses a different érystallographic structure than
the other oxides. All the rare-earth oxides cited possess
cubic structure, while Gd203 is monoélinic; |

The best fits for the Young's and shear moduli data,
Equations 23 and 24, were substituted into Equation 3 to give
the resultant curve for the porosity dependence of Poisson's

ratio. This method gave

e e . @
as the representation of the porosity dependence of Poisson's
ratio and is shown in Figufe 5. It is not surprising that
~there is more scatter about the calculated cﬁrve'for Poisson's
ratio than in the independently measured Young's and shear
moduli from which Poisson's ratio was calculated (37).

A Debye temperatufe of 362°K was calculated from the
rdom temperature elastic moduli data. This was accomplished

by using the 0% porosity values of Young's and shear moduli

in Equation 13.
Elevated Temperature Elastic Properties

Equation 10 was used to calculate the Young's and shear
moduli at elevated temperatures; the thermal expansion infor-

mation was taken from the work of Stacy (60). Poisson's ratio
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was calculated from Equation 3 while Equation 12 was used to
calculaté buik modulus. These values are tabulated in Appendix
A and are plotted in Figure 7.

The Young's and shear moduli data‘were>fitted'to_Equation
11; the resultant relations are shown in Table II and are

plotted in Figure 7.

Table II. Equations for temperature dependeﬁce of Young's and
- - shear moduli of the form MT = M[o|47AkT.¢XP(7To/T)

. Shear

Modulus Volume M|o| k T,
' fraction (kilobars) (kilobars) (°K)
porosity . - °K _

Young's 1 0.0347 1429.9 0.1792 266
Young's 0.2297 " 929.9 0.1507. -0

" Young's 0.3660 563.0 0.0948 o 0
Shear 0.0347 565.5 0.0698 216
Shear 0.2297 349.2 0.0586 208
0 0.0377 0

.3660 : 222.8

The failure of the plot of moduli Versus‘temperathe to.

show é,répid drop off at some elevatedvtemperature,'$s i$
“observed'in other polycrystalline materials (61), may be taken
'.as an indication of the absence of grain boundary slipbage (62,
63) in thé temperature range studied.

As can be seen from the values of k in Table II, the tem-
perature dependence of both Young's and shear moduii-increase
with increasing specimen density. This trend has also been
observed by Spinner et al. (38) in his work with ThO,.

The Poisson's ratio equations, shown in Table III, were
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Table III. Equations for temperature dependence of Poisson's
ratio of the form

_"A - BT exp(-X/T) + CT exp(-Y/T)

u

' 1 - DT exp(-Y/T)
Volume A B C D X Y
fraction - (x100%) (x10-4) (x10°%)  (°K)  (°K)
porosity (°k-1). . (°x-1y .. (°k-1).
0.0347 = 0.2643 1.584 1.234 1.234 266 216
0.2297 0.3316 2.159 . 1.678 1.678 0 208

0.3660. 0.2638 0.4377 0.000 1.691 0 0

calculated és-before by using Equation 3 and the best fits for
"the elastic mdduli data (Table II) rather than by forcing a
least-squares fit to the individual Poisson's ratio data
points.

The equations in Table II were also used to calculate the
femperafure dependeﬁce equations for the bulk modulus data by
utilizing Equation 12. The results are givén in Table IV.

The first (Y) and second (8) Gruneisen constants were
calculated for the densest specimen by using Equations 14 and
15. The work of Pankratz et al. (64) yielded values of o

while the molar volume at temperature T was determined by the

relation :

MW
- (py ) (1+3aAT)
Vo = : . (26)
(1-VFP)




Equations for temperature dependence of bulk modulus of the form

Table 1IV.

g = A - BT exp(-X/T) - CT exp(-Y/T) * DT2 exp(-2/T)

T 1 - ET exp(-Y/T) + FT exp(-X/T) |
Volume A B C D E F X Y Z
fract@on (x10-%) (x10’3) (x10-3) (°K) (°K) (°K)
porosity (kba?s) (kbﬁrs) (kE;rs) (kg;;s) (°x-1) (oK-l)
0.0347 1011 0.1270 0.1247 0.1563 0.7850 0.6721 266 216 482
0.2297 921 0.1492 0.1542 0.2500 1.495 1.282 0 208 208
0.3660 0

397 0.1341 0.0000 0.1131 0.1726 0.0000 0 0

¢s
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‘where Vr is molar volume at temperature T,
MW is molecular weight, |
| o is room temperature theoretical density,
o isrcoefficient of linear thermal expansion,

AT is the difference between temperature T and
room temperature, '

and VFP is the volume fraction porosity;,

The computed values of the Grineisen constants are plotted in
Figure 7. These values agree favorably with the rare-earth
'oxide work of Manning and Hunter (30), but are more tempera-

ture dependent.
Thermal Diffusivity and Thermal Conductiﬁity

The temperature dependence of thermal diffusivity was
‘determined by Equation 18 with the thickness L being corrected

for thermal expansion by the expression

L

]

Lo(1+aAT) - 2N

where L is the thickness at temperature T,
L, is the room temperature thickness,
a is the coefficient of linear thermal expansion,

and AT is the difference between temperature T and
room temperature.

A data point was taken as the average of three readings at
each temperature. Values of the temperature, thickness, time,
and thermal diffusivity are tabulated in Appendix B, while
the values of thermal diffusivity are plotted in Figure 8.

The best expression for the data at each porosity was
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determined by first fitting them to Equations 19-22 by a
least-squares method and selecting the one with the smallest
standard error of estimate. In all cases a third order poly--
" nomial as a function of T in degrees Kelvin was the best fit,

as is indicated in Table V and plotted in Figure 8.

Table V. Equations for the temperature dependence of thermal
- diffusivity of the form A - BT + CT2 - DT3 . .. .

B C )

_ Volume'

A ‘
fraction (x10-2) (x10-5) (x10-8) (x10-12)
porosity (sz) cm? ) ( cm? cm? )
sec sec-°K sec-°k2". sec-°K3
0.0451 2.383 4.301 3.677 9.755
0.1146 2.268 3.204 2.239 ‘ 4,473
0.1785 2.108 2.766 1.780 3.495

It was noted that the thermal diffusivity of Gd203 tended
. to increase above some elevated temperature. This has been
observed in other materials (65,66) and has been explained by
Flynn (67) as being due to radiation heat transfer within
material porosity.

Figure 9 compares the results of this study'witﬂmbast"Mh
work done by Zhuze et al. (54) on single crystal rare-earth
oxides. It can be seen that the curve for the most dense Gd,04
sample in this study agrees favorably with Zhuze's results.

Thermal conductivity was determined by using Equation 16

with the heat capacity data of Pankratz et al. (64) to give

the data in Appendix B and Figure 10. The density was cor-
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rected for thermal expansion by the relation
p = Do(l-SaAT) (28)

where p is the density at temperature T,
'oo is the room temperature density,
and o and AT have been previously defined.
A least-squares technique was used to fit the data to an
equation having the form of the resultant thermal diffusivity

equations. The equations are indicated in Table VI and

plotted in Figure 10.

Table VI. Equations for the temperature dependence of thermal
conductivity of the form A - BT + CTZ2 - DT3 .. ...

Volume A B C | D .
fraction (x10-2) " (x10-9) © (x10-8) ‘ (x10"1 )
porosity  _watts , (_watts watts ,  (_watts
cm-deg : cm-—deg2 : cm-deg3 .4cm~deg4
0.0451 5.621 9.550 8.199 2.104
0.1146 4.839 .5.888 3.825 0.585

0.1785 4.254 4.891 2.944 oo 0.472
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SUMMARY AND CONCLUSIONS

The porosity dependehce of Young's modulus, shear modulus,
and Poisson's_ratio was studied by the Forster methed over the
range from 2.48% to 36.78% porosity. These data were extrapo-
lated to 0% porosity to enable calculation of the Debye tem- -
perature.

The Forster method was also used to determine the effect
that temperature has on Young's and shear moduli from room
temperature‘te 1352°C on specimens of three different perosi-
ties. It'wes then possible to calculate the temperature
| dependence of Poisson's ratio, bulk modulus, and the first )
and second (8) Griineisen constants. |

Thermal diffusivity was measured over the‘temperature
rahge 151-1347°C by the flash method, and the thermai conduc-
tivity was calculated from these data.

From this investigation the following conclusions_eanvbe
drawn : | |
1. 'The relative Young's and shear moduli show arweaker tem-

. perature dependence than other rare-earth oxides that
‘heve been studied.
2. There is no grain boundary slippage within the temperature
range of this study.
3. Higher density sﬁecimens exhibit a stronger temperature
dependence for both Young's and shear moduli than less

dense specimens.
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4. Radiative heat transfer within material porosity was
apparently a significant heat conduction mechanism above

600°C.
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APPENDIX A. ELASTICITY DATA



Table AI.

Dlmen51ons, den51t1es, and volume fractlon porosities of resonant
frequency spec1mens

Width

Specimen Length Thickness Density Volume
no. (cm) (cm) (cm) (g/cm3) gg:§§§:3
-2 A 6.922 0.652 0.246 6.470 0.2251
-2 B 7.432 0.740 0.317 6.444 0.2282
-2 C 7.404 0.730 0.298 6.444 0.2282
-2 D 7.323 0.803 0.234 - 6.428 0.2297
-3 A 7.328" 0.718 0.301 5.342 «0.3599
-3 B~ 7.805 0.614 0.301 5.359 0.3582
-3 D 7.716 0.718 0.258 5.426 0.3497
4-4 A 7.939 0.849 0.356 5.276 0.3678
4-4 B 7.963 0.830 0.396 5.301 . 0.3651
4-4 C 7.955 0.845 0.323 5.326 0.3617
4-4 D 7.935 0.774 0.289 5.292 0.3660
5-5 A 6.045 0.488 0.180 7.454 0.1072
5-5 B 6.241 0.466 0.212 7.296 0.1256
5-5 D 5.558 0.496 - 0.153 7.371 0.1174
6-6 A 5.450 0.536 0.128 8.056 0.0347
6-8 A 5.057 0.537 0.147 8.114 0.0280
6-9 A 4.685 0.570 0.170 8.139 0.0248
7-6 A 4.120 0.212 6.603 0.2086

0.719

6V



Table A II. Room temperature resonant frequencies and elastic properties

Specimen Volume Flexural Torsional Young's - Shear . Poisson's
_no. fraction resonant resonant modulus modulus ratio
porosity frequency frequency (kilobars) (kilobars)

, (hertz) (hertz) o

-2 A 0.2251 1962.45 10,385.65 903;92 352.21 0.2832
-2 B 0.2282 2176.55 4,958.45 892.07 345.82 0.2898
-2 C 0.2282 2072.65 4;954.75 898.88 348.50 0.2896
-2 D 0.2297 1665.35 5,507.40 892.53 347.11 0.2856
-3 A 0.3599 1849.20 4,320.80 559.87 220.38 0.2702
-3 B 0.3582 1633.95 ~3,281.00 559.37 221.22 0.2692
-3 D 0.3497 1464.70 3,941.60° 586.37 231.28 0.2676
-4 A 0.3678 1843.65 4,273.30 541.97  213.83 0.2672
-4 B 0.3651 2034.50 4,138.70 540.89 215.10 0.2573
-4 C- 0.3617 1686.40 4,237.30 551.46 219.47 0.2564
-4 D 0.3660 1494.10 - 3,904.95 538.52 213.37 0.2620
-5 A 0.1072 2038.60 5,415.35 1211.55 473.40 0.2796
-5 B 0.1256 2231.40 4,796.25 1160.08 459.90 0.2612
-5 D 0.1174 2013.50 6,422.65 1166.82 456.45 0.2782
-6 A 0.0347 1855.10 7,527.60 1414.18 557.82 0.2676
-8 A 0.0280 2482.55 8,728.90 1434.55 569.45 0.2596
-9 A 0.0248 3284.50 10,793.60 1479.00 574.84 0.2864
-6 A 0

0.2086 4731.10 14,863.80 925.37  354.25 .3061

0§




Table A III. Elevated temperature resonant frequencies and elastic properties for
specimen 4-4 D having 36.60% porosity

Temp. Flexural Torsional Young's Shear Poisson's Bulk

(°C) resonant resonant modulus modulus ratio modulus
frequency frequency (kilobars) (kilobars) (kilobars)
(hertz) (hertz) ~ ' o

48 1487.10 7680.95 535.99 212.16 0.2632 377.20
82 1479.40 7642.60 530.28 209.98 0.2627 372.43
138 . 1470.45 . 7595.35 523.60 207.28 0.2630 368.25
177 1466.35 7569.65 520.50 205.80 0.2646 368.49
240 1457.80 7519.35 514.14 202.95 0.2666 367.24
310 1448.25 ~  7473.90 507.08 200.37 0.2653 360.18
383 1439.35 7425.60 ~500.52 197.66 0.2662 356.67
452 1429.75 7379.25 493.55 195.07 0.2651 350.12
506 1422.05 7336.00 488.00 192.69 0.2663 348.00
560 1415.10 7305.20 482.99 190.98 0.2645 341.82
633 1405.50 7254.35 476.13 188.20 0.2650 337.62
681 1399.75 7224.80 472.02 . 186.58 0.2649 334.85
743 1391.90 7189.40 466.47 184 .65 0.2631 328.20
796 1385.15 7162.75 461.73 183.19 0.2602 320.98
846 1377.45 7106.65 456.39 180.25 0.2660 325.05
898 1370.05 7072.15 451.28 178.41 0.2647 319.68
956 1362.25 7033.70 445,91 176.38 0.2640 ' 314.99
1010 1355.45 6997.30 441.24 174.47 0.2645 312.29
1052 1349.50 6964.70 437.21 172.78 0.2652 ~310.37
1102 1342.60 . 6931.70 432.54 - 171.07 0.2642 304.80
1144 1337.30 6902.30 428.96 169.55 0.2650 304.22
1182 1332.55 6878.05 425.77 168.30 0.2649 301.85
1222 1326.90 6845.05 422.01 166.63 0.2663 © 300.97
1271 1320.00 6811.50 417.44 164.92 0.2656 296.79
1305 1315.25 6781.75 414.31 163.43 0.2675 . 297.05
0.2668 . 292.68

1347 1307.90 6745.80 409.53 161.64

TS



Table A IV. Elevated temperature resonant frequencies and elastic properties for
specimen 2-2 D having 22.97% porosity

Temp. Flexural Torsional Young's , Shear Poisson's Bulk

(°C) resonant resonant modulus modulus - ratio modulus
frequency frequency = (kilobars) (kilobars) (kilobars)
(hertz) (hertz) . : . o

58 1654. 88 7921.50 883.16 341.65 0.2925 709.34
104 1646.50 7829.00 873.95 333.57 0.3100 766.60
156 1638.05 7815.05 864.57 - 332.22 0.3012 724.83
199 1632.50 7816.55 858.37 ' 332.21 0.2919 687.49
258 1624.20 7762.20 849.19 . 327.42 0.2968 696.48
331 1613.55 7731.60 837.51 324.62 0.2900 671.90
392 1605.75 7704.85 = 828.95 322.19 0.2864 646.90
456 1596.55 7639.05 818.98 316.52 0.2937 661.72
523 1587.35 7593.95 809.05 312.60 0.2941 654.78
- 565 1581.60 7563.10 802.88 . 309.94 0.2952 653.44
641 1570.30 7517.30 790.88 ' 305.98 0.2924 634.85
692 1564.05 7488.50 784.22 - 303.49 0.2920 628.39
742 1557.20 7451.20 776.99 300.33 0.2936 627.29
800 1549.55 7424 .35 768.96 298.01 0.2902 610.74
845 1542.20 7393.20 761.36 -~ 295.39 0.2888 600.64
911 1532.40 7341.70 751.24 291.10 0.2903 : 597.21
963 1525.50 7308.50 744.13 288.33 0.2904 591.74
1010 1518.10 7276.20 736.60 285.66 0.2893 582.65
1056 1512.00 7245.70 730.37 283.15 0.2897 578.89
1101 1505.60 7215.15 723.90 280.65 0.2897 573.66
1145 - 1498.70 7180.35 716.98 277.83 0.2903 569.90
1181 1493.10 7146.05 - 711.39 275.09 0.2930 5§72.81
1218 1487.75 7122.05 706.06 _ 273.15 0.2924 566.95
1271 1478.60 7080.30 697.04 269.82 0.2917 557.66
1308 1472.65 7051.30 691.21 - 267.53 0.2918 553.42

1351 1464.20 7008.30 683.02 ' 264.16 - 0.2928 549.44

ZS



Table A V.

Elevated temperature resonant frequencies and elastlc properties for
specimen 6-6 A having 3.47% porosity
Flexural Torsional Young's Shear : Bulk Griineisen
Temp. resonant resonant modulus modulus Poisson's modulus constants
(°C) frequency frequency (kbars) (kbars) ratio (kbars) Y 8
(hertz) (hertz) ‘ _ - :
51 1851.35 10,352.70 1403.66  553.29 0.2685 1010.41 1.1946 2.5309
96 1846.40 10,324.30 1395.41  550.02 0.2685 1004.65 1.1576 2.9171
144 1845.35 10,322.15 1393.34 549.54 0.2677 999.81 1.1293 3.2400
185 1839.90 10,296.35 1384.58 546.58 0.2666 - 988.64 1.1020 3.4884
255 1833.55 10,255.80 1374.12 541.92 0.2678 . 986.41 1.0804 3.7748
317 1826.10 10,205.45 1362.19 536.30 0.2700 987.05 1.0678 3.9560
381 1818.50 10,167.05 1350.05 531.95 0.2690 973.91 1.0423 4.1579
450 1812.30 10,137.25 1339.98 528.49 0.2677 961.57 1.0187 4.3376
511 1807.90 10,101.70 1332.70 524.48 0.2705 967.81 1.0171 4.3979
566 1799.65 10,063.05 1319.89  520.21 0.2686 950.71 0.9925 4.5429
635 1793.45 10,027.80 1309.95 516.23 0.2688 944,17 0.9778 4.6455
688 1787.10 9,990.30 1300.04 512.12 °0.2692 939.09 0.9669 4.7159
742 1779.50 9,950.90 1288.34 507.83 0.2685 927.43 0.9495 4.8155
800 1772.60 9,908.95 1277.67 503.28 0.2693 923.21 0.9396 4.8750
874 1765.55 9,866.70 1266.64 498.65 0.2701 918.13 0.9277 4.9429
902 1761.40 9,847.65 1260.36 496.60 0.2690 909.31 0.9163 5.0046
952 1755.20 9,813.05 1250.91 492.88 0.2690 902.46 0.9051 5.0653
1010 1751.10 9,791.70 1244.39 490.47 0.2686 896.16 0.8940 5.1244
1053 1745.35 9,760.45 1235.73 487.14 0.2683 889.09 0.8835 5.1810
1107 1738.85 9,722.70 1225.92 483.14 0.2687 - 883.36 0.8735 5.2326
1159 1734 .45 9,700.60 1219.12 480.71 0.2680 875.96 0:.8623 5.2925
1190 1728.20 9,662.10 1210.00 476.76 0.2690 872.95 0.8570 5.3194
1226 1726.15 9,658.30 1206.72 476.22 0.2670 863.09 0.8446 5.3900
1274 1721.75 9,629.70 1200.03 473.19 0.2680 862.17 0.8403 5.4073
1318 1713.25 9,579.40 1187.73 468.07 0.2687 856.03 0.8312 5.4561
1353 1708.00 9,550.45 465.09 0.2686 0.8231

1180.07

850.12

5.5015

£S
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Table B I. Thicknesses, densities, and volume fraction
: . porosities of thermal diffusivity specimens

‘Sample  Thickness Density Volume
no. (cm) 3 fraction
(g/cm™) porosity

TD-3 4 0.160 . 6.857 0.1785
 Gd-4 0.169 7.391 ‘ 0.1146

Gd-13 0.159 7.971 . 0.0451




Elevated temperature times, thicknesses, thermal diffusivities and

Table B II..
conductivities for specimen TD-3 having 17.85% porosity
Temp. L t1/2 (sec) o (cm2/sec) A
°C) (cm) - ' (watts/cm-
1 2 3 1 .2 3 avg deg)
203 0.160230 0.297 0.320 0.307 0.01201 0.01115 0.01162 0.01158 0.02539
330 0.160410 0.350 0.338 0.358 0.01022 0.01058 0.00999 0.01026 0.02313
406 0.160521 0.380 0.380 0.405 0.00942 0.00942 0.00884 0.00922 0.02100
495 0.160653 0.413 0.423 0.407 0.00868 0.00848 0.00881 0.00866 0.02000
652 0.160893 0.438 0.435 0.423 0.00819 0.00825 0.00848 0.00831 0.01955
723 0.161004 0.470 0.490 0.450 0.00763 0.00735 0.00801 0.00766 0.01816
763 0.161068 0.485 0.450 0.445 0.00743 0.00801 0.00810 0.00784 0.01866
902 0.161293 0.472 0.505 0.478 0.00766 0.00716 0.00756 0.00746 0.01800
978 0.161419 0.525 0.453 0.495 0.00690 0.00799 0.00732 0.00737 0.01791
1038 0.161520 0.468 0.478 0.475 0.00775 0.00758 0.00763 .0.00766 0.01871
1102 0.161627 0.480 0.470 0.470 0.00756 0.00772 0.00772 0.00766 0.01887
1134 0.161684 0.525 0.455 0.490 0.00692 0.00798 0.00741 0.00741 0.01826
1176 0.161756 0.480 0.477 0.450 0.00758 0.00762 0.00808 0.00775 0.01916
1210 0.161815 0.475 0.445 0.460 0.00766 0.00818 0.00789 0.00789 0.01956
1265 0.161912 0.465 0.450 0.00783 0.00797 0.00810 0.00797 0.01985

0.457

9s



Table

B III. Elevated temperature times, thicknesses, thermal diffusivities and

conductivities for specimen Gd-4 having 11.46% porosity

'{%131)), (Ic..m) tl/?. (sec) A '('cmz/seC) ' (Watt);/'cm-
: 2 3 1 2 .3 avg deg)
161 0.169180 0.315 0.325 0.306 0.01263 0.01224 0.01300 0.01262 0.02947
200 0.169238 0.330 0.340 0.310 0.01206 0.01171 0.01284 0.01218 0.02877
247 0.169308 0;357 0.357 0.353 0.01116 0.01116 0.01127 0.01120 0.02677
330 0.169433 0.380 0.374 0.360 0.01050 0.01067 0.01108 0.01074 0.02609
432 0.169590 0.410 0.415 0.408 0.00975 0.00963 0.00980 0.00973 0.02402
523 0.169734 0.443 0.473 0.437 0.00904 0.00846 -0.00916 0.00883 0.02206
5902 0.169845 0.436 0.446 0.425 0.00919 0.00899 0.00943 0.00920 0.02318
670 0.169973 0.490 0.515 0.515 0.00819 0.00780 0.00780 0.00792 0.02006
737 0.170084 0.440 0.475 0.445 0.00914 0.00846 0.00903 0.00871 0.02270
807 0.170202 0.480 0.453 0.475 0.00839 0.00889 0.00848 0.00858 0.02211
907 0.170374 0.455 0.475 0.450 0.00886 0.00849. 0.00896 0.00877 0.02282
970 0.170484 0.440 0.455 0.440 0.00918 0.00888 0.00918 0.00908 0.02376
1044 0.170615 0.430 0.443 0.428 0.00941 0.00913 0.00945 0.00933 0.02458
1131 0.170772 0.440 0.425 0.450 0.00921 0.00954 0.00901 0.00925 0.02379
1187 0.170875 0.420 -0.425 0.433 0.00966 0.00955 0.00937 0.00952 0.02539
1255 0.170999 0.410 0.403 0.417 0.00991 0.01008 0.00974 0.00991 0.02659 .
1302 0.171089 0.420 0.390 0.390 0.00968 0.01043 0.01043 0.01017 0.02739
_1347 0.171173 0.365 0.380 0.01116 0.01058 0.01081

10.385

0.01072

0.02922
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Table B IV. Elevated temperature times, thicknesses; thermal diffusivities and
conductivities for specimen Gd-13 having 4.51% porosity
Tsmp. L t1/2 (sec) Qrp (cmZ/sec) A
(°C) (zm) : (watts/cm-
1 2 3 1 2 3 avg deg)
151 0.159156 0.290 0.295 0.305 0.01214 0.01193 0.01154 0.01187 0.02979
199 0.159223 0.347 0.335 0.337 0.01015 0.01052 0.01045 0.01038 0.02644
304 0.159370 0.377 0.385 0.395 0.00936 0.00917 0.00894 0.00915 0.02386
371 0.159467 0.408 0.416 0.420 0.00866 0.00850 0.00841 0.00852 0.02248
486 0.159635 0.425 0.425 0.423 0.00833 0.00833 0.00837 0.00835 0.02240
492 0.159645 0.433 0.440 0.433 0.00818 0.00805 0.00818 0.00814 0.02185
564 0.159753 0.448 0.455 0.440 0.00792 0.00780 0.00806 0.00792 0.02145
631 0.159855 0.440- 0.450 0.454 0.00807 0.00789 0.06782 0.00793 0.02164
698 0.159958 0.453 0.455 0.460 0.00785 0.00782 0.00773 0.00780 0.02144
782 0.160091 0.445 0.457 0.450 0.00800 0.00779 0,00792 0.00790 0.02190
870 0.160233 0.437 0.430 0.437 0.00816. 0.00830 0.00816 0.00822 0.02298
978 0.160410 0.430 0.425 0.415 0.00832 0.00841 0.00862 0.00845 0.02387
1081 0.160582 0.427 0.430 0.416 0.00837 0.00833 0.00862 0.00845 0.02409
1161 0.160719 0.403 0.397 0.390 0.00891 0.00904 0.00920 0.00905 0.02598
1242 0.160860 0.395 0.388 0 0.00910 . 0.00927 0.00946 0.00928 O

.380

.02682

@
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