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Determining Constants in Shor’s Discrete Log
- Algorithm over Z,

J. Mark Ettinger *and Mike Neergaard
Los Alamos National Laboratory

We compute the number of gates and laser pulses required in Shor’s al-
gorithm for finding 7 in the equation g" = z(mod p) where p is a prime,
and g and z are given elements of the multiplicative group Z;. Because
the discrete logarithm algorithm is similar to the factoring algorithm we
may utilize gates designed for use in factoring. We use the gate configura-
tions and pulse counts found in [1] and [2]. We use the notation of [2] in
which [a, b,¢,d, €] indicates a use of a Not gates, b controlled-Not gates, ¢
controlled-controlled-Not gates, d controlled-controlled-controlled-Not gates,
and e controlled-controlled-controlled-controlled-Not gates. Similarly [a, b, ]
will indicate an analogous gate structure where the control bits are limited
to 2 controls (as in the basic machine model to be discussed below). Recall
a k-controlled-Not gate requires 2k + 3 pulses.

Let p be an L-bit prime. We first prepare the state

which requires 2L qubits for register storage and one pulse for each bit. We

next prepare the state
2L -1

S la,b, S(a), S(b) >

a,b=0
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where S(z) = 0if z < p— 2 and S(z) = 1 otherwise. The S comparison
function may be computed by reversing the plain adder network in [1]. This
gate requires [0,4L — 1,41 — 2], 48L — 19 pulses, and two qubits to store the
comparison results. We observe these latter two bits and restart the entire
process if we obtain a 1 in either bit. If we observe 0 in both registers we
then know that we have created the state

p—2p-2

—ZZ]CL b>.

=0 p=0

To this point we have used 2L+2 qubits, 50L—19 pulses, and a gate structure
of [0,4L — 1,4L — 2|. The next state we create is

p—2p-2

——ZZ[a b, g*z°(mod p) > .

a—Ob 0

The requirements for modular exponentiation are varied according to time-
space tradeoffs and whether or not we permit 3-controlled-Not gates and
4-controlled-Not gates in our machine (enhanced machine model) or restrict
the control bit structure to 2-controlled-Not (basic machine model). We
summarize here the results listed in [2] for convenience. The pairs of equa-
tions below give the gate structure and pulse count for the average case
complezity for exponentiation modulo p, denoted [EX PP, where the num-
ber of scratch bits is listed in the subscript. For example, the first equation
gives the gate count for exponentiation modulo p assumimg the enhanced
machine model and 2L + 1 qubits of scratch space and is therefore denoted
[EX PP 11+1- The second equation gives the pulse count for expo-
nentiation mod p assuming the enhanced machine model and 2L + 1 qubits
of scratch space and is therefore denoted [EX PP]ZZ;gZﬁZZSQ L1

[EX PP s o1 = (L—1)[10L*~14L+4,4L*+8L—12,17L*~36 L+22,3L*—3, 2L* —4L+2]
+[2,L/2+1,0,0,0]
[EX PP b, = (L ~1)(198L% — 270L + 93) + 5L /2 + 7
[EXPPos e op s = (L—1)[10L?—14L+4, 5L*+10L—14,19L*—34L+21, 2L*—4L+2, 0]
+[2,L/2 +1,0,0,0]
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[EXPP]ZZ‘;Lf;‘iﬁQLH (L —1)(186L* — 238L +99) + 5L/2 + 7

[EX PPJesstes . = (L—1)[100%~14L+4, TL*+6L—12, 231> —42L+25|+[2, L/2+1, 0]
[EX PPjuctasess = (L — 1)(206L% — 278L + 119) + 5L/2 + 7

[EX PP f9r ) = (L—1)[10L*—14L+4, 5L*+10L—14, 27L*~50 L+29}+[2, L/2+1, 0]
[EXPP],;‘;’;?;ZE% = (L —1)(224L* — 314L +137) + 5L/2+ 7

[EX PPlgedsrs, = (L—1)[10L*—14L+4,4L%+8L—12,49L*~76 L+30]+(2, L/2+1, 0]
[EXPPlguchye = (L — 1)(373L* — 506L + 154) + 5L/2 + 7

Notice that to produce the desired state it seems we must do two modular

exponentiations and then multiply the results. A more efficient technique

involves modifying the standard exponentiation circuit, which is a series

of conditional multiplications, to produce a circuit that directly produces

g°z~%(mod p) on input a and b by cascading all the conditional multipli-

cations from both exponentiation calculations. In other words (using the
notation from [1] we calculate

2~ mod p) = g%y~ Tyt = T[ g2 T 55
i J

Therefore we may compute the contents of the third register for the price of
two modular exponentiations so that the above counts must be doubled once
the machine model and scratch space has been designated. Let us say that
we have decided on T scratch bits and a machine model yielding a count for
modular exponentiation of [@] gates and P pulses. Then to this point we
have used 3L 4 2 + T scratch bits, 2P + 50L — 19 pulses and a gate count of
[0,4L — 1,4L — 2] + 2[a].

Finally we perform a Fourier transform A,, on each of the first two reg-
isters to yield the state:

Z Z ea:p ac+bd))|c d, g%z~ (mod p) >.

a =0 ¢,d=0

Here q is the power of 2 such that p < ¢ < 2p, i.e. ¢ = 2~. The operation
A, requires (L + 1)(2(L + 1) — 1) laser pulses so the final number of pulses
is now 2P 4+ 2L? + 53L — 18.

The following chart lists the storage and pulse requirements assuming the
enhanced machine model with 2L + 2 scratch qubits.




L qubits pulses
100 504 3.64 x 108
500 | 2504 | 4.3 x10%°
1000 | 5004 | 3.71 x 101

For comparison, note that the estimates in [2] for factoring a 500 bit
number require 2501 qubits of storage and about 3 x 10® laser pulses.
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