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ABSTRACT 

E n e r g e t i c n e u t r a l beams a r e b e i n g c o n s i d e r e d b o t h f o r f i l l i n g a n d 

h e a t i n g f u s i o n d e v i c e s . Rough e s t i m a t e s o f beam c u r r e n t a n d e n e r g y a r e 

d e r i v e d f o r open a n d c l o s e d m a g n e t i c g e o m e t r i e s . I n a d d i t i o n , t h e u s e 

o f beams t o e f f e c t e n e r g y m u l t i p l i c a t i o n s c h e m e s o r s t a t i o n a r y Tokamak 

e x p e r i m e n t s a r e b r i e f l y s u m m a r i z e d . The p r o b l e m s o f n e u t r a l beam p r o d u c -

t i o n a s a f u n c t i o n o f beam e n e r g y and i o n s p e c i e i s a l s o d i s c u s s e d . The 

s t a t e - o f - t h e - a r t f o r i o n beam p r o d u c t i o n a t ORNL c o n c l u d e s t h e r e p o r t . 
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INTRODUCTION 

An e n e r g e t i c beam i s a p r i m e c a n d i d a t e f o r f i l l i n g a n d / o r h e a t i n g 

e x i s t i n g a n d p r o p o s e d f u s i o n d e v i c e s . The p u r p o s e o f t h i s p a p e r i s t o 

t a b u l a t e t h e beam r e q u i r e m e n t s e s t i m a t e d b y v a r i o u s r e s e a r c h e r s a n d t o 

show t h e r e l e v a n c e o f t h e e n e r g e t i c beam d e v e l o p m e n t work i n t h e ORNL 

C o n t r o l l e d T h e r m o n u c l e a r R e s e a r c h P r o g r a m t o t h e d e s i r e d g o a l s . 

I . M i r r o r s 

1 2 3 

Many p e o p l e , ' ' h a v e c o n t r i b u t e d t o t h e c o n s i d e r a t i o n o f f i l l i n g 

a m a g n e t i c m i r r o r b y beam i n j e c t i o n . One may e s t i m a t e t h e beam c u r r e n t 

a n d e n e r g y r e q u i r e m e n t s b y c o n s i d e r i n g t h e r a t e e q u a t i o n f o r a D ,T 

r e a c t i o n . F o r e x a m p l e ( 5 0 $ D, 50% T ) . 

d n . _ n . 
i _ c j 2 < P v > /-, ) 

a T - s i - n i - 7 7 ( 1 ) 

i 

w h e r e S^ = i n j e c t e d c u r r e n t d e n s i t y , 

n i < < J ^ > = t i m e r a t e o f c h a n g e on i o n s / v o l u m e b y f u s i o n 

(2 i o n s b u r n e d / f u s i o n ) , 

T. = i o n c o n f i n e m e n t t i m e * a n d n . / T . - l o s s r a t e . 
i ' i • i 

At e q u i l i b r i u m 

d n . 

a n d 2 _ n. <Ov> n. 

1 
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The f r a c t i o n a l t u r n u p , 

S . —L _ _ T . 

f = - | - = x
2 i v ^ ' - g - (2) 

1 n . T .<av> 
i I 

where T,. = ( n . < a v > _ ) " 1 . 

i i f 

F o r a m i r r o r a t t e m p e r a t u r e s "below s e v e r a l h u n d r e d k e V , f < 1% a n d 

S. 1 — • 1 

The i n j e c t e d c u r r e n t I i s 

n . V e 
I = S . Ve = — , ( 3 ) 

i 

w h e r e V = p l a s m a v o l u m e . 

From F o k k e r - P l a n c k c a l c u l a t i o n s we h a v e 

), £ m 1 1 T 3 y / 2 l o g R n . T . = 4 . 6 x 10 :—P— li £n A 

w h e r e T is in k eV . 

When R=3, &nA=15 we obtain 

10 3 / 2 n . T . = 1 . 5 x 1 0 i U T , 
l i 

S u b s t i t u t i n g i n ( 3 ) we f i n d 

2 v n . V e 
I = 1 10 3 / 2 1 . 5 x 1 0 T 

I n t e r m s o f f u s i o n p o w e r , P^, 

Pf = ¥ ni<av> Q Ve> 
w h e r e Q i s i n eV, we h a v e 

-2 Pf I = 2 x 10 
t 3 / 2 
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w h e r e Q = 1 , 7 x 10 1 eV a n d 

3 
<av> = 8 x 10 cm / s e c , a r o u g h a v e r a g e o v e r t h e h i g h e n e r g y 

r a n g e o f T t a b u l a t e d i n T a b l e 1 a n d l i k e l y f o r m i r r o r 
r e a c t o r s . 

The r e s u l t i n g v a l u e s o f I f o r t h e i n d i c a t e d v a l u e s o f P f a n d T a r e 

shown i n T a b l e 1 . 

T a b l e 1 . Power R e q u i r e m e n t s f o r M i r r o r R e a c t o r 

P f ( M W t h ) T(keV) l ( k A ) P / P i n j e c t e d f 

1 0 " 100 200 2 

1|00 25 1 

1000 0 0 . 6 

1 0 3 100 20 2 

1*00 2 . 5 1 

1000 0 . 6 0 . 6 

1 0 2 100 2 r 

koo 0 . 3 5 1 

1000 0 . 0 6 0 . 6 

One c o n c l u d e s t h a t h u n d r e d s t o t h o u s a n d s o f amps a r e r e q u i r e d a t e n e r g i e s 

g r e a t e r t h a n o r e q u a l t o 100 keV. S i n c e h i g h m a g n e t i c f i e l d s a r e p r e s e n t , 

t h e s e beams w i l l h a v e t o b e n e u t r a l a t o m s . P r o d u c t i o n o f t h e beams a n d 

p r o b l e m s i n c o n v e r t i n g i o n s t o n e u t r a l s a r e c o n s i d e r e d i n S e c t i o n I I I . 

The r a t i o s o f P . . , , t o P . shown i n T a b l e 1 r e s u L - i n a i n j e c t e d f 

p e s s i m i s t i c v i e w on m i r r o r f u s i o n r e a c t o r s . The s i t u a t i o n i s e v e n w o r s e 

when one c o n s i d e r s t h e r m a l e f f i c i e n c y and beam i n j e c t i o n e f f i c i e n c y . 
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R. F . P o s t ^ a r g u e s t h a t d i r e c t c o n v e r s i o n o f t h e m i r r o r l o s s e s 

may make a m i r r o r d e v i c e e c o n o m i c a l l y f e a s i b l e . However t h e e f f i c i e n c y o f 

d i r e c t c o n v e r s i o n h a s n o t y e t b e e n e x p e r i m e n t a l l y d e t e r m i n e d . 
1 1 ' T o r i 

U n l i k e t h e m i r r o r , we s t a r t v i t h a d e n s e , r e l a t i v e l y c o l d p l a s m a w h i c h 

i s t o b e h e a t e d b y i n j e c t i o n o f e n e r g e t i c i o n s . The r a t e o f h e a t i n g o f 

t h e p l a s m a e l e c t r o n s a n d i o n s c a n b e w r i t t e n a s 

dT t 2 E I T - T . „ . „ 
T T ^ = + k _ k _ S _ i . _ K T 3 / 2 ( U ) 
d t ' n 1 nVe 2 T . 3 e 

e i 

dT . T - T . E I T. 

e i iii 

H e r e we f i n d t h e f i r s t term, o f Eq . (1+) t o b e t h e r a t e o f ohmic h e a t i n g , 

t h e s e c o n d t e r m t h e e n e r g y t r a n s f e r t o e l e c t r o n s f r o m beam i o n s , t h e t h i r d 

t e r m t h e e n e r g y l o s s r a t e t o i o n s a n d t h e l a s t t e r m r e p r e s e n t s t h e 

b r e m s s t r a h l u n g l o s s . E q u a t i o n ( 5 ) h a s a s i m i l a r s e t o f t e r m s e x c e p t t h e 

i o n e n e r g y l o s s r a t e i s due t o i o n t h e r m a l c o n d u c t i v i t y a s g i v e n b y t h e / GSK t h e o r y . 

To f i n d a n a p p r o x i m a t e s o l u t i o n t o t h e s e e q u a t i o n s we o v e r s i m p l i f y , 

s e t T = T . , a n d o b t a i n t h e s t e a d y s t a t e s o l u t i o n f o r f i x e d T . : 
e l 1 

nVeT. 
1 = F " F T • ( 6 a > 

U o E 

Here K^ i s t h e f r a c t i o n o f e n e r g y f r o m beam i o n s t r a n s f e r r e d t o p l a s m a 
7 

i o n s w h i c h uan b e o b t a i n e d f r o m S i g m a r a n d J o y c e a s a f u n c t i o n o f t e m p e r a -

t u r e . S i n c e t h e p r o d u c t o f e n e r g y c o n f i n e m e n t t i m e a n d p l a s m a d e n s i t y 

mus t e x c e e d t h e Lawson l i m i t , w h e r e we a s s u m e t h e p a r t i c l e c o n f i n e m e n t 

t i m e i s e q u a l t o o r g r e a t e r t h a n t h e e n e r g y c o n f i n e m e n t t i m e , t h e n 



> Ik nx_, - 2 x 10 . W h i l e t h i s Lawson l i m i t i s a f u n c t i o n o f t e m p e r a t u r e , 
iii 

i t h a s a b r o a d minimum n e a r 25 keV. 

Wi th t h i s a s a "bas i s we can u s e t h e f u s i o n power a s a s c a l i n g p o i n t 

t o s u b s t i t u t e i n ( 6 a ) f o r n ,̂ 

k? T 
J I 1 / g-u \ 

= <ov>Q K 1 )E onxE • 

As s t a t e d a b o v e , K^ i s n o t c o n s t a n t . However , p u t t i n g ^ T. i s a 

s i m p l i f i c a t i o n w h i c h n e g l e c t s e n e r g y t r a n s f e r f r o m e l e c t r o n s t o i o n s . 

W i t h i n t h e d e s i r e d a c c u r a c y o f o u r c a l c u l a t i o n , we p u t K^ % 0 . 5 f o r t h e 

r a n g e o f c o n s i d e r e d . I n s e r t i n g number s f o r a DT r e a c t i o n w h e r e a g a i n 

7 i 
we t a k e Q « 1 . 7 x 1 0 ' eV a n £ a l l o w <av> a n d nx_ L t o v a r y w i t h T. E |Lawson l 

we f i n d t h a t T / ( < a v > n x ) i s a p p r o x i m a t e l y c o n s t a n t i n t h e r a n g e 10 -v T l e i 

£ 20 keV. T h i s means t h a t P i n j e c t e d ^ P f i s a p p r o x i m a t e l y c o n s t a n t a n d 

i s a b o u t 0.11+ i n t h i s r a n g e . T a b l e 2 shows t h e c u r r e n t and power r e q u i r e -

m e n t s g o t t e n i n t h i s way a n d i n d i c a t e s t h e n e c e s s a r y power f o r h e a t i n g 

a t o r o i d i s an o r d e r o f m a g n i t u d e l e s s t h a n f o r f i l l i n g m i r r o r r e a c t o r s 

w i t h t h e same power o u t p u t . 
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T a b l e 2 . Power R e q u i r e m e n t s f o r T o r o i d a l R e a c t o r s w i t h 10 keV 

£ T. £ 20 keV. 
l 

P f ( M W t h ) T(keV) K k A ) P / P i n j e c t e d f 

10 

1 0 -

10 

100 

1*00 

1000 

100 

too 

1000 

100 
koo 

1000 

Ik 

35 

l . U 

l.k 

0 . 3 5 

O. l l* 

O.l l* 

0 . 0 3 5 

0.01k 

.lb 

. I ! * 

.Ik 

.Ik 

. 11+ 

. l U 

.Ik 

.Ik 

.Ik 
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Many c o n s i d e r a t i o n s e n t e r when t r y i n g t o o p t i m i z e t h e p l a s m a d e n s i t y . 

Time d e p e n d e n t s o l u t i o n s o f E q s . (U) a n d ( 5 ) s u g g e s t t h a t low d e n s i t i e s 

13 - 3 

( 3 . 5 x 10 cm ) a r e more d e s i r a b l e f o r ohmic i g n i t i o n ; a l s o low d e n s i t i e s 

a r e d e s i r a b l e b e c a u s e o f r a d i a t i o n damage e f f e c t s on t h e w a l l s . On t h e 

o t h e r h a n d , i n c r e a s i n g t h e d e n s i t y c a u s e s t h e i n j e c t e d c u r r e n t t o d e c r e a s e 
f o r f i x e d r e a c t o r power a s c a n b e s e e n f r o m E q . ( 6 b ) . O t h e r 

e f f e c t s s u c h a s t r a p p i n g l e n g t h a n d f u e l i n g s u g g e s t a d d i t i o n a l c r i t e r i o n 
Q 

f o r i n j e c t i o n . F o r i n s t a n c e , R i v e r i e shows t h a t t o o b t a i n s u f f i c i e n t 

p e n e t r a t i o n o f n e u t r a l p a r t i c l e s f o r f u e l i n g , beam e n e r g i e s o f 1 MeV a r e 

r e q u i r e d . At t h e s e e n e r g i e s , t h e c o n v e r s i o n o f i o n beams t o n e u t r a l 

b e a m s i s a p r o b l e m a n d w i l l b e d i s c u s s e d i n S e c t i o n I I I . 

D . C . Tokamak 

I n 1969» Ohkawa^ p r o p o s e d u s i n g beams t o p r o d u c e t h e t o r o i d a l c u r r e n t 

w h e r e t h e beams w o u l d augment o r s u b s t i t u t e f o r t h e a z i m u t h a l e l e c t r i c 

f i e l d p r o d u c e d i n i t i a l l y b y a t r a n s f o r m e r . The ohmic c u r r e n t t o b e m a i n -

t a i n e d d e c a y s b e c a u s e o f t h e momentum l o s s b e t w e e n e l e c t r o n s a n d i o n s 

v i a Coulomb c o l l i s i o n s . An e l e c t r i c f i e l d d r i v e n b y a c h a n g i n g f l u x i s 

r e q u i r e d t o m a i n t a i n t h i s c u r r e n t . By c o n s i d e r i n g i n j e c t i o n o f a h i g h 

a n d low e n e r g y beams i n o p p o s i t e d i r e c t i o n s , Ohkawa d e r i v e s t h e c u r r e n t s 

n e c e s s a r y f o r t h e p l a s m a e l e c t r o n s a n d i o n s t o r e c e i v e momenta t h r o u g h 

Coulomb i n t e r a c t i o n f r o m t h e r e s p e c t i v e h i g h a n d low e n e r g y b e a m s . 

I n j e c t i o n i n o p p o s i t e d i r e c t i o n s a t d i f f e r e n t e n e r g i e s i s r e q u i r e d t o 
l i m i t n e t momentum t r a n s f e r t o i o n s . From power a n d c u r r e n t c o n s i d e r a -3 
t i o n f o r a 10 MW., r e a c t o r , Ohkawa ' s number s i n d i c a t e beams on t h e o r d e r t h 

2 
o f 1 MeV a t 10 t o 10 A a r e n e c e s s a r y . 
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10 
R e c e n t l y , Ca.Hen a n d C l a r k e c o n s i d e r e d t h e s l o w i n g down t i m e o f a 

beam i n j e c t e d i n t o a t o r o i d a l p l a s m a . They p o i n t r u t t h a t d u r i n g t h e 

s l o w i n g down t i m e , t h e beam i o n s c o n s t i t u t e a s t o r e d a z i m u t h a l c u r r e n t . 

Once t h e momentum of t h e b e a n i o n i s r e d u c e d t o t h a t o f t h e b u l k p l a s m a , 

t h e c o n t r i b u t i o n o f t h e i o n t o t h e p a r t i c l e c u r r e n t c e a s e s . F o r a 30 keV 

1 3 - 3 beam : n a 1 keV p l a s m a o f 5 x 10 cm , t h e y c a l c j l a t e d a s l o w i n g down 

1 1 t i m e o f 1 ^ 50 msec . S i g m a r a n d Hogan a r e c o n s i d e r i n g t h e beam p r o d u c e d 

12 
s t o r e d c u r r e n t a s t h e ' s e e d ' f o r p r o d u c i n g a b o o t s t r a p c u r r e n t . P r e -

l i m i n a r y c a l c u l a t i o n s i n d i c a t e a c u r r e n t m u l t i p l i c a t i o n o f t h e i n j e c t e d 3 k 

c u r r e n t b y a b o u t 10" - 10 f r o m s t o r e d c u r r e n t and 10 f r o m t h e b o o t s t r a p 

e n v v o n t . Thus 10 a m p e r e s o f n e u t r a l beam p r o d u c e d c u r r e n t v o u l d b e JO*5 

a m p e r e s o f t o r o i d a l c u r r e n t . The beam a l s o h a s t h e e f f e c t o f m o n o t o n i c a l l y 

i n c r e a s i n g t h e a n g u l a r momentum o f t h e b u l k p l a s m a . I t i s n o t c l e a r w h a t 

t h e c o n s e q u e n c e s o f t h i s e f f e c t w i l l b e . 

E n e r g y M u l t i p l i e r 

S e v e r a l p e o p l e h a v e c o n s i d e r e d schemes f o r p^ j d u c i n g f u s i o n e n e r g y i n 

d e v i c e s w h i c h c o n t a i n a warm, d e n s e ^i.asma below- t h e i g n i t i o n t e m p e r a t u r e . 1 3 

R e c e n t l y , Dawson e t a l c a l c u l a t e d t h e f u s i o n p r o b a b i l i t y f a c t o r o f a 

beam s l o w i n g down i n a b u l k p l a s m a as a f u n c t i o n o f n , T a n d T . N e g l e c t i n g 

t h e e n e r g y r e q u i r e m e n t s t o m a i n t a i n t h e b u l k p l a s m a , t h e y d e t e r m i n e t h a t i t 

i s p o s s i b l e t o e f f i c i e n t l y o b t a i n a s i g n i f i c a n t f u s i o n power o u t p u t b e f o r e 

t h e beam e n e r g y o r f u s i o n p r o b a b i l i t y i r o p s t o o l o w . They s p e c i f y t h e 

d e s i r a b i l i t y o f h a v i n g n e u t r a l beams i n t h e 100 t o 300 keV e n e r g y r a n g e w i t h 

100 - 1000 A c u r r e n t s . 

C l a r k e " ^ h a s a d d e d an i n t e r e s t i n g e x t e n s i o n t o D a w s o n ' s p r o p o s a l w h i c h 

i n seme r e s p e c t s i s t h e i n v e r s e o f Ohkawa ' s i d e a . C l a r k e s u g g e s t s u t i l i z i n g 
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t h e a z i m u t h a l e l e c t r i c f i e l d t o m a i n t a i n t h e e n e r g y o f t h e "beam i n D a w s o n ' s 

e n e r g y m u l t i p l i e r s c h e m e . I n t h i s way t h e f u s i o n p r o b a b i l i t y o f t h e i n j e c t e d 

beam may b e m a i n t a i n e d a t i t s maximum v a l u e , t h e r e b y a f f o r d i n g a b o u t a 50$ 

i n c r e a s e i n t h e e n e r g y m u l t i p l i c a t i o n . 

I l l . I o n t o N e u t r a l C o n v e r s i o n 

I t i s a p p a r e n t t h a t a l l e n e r g e t i c p a r t i c l e beams m u s t s t a r t o u t a s 

i o n s , w h i c h a r e e l e c t r o s t a t i c a l l y a c c e l e r a t e d . I n o r d e r t o p e n e t r a t e t h e 

m a g n e t i c c o n f i n i n g r e g i o n s o f t h e p l a s m a , i t i s n e c e s s a r y t o c o n v e r t t h e s e 

beam i o n s t o n e u t r a l a t o m s o u t s i d e o f t h e c o n f i n i n g m a g n e t i c f i e l d . The 

a t o m s a r e r e c o n v e r t e d t o i o n s i n s i d e t h e p l a s m a , t h e r e b y s a t i s f y L i o u v i l l e ' s 

t h e o r e m . The p r o c e s s o f i o n i z i n g t h e n e u t r a l beam i n s i d e t h e p l a s m a i s 

i m p o r t a n t t o o u r c o n s i d e r a t i o n s i n s o f a r a s t h e mean f r e e p a t h o f t h e e n e r g e t i c 

n e u t r a l i s on t h e o r d e r o f t h e p l a s m a r a d i u s . T h i s c o n d i t i o n w i l l s e t a 

l o w e r l i m i t on t h e beam e n e r g y . Of more i m p o r t a n c e t e c h n o l o g i c a l l y i s t h e 

i o n t o n e u t r a l c o n v e r s i o n a n d t h e r e s t r i c t i o n s i t i m p o s e s on t h e i o n s p e c i e 

a s a f u n c t i o n o f beam e n e r g y . F o r r e a c t o r p u r p o s e s , t h e n e u t r a l a t o m 

beams r e q u i r e d l i e i n t h e 100 keV - 1 MeV e n e r g y r a n g e w i t h c u r r e n t s i n t h e 

3 
1000 A - 100 A r a n g e . The c u r v e s i n F i g . 1 i l l u s t r a t e v e r y c l e a r l y t h e 

d i f f i c u l t y t o b e e n c o u n t e r e d i n p r o d u c i n g s u c h n e u t r a l a t o m b e a m s . F o r 

+ + 

b o t h p o s i t i v e i o n s D a n d D^ t h e c o n v e r s i o n e f f i c i e n c y i s p o o r a t i o n 

e n e r g i e s a b o v e 100 - 2 0 0 keV a n d a r e a t b e s t 20$ t o 30%. C o n v e r s i o n o f 

D* may b e somewhat b e t t e r d e p e n d i n g upon unknown p l a s m a e f f e c t s i n t h e 

c o n v e r s i o n c e l l . 

The c o n v e r s i o n e f f i c i e n c y f o r D~ l o o k s g o o d . H o w e v e r , i n c h o o s i n g 

a D~ beam o n e h a s m e r e l y s h i f t e d h i s p r o b l e m s f r o m t h e c o n v e r s i o n c e l l t o 

t h e i o n s o u r c e a n d e x t r a c t i o n r e g i o n . The d i f f i c u l t i e s i n p r o d u c i n g D~ 
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F i g . 1 . E f f i c i e n c y v s N e u t r a l Beam E n e r g y f o r N e u t r a l i z a t i o n o f D ^ , D ^ , 

D j a n d D~ i n H y d r o g e n . F o r t h e l a s t t h r e e "beams an opt imum 
t a r g e t t h i c k n e s s i s t a k e n . The r a n g e o f v a l u e s f o r D+ a n d D~ 
i s due t o u n c e r t a i n t y i n t h e d e g r e e o f i o n i z a t i o n o f x h e t a r g e t 
g a s , a f u l l y i o n i z e d g a s g i v i n g t h e h i g h e s t v a l u e i n e a c h c a s e . 
The c r o s s s e c t i o n s f o r D^ b r e a k u p on p l a s m a a r e n o t known t o 
s u f f i c i e n t a c c u r a c y t o e n a b l e t h e r a n g e t o b e s t a t e d i n t h i s 
c a s e . [ E e f . 3 ] 

1000 
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15 ions may be appreciated by looking at Fig. 2. This figure shows the 
+ 

conversion efficiency for incident low energy D ions. The maximum 

conversion efficiency is about 20$ in cesium. The problem is twofold; 

l) production of large D ion currents at ̂  1 kV; and 2) acceleration 

of D ions without expending huge amounts of energy on unwanted electrons. + + The conversion loss is at ^ 1 keV ion energy whereas for D and D^, the 

conversion loss is at ̂  100 keV ion energy. However, we lose in using 
~ + . + 

D ions compared to D and D^ because it is much more difficult to extract 

bright beams at 1 kV than at 100 kV. In either case we need an ion flux 

from the source on the order of U to 5 times greater than the neutral atom 3 + + flux to be injected. Direct conversion of the unconverted D or D^ ion 
at - 100 kV might play a decisive role not only in the feasibility of 

mirrors but also in the choice of ion species for beams > 100 keV, when 

reactor prototypes are constructed. 

IV. Ion, Beam State-of-the-Art at ORNL 

The ORNL, CTR ion beam program is actively engaged in the development 

of energetic, multiampere neutral beams. The status of this work is pre-

sented in ORNL-3^72. Briefly, this work may be summarized in the following: 

A simple, flexible and efficient ion source has been built and named 

a duoPIGatron. The source consists of a duoplasmatron ion source feeding 

a PIC- discharge system. The extraction electrodes are multiaperture and 

are arranged in an accel-decel arrangement with a 5 cm diameter. One ampere 

beams are extracted in steady state operation with ion energies of from 

1.5 to 5 keV. Four ampere beams are extracted for 0.1 sec pulses and 

10$ duty cycle at ion energies of 20 to ^0 keV. At 30 to 1*0 keV % 60% 

of the ion beam is within a half angular divergence of 1.2° with 
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F i g . 2 . N e g a t i v e I o n E q u i l i b r i u m F r a c t i o n s f o r I n c i d e n t P r o t o n s a n d 
A l k a l i - M e t a l - V a p o r T a r g e t s . [ R e f . l U ] 



Ik 

no magnetic lens. Using a hydrogen gas cell this system produces 2.6 A 

(equivalent) of IT.5 and 35 keV H° particles vithin a half angular diver-

gence of 1.2° 
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