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ABSTRACT

Inclusive reactions are examined in the context of the Mueller
formalism, which exploits the connection of the inclusive cross section
with the six-point amplitude and Regge behavior. Some previous results
of the model are reviewed. Internal symmetries together with the
Mueller picture are used to produce a large number of testable predic-
tions. The fundamental symmetries of the strong interactions yield
predictions which test the validity of the basic assumptions of the
ﬁodel. SU(3) gives predictions which are expected to be violated, and
fﬁus furnish extensive information about symmetry breaking. Angular
distributions yield information about behavior in the central rapidity
region, if the transverse momentum distribution is known. The dual
resonance model provides predictions for fragmentation and pionization,
but the results are based on a naive model and do not agree with the
data. Inclusive photon disttibutions are examined in detail. They
distribution. 1In
the low-transverse momentum region, bremsstrahlung is significant and
can provide & measure of the charged multiplicity. The photon distri-
bution arising from ﬁO decays in the central region obeys an equality

relating the spectrum at zero transverse momentum to the integral of
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the spectrum over all transverse momenta.

A variety of experimental

datas are reviewed and compared with the predictions and prescriptions

of the preceeding chapters.
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INTRODUCTION

This is not intended as a review of inclusive processes. Such
an effort would be nearly futile in a field which is expanding as
quickly as 1s this one. Fortunately, a few brave persons have under-
taken such a task and the uninitiated reader is referred to their
works for an introduction to the subject (Frazer et al., 1972;

Berger, 197la, 1971b; Quigg, 197la, 1971b; Bjorken, 1971; Young, 1971;
Arnold, 1971; Horn, 1971; Gasiorowicz, 1971). Among the original
papers, those of DeTar (DeTar 1971) and Mueller (Mueller, 1970)
provide an excellent starting point.

The title "Phenomenology of Inclusive Reactions” is meant to
suggest that we shall focus on questions which are immediate to the
interpretation of data. Consequently, we do not consider to any great
extent a number of important topics such as the helicity structure of
the six-point amplitude (Goddard and White, 1970, 1971, 197la, 1972;
DeTar et al., 197la; Weis, 1971, 1972; Jones, Low, and Young, 1971).
In addition, a number of important phenomenological topics are not
discussed. One of these is the question of "exoticity.” For this
continuing controversy, the reader is referred to the original litera-
ture (Chan et al., 1971; Ellis et al., 1971; Chan and Hoyer, 197la;
Einhorn, Green, and Virasoro, 1972). An equally important topic is
the analogue of finite energy sum rules for inclusive reactions
(Dias De Deus, and Lam, 1972; Kwiecinski, 1972; Sanda, 1972; Einhorn,
Ellis, and Finkelstein, 1972).

Phenomenological theories not based on the Mueller approach
have been developed by several authors (Grote et al., 1971; G. Ranft,
1971; J. Ranft, 1971; Hwa and Lam, 1971, 1972; Jacob and Slansky, 1971,

1972; Jacob, Slansky, and Wu, 1972).l
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There has been no attempt to review all the experimental data;
only a portion of the data bearing on the theoretical developments of
the text is discussed. The reader is referred to the review artigles

cited above for further experimental references.
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CHAPTER ONE
PRELIMINARTES
A. Kinematics, Notation, and Definitions
An inclusive reaction or process is one in which not all the
outgoing particles are specified. Thus the total cross section for
a+b, oab(s), where s 1is the center-of-mass energy squared, might
be called an inclusive measurement. The primary focus of this work is
single particle inclusive processes, the archetype of which is
a + b - c + anything. We shall develop notation and investigate the
kinematics first for single particle inclusive processes and then
consider generalizations to n-particle inclusive processes of the
1 2

form a +b —-c, +c, + ¢ + cn + anything.

To begin, consider a + b — ¢ + anything in a frame in which

the momenta Pa and pb are colinear. We can parameterize the

momenta as

P, = (ma cosh ¢ , 0, O, m, sinh ga)
D, = (mb cosh {, 0, 0, m sinh gb) (1.1)
P, = (wc cosh ¢, Prer Pyer W sinh ¢)
where
w2 - m2. 2, 2
c e Pye pyc
(1.2)
2 2
= m, + EL

Three frames have special significance: the rest frames of particles
a and b, and the center of mass frame. Explicitly, in the rest

frame of particle b (the "lab frame" if b is the target) we have:

8-

P, = (ma cosh Y, 0, 0, m sinh ¥)
p, = (m, 0,0, 0) (1.3)
P, = (wc cosh ¥, Pyes Pyor Y sinh yc) .

On the other hand, in the center of mass frame, we have

p, = (ma cosh Z_, 0, 0, m, sinh Za>

Py = (mb cosh 2, 0, 0, my sinh Zb) (1.4)
= h .

p, = (w, coshz, p ., Pyer W 08 z)

The variables Q; y, and z are called rapidities. Their
utility derives from their intimate connection with the Lorentz group.
The rapidities of particles measured relative to two different frames
moving colinearly with the momenta pa and pb are related by a
constant which reflects the boost necessary to bring one frame into
equivalence with the other. In particular, Y = Za - Zb. Furthermore,
the Lorentz invariant phase space factor, djp/E, is given by
degl_dy.

We can relate the rapidities defined above to the center of
mass energy squared, s = (pa + pb)g- Directly from (1.3) and (1.h4)

we find
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2 2
s = m + my + Qmamb cosh Y
2 2
s +nm -
m cosh Z = = - "o (1.5)
2(s)?
2 2
s+m- -m
a
m, cosh = - .
% 2(s)?
For large s, Egs. (1.5) yield immediately
Y -~ zn(: 2
BT
1
Z, =~ zn[(s)z/ma] (1.6)

2, -ﬂn[(S)%/mb]

B. The Phase Space Boundary
The phase space boundary for a + b = c + anything can be

determined by calculating the missing mass, M*:

*2 2
M~ = (p, +p, -P,)
. (1.7)
= §+m  -2s? w_ cosh z
c c

There is a minimum value of M¥* determined by the quantum numbers of
a, b, and c. For example, for p + K - A + anything, M* >m
=

. +
while for p + p - g + anything, M* > mass of the deuteron. Let

-m -, (1.8)

-10-

Then from (1.4) we find that

|

-1
= 1~2s 2 w, cosh z (1.9)

is the equation of the phase space boundary. For large s, to lowest
order in A/s, the curve has a universal shape in the center of mass,

independent of particles a and b:
1
cosh z = sZ/(Ewc) . (1.10)

For fixed w, and for large s, the extreme values of 2 permitted

1
52
Zext ~ jﬂn(:’;) . (l.ll)

Using Eq. (1.6) we can find equivalent forms in the rest frame of

are

particle b:

g
mex — Y+ in w_
c
w
i =
m,

C. Fragmentation and Pionization

<
14

(1.12)

o
12

min

We define three important domains for single particle inclusive

processes:

1. fixed, Za - z fixed, s 1increasing ,

Py

2. p—L fixed, z - Zb fixed, s increasing ,

fixed, z fixed, s increasing.

3. gl_
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The first and second we call fragmentation of a and b respectively.
The third we call pionization. We denote these three symbolically by
(blc:a), (b:cla), and (blcla). A colon indicates a fixed rapidity
difference and a vertical slash a growing one. With b at rest in
the laboratory, the process (bicla) is a function of the lab
rapidity, Y, of particle a, the lab rapidity, y, of particle c,
and Qif its transverse momentum. The hypothesis of limiting fragmen-
tation (Benecke et al., 1969; Chou and Yang, 1970; Feynman, 1969)
suggests that as Y - w, dO/dgglﬁy (v, ij Y) approaches a limit
which is independent of Y and which we shall indicate by f(y, gl).
Similarly, (blc|a) is a function of Z, - %, =Y, 2, and p,. As

Y 50, with 2z and ?l. fixed, it is expected that dU/dgglgz

(z, ?lf Y) approaches a limit which is a function of 31’ only.

The generalization of these concepts is straightforward.
Consider (b:clfce,c3|cu|c5:a). Here we are interested in the five-
particle inclusive cross section with Zy T Zy, %y T z5, and 25 N
increasing while z) - Zb’ Zg = Zp, and Za - z5 are held fixed.

It is understood that all the transverse momenta are fixed as well.

We expect that at high values of s, dU/ijdsz dzi) becomes a
i i

function of the transverse momenta and the fixed, finite, rapidity

differences only.

D. Kinematic Relations
While rapidities are generally the most useful longitudinal
variables, in some applications, Feynman's variable (Feynman, 1969)
X = pzc/[(s)%/E] (z is the beam direction) has advantages. lIn this

languaege, x = O corresponds to the pionization limit defined above.

-12-

As s -, with Pl. fixed, the phase space boundary is given simply

by |x| = 1. The relation between x and =z is easlly determined:
1
x = o, sinh z/(2s2) . (1.13)

If we consider x # 0, as s -—»w, we have

w, 2l
= Lk
X = #9577
a _a
e
(1.1%)
o olzl
= + - =7,
oy T4y
e
If z >0
wc —(Za-Z)
X = — €
m
a
(1.15)
w ot
= —c'ey
m,
a
where y' is the rapidity of c¢ 1in the rest frame of a. If, on the

other hand, 2z < O, then

eV (1.16)

Fle®

where y 1is the rapidity of ¢ in the rest frame of b.
For x >0, from (1.4) and (1.19), as s -
3
* 2 I, 2

¢ 1l - x2 +

1

(1.17)
1 - Ix} .

(14
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It is also convenient to be able to express the standard
invariants s, t, and u in terms of the rapidities or x. Of course

one has the usual relation between the Mandelstam invariants:
2 2 2 *2
+ = . .
s+t +u " +m"+m” +M (1.18)

Using rapidities in the rest frame of a,

2
t = (p, - 3,)
(1.19)
= m2+m2~2mw cosh y'
a c a c
Using (1.15) we find
mx w
t ~ m 2 +m 2 -m W <:i%— + -Qi:)
- Ta c ac\w m_X
c a
(1.20)
2 2 2
~ -p_L/x+ma (1 - x) +m, (1 - 1/x) .
The analogous calculation for u yields:
W o~ XS . (1.21)

In deriving (1.19) and (1.20), we have assumed x >0 as s -, For
x > 0, the roles of t and u vwould be interchanged. An interesting
combination of Mandelstam invariants is given by tu/s. For fixed y'
and Y —m o, we see that

2 2 2, 2 .
tu = (ma +m.° - 2mw, coshy )(mb +m, - 2mw cosh{Y -~ y'])

2
c

s(w 2, mcg]x + maexg (1.22)

12

- [ma

“1h-

Thus in the pionization domain,

~ oW (1.23)

tu 2
S (¢}

For convenience we record here the phase-space volume in & variety of

variables (the approximate relations are true asymptotically at high

s):

3
&p 2
3 dpldz

= qdp 2 dz

1

nd}f ;‘-’E (1.2L)

e

rdx(-dt)

1e

dt .

I2
2
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CHAPTER TWO
MODEL INDEPENDENT RELATIONS

Certain relations involving inclusive reactions may be derived
without the introduction of models or assumptions such aé Feynman
scaling. These fundamental relations rely on kinematics and conserva-
tion laws, and their usefulness comes from the tests they provide on
the consistency of both data and theories.

Let us abbreviate dp, = dapi/Ei. Then

do
[d}_)c E = <nC> Gtot . (2.1)

The factor (nc) is the mean multiplicity of particle type c.

It arises because by integrating over dpc we count up each particle
of type ¢ which occurs. We could define (nc) independently of
(2.1) vy

o«

Y mo, (2.2)

m=1

(o, oy

where Um is the cross section for producing precisely m particles
of type c.

If ¢ and d are distinet particle types, then

ao
fdpc dpd dpc dpd <ncnd.> %ot ° (2.3)
If ¢ =4, then
dp dp a0 _ {n 2 _q Yy o (2.4)
c d dpc dpd c c’ “tot

-16-

since each n-particle production event will be counted n(n - 1) times.
Equations (2.3) and (2.4) can of course be generalized further.
Consider a conserved, additive quantity @ (such as charge).

It is clear that

1 do -
Q *Q = Z fdch'c 5 . (2.5)
c

tot dpc

Four momentum conservation yields (DeTar, Freedman, and Veneziano,

1971; Predazzi and Veneziano, 1971)

1 do .
(p, +p )" = z fdp p M S . (2.6)
a b ; c-c Utot dpc

The extension to double inclusive cross sections is immediate:

ool 4o w1 4o
ap, pt ———— = (p, +p, -D0) —— . (2.7)
: f d7d oy dp, dpy a b Tel 0 dpg
We define
1 do
N(p) = —
¢ ctot dpc
(2.9)
1 ao
N(p_,p,) = ——
¢’ d Utot dpc dpc
g(p,,pg) = N(p,pg) - N(p,) N(py) (2.9)

where g is called the correlation function. Then from (2.6) and

(2.7)
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E: ‘[dpd pg" elegp,) = -pt Np,) - (2.10)
a

The case p = 0O shows that g cannot vanish identically.
Constraints are placed on inclusive reactions by the symmetries
of the strong interactions. Certain of these are quite obvious. For

example
(bicla) = (b:c|a) (2.11)

where a 1is the conjugate, Ca, of particle a. Similarly, if Ii

are the generators of isospin 8U(2), and if
_— » .
a' = exp( 1nI2)a (2.12)
then
(bicla) = (b':c']a') . (2.13)

This analysis has been extended by Lipkin and Peshkin (1972) to cover
combinations of inclusive reactions involving various members of the

same isomultiplets.
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CHAPTER THREE
THE MUELLER FORMALISM
A. Mueller Diagram Rules

While the hypothesis of limiting fragmentation, Feynman scaling
has an extensive history, its plausibility and attractiveness were
enormously increased by the seminal work of Mueller (1970) and its
elaboration by Abarbanel (197la, 1971b). The key insight of Mueller
was to recognize that inclusive cross sections are related to discon-
tinuities of three-to-three amplitudes. While Mueller did not sﬁecify
precisely the discontinuity required, that point has been investigated
subsequently (Stapp, 1971; Tan, 1971; Polkinghorne, 1971). 1In most
applications, the specification is inessential. We shall return to
this point in Chapter Six.

The importance of this insight was enhanced by the introduction
of Regge concepts to the analysis of the three-to-three amplitude.

This was achieved through group theoretic analysis & la Toller. Just
as two-body reggeology can be phrased in terms of 0(1,2) expansions,
so can inclusive reaction phenomenology. 8ince the inclusive cross
section is related to a discontinuity of the forward three-to-three
amplitude, in fact 0(1,3) can be used, just as it can for forward
two-to-two amplitudes.

In spite of much elegant phraseology concerning Plancherel
measures and the like, at heart the basic Regge assumptions are still
required--almost nothing can really be proved mathematically. Indeed,
nearly all the content of these analyses can be summarized in terms

of "Mueller diagrams" and some rules for the amplitudes they represent.
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Consider (b:c|a) in the rest frame of particle b. Let ¥y
and gl. be fixed while Y - . Our rules for evaluating the cross
section corresponding to the diagram in Fig. 3.1 are:

1. For each growing rapidity difference, insert a sum of
Regge poles, each with a factor exp(ai Ay) vwhere o, is the Regge
intercept at t = 0 and Ay 1is the growing rapidity difference.

2. Each Regge vertex has a residue which is a function of
the rapidity difference of the particles attached to the vertex and
the perpendicular momenta of those particles. For convenience we
shall call the vertex with b entering and c¢ exiting, and a
reggeon i at t =0 fibg(y,gl) exp(y).

%. The invariant differential cross section is exp(-Y) times
the amplitude obtained from 1. and 2.

Thus for (bic|a) in Fig. 3.1, we have

do a be,

@, " Z By exe(-004[Y - y1)fy " (vop)) (3-1)
i

where Aai =1 - a; and Bia is the two-body Regge vertex. If the

leading pole is a Pomeron with «_ = 1, then we find

P
2 p e p) ¢ ) exm(-2oyl¥ - y1),® £,%(y,p,) -
ap_ p ‘P VP ; i it WPy
1£P

(3.2)

This shows how Feynman scaling is related to the constancy of total
cross sections at high energy.
As a second example consider (b|c|a) as shown in Fig. 3.2.

By our rules, using center of mass rapidities, we obtain:

_20-

-(z7 - ) c
w T el @, - 2) ro(z - 2,)12,%() )8, %,

(¢4
(3.3)
- et (2) + 87y Ty t(p)) em(-0ylz, - 2))
P
£ ) 8%, em(eaylz, - a1) £;°(p)
ifP
+ Z Biaﬁjb fijc(pl) expl-r0,2, + Loz + (o - o;)z] . (3.1)
1#£P
3P

Even if the rapidity separation between b and c¢ is not growing,
as long as it is large we might anticipate that an expansion like that

in (3.4) would be appropriate. Clearly this requires

= yo o oy
Yy . be b c i
1
or
be 2 b, oc ooy ¢

1

. a b
With our conventions, the value of Oéb(s = ) is Pp pp - Thus B

i
has the dimensions of (mb)2 while fijc has the dimensions of

GeV-E.
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The Mueller expansion for (b:cl,c2|a) can be derived

similariy:

:E "m~(Y -y )
Z B l 2(y1’y2’2_|_1’ 2-1-2) € J 2 M
(3.7)

dpl dp2

B. The Triple Regge Expansion

In a particular kinematic region, we can say something explicit

about the residue fjbc. Consider t = (pb - pc)2 fixed, and |x|
near 1. Any particle c¢' other than c¢ must have |x" <1l - |x|
by energy conservation. In terms of rapidity
w' W
L o< 1--=e y
m m
(A)’
£
m
y' > log m (3.8)
1 -2 eV
m
w! W,
y' > log = log{ 1 - —e ¥
mb mb
w
A fortiori, with y(w) = zn(—-c—>
—_— m,
m
y' > log £ _ log(l - e'[Y‘Y(‘*’)])
m
"o
y' > log n log (? - y(w) (3.9)

oo

Thus by choosing y sufficiently near y(w), we can insure that there

must be a large rapidity separation between ¢ and the nearest out-

going particle. This justifies inserting Regge pole in the be

channel. See Fig. 3.%a. If we now require M'w2 to be large and

consider the sum over final states we see that we should have a

reggeized aa channel as well (Avarbanel et al., 1971la, 1971b;

DeTar et al., 1971a). See Fig. 3.3b. What is the contribution of this

so-called triple-Regge term to the invariant cross section? At fixed
x azi(t)-l
M

it should behave as s if ai

a. (t)
This comes from s

is the Regge trajectory in

the bc channel. for the reggeon in

Fig. 3.3a, squared, times s_:L for a flux factor. On the other

hand, from the general principles of fragmentation outlined above,

we know that for fixed t and fixed x or y, it must go like sa.(O)-l
channel. Thus the s and

where 03 is the trajectory in the aa

M* dependence must be

2a, (t)«x (0) (0) ~1
8
== (3.10)
where S 1 GeV2 and thus sets the scale. If the two-body residues
are Bi and Bj and if the triple-Regge coupling is llJ(t) we

have, using a standard normalization,

eai(t)-aj(o) ng(o)-l
& - = > |8, (+)1° B5(0) giij(ﬂ(j@ (2—0/
i,J
(3.11)

o, (0)-1

o, (0)-20, (%)
T ZIB Ols B;(0)ey; (t)(l_x)a &y <S \a
i,d : O/
(3.12)

2
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a.(0)-1
o (O)-Za (%)
D A OIEN OO (0! ( >

1;3

(3.13)

where in (3.13) we have expanded as in (3.9). We have defined the

triple-Regge domain by

t fixed

s
- = p— large

In terms of rapidity the last two conditions mean y - y(w) 1is small

|

and s(& - y(w)) is large. Let us therefore say that the triple-Regge

region is given by

£k (3.14)
(%)

where & is small and K is large. We now investigate the contribu-

5 > y -~ ylw) >

tion of the triple-Regge region to the distribution in x and in ¥y
and its contribution to the multiplicity. In fact, its contribution
to the multiplicity times the cross section is the same as its
contribution to the cross section since no event can have two
particles in the triple-Regge region as we showed above.

The most important result (Abarbanel et al., 197la, 1971b) -is

that if aP(O) = 1, then gPPP(t = 0) = 0. To prove this, we

-2h-

integrate the contribution of the triple pomeron to find its contribu-

tion to the total cross section

y(w)+s
1

°ppp ” 161 dEP_L dleP(’c)l2 Bp(0) eppp(t)

Let aP(t) =

¥(0) 4/ (s/s,)

G-yl

t = O wvalues. Then we have

PPP

In this

PPP

E>1-2a}.,(t)

. (3.15)

1+ aét and approximate all the couplings by their

1 2 2 1
l6,(0)1% 8,(0) & (o)fap
16 'Fp P PPP L
P
eyt 4 3
20t K -2apt |
P 1 !
X S ol e ) (3.16)
= |
region t ~ -?l?’ so that we can write
0
1 2 at ,
Tz 18p(0)]7 B5(0) eppp(0) s 1exp(-2apt log &)
't 1og | K|
- exp { -2at log | — (3.17)
S
185(0) % 8,(0) £,p5(0) 1im =2 [E, (Peay log &
E P p-/ Eppplt) T O‘P 1( %p a)
s\
50
- )\ 2eag, log — (3.18)

=
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S
>,
O
1 2 1 1°g75—
%pp = 15 1Bp(0)]7 Bp(0) eppp(0) Zap | 18 (3.19)
log %

Thus this partial contribution to the cross section grows like
log(log s) while the cross section itself is constant by assumption.
This contradiction shows that we must have gPPP(t =0) =0 if the
pomeron is a pole with unit intercept. 7

If we start with the ansatz

gPPP(t) = YPPP(-t)n (3.20)

we have

1 2

R

X exp(—zait log &) - exp —2a§t log K :> (3.21)

&)

2 1\
~ 17 185(0)[% Bp(0) Yppp T(n) Eé; éal; log g)

-n
5
(so>
- \2a! log (3.22)
P X

so that the triple pomeron contribution is a + b{log s)hn, which is

consistent with a pomeron with unit intercept, provided n > O.

26~

We turn now to the contribution of the triple-Regge region to

2 . .
the inclusive cross section integrated over pl_. In this region,

2
t ~ -p and we have
-1
-2a, (4)+c, (0)
4o 1 25.(0 )1 - x) * J
8 L [ale )12 5500) g0 - )
o, (0)-1
s N9 -
X (s—‘> . (3.23)
0
The integral is dominated by the region near the largest t value,
tmax' We have roughly,

o.(0)-1
S

J
T RO ORI )

)

o (O)-2o¢i(t

o @-x)
X 20% log(l ]: x)

max

(3.24)

We can check that for aﬁ(o) =1 this gives a finite contribution to
the cross section if 1 - Zai(tmax) > -1, i.e., if i #£ P.

n
If, on the other hand, i =P, and &pp= Yppp(-t)

0
at(-+)" (1 - x)

-1-2a't
F (3.25)

o]
|
14

=5 = :le;lBP(O)lg Bp(0)ppp

to.

14

-n-1
L 18p(0) 1% 85(0) Tppp(d - 07 T+ 1) [eag, log = x] -

(3.26)
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Thus with a linear zero in Eppp’ the triple pomeron contribution goes
like (1 - x)—l(glog(l - xi)-g, while a reggeon-reggeon-pomeron

contribution with ap = 1/2 goes like (}log(l - xi)_l

C. Mean Multiplicity at High Energies

Let us see what Muellerism tells us about the average multi-
plicity of some species. For simplicity, we will consider the

symmetric case a = b. Then

Y/2 ,
1 do v
(n) = 2[ & dp C R s) - (3.27)
ymin
Let us define
dn 1
oo - 2= [y Eorpe (5.28)
so that
Y/2
(n) = 2/. & F.s) (3.29)
ymin

- %(Y:‘”)]

dN dnN
= X E(‘”:‘”) = 2]; [dy E(‘”J‘”)

Y/2
+ 2 f dy (°°:°°) - %yN_(y’m)] = f dy {Z—Ny:(y,v‘”) = %(Y)S)}
0

© (
[ W gy Liy,e) - 2[ dy lg(y,w)
ymin ymin

o

- %?—((y,s)} .(3.30)

See Fig. %.2.
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If we make the definitions:

c 2 c
Fiy = fd PJ. £33 (p_L)

I

1

F.bg(y) fd 13_ (y,p_l_)

we can express the rapidity distributions as

daN a b c

-ay(oo,eo) = 6P BP FPP
w3

Sye) = By W)

dN —

dy(Y;S) =

Z B, exo (oo, (Y - y))FibE(y)

Then for large y, we have by virtue of (3.1) and (3.6)

T

BPa Z ij
J

< a_ b
L PP

i,d

%(y:s)

=000,
Jy

Fljc(Y) exp[-co, (Y - ¥) - mjy]

Using (3.33) and (3.36) we find that

[ ) &y (o) - Liym)) < =
0

For large Y we have

f RV CTHRE Ty
Y

(3.31)

(3.32)

(3.33)

(3.34)

(3.3%5)

(3.36)

.(3.37)

(3.38)
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s ' v/2 < -0 (Y
f w(%w,m) -Dvs)) » ) 8o [ & r oy e o v
0 J#P 0

(3.40)

Now as Y — o the integral (3.40) over y wup to some fixed Yo

gives a result of order exp(-oaiY). Now consider the contribution

from large y > Yo

Y/2 a Y/2
-f da([a;(y,w) - %(y,s)} = Z raia %bf dy Fijc

Yo 1P Yo
J
X exp(ooy (Y - y) - wjy) (3.41)
Y
, _ Mo, 5 MLy
i }: B_a 8 b F..C e Aan e 9 2 e 90
J P "JP X, A,
#P J J
_ -0, Y
a _b c,/ Y
+ . LI J
Z By By Fy3 G-¥de
J#P
(coy 00 )E  (co-00)y,
b 1773’2 3 j’Y0
. E: 8.2pbp c}e _e
i 7§ i o, - X, o, - . (3.42)
ifp 1 J i 3
e
if3

Combining the third and. fourth terms of (5.30) yields,

Y
-5 (6.2 } ab)Fce_mj§m
L, ‘Pp By 5 Pp ) Fip 5
4P
v ¥ T I LN YO AR (5.43)
iP5 Fas ’ . :

The last term in (3.30) is evaluated in the s — e limit:

o] 0]
- -, (Y-3)
an o) - dN 3 a be J
f ay[dy(y,) dy(y,s>] - Zaj/ ay F; °(¥) e
ymi i#P ymin
(3.L44)

which is of order exp(-Aan).

Combining these results, we have for a = b,

- Y - Y
{(n,) = AY+B+CYe “R + cy(é “x ) (3.145)

where ap is the leading non-pomeron pole and AaR =1 - aR (so that

Lo 1/2). The coefficients A, B, and C are given by

a_b c
A = PpPp Fpp

-]

be b
o a0 - rpe )

>}
1§

o (3.16)

‘2 [ a By Fp o(¥)
ymin

a_ b
C = BRERFRR
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Even if a # b, the term proportional to exp(-AaRY/E) in Eq. (3.42)
vanishes when the distribution for y > Y¥/2 is added in.l
The most relevant case is a = b = p. We can re-express
(3.45) as
20, g

2

(nc> = A' logs +B' +C's log s + Cy(s (3.47)

At first sight, the expansion for the average multiplicity
seems to contradict the results for the triple-Regge region. There
we found that the triple pomeron domsin could contribute an amount
a + b(log s)”", while no such term turned up in the multiplicity
expansion. A careful examination of our procedures reveals the cause
of this discrepancy. In the triple pomeron case, we required M*2
to be large in order to insure that the aa channel had reggeized.
This gave rise to the condition (é’- y(wi) > K/(s/sé). On the other
hand, in the multiplicity expansion, we assumed that for all values
of y the aa channel had reggeized. This is equivalent to
assuming in the triple-Regge estimate the integration continues right
up to the phase-space boundary (K —0). This would have the effect
of eliminating the (log s)_n term. Of course this may not be
Justified. The presence or absence of logarithmic terms causes
difficulties as well for the sum rules discussed in Chapter 2. Most
simply put, the problem is that in a pure pole model for two-body
cross sections, the total cross sectioh has terms of the form s_ﬁu,
while the diffractive contributions (triple pomeron say) appear to
give logarithmic contributions. Of course, these logarithmic contri-
butions may be cahcelled by other logarithmic contributions. On the
other hand, this quandry may be an indication that pure pole models

are inconsistent--that "dynamical" cuts are a necessity.
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D. Sum Rule Constraints on Fragmentation Distributions
The energy-momentum conservation sum rule, (2.6), places
constraints for the residues fjbc° (Caneschi, 1971.) Let us work

in the rest frame of a, and consider the Y -« limit. From (2.6),

alr
oy
Q

2
D,'Py *tm~ = Z erpc PP 5 @ - (3.148)

Considering only a pomeron with aP =1, and an effective non-pomeron
with intercept ap < 1,

4o be a _ be
= (x-v,p) +eg T (1

_&Ry
_d-IZ = BP - Y p_L) € (5"49)

when y is large. This is the dominant region for (3.48), since

‘P, = WU, cosh y . (3.50)

p&C

Thus as Y -« (3.48) yields

ambY Zf

Yl@P Pbc ’y’p_LD

— - i
+{og" bec(Y Vo) e = ) . (3.51)
Now in analogy with (3.49)
-0 Y
b
Op(s) = BPaBPb * BRaBR € o ) (5-52)

Inserting this in (3.51) and expanding, we have
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a b

¥ gy B =00 Y

m mb eY = E: ‘[dp m W — 1 - 2R e A?R
c ac a b a_b
g Pp Pp Pp Pp

a .. be a . bo 'AO‘RYD
x (Bt 75 - vp) + ot 55 -y e (3.53)
Let y' =Y - y, so that (3.53) becomes
Y-ymin a _ b
1 =" ay? a° 22 e'Y' 1 - gB__EB_ e-AaRY
Pl mw a _ b
< J y-ymax Bp Pp
be a _ be
o e ) By fp (e ) -eop(yey?)
P R R
X b a_ b  ° (3.54)
Pp Pp Bp
Taking Y — o, we obtain the fragmentation sum rules:
®© be
w vt T (y';P )
1 - ay" dp ﬁey £ ()
¢ Jy'min BP
and
® be
w y' L (y'p)
1 = Z dy* dgp _ce-aR __R___._:L . (5.56)
4im B.°
¢ Jy'min P
Superficially, the sum rule (2.8) is a cause for concern. To see why,
begin with (2.10) in the form
2 do
b Z fdpd Py P, &(pgsP,) = -m o - (3.57)
d

-3h-

Now
Pg'P, = g, cosh(yg - ¥) - BgR|. - (3.58)

The right-hand side of (3.57) is bounded, so the integral on the left-
hand side must converge. But for Y3 large,

Py'P, wdwc[cosh(yd - yc)]/e. Thus we must have some cancellation
near the upper limit of the y integration. To see how this comes
about, let us evaluate g(pd,pc) for Vg Jarge and Yo fixed. See

Fig. 3.3. By our Mueller rules,

do bd ac bd
B @, fp (Y - vgopyg) Tp (WoR ) + 5 (Y = vgopy4)
ac ‘AaR(yd_yc)
x fR (yC’P_LC) e . (3.59)

From (2.10), (3.49), (3.52), and (3.59), we obtain

13 . ac . b3 . ac ORWgve)
cab(s) g(pd,pc) = fP + fR fR e
o1 N BR BR MRY> EB a e
a b R
S < Lo (Y-y )
X fPacﬁPb + fRacBRb e ij‘R c (3.60)

b a
va )Yq Pr _va TR ac ®Ye Br &%
= f. e - — T e f e - — 1
R % 'p R 2 P
Bp Bp /

+ higher order in Y and ¥y, (3.61)
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where the arguments are the same as those in (3.59). The terms shown
explicitly in (3.61) are the ones which appeared to cause trouble on
account of the exp(yd) in the integrand. However, by virtue of the
sum rules (3.55) and (3.56), the displayed terms in (3.61) cancel,
leaving the high-order terms which permit the saturation of this sum

rule (Ellis, Finkelstein, and Peccei, 1972; Cahn and Koplik, 1972).

E. Behavior in the Central Region
One of the most interesting consequences of Mueller analysis
concerns the behavior at high energies of the inclusive differential
cross section near gz = 0. (Abarbanel, l971,\l97la). From (3.4) we
have for (bjcla)

200, (2, -z)
%g_c _ I3Pa51>b fPPc(P_L) + ; ijC(pl)[aPaij e d Z'b
J#P

-0 (2 -z) /0L T
- Bjaﬁpb S } + }: a b i%a JZb

z{o, -, )
PRI (5.62)

For simplicity consider only two Regge poles, P and R, with aP =1,

and aR <1 and suppose a = b. Then the inclusive cross section is

T =07
a 2
ag: = Bp fPPc(?L) + 2By cosh oz e “5 fPRc(Pl?

p TeLOpZ, c
e f,

ST R (5.63)

_36_

Since s a:exp(EZa), the cross section at 2z = O approaches its

‘(AQR/E) 1
asymptotic value as s (typically s “). For fixed large s,

the =z dependence for small 2z 1is

%%. = A(?l) + B(gl) cosh 20z . (3.64)

c
It is clear that the sign of B 1is related to the rising or falling
of dc/dpc at z =0 as s increases. A cross section increasing

with s requires B to be negative and vice versa.
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CHAPTER FOUR
CONSEQUENCES OF INTERNAL SYMMETRIES IN A MUELLER MODELl
A. Quantum Numbers of the J-plane Singularities

In its simplest form the Mueller model assumes that (a:c]b)
is dominated by poles in the bb channel of the corresponding six-
point function. The spirit of the model is more general though, and
the existence of cuts as well as poles is expected. In a pure model
with aP(O) = 1, scaling obtains {Eq. (3.2)]. 1In a pure pole model

1 _do .

with aP(O) <1, scaling holds for (E) & By the factoriz-

ability of poles,

5;%157 %% [(azc]b),s]
is independent of b as s —»®., It is probably too much to ask that
all the important Jj-plane singularities be poles and so factoriz-
ability may indeed be broken. This alone would not invalidate the
Mueller approach any more than the existence of cuts in two-body
reactions vitiates Regge phenomenology in that domain.

Whatever the nature of the j-plane singularities, they must
have well-defined quantum numbers for certain symmetries of the strong
interactions, including charge conjugation, C, and isospin. Thus

we can decompose the cross section quite generally as

do ga:c|b
L (o) = Y £ I)(y,IiL,Y) (b.1)
3
where the sum is over j-plane singularities in the bb chamnel. 1In

a pure pole model, we have explicitly

_38_

s(aiel) | p®2(yp) 6" emp(coyly - 1) (4.2)

If the charge conjugation eigenvalue of the singularity Jj 1is Cj’

then

40— — _ (azc|b) "
S@Ele) = ) o 2 e (4.3)
‘ J
If G = exp(-inIE)x C is the G-parity operator and Gj the eigen-
value of the singularity J,
dag .
E(Ga.(}c]b)

) 6y 11,0 1) (1.1)

and

Bieaoeln) = ) o0 fga‘clb)(y,gliy) . (k.5)

In a model in which cuts are generated by double pole exchange, it is

easy to see how the cuts remain pure C and G objects while losing

their factorizability. We might schematically represent the amplitude
for Pig. 4.1 as

i
_pr Xe}

fa“q el ()Y - ¥] + oy (4)IY - ¥1) 8,°(x) ,°(8)

X M (o,p,,9) (4.6)

with t = -qe, and where ﬁKQ, is a forward four-particle, two-reggeon
amplitude. Although factorizability is clearly lost, this contribution

to the amplitude for (a:c|b) = (a:c|b) is C;C; times the amplitude
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for the i & j contribution to (a:clb). Of course the existence of
well-defined Cj's and Gj's does not depend on such an explicit
model, but is a consequence of the symmetries themselves.

By taking combinations of reactions, we can isolate certain
singularities. For example (n+:n-|b) - (n—:n+|b) is pure G = 41,
C=-1 in the bb channel--what we would ordinarily call "p", but
including singularities like the p & P cut as well.2 Similarly
(K :n7|b) - (K x'|b) is pure C = -1 with p-, w-, and @¢-like
contributions.

The significance of this decomposition into amplitudes with
well-defined quantum numbers in the bb channel is that it enables
us to see whether or not the singularities correspond to those in
two-body scattering. Does the G = +1, C = +1 amplitude dominate at
high energies? Do the other amplitudes vanish as s- with
200 ~ 1/2? These are the fundamental points to be verified in

establishing the correctness of the Mueller approach.

B. Isospin Equalities
Let us proceed under the assumption that the leading singular-

ity--the pomeron--has ¢C +L and I = 0. Then we may analyze the

isospin structure of fPaC. We turn again to the six-point function
and see that, in effect, fPac is a vertex which we may represent
as

fPac @ {ac|plac) . (4.7)

Because P is an I =0 operator the Wigner-Eckart theorem gives us

an especially simple decomposition:

_ho-

(ac|P|ac)

(aE|I,IZ)(I,IZ|P|I',Ié)(I',Iélag)
1,1t

1
IZ,IZ

H

- 2
E (ac|1,1,)° P 1

= AT
o1

where P I represents the reduced matrix element for isomultiplets

AC ]
A and C of which & and c¢ are members. Now the range of I 1s

from IIA -1 to I, + IC’ i.e. a range of EImin + 1, where

Cl A
Iin = min(IA,IC). The number of fragmentations (a:c) is

(2IA +1)x (21.C +1) so there are 2I . +1 independent amplitudes

and 2T (I ., +1) linear relations. Thus for example as

min
§ »o (so that the I =0 bb amplitude dominates)

(px”) = (") (k.9a)
(') = (i) (k.9v)
(0:0) = (ni) (4.9¢)

= Flpn") + (pex)] (+.9)

where we have dropped b since it remains unchanged throughout. Of
course these relations hold read either as fragmentation of nucleons
into pions or vice versa: the isospin structure is the same in both
instances.

Many of the isospin relations follow just from C and G.

Of the relations (%.9), only (4.9d) requires I =0 in the bb
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channel; the other follow from C = G = 1. The following asymptotic

equalities follow just from C =G = 1:

& :n) = (&C:n)
(x:A) = (x:p)
(x":27) = (59 (4.10)
(x":2%) = («:x)
":0) = (20)

C. 8U(3) Equalities
In analogy to (4.7), we can find the relations which would
follow from exact SU(3) and the assumption that the pomeron is a

unitary singlet. The Wigner-Eckart theorem becomes slightly trickier

to apply because the Clebsch Gordan series for SU(B) is more complex.

For example we have the famous decomposition:

8 X8 = 27D 10 HL* P8P 8P 1. Two 8's occur, while in
the Clebsch Gordan series for SU(2) no irreducible representation
occurs more than once. With this caveat we continue as in (4.8). For

a and c¢ members of octets A and C,3

_ _ 8 8 My 8 8 u}
{ac|P|ac) = Z
HyV Vg Ve Y Ve Ve v!

HY:V'

X {uov|P _|plv') . (4.11)
T AT T

“4o-

In general we have seven reduced matrix elements; P27’27, PlO,lO,
8a’83 8S,8

, P2 S p !

, and Pl’ . By time reversal
8 ,8s 8 .8

. : . R . s’ "a
invariance for the six-point function, P =P .

8 ,8
PlO*lO* P a’’a s

2

Let us con-
sider first the case in which a is a pseudoscalar meson, and ¢ is
an octet baryon: (P:B). There are 64 reactions of this sort. By the
isospin analysis above there are 21min + 1 independent reactions for
each isoﬁultiplet fragmentation. Thus the number of independent

reactions remaining after isospin equalities is

(x:z) = 3 (k:z) = 2 (K:z) = 2 (n:z) =1
(n:N) = 2 (K:N) = 2 (K:N) = 2 (sN) = 1
(n:=) = 2 (K:=) = 2 (K:z=) - 2 (n:Z) = 1
(x:A) - 1 (K:n) = 1 (X:A) - 1 (n:pn) = 1
(k.12)

a total of 26. Since there are seven SU(3) invariant amplitudes,
there are nineteen linear relations. These are determined from (4.12).
The explicit decomposition into SU(3) invariant amplitudes is given

in Table 4.1. One choice for the 19 independent relations is

() = K2 = (=)
() = (k=) = (=)
(x":") = (Kmp) = (K':=)
(x:2%) = (K:=) = ()
(n:=7) = (K:x) = (K'm)
(x:=7) = (& m) = (x:z7)

Equation (4.1%) continued next page
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Equation (4.13) continued

2(x :p) + 2(K+:n) + 4(n+:zo) (x":p) + (K i) + 6(K+:A)

2(x*ip) + 2(K m) + 4(cti®) = (n7ip) + (KTin) + 6(K7:A)

(x*ip) + (x :p) + (K :mn) + (K+:n) (n+:}:o) + 3(n :A)

(n:£7) = («:A)

(t:5°) + (n:n) (tisTy + (is)

6(n:p) + (x :p) + (x:p) 2(kTm) + 2(K ) + b(x 20

1]

2(x":p) + 2(xtip) + h(n+:20)
(k.13)

We turn now to the case (P:P). Since the pomeron is C even,

6(n:=") + (K ) + (K i)

10%,10% 10,10

a
P =0, and P =P Consequently, there are only

five 8SU(3) invarient amplitudes for (P:P) and (4.12) simplifies to

8 8 uy ° T
(a5|P|ac) - z pT Y (4.14)
Va ‘Vc v

PvY:V

8 8 by 8 8 B
= + 5 (k.15)
Vg Vo ¥ Ve TV, TV

(ac|Plac) = (ca|P|ca) (k.16)

Since

we have

where a and c¢ are members of the same SU(3) multiplet. Thus

asymptotically, where P dominates in the bb channel, (a:c) = (c:a).

.

We have as an example of the power of this SU(3) relation, the
predictions for s —w, (x K ) = (K ') = (x k") = (K':x") using
the charge conjugate variants of (a:c) = (c:a). Using C and

isospin, the 64 reactions (P:P) can be reduced to 12:

(n:K) = 2 (K:K) = 2 (n:m) = 1
(i) = 3 (K:K) = 2
(2n) = 1 (K:m) = 1 . (4.17)

Among the twelve independent amplitudes there must be seven more
SU(3) relations beyond those of the form (a:c) = (c:a). We may

choose them to be

(x":x) = (K K)
&) = (K
(K :K) = (x )
(K'i) = (K K) (4.18)
3 = 2t u’) + (KT=0)
37t = B(E'=O) - ()
() = () + FaT) - (1 TO)

The last relation is written for completeness only. The others are
experimentally accessible. Notice that it is unnecessary to observe

(K-:no) since by isospin and C,

() = () = FLE D)+ (]
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By similar manipulations, these relations can be written in a variety
of other forms.
A multitude of SU(3) relations can be derived for (B:B),

(B:P), (P:B), etc. from (L4.13) and (4.14) mutatis mutandis. Fragmenta-

tion into vector mesons can also be treated. If we consider the
vector mesons as a degenerate nonet, desighating the isosinglets by

wy and Wy we find for the number of independent reactions after

invoking C and isospin invariance in the case (P:V)

(n:K*) = 2 (K:K*) = 2 (nsK*) - 1
( ,_
(x3p) - 3 (kKK*) - 2 () - 1
() = 1 (Kaw) = 1 (nmg) - 1
(riwg) = 1 (Kwg) - 1 (np) - 1
(K:p) - 2 . (%.19)

With seven S8U(3) invariant amplitudes, there are twelve linear
relations. It is possible to choose eight which do not involve Wy
or uwg, thus obviating the problem of the mixing angle. The relations

involving the mixing angle are more complex and not accessible to

tests. One choice of relations not involving . w, and wg is

1
") = ("™
K:p7) = ()
(KKO) = (K :p™)
&) = (zp)

Equation (4.20) continued next page
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Equation (4.20) continued

K :07) = (K KO)
™) = (")
(k™) = 2(xt:e%) + (K" x°)
3(nip”) = BE') - (x200) (1.20)

Using isospin invariance in conjunction with these relations, one can

generate other experimentally testable predictions, such as
E(K_:po) = (K_:K*O) + (K—:K*O) .

D. Symmetries in Pionization
From Fig. 3.2 and Eq. (3.7), we see that (alc|b) is controlled
by double pomeron exchange. The residue fPPc corresponds to a
four-point amplitude for two pomerons at t =0 and particle c

coming in and going out. Thus the SU(5) content might be summarized

as

£op. @ {clPPle) . (k.21)

If P is a unitary singlet, then fPPC is the same for every c¢ in

the SU(3) multiplet. For members of the same isomultiplet, this
relation should be exact (up to electromagnetic effects), as it
should be for particles related by C.

A primitive model for SU(3) breaking in the pionization

region can be obtained by assuming the pomeron has & small octet

contrihution:
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P = Py +ePg - (4.22)

Then, to first order, (k.21) becomes

fop. @ (c|BPole) +2e(c]Bgle) - (b.23)

Of course (4.23) is analogous to the Gell-Mann-Okubo prescription

for mass splittings. We can immediately conclude that (L4.24) implies

(] « @=m)1 = F(Iz)) + 3(]a])]
(4.24)

(kD) = F(=l) + 5(]])]

where N denotes any one member of the N isomultiplet, etc.

_Lg-
TABLE 4.1. P —»B = Z c P
T
27,27 plo%,10% 110,10 P8s’85 P8a’8 P8a’8s obo1

e 15 1/6 1/6 510 1/6  2\5/10 0
% =P 1/2 1/2 0 0 0 0 0
k¥ >p  7/h0 1/12 112 1/5 1/3 0 1/8
k" sn  1/5 1/6 1/6 3/10 1/6  -2f5/10 o0
K =D 1 0 0 0 0 0 0
K =n 1/2 0 1/2 0 0 o 0
N -p 9/20 0 1/% 1/20 1/k -vs/10 o
P L | 0 0 0 0 0 0
< 12 1/12 1/12 0 1/3 0 0
< =zt 7/ko 1/12 1/12 1/5 1/3 0 1/8
k"5t 15 1/6 1/6 3/10 1/6 2y5/10 0
k"5 1/ 0 1/2 ) 0 0 0
K -zt 12 1/2 0 0 0 0 0
K -3z 1/5 1/6 1/6 3/10 1/6  -23/s/10 o
n -3 3/10 1/k 1/h 1/5 0 0 0
xoh 3/10 1/k 1/k 1/5 0 0 0
k" >4 9/20 1/k 0 1/20  1/k Vs/10 o
K —-A 9/20 0 1/h 1/20 1/% Vs5/10 o

Table 4.1 continued next page
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p2T,27  GlO%,10% 110,10 PBS 8 P8a 8 P8a’ & bl
n -A  27/4%0 0 0 1/5 0 0 0
A=z 12 o0 1/2 0 0 0 0
eI 15 1/6 1/6 3/10  1/6 2Vs/10 o
KM =327 1 0 0 0 0 0 0
K -2 1/2 1/2 0 0 0 0 0
K =z 7/ho 1/12 1/12 1/5 1/3 0 1/8
kK -0 15 1/6 1/6 3/10 1/6 21/5/10 0
N -z 9/20 1/ 0 1/20  1/k Vs/10 o
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CHAPTER FIVE
ANGULAR DISTRIBUTIONS IN THE CENTRAL REGIONl
A. General Relations between Rapidity and Angular Distributions

In the previous chapters we have seen how the rapidity is a
natural variable for the study of inclusive reactions. Some experimen-
tal data, however, cannot be treated in rapidity or Feynman's x
variable because only the production angle is measured. This is
frequently true for cosmic ray data, and is so for some accelerator
data. 1In this chapter we shall investigate how distributions for which
the rapidity is the natural variable appear when viewed only as angular
distributions. Of course nothing precise can be said without specifying
the actual distribution which is to be viewed as a function of produc-
tion angle. Nevertheless, from the general behavior of the particle
spectra as a function of transverse momentum we can form an adequate
estimate of the modification of the spectra which occurs when the total
particle momentum is averaged over.

The first step is to choose an angular variable which resembles
the rapidity variable. The center of mass rapidity defined by Eq.

(1.1) can be expressed as

E+p

z = % pof ——1L (5.1)
E->D
I
where E is the center of mass energy of the particle and p" is
the momentum parallel to the beam direction. With p“ = p cos O,
this becomes
1 1+ % cos 9
z = 3m| ——— . (5.2)

P
1 - g cos @
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For p >> n, % is evidently determined by the production angle and

approximates the angular variable

i}

1 1 +cos @
1 - g a(rees) (5-3)

En(cot %) . (5.4)

Fixed angle behavior corresponds to (b|c|a) since for fixed

]

total momentum, it corresponds to fixed momentum parallel to the beam
direction. Thus we begin with Eq. (3.6L4), which assumes two effective
Regge poles-~-one pomeron with aP = 1, and one non-pomeron (which we

call the reggeon here) with aR = 1/2. For simplicity we shall assume

a = b, although this is certainly not necessary. Absorbing some

kinematical factors, we can write

do ) _% z _%

= Tep(e)) * (e 87F cosn(®) + O (5.5)
In Chapter 3 we pointed out that this form indicates a correlation
between the cross section at z = 0 as a function of s and the
variation with 2z near z =0 at fixed s: rising cross sections
must have a local maximum at the center while falling cross sections

must develop a local minimum there. Clearly the same holds true for

do 2 4o
& = fdp—LEI; . (5.6)

To investigate the nature of angular distributions we require some

kinematical identities:
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sech 1 = sin @ (5.72)
tenh 1 = cos © (5.70)
gL_ = p sech 7 (5.7¢)
pl‘ p tanh 7 (5.74)
& _ g2
7 = d P dz (5.7¢)
= ¢ dp 2 4z (5.7¢)
L
-1
2 m2 s
= 1 dp-L an{ 1+ I . (5.78)
1
Equation ( 5.7g) follows from
)

2
where m_L

do
an

We define

E
az

1
(gl? cosh® n o+ m2)2 + glginh n

2

J ) (5.8)

= An o
A
= pl? + m Thus the cross section analogous to (5.6) is
3
2
aag
= degl_ 1+ 5 o ) 55 . (5'9)
P cosh™ 1n
1
do do
= 5 (P-B) + & (P-R) (5.10a)
do dg
- = - — - .10b
- 5 (® P)+dn(P R) (5.10b)
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with
Lk -p) - ﬂfdpl 2(?) (5.11a)
% (P-R) = x s cosh(Z) fdpf fPR(pJ_) (5.11b)
o) 2

do P - - 2 m 11
an ( P) bid j’ fPP(pJ_) G + P-Lg cosh2 'r]) (5 c)
d 2 -3

do (p _ - m z

1 (p-R) = s fdl.).L fPF(p.L) G ¥ PJ_ cosh Tl)

5 5 %T%
_ Py sinh™ 7
Y T
m o

Equation (5.11d) can be expanded for small 10 as

dg -% 2 ' m2 _%
—q(P-R) = 5 s dp—L fPR(IiL)<1+;f>

2 p__l,_2 lm® b
{1 +g—<-—2+—2> + &Y . (5.12)
S

Thus we can make the comparisons,

do(p.p -2
32( ) << ) > (5.13a)
= (P -P) cosh n

-5&-
2
2 /P
1+n<i )( )> oLl
B\ 2
d—Tol (P -R) ) <[ m _l
dg B -
z (® - R) 1 +-8— +@'(z
(5.13D)
From (5.13a) we see that
do do
ﬁ (P - P) < iz (P - P) (5.14)

for all n and d_f] (p - P) approaches %’g (P - P) monotonically as

N =w. From (5.13b)

(- R)] 2 (e - R)] . (5.15)

z=0

From (5.11lc) and (5.11d), for N = z =
-1/2 do (p . 3
L > (5.6)
"%/ 32 (P -R) oy

Using (5.13b) and (5.16), for 17 = z

do do (p .
an (P R)T]=O < an (P R)Tl=°°

(5.17)
RN LA
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B. Expansions about the Center
Asymptotically, the rapidity distribution becomes flat near
z = 0. Its curvature comes from the pomeron-reggeon term what has

s

Fi=

behavior. We can expand the rapidity distribution (5.10a) as

_1 2 {2
o fo ey et oD fo )
(5.18)

i 2
.1
Ay +sT¥(By + 2By + -+*) (5.19)

with Bl/Bo = 1/8.
The angular distribution on the other hand does not become
flat asymptotically, but develops a local minimum at the center. We

can write an analogous expansion for small 12

-1
%% = (Aé + Ain2 + 0e0) + 8 “(Bé + BJ'_T]2 + oeee) (5.20)
where
2 ° \"
Ay = = fdpl fPP(p-L) 1+’L2 (5.21a)
PL
/P
_ A<$\ (5.21b)
0 n.l‘L/
2 p
A' = A _m_g_ ..-_L- (5.21C)
0 Q%L %L
b
B = Bo<mi-> (5.228)
1
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2
BO< 1 +ﬂé i—":>/8
Ill_L _L

Thus the center of the 17 distribution is depressed by a factor

i=<i§. (5.23)

0 2/

The asymptotic curvature is given by

(5.22b)

b3

ﬂii
' 2
Al 2m, " m
Tx% A . Y4 (5.24)

0 P
il
The curvature of the nonasymptotic reggeon-pomeron term is
<G ) )
B! m
1 /
BT L/ . (5.25)
6] <:Ih_:>

As m_ -0,
c

n and z Dbecome equivalent. It is easy to verify that
in this 1imit, 811 the primed coefficients tend to the unprimed

coefficients.

Because the asymptotic pomeron-pomeron term in the rapidity
distribution is flat, the curvature of the distribution at finite
s can be atiributed to the nonasymptotic terms. For the angular

distributions, the situation is not so simple. At finite s, the

curvature depends on both the asymptotic and nonasymptotic terms.

From (5.24) and (5.25) we see
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[N

_58..
Then
A 1
0 < 77 < 3 (5.26a)
AO 2 do 7 0pp
3 (P-P) = — (5.30a)
BI
1 1 1
3 < B <35 (5.26b)
0 1
dg s \ ¥
L (p-n) - ,(—2) BB cosn(Z) (5.300)
If at finite s we have n
dg 2 2 -%
=2 _ o+ 4o .27 1o -ap 2
an o * & (5-27) %%(P-P)- gP dpfe L (1 =
m cosh
% b
. R ' .
with Cl 0, then we can conclude BO < 0, since (5.30¢)
i -1 o
¢! = Al b ( > (5.28) Y og -ap
1= ATt L0@-r) = «% PR [ gp 2. oL
n m2 m2 _L
P
If Ci >0, B(') may be either positive or negative. No matter what
2 .2 PANE Y
the sign of B('), eventually C.! is simply determined by A], which 1 P_.L sinh™ 7|2 \2
X +§ 1+ 5 . (5.304)
is positive. cosh mJ_
C. Numerical Examples The evaluation of (5.30¢) is straightforward and yields
To clarify these ideas, consider a hypothetical distribution 7o
@ (e - = —FFx Ky (x) - Ky(x)] (5.31)
with gyl am2
2
GPP 'a.p-]— 2
£ (p) = —=e (5.2%.) vith x = (am~ sech” 71)/2 and where K, and K, are the usual
PPy 22 0 1
nodified Bessel functions. From (5.31) we find easily the expressions
for Al and Al
9pR --ap.L2 (5.29) 0 1
f .29b
PR(p_L) =/ e 5.29
Topp . x
Ay = —5 x oK (x)
am

- Ky (x)] (5.32a)
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T C.
Al = gP x ex(Ko(x) - 2X[Kl(x) - KO(X)]} (5.32b)

am

where X = am2/2. In a similar fashion we find

o
B - 23 ne x &K (x) - Ky(x)] (5-3%2)
B = fﬂé m% %— X ex{Kl(x) - Ko(x) +-6{K0(x) - 2x[Kl(x) - KO(X)]],]’
am

(5.33b)

The ratios Ai/Aé and Bi/Bé are shown in Figs. 5.1 and 5.2 as a
function of the parameter a. A full evaluation of the angular
distributions arising from the pomeron-pomeron and pomeron-reggeon
terms is shown in Figs. 5.3-6. The full expressions (5.11) have been
evaluated numerically for transverse momentum distributions of the
form exp(-agl?) and exp(-b?l}. Clearly the general features are
quite similar. At the center of the distributions, the angular

distribution, %%, is about 70 to 90% as great as the rapidity

do

distribution, =
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CHAPTER SIX
INCLUSIVE REACTIONS IN A DUAL RESONANCE MODEL
A. Introduction

One of the most exciting and remarkable developments in
particle physics has been the dual resonance model.l Not only has
this model had success in representing theoretical concepts such as
Regge behavior, factorization, crossing, and duality, but it has even
had some success as a phenomenological tool. It was natural that it
be applied t5 the problem of inclusive reactions.

Since the dual resonance model pfovides an ‘explicit six-point
amplitude, the inclusive cross sections can be deduced by examining
the appropriate discontinuity. This suggests a lack of ambiguity which
is unfortunately not real. In the Mueller framework, we know that
scaling arises from a pomeron with intercept av = 1. However, a
trajectory with intercept av = 1 in the simplest dual model is not
believed to be the way to represent the pomeron. This belief relies
on duality: the pomeron is supposed to the dual to nonresonant
production in the crossed channel, while the "bare" Regge poles in the
simple dual models are all dual to resonances. A more popular
representation of the pomeron is the "twisted loop" which is, in fact
dual to nonresonant production. Unfortunately, it is not yet possible
to do calculations with the twisted loop pomeron--nor is it even clear
that this isuthe proper representation for the pomeron. We are left
with a choice: we can take Q. =1 so0 as to obtain scaling and

v

ignore the complications mentioned above, or we can take aV <1l and

sacrifice scaling. Since both procedures have serious drawbacks,

it is worthwhile to see what conclusions follow from one or the other,

or perhaps both of the assumptions.
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This chapter relies heavily on the work of Virasoro (1971) and
of DeTar et al. (1971lb). Independent, but similar work to that
presented here has been performed by Thomas (1972). Virasoro and
DeTar et al. give detailed explanations of the identification of the
inclusive cross section with the appropriate six-point amplitude. The
work of Thomas contains extensive numerical calculations. We shall
pursue a middle course, half pedagogical, half phenomenological.

At this point it becomes necessary to delve slightly more
seriously into the question of precisely which discontinuity of the
six-point amplitude is connected with the inclusive cross section.
(stapp, 1971; Tan, 1971; Polkinghorne, 1971). We follow Tan, but
present only the simplest heuristic arguments.

The optical theorem for two-body scattering relates the
discontinuity of the forward amplitude to the total cross section.

See Fig. 6.la. The required inclusive cross section is represented
in Fig. 6.1b. A discontinuity formula for three-to-three amplitudes
can be written down (if not justified) by inspection. See Fig. 6.1c.
In a region in which all channels except abc are below threshold,
"extended" unitarity would give the relation shown in Fig. 6.1d, where
the ab and a'b' channels have no + or - labels since they are
below threshold.

To achieve the arrangement of Fig. 6.1b, we have to set s

ab

above its cut and s below its cut as we raise s from below

a'b' ab

threshold to above threshold. Thus we have the equality in Fig. 6.le
as our discontinuity relation for inclusive cross sections. The

reader is referred to Stapp and Tan for further discussion.
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The dual resonance model provides a prescription for evaluating
the six-point amplitudes occurring in Fig. 6.le. Even in the simple
approach in which only tree diagrams are used, there are numerous
contributions arising from the various permutations of the particles.
As DeTar et al. show, the contributions of the various diagrams can be
calculated in terms of a single configuration, say that given in
Fig. 6.2a. If we consider (a:x]b), it turns out that the contributing
diagrams are those shown in Fig. 6.2c. This is, as DeTar et al. note,
precisely what we expect from Mueller-like considerations. On the
other hand, for (a|x|b) we have contributions only from the diagram

in Fig. 6.24.

B. Explicit Calculations

For simplicity, we shall consider only the last diagram, 6.éa,
both for (a|x|b) and for (a:x|b). This diagram alone possesses most
of the properties we wish to discuss. In the small x region it
should give an adequate representation of fragmentation since the other
contributing diagrams vanish as x — 0. Evaluation of the other
fragmentation diagrams has been performed by Thomas.

We begin without assuming that the vacuum trajectory, av,

necessarily has intercept unity. Accordingly, we define, as s — o,

- . 1 dg
f(x,p,) = lim -— E —(x,p,,s) . (6.1)
ik g— o Jab d3p L
If at =Q _(t) is the value of the Regge trajectory in the ax

ax

channel, then EqQ. (3.3) of DeTar et al. may be written
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- 1 1= o1
Fxp) = (1-x%) j &[ dy (yz)
0 0

X [€+§)é+§>]a"ﬂt Q*Y'““Z)-axv(l-y-Z)av (6.2)

where T = x/(1 - x). We assume that both the aa and bb channels
have the same vacuum trajectory. The outgoing particle, x 1is assumed
to be spinless and to lie on the trajectory of the aax (or aax)

channel. Weé shall further assume that @, = -1 + t so that particles

t
g and b are spinless, with unit mass.
Next we transform variables until one integration in (6.2) can

be done conveniently. Let

s = ¥y + 2z ]
(6.3a)
t = yz .
Calculating the Jacobian, we find
2 -1
dy dz = (s - t) 2 ds dat . (6.3D)

Thus

2
1 -y § 1
Fxp) = 20 - x)o‘v[ ds[ at (s° - )72 e
0 0

Oy 10y
2 -2
X l+tlsi+-1;) (v + s) V(l-s)aV . (6.4%)

_6h-

Letting t = t'sz/h, we can do the t' integration to get

1 1
%y h-av F(E)F('at) i Saav-l -aav

(x, T (v +s)

11) = 2(1 - x)
0

(6.5)

where F(a,b,c; z) is the usual hypergeometric function. Equation
(6.5) is a convenient form for numerical integration since the argument
of the hypergeometric function has a modulus less than unity and thus
the power series for F converges.

Typical results are shown in Fig. 6.3. 1In these calculations,
the vacuum trajectory was taken to have an intercept of 0.5 (the
choice of DeTar et al.). Each fixed ?1_ curve rises from zero at
the kinematical boundary, attains a maximum value and then falls to
its asymptotic value which is only & fraction of the maximum. The
asymptotic value is, of course, the x = 0 result. In particular,

this naive model predicts that the central value is a local minimum.

C. Limiting Cases
From Eq. (6.5) we can evaluate certain limiting cases. First
consider gl_>> 1 (Our units are always determined by the slope of
the trajectories, which we assume to be about 1 GeV—2). From (1.29)
for fixed x, as p —w we find that t - -». This can be exploited

by using the properties of the hypergeometric function:
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2 -2
1, 1, 27
F-ozt—cxv, 53 -ozt+—2-,<1+—-—s ))

) i)

(6.6)

Now the hypergeometric function on the right hand side goes to unity
as t —--wm» ( o, —®) (Erdelyi et al., 1953, p. 76) if 71 > 0.

Thus we have

T(x

B4 >>1) ~ 21 -x)av -avf—(—)l—ﬂi-a—t)/‘ ds s2av-l
0

l"(-ozt + 2)

- 2(a +0LV)
;((1r+s)a%(1-s)o‘V 1+_ ¢ (_ h72> <1+27>
(6.7)

Since -, >> 1, the integral is dominated by s near 1, so that we

t

may write

_ l"( ) T 1 ‘%"
f(x’&. >1) ~ 2(1 - x)o,‘V v __..._(-a_ 2@+ EOéV
I‘(-ozt + 2)

z(atmv)ﬂ
X [ ' (s") ( Ly (6.8)

where we have put s = 1 - s'. The integral now is dominated by s’

near zero and we find
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PP r(w) 3 -3-2
T(s,p, > 1) ~ 2(1 - x)a" WY —2—-—%‘3— Br 2@+ v
L - r(<, +3)

X G 2Y)2(05t+dv)+l <l 2 2Y> (2(a o) -1 )*"v -1

X Tl +1) (6.9)

With

Q2 = '(l + at)x

= p_f - magx(l - x) - mcg(x -1) , (6.10)
we have, for Q2 >> 1
-ha -2 -3/2
?(x,p_L» 1) ~ r(%) r(av +1) 2 Q2 —av
2 -2
X (1 -x) " a- x)BaV G f’;) I (6.11)

2 .
Thus the I:.L behavior is essentially exp(-b;iL) times a power of p_L

with

2 1 +x
b = ;log(l ~ x) . (6.12)

From (6.5) we can also derive an expression for pionization

(x =0). As Y —0, with fixed,

Py
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experimental data in the final chapter (see Fig. 8.8a). The asymptotic

-1
2
elo s _1_’ i; o+ i; [y . by - form of the pionization can be found easily from (6.11):
v 2’2 t 2 s 52
l 2
1 A _ “ha -2 <«,~3/2  -hm
1 2
qu *3 f(x = o,p_L>> 1) = 1) P(av +1) 2 h (/7) v e
— (_S— Oﬁv , Ol + l, A (6.15) .
N (6.15)
where {(a,c; z) is the usual confluent hypergeometric function whose For small values of the transverse momentum, the distribution is much
integral representation is (Brdelyi, 1953) .steeper, and in fact diverges for m_L = 0.

o)
Ha,c; z) = ﬂlgy[ at &%t 21 + )T,
0

In this limit, -0y —>Q2/Y and we have

1
Q. -1
T(x = 0, I_>L) = eﬂ% (Qz) v ds s_av (1 - s)aV
0
-4a?/ 1 2
x ¢ % Yay + 5 oy + 15 4a%/s) (6.14a)
a * 2
= 2;1% (QQ) v ds sav(l + s)_l e_uQ' (1+s)
[¢]
X g@v + -]2:, o, + 13 l&Q,E(l + s)) . (6.14b)

Numerical evaluation of the pionization distribution is shown
in Fig. 6.4 for two values of the vacuum intercept: Oy = 0.5 and

Qy = 0.9. Both give rather steep behavior which is compared with
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CHAPTER SEVEN
INCLUSIVE PHOTON DISTRIBUTIONS™
A. Introduction

The most extensively studied inclusive processes are the single-
particle inclusive reactions of the form (azclb). If particle c
is not a hadron, but rather the decay product of a hadron, 4, the
observed spectrum is an indirect image of the original inclusive
process (a:d|b). 1In particular, the observation of (a:7|b) yields
information primarily about (a:nO]b). Of course the information is
not as precise as would be a direct measurement of (a:nofb) in a
coincidence experiment.

There are further complications in interpreting the photon
spectrum. Some photons arise from the decays of hadrons other than
no's, most notably from the decays of 1's. The 1 —>3no mode is an
especially copious source of photons. Each 17 yields an average of
3,2 photons. Because of the much greaterproduction of no's and
because the photons from the 10 —>3no mode are essentially indistin-
guishable from "true" ﬂo photons we shall generally ignore the
complication introducedby 71 decays.

A second complication is the production of photons by charged
particle bremsstrahlung. For soft photons bremsstrahlung must be
taken into account. We shall do this in Sec. F in the context of
a model.

The basic assumption of the paper is that at high energies
hadronic processes exhibit Feynman scaling. Beyond this, we shall

need little more than kinematics. Since these kinematics are
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essential and somewhat unfamiliar, we present them in some
detail in Sec. B. These results are combined with Feynman scaling
in Sec. C. - A numerical examplé is presented in Sec.D to clarify the
preceding sections. The prescription of Sternheimer (1955) for
extracting the ﬂO spectrum from the observed photon spectrum is
examined in Sec. E. The bremsstrahlung contribution to the photon
distribution is analyzed in Sec. F. Finally, the principles derived are
applied to an analysis of the CERN ISR data on (p:Y|p) in Chapter 8.
The principal results are

0
1. If (a:n |b) scales, so that the inclusive ﬂO differen-

tial cross section gives

. B do
lim —g—
s—» o inel d”p

1 2
£ 500p )

2
(X;RL »8)
inel g

C

F olon )

where Py is the component of the HO momentum perpendicular to the

1
beam direction and x = pxl/[(s)Z/Q], then the photon spectrum resulting

0
from the ¢ decays also scales:

. Kk do > 1 2
lim = (x,k;7,8) = —— £ (x,k,7)
sow Oinel @k L ine1 7 L
- 2
= f k
.Y.(X) ..l— )

where k]_ is the component of photon momentum perpendicular to the beam

1
direction and x = k‘l/[(s)z/Z].
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2
2. fy(x,gi_) is continuous as x —» 0 except for 51? =0

where we have

. . 2
lim lim £ (x,k°) = = lim lim £ (x,%°)
x>0k, -0 Y L 2k-——>0x—>0 =
4 £
3. For the photon spectrum arising from ﬂO decays,
(=]
. 2 2 2 2
lim £ (x = 0,k,) = = dk,  f (x = 0,k
k-0 7 L n” s T+ T L)

. 0 . . .
on the assumption that the 5 distribution has scaled.

k., For the photon spectrum arising from bremsstrahlung, we

derive the result for large s, small KL! and x =0,

kdo '
o (s = h_eg"'é@c)
o k
L
where « is the fine structure constant, and (nc) is the mean

charged multiplicity.

s
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B. DECAY KINEMATICS
0
The calculation of the photon distribution from a known x
distribution is straight-forward. If a single ﬂO with four-momentum

p and mass m decays into two photons, the distribution of photons

is given, in invariant form, by
b 2

2
av_ _ 1(. _m_)
kd5k (p,k) = Ita@k 5 . (7.1)

Consequently, the Lorentz invariant cross section for photon

production is

3 2

do d’p do 1 m
kK — = — { E = (p,s) = 5<P‘k - __) (7.2)

&k [ g (dﬁp ’ ) " .

where
do
E T’ (P:S)
d'p

is the invariant differential cross section for the production of
ﬂO'S at a center-of-mass energy squared equal to s. For definiteness
we shall assume that the no's result from p-p collisions, and the
center of mass-is that of the p-p system. It will be apparent that
all the results apply equally to (a:nolb) with only trivial
modifications;if any.

(0]

The g 's which contribute to the photon spectrum at a given

momentum, k, are constrained by Eq. (7-1) to satisfy

n

oo B
E-p, = 7 (7.3)
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where ph is the component of no momentum parallel to the photon
momentum. From (7.3) we find
k 'e
N + - b
P, Po * 5B (7.%)

where Ei. is component of ﬂO momentum perpendicular to the photon
momentum and where
2

Py = k-pp - (7.5)
See Fig. 7.1. In momentum space, the no's contributing at a given
photon momentum are confined to a paraboloid whose axis is along the
direction of the photon, and whose apex is at pi! = Py- For large
k/m the paraboloid becomes very narrow. The limit k — O is
degenerate and must be handled with care.

The delta function in {7.2) can be eliminated by integrating

over O, the angle between the HO and the photon, with the result

0 2x
d ,
kI o L f dEf 5 3- (s,9) (7.6)

where @ is the azimuthal angle in the plane perpendicular to the

photon, and where

2 2k
E) = (po +m°)2
m2
= k+pr. (7-7)

In (7.6) we have taken the upper in the E integration to be infinite

and assumed the kinematical 1limits are incorporated into the nO

differential cross section. The ﬂo three momentum in (7.6) is given,

~

-7&—

in co-ordinates relative to the photon, by

RS L (£ 6, 72‘1
P = (P P = oS ¢[E‘<P“ - py) | ooy =sin Bf = 2l 'PoJ e

The ﬂO inclusive cross section is a function of s, P,
the component of momentum parallel to the beam direction, and gl: the
component perpendicular to it. If the azimuthal angle ¢ is

measured away from the plane containing the photon and the beam
direction, and if the photon has components of momentum parallel

and perpendicular to the beam direction k and. #J_ respectively,

then
f‘ 1 72
2 k 2 k
p-L2 =1[—I£—(E-EO)] —ll—Lcos¢+<E~r-§—£>E'l'

m2 2
+ 3 (E - EO) sin” ¢ (7.9)

where E 1is the ﬂO energy. See Fig., 7.2. Thus we have explicitly

® 251 I
ac 1 ac 2
k —=— (k,s) = ﬂ—k]' aE f ¢ E = LE,p_l_
d’k d’p
E, 0

i 2
2 2k 2 k
n m A
- [F(E‘Eo)} T':L°°S¢*<E'e-k)k—>
1

m2 . 2 ¢ ( (7 lO)
e (2 - Eo) sin” §,s . .

J
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For k/m >> 1, the paraboloid over which the integration takes
place becomes narrow.

If it is approximated by one of vanishing

width, Eq. (7.10) becomes

2 d -
3 (5,s) ~ £ @&~ (5,s) (7.11)
d E P
(4

where E lies in the same direction as E. In this 1limit we can

also approximate E. by k. Then we have the approximation

0
of Sternheimer (1955):

. [k2 ﬁ (x, s)] - 288 (p-ks) . (7.12)

We postpone until Sec. E an evaluation of the reliability of

Sternheimer's approximation.
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C. SCALING
The scaling hypothesis is that as s — », the invariant
differential production cross-section becomes a function of pi? and
1
= p"/[(s)2/2] only. (See Sec. A) To see how this scaling manifests

itself in the photon spectrum arising from ﬂo decay, we being with

(7.10) and introduce new co-ordinates:

2 m2
Q = k_ (E - Eo) )
Q = Qcos @ (7.13)
Qy = Qsin @
Then we have
x99 (x,s) = 2 [dPqrd (= K, g
Fd = = -z = 5
Ok I d3p ;ﬁ‘ 0
r

p° = {[&Q ) ]2 (7.14)
L X ox _§_ * Pg ) &

If we take s — o with XY # 0, in the notation of Sec. A we have

2
2 2 < Q
= dQf {x =x.{1+ :)
e f w <" r me

72
112 = {Qx+k-l-<1+:-§)—% +Qy2 . (7.15)

It

2
fT(x ,k

badl & )

Equation (7.15) makes manifest the scaling of the photon distribution for

x £ 0.
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The ﬂO spectrum is expected to become a function of Py
alone as s — o with Pl. and p” fixed. This carries over to the
photon spectrum as we show below. From (7.14), we have in the X, = 0

limit (with k, and k" fixed),

2
k
2 2 o P kQ
£ (0,7 = 55 | d%t op® = [——LQ +<;——+p>;¥]
+ ng . (7.16)

Only 's with x =0 contribute, since from (7.14), ﬂo’s with

X # 0 would have ?l? oc s, and we assume the cross section falls

off in gl?. We can change variables in (7.16) to
. k
m
U = Yt T—kL
(7.17)
¥ = Y
to get
. k 2
2 2 2. L '2 2
f (O ) = — aqQ' £ {0,p; = [p (k) + =4 ] +
ﬁmE o\ ’ZL o e QY
(7.18)
where

2
m
PO( ) = %l.- Te
4
From (7.18), we see that the photon spectrum in the central region is
indeed independent of ki|.
2 . s
If %1’¢ 0, then fY(xY’FJ_) [Eq. (7.15)] joins smoothly to

f (O ) [Eq. (7.18)]. To prove this, let
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% = %t

(7.19)
Y =%

in Eq. (7.15) and let x,. - 0. Then we find

lim f (x

2% s f{o
x. -0 2 "
Y

p -
s =
freid L

k '2
o2 (5ot + 2]

Ny
i—
n

(7.20)

i

fT(o,glf) .

On the other hand, if k_L= 0, the transformation given by (7.-19) cannot

be used. Instead, we have from (7.15),

£ (r,,0) - -—[ ( (%) np @
(7.21)

Evaluation of the kl — 0 1limit of fY(O’%l?) requires some care.

Because po( } o~ - EK_’ gl? is large unless [see Eg. (7.18)]
1

2
k 2
%.X— - I{:T_L ~ 0. (7.22)
With
2
(7.23)

4 -5

we have from (7.18),
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"o " "2
If = Q  + 2Q." ( ) + k—LQ . (7.24)

Hence there are two identical contributions to the photon spectrum. We

can write (7.18) as

f(O _L) = -—[ de[ dQ" (,pL~Q +2Q;k‘L
=
"2 "2
X l“"z—) _L(l+ ) (7.25)

For %l/m << 1, we separate out an integral over the entire Q" plane

2 4 2 "2
fY(o,kJ_) =;‘?[dq fﬂép _Q +2"k 1+
2 "2
HEJ_ 1+ {7.26)

where we anticipate that E will die exponentially in m/%l: In

particular,
. (7:27)

But from (7.21)

lin £ (x,0) = _.2_5
x— 0 nm

2 2 2 .
aq £ (05" = Q%) . (7.28)
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Thus fY(x’%l?) is not continuous at the point x = O, J__ 0. To
understand how this comes about, examine Eq. {7.15). Contributions to

2
the integral come from small values of gi_. For Qy =

2
2 e
Py = +k, {1+ (7.29)
TR L T>
while the integral in Eq. (7.15) extends to x = 1, or

2

5oL, (7.30)
m

v
The condition ?i? = 0 yields, for (%1/m) << 1,

2
Qx =~ ?J_ or - E]_ .

Thus the small gif regions are near (QX = %1: Qy = O) and

Q, = -m / ) Q = 0). If x> (13_/m)2, then by (7.30), the second
region falls outside the integration domain determined by the kine-
matical limits. Thus as x decreases to values less than about
(El/m)e, the second region is introduced into the integrations, giving
rise to the factor of two between (7.27) and (7.28)

We can reformulate (7.27) in an interesting fashion. To do this

we first note that

1

CRECETR IR BN CRIDR (7.31)

0
This relation can be proved directly from (7.1). It reflects
the fact that the central rapidity region for the photons must be

twice as heavily populated as the central region for pions.



-81-

As a conseguence, we have a theorem for the photon spectrum
arising from the decays of a scaled HO spectrum:
2 2
lim f (o ) = = 2 2
a8 2 ak,” £_(0,k . (7.32)
%Lfao m 0 1 J_)
Equation (7.32) is a striking consequence of scaling in hadronic
collisions, relating the photon spectrum in the central region at
zero transverse momentum, to the spectrum in the central region
integrated over transverse momentum. Since the equation is linear in
the photon cross section, it is unaffected by uncertainties in overall

normalization.

The integral in Eq. (7.26) can be expanded in powers of %L/m:

© 5 [

2
2 4 aq 2 Q
£ (0,k,7) = —_ ag{f (0,@7) + |2Q cos P k{1 +
s | 2 . 2 . AL / N2
2 Q° \ 2y 1 2\|?
' Q 1" 2
+k_L 1+;§> f(O,Q)+-2- 2Qcos¢kJ_1+;§ £"(0,Q%)
+0'(k_f_‘/ml‘)j (7.33)
. X ) aQ® {r (0 2) k,2{ 1 Q2 £' (0 2)
= 3 Q74E(0,Q7) + k{1 + 35 Je1(0,Q
0 m
+Qk l+—§->f"OQ)+<7(k /m) (7.34)

vhere primes denote differentiation with respect to Q?. Assuming

ngﬂ(O,Qg) and' ng%(O,Qg) vanish for Q2 = 0, we integrate by parts

-8o-

to get

-

“
2 L

2 K, \

2 b 2 2 1L LQ cy(: 1 L

- 2] afr(o, 1r== o2+ O 5 )b

f(ogk|) e Q ﬂ( Q) +m2 2 o /»

(7.35)

As #1. increases, the E term in Eq. (7.26) must be considered
as well. From Eq. (7.35), though, we expect a rise in the photon
spectrum for transverse momenta increasing from zero to small values.
For larger values of %13 the E term reduces the value of the right-
hand side of (7.26). We expect E to become significant when
(m /2 ) ~ (p ), where (?i} is the average transverse pion momentum.

The general principles outlined here are displayed explicitly

in the next section.
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“D. A SIMPLE EXAMPLE
An appreciation for the results of the preceding sections can
be gained by considering an especially simple example. Suppose that

0 ; . ; A
the scaled g  distribution is independent of x and given by

fﬂo(x,pl) = e 0 < IX, < 1. (7.36)
From (7.15) we find
(z-1) 2
2
2 2 d de
fY(x’k.L ) = —2- '%
o 4o 0
’ . 2 ) 2\27)
X exp{-alq~ + 2%Lg cos {1 + =5 + El. 1+ 95 (7.37)
m m
2,1
m (}—('-l) - )
2
- 5 Q% exp {-alg® + gl? 1+ 9§
m 0 m
2
X To{eekall Qg (7.38)
m

where I, 1s the usual modified Bessel function. Similarly, from (7.18)

o 2
L 2k, 2 ] .
——amgj; dz exp (a ;';2—- + Po(k_L)J e IO(Z) .

(7.39)

we find

2
fY(O’k_L)

We can find the kl——>0 limit of the two expressions. From (7.38),
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1
[ NRAY
2 o ) e
fy(x,}ﬂ. =0) = ;—E](l - exp { -am {; lJ J s (7.40)
while from (7.39)
2 L
lim  £.(0,k,7) = — . 1
koo T4+ am” (7-42)

4

This shows explicitly the factor of two associated with interchanging
the order of the limits x - O and 31_"0’ which we proved generally
in Bqgs. (7.27) and (7.28).

The numerical evaluation of Eq. (7.39) with a.m2 = 0.3 1is shown
in Figs. (7.3) and (7.%4). 1In Fig. (7.3) we see that the fall-off in

%l_ is much steeper than that of the generating KO spectrum. For

%L/m >> 1, (7.39) becomes -
2
-ak 2
£(0,k,° > n°) ~ 3——551—93?—13 (7.42)
LR B 2 : .

agl-

Tn Fig. 7.4, the quadratic rise away from §J_= 0 is clearly

visible in confirmation of Eq. (7.35). Also shown is the x =0

spectrum arising from a ﬂO distribution

-bp
£ o0)) = ¢ T (7.43)

with the value of b chosen to give the same <Pl?> as (7.36)
(bgm2 = 1.8 corresponds to an® = 0.%).

Tigure (7.4) shows that two rather different no spectra cangive
rise to quite similar photon spectra, provided the (Pl?) values are

roughly the same. It also shows the turn-over as the E term in

Eq. (7.26) becomes significant, around (m2/2k )2 = (?1?). Numerical

L
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calculations reveal that f (O .L) is not terribly sensitive to the
parameter a in Eq. (7.36), if the results are normalized to the same

value at kj_= 0. For example, with am2

= 0.2 the curve differs
from that with am2 = 0.3 by no more than 15% in the range
0 _<_k_L/m51.

The evaluation of fy(x,gl?) [Eq. (7.38)] is shown in Fig. 7.5.
For small . El/m and X not too small, Eq. (7.40) is & good representa-
tion of the photon spectrum. For very small x, the distribution rises

towards the value dictated by Eq. (7.39). The transition takes place

in the region x ~ mg/gl?.
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E. STERNHEIMER'S PRESCRIPTION
At any finite energy, Sternheimer's prescription, Eq. (7.12),
may be used to derive the ﬂO spectrum from a known photon spectrum
if k/m >> 1., A scaled form of Sternheimer's prescription is also

easily obtained. From Eq. (7.12),

o - : _ .} 2 do_
k=p,
In terms of k and k we have
4 It

2 E ———(p ,s) = -(1+x o 4k, S {k — (x, s)‘
&p I Sk ok a7 ]
(7.45)
Passing to the scaling limit,
2fﬂ0(g =k,5) =-{1+x %{- + kJ.ST?I_) £,06,k) . (7.46)
If k, = Bpx and if
FY(X:ﬁ) = fY(X’k_L) (7°)+7)
then
0 o
3% [XFY(X,B)] = ox [Xfr(x:kl = ﬁx)]
_ EHSR- DA 48
= l+xgz+ 8 a%l;/ ( J_ = Bx) . (7.48)

Thus we can write (7.46) as
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. b
2f O(X,k_l.) = -gz [XFY(X)B) % . (7""’9)

In effect, k has been replaced by x, and tan © = gl/kll by
g = %l/x. From {7.46) the x = 0 analogue is
2f (0,k,) =T PR (o,k)} . (7.50)
oL x, | LT
T
4
We can test this prescription with the model of the previous

section. From (7.42)

o i no/p 8K ,
. l%i fyfo,ki}} ~ -2 &/ e 1. (7.51)

Thus the value of the pion distribution we would infer from
Sternheimer's prescription differs from the true expression by a
constant. It is easy to see how this has happened. The approximation
P, ~k 1is inadequate since exp(-apog) differs by a constant factor
from exp(-akz). For less rapidly varying KO distributions this

problem would not arise.
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F. BREMSSTRAHLUNG
While KO decays are the primary source of photons in hadronic
collisions, in a restricted kinematic region bremsstrahlung is an
important source also. The bremsstrahlung arises primarily from the
sudden creation of charged particles, i.e., inner bremsstrahlung
analogous to radiative beta-decay. The general features of the
bremsstrahlung contribution can be anticipated by considering the
classical formula for the intensity of inner bremsstrahlung from a

2
particle created suddenly with a velocity g3
dN o 2 sin2 &)
kd_oﬁk_ = —5p ———3 (7.52)
by (L - g cos ©)
where k is the photon energy and © 1s the angle between the photon
direction and the direction of g. For the Lorentz invariant form we

have

dn o 2 sin2 e
2

K — = B (7.53)
2 (L -p cos 9)2

&k b K

Consider the special case of photons emitted at 90 degrees to
the beam direction. As the value of s (the center of mass energy
square) increases, more and more charged particles are produced in the
forward and backward directions. While the bremsstrahlung from these
particles peaks also in the forward and backward directions, a
contribution at 90 degrees persists. Indeed, it can be seen from (7.53)
that, with the assumption of incoherence, each particle gives a contri-
bution to the soft photon spectrum at 90° of (a/hnzke). Thus at 90°

the bremsstrahlung contribution is

kdU (04 (n > (
~ =2 7.54
od’k bfk? © )
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where (nc> is the mean multiplicity of charged particles. Since
(nc) is believed to grow like log s, this contribution, unlike that
from nO decay does not scale, but increases with increasing s.

We shall now treat the bremsstrahlung in a more complete
fashion. Our model will be based on a number of assumptions. Firstly,
we shall assume that the photons are emitted incoherently from the
charged particles. Secondly, we shall assume that all the created
charged particles are pions. Thirdly, we shall neglect bremsstrahlung

from the incident particles. Finally, we shall assume thaf the

relevant diagrams are like that in Fig. 7.6. We shall restrict ourselves

to low photon momenta and assume that the extrapolation of the hadronic

matrix element is negligible. Thus a typical matrix element squared is

82 1
2 22
‘(ql = k) -m l

2
[M(p,,py50y = Ksdne-59)]

X Z |(2q1 - k)o€i|2 (7'55)
i

vhere M(pa,pb,ql,---,qn) is the matrix element for the nonradiative
process. The sum is over the photon polarizations. Because we have
assumed incoherent production of the photons, and negligible extrapola-
tion of the matrix element, after summing over exclusive processes, we
get a form which factorizes between the hadronic production and the

enmission of bremsstrahlung:

~Ny 2
la x k|
9 ho S . (7.56)

_ N3 g 4o
= 2(2x)” q, > o)

: 2
3 do
le(ZH) ] %o xddq
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Making manifest the correspondence with the classical result, we

have
: 2
do a 2 sin_ O do (7.57)
kq = ﬁ ] Q- == 7’5
0 a7xa’q bPke . (1 -p cos 0)° O ddq

where B = |g|/qo and ©' is the angle between ¢ and k. The

bremsstraehlung spectrum them is

ag sin2 o'
3 C q 2
d’k h“ k O l - %— cos 9';>

0
(7.58)

Specializing to the case of photons at 90o to the beam direction, we
can re-express the result in terms of angles relative to the beam

direction rather than the photon direction. Thus we have

2 1l - J;L cos ¢
= 52 24, ; 2
cos

Equation (7.59) continued next page
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Equation (7.59) continued.

kdo = _« dayynddy % a0
3oy e £ 7 d’q
o \3/2 2 » 1
q q
1+2<-—J;2> G---_Lg__l.é -1 (7-59)
9 % j
[0
= =< _ ()@ +R}. (7.60)
uﬂ2k2 c

As we shall see, R 1is a small correction. The basic result
is simply that at 90 degrees, each charged particle contributes to the
bremsstrahlung according to the classical 90° result for relativistic

particles:

an o :
k— = 55 - (7.61)

Pk hK
We can derive an estimate for R Dby considering a model in which
(qo/O) (dc/qu) is a function of %l_only, except that it vanishes
for tqnl > P, with s = 4p°. With (qo/c)(do/qu) = g(qf), we have

2
2

1
P -= 2

2 2 2,75 aamt 2 2 2

2] quj_P dq,.([qo VIR I T CT

R 7 >
27 -1

(7.62)
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02
2 quf g(qf)éog;gl‘— -1
m

m

) 3
2 2 ) 1
fd g(q,” ) log =5 - log -5~

9 &y \les 2 m2>

2
2 <<Log —‘2£> - D/log(s/mg) (7.63)
2 2 2

2
and where we have assumed § >>m . In

ne

e

where m‘L =%.L + m
addition to the lqg(s/mz) suppression, R is reduced by cancellation

between the two terms in the numerator. For example, if

g(q_LE) = exp(-aqf),

2
m 2
<Log—_‘ol'—> = El(a.mz) (7.64)
m

where E, 1is the usual exponential integral function. For a reason-

1 » m 2
able value of ame, say am = 0.3, log J%L = 1.2 so that
m

R~ o.u/log(s/mg).
For photons with fixed center of mass momentum, but not

necessarily perpendicular to the beam direction, we have similarly,

[¢1¢4 a

=- = 33 () + ] (7.65)
d k uj‘[ 1_{_L

where R' 1is given by the previous expression for R except that the

alx

argument of the pion inclusive differential cross section is shifted by

the amount necessary to bring the. photon to a 90° orientation.

v
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CHAPTER EIGHT
COMPARISON OF THEORY AND EXPERTMENT
A. The Nature of Inclusive Data

An extraordinary variety of experimental data on inclusive

reactions has appeared in the past two years. Much of the data is from

bubble chamber experiments. A smaller fraction is from counter
experiments. There are in addition angular data from cosmic ray
experiments and from the CERN Intersecting Storage Rings (ISR). Fach
type of data has certain advantages and disadvantages.

Bubble chamber data have the advantage that they provide
results over a continuous kinematic range. They also allow the
detection of hyperons and Ko's vwhich are not as amenable to counter
experiments. On the other hand, there are severe problems of particle
identification for high momentum particles of the same charge.
Rejection of events with ambiguities of identification can be a source
of bias in the data. Since it is impossible to obtain high statistics
in & small kinematic interval, the bubhle chamber data is particularly
suitable for comparison of integrated spectra, e.g., d¢/dz or
do/dy.

Counter data basically provide information only on long-lived
particles. On the other hand, it is possible to make precise compari-
sons, say, of particle ratios at fixed values of the kinematic
parameters.

Cosmic ray data have had the advantage of providing the
highest energy reactions, but their usefulness in this regard may
have come to an end with the completion of the ISR. The ISR has
provided during the past year the most exciting data on inclusive

reactions. Its range of s, from about L0O to 2800 GeVz, is
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inveluable for testing predictions about the approach to {or existence
of!) gcaling. Of course, the ISR data are limited in accuracy by
normalization problems more severe than those of conventional
accelerators.

NAL's 200-500 GeV machine should make a substantial contribu-
tion to the understanding of inclusive reactions. While not reaching
as high a c.m. energy as the ISR, it should provide high quality data
in the near asymptotic region, as well as giving data on processes
other than proton-proton collisions.

In this chapter we review some of the inclusive data bearing
on the assumptions and conclusions of the preceding chapters. This is
by no means a comprehensive review of the inclusive data, but it should
provide & means of evaluating our present understanding of these

processes.

B. Do Inclusive Reactions Scale?
Apparently they do. Figure 8.1 shows data (Allaby, 1971) for

(p:x'lp) at p; = 1h and 2k GeV/c at p, = 0.1 GeV/c. The data

D

L
for the two energies are strikingly similar as functions of x.
Figure 8.2 and 8.3 show data for (p:n+|p) and (p:rx |p) as a

function of the lab rapidity, y, with fixed, at incident (or

%ﬁ_
equivalent) momenta from 12 to 1500 GeV/c. (Sens, 1972.) The data
show no sign of having & local minimum at 2z = 0, as anticipated by
the dual resonance model (see Fig. 6.3, and Brower and Ellis, 1972),
or by some multiperipheral models (Pignotti and Ripa, 1971).

None of these data are precise enough to determine whether
the cross section is really independent of s. Certainly a behavior

-0.02
s

like (log s)_l or cannot be excluded. As we emphasized in
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Chapter Four, the Mueller picture does not reguire a pure pole pomeron
with intercept one. We might consider four possibilities:

1. The leading singularity does not have vacuum quantum
numbers. For example there could be two cuts which coincide, one having
C=+1 and G = +1 and another weaker one with C = -1 and G = +1.

2. The leading singularity has vacuum quantum numbers, but is
not factorizable.

3. The leading singularity has pure vacuum quantum numbers and
is a factorizable pole with intercept less than one. |

4. fThe leading singularity has vacuum quantum numbers and is
a factorizable pole with intercept one.

Possibility #b4 is the simplest and was implicitly assumed in
most of Chapter 3 and 5. Possibility #3 is quite similar if we consider
everywhere the differential cross section normalized by the total cross
section at the appropriate value of s. Possibility #1 is clearly
undesirable, but how can it be distinguished from #2%

consider (nx¥:x®|p), (FixFlp), (x¥|x':p), and (x%|x :p).

If the leading singularity is purely C = +1, then (see footnote 2,

Chapter 1)
("7 p) = (xin'|p) (8.1@)
(« i |p) = (i |p) (8.10)
("lx"p) = (< 7lx"p) | (8.1¢)
(n+ln_:p) = (n ]x :p) ' (8.14)

at high s, independent of whether there is factorization. These

relations would be a conseguence of a Pomeranchuk-type Theorem for
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inclusive processes. In Fig. 8.4 these proposed equalities are dis-
played schematically. Data for six of the eight processes are shown
in Fig. 8.5 (Alston-Garnjost, 1972; Alston-Garnjost et al., 1972). The
data of Fig. 8.5 are at relatively low energy and a good deal of energy
dependence is apparent. The curves have yet to coalesce at x = 0. At
x <0 (n |x :p) and (x"|x"ip) are not equal, but lie distinctly
below (ﬂ+ln+:p). The overall appearance, nevertheless, is similar to
that of Fig. 8.4. Further study of these reactions could demonstrate
that the leading singularity has- C = +1. Jlater we shall mention a
test of isospim nature of the leading singularity.

Evidence on the factorization of the leading singularity is
inconclusive at present. In Fig. 8.6 (Chen et al., 1971) we see

(1/0)ac/dp for (pix |x%), (pix |x), (pix |K'), and (pir |p) at

7, 24.8, 12.7, and 28.5 GeV/c respectively. If all reactions had

reached their limiting values and if the leading singularity were
factorizable, the curve would coincide. While this is clearly not
realized, the largest discrepancy is between (pix |x ) and (p:n-|n+)
whose asymptotic equality depends not on factorization, but only on the
leading singularity having C = +1 as we noted above.

On the basis of the exoticity requirement of Chan et al. (1971),
Chen et al. (1971) interpreted the data to indicate the (p:ﬂ'|n+) had
reached its scaling limit while the other reactions had not. Whether
this is true or-not, the comparison of (P:ﬁ-,ﬁ+) with (P:ﬂ_,ﬂ-) is
not a test of factorization, but of the C quantum number of the

leading j-plane singularity.
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C. Symmetry Relations
Some of the relations derived in Chapter Four have been
discussed in connection with the quantum number of the leading trajec-
tory. We continue these considerations turning to the data from the

ISR. In the pionization limit, we have the C invariance predictions:

(lel) = (I3 (8.2a)
U« = U« (8.2b)
(&'l = (7)) (8.2c)

and by isosinglet dominance,

(<D = D = () - (8.3)

In the fragmentation region we have the weaker statement:

(P:ﬁo) = %[(p:n+) + (p:n )] . (8.14)

InvFig. 8.7 we show the data of the Saclay-Strasbourg group (Sens,
1972) for (plp|p) and (p|p|p) at 90 degrees to the beam direction
and s = 2800 Gevz. The p curve is similar in shape to, but about
a factor of two higher than, the 5 curve. If the asymptotic term is
given by P®P (a pomeron in both the aa and bb channels), we

have, up to lowest order in nonleading terms

(plplp) = PP +2PQ@(P' +p +w + A2) (8.5a)
(plplp) = PO®P +2PQ@ (P! - p - w +A) (8.5b)
where we use p to indicate the G = +l, C = -1 contribution, etec.

If we accept the two-body Regge lore that pp couples weakly to I =1
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exchanges we have
(plplp) ~ PP + 2P®(P' + w) (8.62)
(plplp) >~ P®P + 2P@(P' - w) . (8.6v)

The discrepance between (p|p|p) and (p|p|p) indicates large P!
and w contributions which tend to cancel for P production. In this

same framework, we would have for neutron and anti-neutron production

it

(pln]p) PP + 2P®IP' - p +w - A2] (8.72)

(p|n]p)

]

PP + 2P®[P* +p - w - A2] . (8.7b)

In the approximation in which we ignore a1l but I = O exchanges, we

have

(pin]p) (8.8a)

2

(plp|p)

(plnfp) - (8.8v)

14

(vlp|P)

These relations have not yet been tested.

Data for (plx'[p) and (plx [p) at x =0 are in excellent
agreement; In Figs. 8.8 we again show data of the Saclay Strasbourg
Group at 90 degrees. A simple exponential in EL gives an excellent

fit to the data, while the dual resonance model with av = 0.9 gives

_L

behavior which is too steep. To terms of order s *
(plx*lp) = PEP + 2P@(F' + ) (8.92)
(plx"lp) = PP +2P@F -p) . (8.90)
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If the near equality of the data for s from 960 to 2800 GeV2

i
indicates an absence of s * terms, then we must have {see Eq. (3.3)]
ey *
Tppe(B)) = Tp(p) = 0. (8.10)

There is no obvious reason for expecting this. In Fig. 8.9 we show
data for the ratio ﬂ+/ﬂ- as a function of x (Albrow et al., 1972).
We expect the ratio to approach unity as x = 0. This is consistent

within the errors.

-1
While the vanishing of the s % terms for (pln\p) seems

surprising, it is consistent with the flatness of the rapidity

distributions shown in Fig. 8.2 and 8.3. The absence of the s

£l

behavior implies the absence of the cosh(z/2) behavior of Eq. (3.64).
We postpone gnalysis of the inferred HO distribution to a later
section of this chapter.

The SU(3) relations both in the fragmentation and pionization
regions have yet to be tested. An extensive experiment at Brookhaven
should provide interesting information for the fragmentation of

pseudoscalar mesons into pseudoscalar mesons (Beier et al., 1972).

D. Angular Distributions of Charged Particles at ISR

Barbiellini et al. (1972) and Breidenbach et al. (1972) have
measured the angular distribution of charged particles at s = 910,
2000, and 2800 GeVg. Breidenbach et al. have also measuredbthe distri-
bution at s = 450 GeVz. The data of the two groups are consistent,
except perhaps at s = 2000 GeVE. The data of Breidenbach et al. are
displayed in Fig. 8.10. There is no noticeable curvature to the data

as a function of 1 = fn(cot %). There is, however, a clear rise in
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the cross section with increasing s. As we noted in Chapter Five,
for distributions with & flat behavior in 1 the cross section is
expected to be an increasing function of s. At 17 = 0, the data can

be fitted with

do -

Fir

1 . . :
5 E - A' +B' s (8.11)
where plausible fits range from A' = 2.0, B' = -k.0 to A' = 2.6,
B' = -7.0, with s measured in GeV2. In Fig. 8.10, we compare the
date with & fit assuming the charge particles have a transverse
momentum distribution given by
_bp
1
fpp © € (8.12a)
-bp
L
g ® € . : (8.12b)

The normalizations are determined by Eq. (8.11). We have taken

b =6 GeV_l,approximately the figure obtained by the Saclay Strasbourg
group for pions at 90 degrees (Sens, 1972). The curves in Fig. 8.10
were obtained by evaluating Eq. (5.11) numerically. The quality of

the fits is quite good.

E. Multiplicity at High Energies
From the angular distribution analysis above we can estimate
the asymptotic multiplicity of charged particles. The coefficient of

log s in the mean multiplicity is

= 0) (8.13)
¢ charged
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where A, is the variable of Eg. (5.19). We found above that

Ay~ 2.0-2.6. Now from (5.21b)

Ay = Aé/(gl/%lg . (8.14)

For a pion distribution proportional to exp(—b?l) with b =6 GeV_l,
we obtain (gL/ml} = 0.83 and Ay = 2.4-3,1, This is a surprisingly
large number. Cosmic ray data indicated a value of about 0.7
(L. W. Jones et al., 1970). A naive interpretation of the photon
data of Neuhofer et al. (1971, 1972) suggest a value of about 1.5
{see Eq. (8.26)].

We can check the consistency of the angular distributions
against the Saclay Strasbourg results (Sens, 1972) for pion production
at 90 degrees. Both the positive and negative pions can be fitted,

independent of s in the range 900 to 2800 GeVE, with

-bp
g3 _ pe +

with

140 mb /Gev2

=
li

1

o
]

6.25 GeV

+ -~
so that, for either  or nx ,

%Zq (z = 0, s = 900-2800 GeV2) ~ 22.5 mb .

We, can apply a correction to relate this to the angular distribution,

g% . As we noted above, this correction is about 0.83. Thus we
have, with o = %% mb,

inel ~
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d———-l —g" (n =0, s = 900-2800 GeVz) ~ 1.15
. ‘q —
inel

On the other hand, the data‘of Breidenbach et al. (1972) for
charged particles of all kinds increases from about 1.1 to about 1.5
as s increases from 450 to 2800 GeV2. If these data were taken
literally, they would mean that the incregsing charged multiplicity

was due entirely to nonpion sources.

F. Analysis of the ISR Photon Data
Data are available for photon distributions at s = 900, 2000,
and 2800 GeVe, at 10, 16, 24, and 90 degrees. Neuhofer et al. (1971,
1972) provide a parametrization of the data for photon energies between

100 MeV and 5 GeV as

o/ x
k ao A L x
WA - L-2 8.1
%inel &k Ky xp<ko %o (8:29)
with A = 1.48 Gev™', k_ = 0.162 Gev, and x, = 0.083.

The parametrization in Eq. (8.19) clearly does not satisfy the
requirements of Eq. (7.32). But it does permit a reasonable evaluation

of the right-hand side of the equation. Thus we have the prediction

lim ?T(x =0, k) ~ 53 Gev? . (8.20)
S +

Verification of this prediction is obscured by the bremsstrahlung. If

at s = 2800 GeV2, (nc) ~ 10, then from Eq. (7.32)

k do

-3 . -2
—_ ~ 2X10~- k . (8.21)
%inel d’k 1

Brems.
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Comparing the bremsstrahlung prediction with the parametrization
of the data, we see that the bremsstrahlung becomes significant in the
region %1—: 1-10 MeV. The data cited above have been binned by total
photon momentum into bins of 100 MeV. The bremsstrahlung contribution
is primarily in the first bin. Formally, the integrated bremsstrahlung
contribution diverges: the actual bremsstrahlung contribution to the
measured cross section depends critically on the detection efficiency
at low photon momenta. In principle, careful measurement of the photon
spectrum at low transverse momentum could identify the bremsstrahlung
by its characteristic l/Flf behavior. After subtracting the
bremsstrahlung, the remaining cross section should conform to the
condition imposed by Eg. (7.32).

Figure 8.11 shows that the data of Neuhofer et al. are
consistent with this interpretation. The cross section for the lowest
transverse momenta lies above the curves anticipated on the basis of a
spectrum like that of Eq. (7.36). Presumably this is a reflection of
the bremsstrahlung contribution. The data shown in Fig. 8.12 are not
exactly at x = 0. At fixed ﬁroduction angle, as %J. increases, so
does x. Since we expect a fall-off in x (c.f. Fig. 7.5), the data
might be expected to be below the anticipated curve for x = 0 for
larger values of k . Such a trend seems to be present in the 10
degree data. On the other hand, the choice of a hypothetical ﬂO
spectrum at x = 0 is quite arbitrary; different spectra would give
somewhat different photon distributions. (See Fig. T.k.)

Using the Sternheimer prescription and the parametrization of
the photon data of Neuhofer et al., we deduce a neutral pion

distribution

v
B

E_do A 1 3 3\ |A_ Loz
—_ = k,s) ~ -=11+k S + X 5%) i €XP i = /!

inel d5p ~ 2( "L_L x 1 0 0/}

X &
EY (TR S, -;;_-1%).(8.22)
- e\ o k/K o ¥o
In particular, at x ='0, we have
-p, /X
B % (x-0p) ~ s L0 : (8.23)
%nel d&p L %o

0 .
i = cross section
Using 05,9 = 33 mb, we have for the =x

E_ L (x-0,) =~ mw/GeV" . (8.2k)
cinel d_3p L )

This distribution is closely similar to the charged pion cross section
(8.15 and 8.i6) of the Saclay Strasbourg collaboration, in confirma-
tion of the prediction that at x =0 the n+, x , and ﬂo
distributions must coincide at very high energies.

For x > 0, isospin invariance requires for scaled fragmenta-

tion of protons [Eq. (4.94)],
(eelp) = 3 Lpa'lp) + (pex”[2)] - (8.25)

A comparison is shown in Fig. 8.12. The agreement is less satisfac-
tory for x > 0 than for x = 0. The data shown are for (p:n |P)
and are taken from the Saclay-Strasbourg Collaboration (x = 0)
(Sens, 1972) and Bertin et al. (1972) (x >0). For x >0, we
curve to lie above the data, since the n+

would expect the ﬂo

data of Ratner et al. (1971) are slightly higher. While the relation
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in Eq. {8.25) does not appear to be satisfied by the data for x > 0,
we should like to emphasize that this relation is on very good footing.
It requires only the dominance of an I = O amplitude in the bb
channel: factorization of the pomeron is not required. Thus the

good agreement with the data at x = 0 1is reassuring and we expect

to see similar agreement for x > 0 as the accuracy of the experiments
improves. Since Eq. (8.25) ignores 7 production, the number of
photons observed should exceed the number of charged pions. With very
precise measurements, this discrepancy could be used to deduce the
magnitude of the 1 production.

A comparison similar to those made above has been performed
by Charlton and Thomas (1972) who found good agreement between the
charged and neutral pion data. In their comparison, however, they
treated the data of Ratner et al. and Bertin et al. as if it were
taken at 90 degrees, and compared it with the inferred spectrum at
90 degrees. Actually, the charged pion date they used were for
x > 0.05 and should have been compared with the inferred pion spectrum
for the same x values. Had this been done, the inferred nO
spectrum would lie below the charged pion data as in Fig. 8.12.

This is a strong reminder that in many instances a value of x = 0.05
is not necessarily small!

The parametrization of Neuhofer et al. gives us & means of
evaluating the photon multiplicity and implicitly the charged pion

multiplicity. From Eq. (8.14) we find

XOE
(nY> > 2n Ak LLog<-—2 s) (8.26)
%o
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from which Neuhofer et al. deduced & photon multiplicity at s = 2800
GeV2 of 9.4. By our isospin equality, Eq. (8.25), this means that
the charged pion multiplicity is also 9.4t. The photon data from

s = 900 to 2800 GeV2 showed no clear energy dependence while data on
the production of charged particles appear to show energy dependence.
A good deal of caution is called for under these circumstances. The
Saclay-Strasbourg Collaboration found the charged pion production at

° 2 s
90° +to be energy independent from s = 910 to 2800 GeV . This is

consistent with the constancy of the photon spectrum, but it would

require that the increasing charged particle multiplicity due entirely

to nonpion sources.
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CONCLUSION

Inclusive reactions are certain to be extensively studied for
years to come, partly because of the impossibility of studying high
multiplicity events as exclusive processes and partly as & result of
the many theoretical problems which are associated with inclusive
processes. The correctness of the Mueller picture has not been
thoroughly established, but it seems to be in accord with existing
data and provides a powerful means of analysis. In this paper we have
exploited the Mueller picture to derive tests of its basic hypotheses

and to isolate quantities of significant interest, such as symmetry

breaking effects and the high-energy behavior of the mean multiplicity.

The use of the fundamental symmetfies of the strong inter-
actions provides a means of isolating certain crossed channel j-plane
singularities. The energy dependence of these contributions to the
inclusive cross section is a decisive test of the Mueller picture,
independent of the factorization of the singularities. The failure
of these contributions to exhibit behavior like that anticipated from
two-body scattering would indicate the presence of important j-plane
singularities outside the two-body framework. The experimental data
available indicate that the dominant crossed channel singularity has
C = +1, and probably I = O, but little can be said about lower lying
singularities.

The application of SU(3) leads to numerous predictions of
equalities of inclusive cross sections. Each prediction offers an
opportunity to measure the effects of SU(3) breaking. The potential
here is very great in view of the scarcity of testable SU(3)

predictions for two-body scattering.
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The predictions of the Mueller picture for the behavior of
particle distributions in the central rapidity region can be translated
into_predictions for wide-angle production. The data extant are
consistent with these predictions and indicate, with a large uncer-
tainty, an asymptotic multiplicity much greater than previously
expected.

Inclusive photon production gives significant information on

the inclusive ﬂO distribution. This in turn can be used to check

isospin relations. At low transverse momentum, the photon spectrum
consisté of two contributions, one coming from HO decays, and the
other from bremsstrahlung associated with charged particle production.
Both can be related to the magnitude of the charged particle production.
The data from the CERN Intersecting Storage Rings are consistent with
these predictions; More refined photon measurements at low transverse
momentum would furnish valuable informetion about the charged

multiplicity.
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FOOINOTES Chapter 7
Introduction 1. This chapter has appeared as a part of a report, LBL-943, with
1. See Cocconi (1958) and references therein for earlier develop- the same title.
ments of "fireball" theories. 2. See, for example, J. D. Jackson, Classical Electrodynamics
Chapter 3 (1962).

1. D. Tow, private communication.
Chapter 4

1. This chapter is based on work done in collaboration with
Dr. Mertin B. Einhorn (Cahn and Einhorn, 1971).

2. We shall use (a:c[b) to represent both the amplitude and
the cross section for the process. This is slightly
inaccurate since the kinematical factors relating the two
may manifest some symmetry breaking in the instance of 8U(3)
symmetry. Since this is most likely not the entirety of the
symmetry breaking, we may just as well ignore the effect
since we make little effort to analyze possible symmetry
breaking effects.

3. The notation is that of the standard reference (DeSwart, 1963).
For a fine review of 8SU(3), see Carruthers (1966).

Chapter 5

1. This chapter is based on work done in collaboration with Dr.
Martin B. Einhorn and Professor J. D. Jackson. This problem
has also been treated in part by Lyon, Risk, and Tow (1971).

Chapter 6

1. For a review of the dual resonance model, see Mandelstam

(1971).
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Fig. 3.1.
Fig. 3.2.
Fig. 3.3%a.
Fig. %.3b.
Fig. 3.L.
Fig. k4.1.
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FIGURE CAPTIONS
A Mueller diagram representing the process (b:c|a) and
factors entering into the evaluation of the diagram.
A Mueller diagram representing the process (b[cla) and
factors entering into the evaluation of the diagram.
A dlagram representing a + b - ¢ + missing mass in a
domain in which Regge exchange dominates in the bec
A triple-Regge Mueller diagram and associated couplings.
Schematic representation of x dc/dx for a triple-Regge
dominated cross section. Curve (a) triple-pomeron with
pomeron intercept = 1 and a linear zero in the triple-
pomeron vertex, gPPP(t), at t = 0., Curve (b) reggeon-
reggeon-pomeron with reggeon intecept =l/2. The actual
curves plotted are y = (Zl - x) log((1 - x)-li)-l and
®) v =5Qee(a - X)-l))-
A Mueller diagram in which there is double Regge exchange

in the bb channel.

The J-plane singularity thus gener-
ated does not factorize, but has a charge conjugation
quantum number of CiCj where Ci and Cj are the C
values for reggeons 1 and Jj, similarly for G, etec.
The ratio Ai/Aé vs. am® for 8 transverse momentum distri-
bution proportional to exp(—agl?). See Egs. (5.20), (5.24),
and (5.32).

The ratio Bi/Bé vs. am® for a transverse momentum
distribution proportional to exp(—a?l?). See Egs.(5.20),

(5.25), and (5.33).

channel.

Fig. 5.3.
Fig. 5.k.
Fig. 5.5.
Fig. 5.6.
Fig. 6.la.
rig. 6.1b.
Fig. 6.lc.
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The angular distribution %%

PP term in Eg. (5.5), with & transverse momentum dependence

resulting from wuc asymptotic,

2
proportional to exp(-a?if) for various values of am .
The normalization is such that the rapidity distribution,

dg/dz is unity for all z.

The angular distributions %%

PP, term in Eq. (5.5) with a transverse momentum dependence

resulting from the asymptotiec,

proportional to exp(-b?l) for various values of (bm)g.
The normalization is such that the rapidity distribution,
dc/dz is unity for all =z.

The angular distributions a9 resulting from the non-

an

asymptotic, P-R, term in Eq. (5.5), with a transverse
momentum dependence proportional to exp(-agi?) for
various values of amg. The normalization is such that the

rapidity distribution, do/dz(P - R) is cosh(z/2).

The angular distributions %% resulting from the non-
asymptotic, P - R, term in Eg. (5.5), with a transverse
momentum dependence proportional to exp(—b?l? for
various values of (bm)z. The normalization is such that
the rapidity distribution, do/dz(P - R) is cosh(z/2).
The two-body optical theorem for a + b - anything.

The inclusive cross section for a + b — ¢ + anything as
sum of squares of amplitudes.

A discontinuity equation for the six~point function. The
summations indicate permutations of initial or final
particles. The equation holds for nonforward amplitudes

so the momenta of the primed particles need not be the same

as those of the unprimed particles. (Tan, 1971.)



Fig. 6.1d.
Fig. 6.le.
Fig. 6.2.
Fig. 6.3.
Fig. 6.h4.
Fig. 7.1.
Fig. 7.2.
Pig. 7.3.
Fig. T.h.
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The discontinuity equation in Fig. 6.lc below threshold for

all but the abc channel. (Tan, 1971.)

The inclusive cross section as a discontinuity of the
six-point amplitude.

Four tree dlagrams in the dual resonance model contributing
to (a:x|b). The diagrams are distinct because the
ordering determines which channels have resonances and
Regge behavior.

The inclusive distribution, f(y,gl), of the dual resonance
model using only the diagram of Fig. 6.2a. The curves are
for fixed EL_ as a function of the lab rapidity, vy.

The vacuum intercept is taken to be one-half.

The pionization function, f(x = O,gl?, of the dual reson-
ance model vs. gli with the vacuum intercept taken to be
0.5 and 0.9.

Cross sections of the paraboloids in momentum space on
which xo's must lie to contribute at given values of
photon momentum.

The geometry for determining the photon spectrum from a
given pion spectrum.

The photon spectrum as a function of (gl/m) at x=0
resulting from a pion spectrum given by exp(—apli

The behavior at extremeley small values of k

L

) with
am = 0.3,
is shown in more detail in Fig. T7.L.

Photon spectra as functions of %L/m at x = 0 resulting
from two pion spectra having the same (Pl?): solid line,
exp(-agl) with am® = 0.3; dashed line, exp(-bgl) with

(bm)® = 1.8. k = 0.

Both spectra are normalized to unity at 5

Fig. 7.5.

Fig. 7.6.

Fig. 8.1.

Fig. 8.2.

Fig. 8.3.

Fig. 8.k,

Fig. 8.5.

Fig. 8.6.
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The photon spectrum fY(x,%l?) as & function of x for

various fixed values of k, in GeV/c. The original pion
spectrum is exp(-agl?) with am> = 0.3.

A typical Bremsstrahlung diagram in charged particle
production.

Data for (pix™p) at p, . = 14.25 and 24.0k GeV/ec:

_EE Qg_ as a function of

5t d5p x at fixed P = 0.1 GevV/c.
(Allaby, 1971).

Invariant cross section for (p:n+|p) at various fixed
values of Pl_ as a function of lab rapidity, y. From
the compilation of Sens (1972).

Invariant cross section for (p:x |p) at various fixed
values of ?l. as a function of lab rapidity, y. From
the compilation of Sens (l972).>

A schematic representation of scaled distributions,

x do/ax, for (ﬂi|ﬂ+2p), (nf|n_:p), (ni:ﬂrlp): and
(ni:n;]p) as functions of x.

+ - -
Low-energy data for (n+:n*|p), (n |ni:p), (x 2z |p),

-1 - . . x do
and (n [« tp). The quantity plotted is F(x) = =
as a function of x.
. R . 1 do
A test of factorization and scaling: Vs P for

(alﬂ_;P) with a = “h(A)’ p(B), K+(C) and ﬂ+(D); in

the proton rest frame. The incident momenta are 24.8,

28.5, 12.7, and 7 GeV/c respectively. If the distributions
had scaled and if the leading singularity factorized,

the curves would coincide. Chen et al. (1971).



Fig. 8.7.
Fig. 8.8a.
Fig. 8.8b.
Fig. 8.9.
Fig. 8.10.
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Data of the Saclay-Strasbourg Group as presented by Sens

(1972) on the invariant cross section for (plp|p)
(circles) and (p|p|p) (triangles) as a function of
?L. at Py = 1500 GeV/c-equivalent. Charge conjugation
invariance requires thé distributions to coincide
asymptotically.
Data on the invariant cross section as a function of p
for (pln-‘P), X = 0, from the Saclay-Strasbourg Group
as presented by Sens (1972). Also shown is the data of
Fig.

Bertin et al. (1972) for (p:rx lp) at x = 0.076. The
solid curve is a fit (Sens, 1972) given by 140 exp(-6.25?L).
The dashed curve is a dual resonance pionization function
with av = 0.9. The normalization was determined by
fitting to the data at ?l? = 0.3 GeV>. See Fig. 6.h.

Data on the invariant cross section as a function of gL
for (p|n+‘p), x = 0, from the Saclay-Strasbourg Group

as presented by Sens (1972). Also shown is the data of
Ratner et al. (1971) for (p:x'|p) at x = 0.07.
Particle ratios n+/n- and p/nx from p-p collisions
at ISR energies as a function of x. From the data and
compilation of Albrow et al. (1972).

do

d—nVS.

Data for the angular distribution n of

%inel
charged particles (Breidenbach et al., 1972). The center-
of-mass energy squared is (a) 450 GeVE, (b) 910 GeV2,
() 2000 GeVe, and (d) 2820 GeV". The curves were
obtained by assuming a transverse momentum dependence in

the PP and PR terms [Eg. (5.5)] of exp(-bgi? with

b o= 6(GeV/c)_l, and using Egs. (5.11lc) and (5.11d).

Fig.

8.11.

8.12.
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do
Some of the data of Neuhofer et al. (1972) for = =
inel d”k

i

at low transverse photon momentum aﬁd fixed angles of 10
and 24 degrees away from the beam direction. The curves
are predictions for x = O photons based on an assumed
pion spectrum proportional to exp(-agl?) with am® = 0.3.
The normalization for the curve is determined by Eq. (7.32).
See Eq. (8.20). The data pions have values of x between
zero and 0.05.

The data of Bertin et al. (1972) and the Saclay-Strasbourg
The solid

Group as reported by Sens (1972) for (p:x |P).

curves are Fits to lower energy data for (p:x |p). The
dashed curve is the value of the invariant cross section
for (p:no]p) at P - 0.4 Gev/c derived with the
Sternheimer approximetion, Eq. (8.22). The data of
Ratner et al. (1971) for (p:n+lp) are slightly higher
than those shown for (p:x |p). Isospin invariance,
together with the assumption that the leading J-plane
singularity has I = O, requires that asymptotically,

(p:r°p) = [(pix'|p) + (pix"|p)1/2. Cabn (2972).
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