

U. S. DEPARTMENT OF COMMERCE
National Oceanic and Atmospheric Administration
Environmental Research Laboratories

WEATHER PREDICTIONS AND SURFACE RADIATION ESTIMATES
FOR THE CANNIKIN EVENT

Final Report

Robert H. Armstrong and Virgil E. Quinn

Prepared for the U. S. Atomic Energy Commission,
Nevada Operations Office, under Contract No. SF 54-351

July 1972

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Air Resources Laboratory-Las Vegas
P. O. Box 14985
Las Vegas, Nevada 89114

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

TABLE OF CONTENTS

	<u>Page</u>
ABSTRACT	v
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Objectives	1
CHAPTER 2 WEATHER OBSERVATIONS AND PREDICTIONS	3
2.1 Data Requirements and Sources	3
2.1.1 Data Requirements--Safety Program	3
2.1.2 Data Requirements--Technical Programs	4
2.1.3 Data Sources--International Meteorological Network	4
2.1.4 Data Sources--ARL-LV Instrumentation	5
2.2 Operations	6
2.2.1 Pre-Event Operations	6
2.2.2 Event-Oriented Operations	7
2.2.3 Post-Event Operations	7
2.3 Results	8
2.3.1 Weather Observations	8
2.3.2 Weather Briefings	8
2.4 Discussion	20
2.4.1 Weather Description and Forecast Verification	20
2.4.2 General Comments	23
CHAPTER 3 RADIATION ESTIMATES	24
3.1 Procedure	24
3.1.1 Pre-Event Planning	24
3.1.2 Event-Oriented Support	25
3.1.3 Radiation Analysis	25
3.2 Results	26
3.2.1 Event-Oriented Support	26
3.2.2 Post-Event Support	27
3.2.3 Radiation Analysis	27
CHAPTER 4 CONCLUSIONS AND RECOMMENDATIONS	30
4.1 Conclusions	30
4.2 Recommendations	30
APPENDIX A CANNIKIN METEOROLOGICAL DATA	31

LIST OF FIGURES

	<u>Page</u>
1. North Pacific Surface Weather Analysis, 0700 BST, November 5, 1971.	9
2. North Pacific Surface Weather Forecast Chart, Presented at 1500 BST, November 5, 1971	10
3. Composite Briefing Chart, Presented at 1500 BST, November 5, 1971.	11
4. Streamlines and Trajectory Forecast Chart, Presented at 1500 BST, November 5, 1971	12
5. Extended Low-Level Trajectory Forecast Chart, Presented at 1500 BST, November 5, 1971	13
6. North Pacific Surface Weather Analysis, 1900 BST, November 5, 1971.	15
7. North Pacific Surface Weather Forecast Chart, Presented at 0400 BST, November 6, 1971	16
8. Composite Briefing Chart, Presented at 0400 BST, November 6, 1971.	17
9. Streamlines and Trajectory Forecast Chart, Presented at 0400 BST, November 6, 1971	18
10. Extended Low-Level Trajectory Forecast Chart, Presented at 0400 BST, November 6, 1971	19
11. Forecast and Observed Vertical Temperature and Wind Profiles. .	21
12. Atmospheric Pressure Trace and H+30-Minute Satellite Cloud Picture	22
13. Fallout Sector Estimate, Presented at 0400 BST, November 6, 1971.	28
14. Extended Fallout Sector Estimate, Presented at 0400 BST, November 6, 1971.	29

ABSTRACT

For CANNIKIN, event-oriented forecasts of winds, weather, vertical atmospheric stability, and air trajectories were presented to the Test Manager and his Advisory Panel in frequent formal and informal briefings beginning at D-8 days. Because the possible, though unlikely, release of radioactivity into the atmosphere was recognized, estimates of potential radiation effects were also presented during the briefings.

Concurrent with arrival of the nuclear device, routine weather forecasts for the Amchitka area were issued twice daily to aid in planning preparatory activities and for use in case of a nuclear accident.

On D-Day, intensive surveillance of changing meteorological conditions at the surface and aloft throughout the western Aleutian Islands was maintained by means of frequent weather observations at Shemya, Amchitka, and Adak. The Test Manager and his Advisory Panel were kept informed of the interpretation of these observations starting with the final readiness briefing and continuing throughout the day. D-Day meteorological data are included in the report.

Three surface wind towers were installed and instrumented on Amchitka Island. A 24-hour weather observing station equipped to take upper-air soundings (wind, temperature, pressure, and humidity) as well as surface observations was in operation at the Northwest Camp for ten weeks preceding the event. Communications facilities were acquired for receiving large-scale meteorological data and forecasts for the North Pacific Ocean area from the major forecast centers.

CHAPTER 1 INTRODUCTION

1.1 Background

The National Oceanic and Atmospheric Administration (NOAA) by agreement with the Atomic Energy Commission's Nevada Operations Office (AEC/NV) is responsible for providing all meteorological support that the Test Manager, NV, requires to conduct nuclear tests safely at the Nevada Test Site (NTS). This NOAA responsibility, which extends to nuclear tests conducted at off-NTS locations, is met by its Air Resources Laboratory-Las Vegas (ARL-LV) under the Office of the Assistant Manager for Operations, Nevada Operations Office (AMO/NV).

ARL-LV is organized and staffed to provide specialized meteorological services for the nuclear testing Safety Program as well as to improve, through continuing research, weather predictions and radiation estimates. Data acquisition and electronics maintenance are functions of the Field Operations Branch. Weather forecasting, computer services, and climatological studies are performed by the Meteorological Predictions and Research Branch; and the Radiation Estimates and Research Branch is responsible for making radiation estimates. Additional services are provided by the Programs and Administration Branch.

1.2 Objectives

ARL-LV objectives in support of the CANNIKIN event were as follows:

1. Provide and interpret climatological data required by the project participants for pre-event planning and preparation.

2. Provide preliminary estimates of potential radiation levels requested by various participants for the preparation of technical and safety plans.
3. Provide regular weather observations and forecasts during the pre-event operational period.
4. Provide event-related meteorological observations and data essential to the Safety Program.
5. Provide weather and air-trajectory forecasts and operational radiation estimates to the Test Manager and his Advisory Panel.
6. Document the state of the atmosphere in the vicinity of Amchitka Island at and subsequent to the time of detonation.
7. Analyze observed meteorological data and radiological data (if above background) in order to document the radiation pattern, compare the observed radiation levels with those estimated, and examine the applicability of the ARL-LV radiation-estimation technique used for the CANNIKIN event.
8. Provide weather observing and forecasting service to the Test Manager's representative during any post-shot re-entry program.
9. Provide required post-shot analyses, appropriate records, and reports.

CHAPTER 2 WEATHER OBSERVATIONS AND PREDICTIONS

2.1 Data Requirements and Sources

2.1.1 Data Requirements--Safety Program

Data for the Safety Program were collected to aid in the meteorological predictions and to document the state of the atmosphere at H-Hour. Documentation was continued during a post-shot period sufficient to provide ample data for correlation with radiological measurements in the unlikely occurrence of an uncontrolled release of radioactive material.

Data collected for the purpose of making weather predictions ranged from teletype weather resumes from the Alaska Region National Weather Service Forecast Center to local surface observations. All were subject to selective interpretation by the Weather Briefer in assessing the forecast problem and predicting the various weather elements for shot-time.

Documentation of the state of the atmosphere at and near Amchitka was accomplished through a small network of instruments. Wind information obtained from surface wind towers and upper-wind soundings was used to produce wind-flow analyses and air-parcel trajectories. Vertical temperature profiles were obtained from radiosonde observations.

Following the final readiness briefing, data were interpreted by the Weather and Radiation Briefers in order to keep the Test Manager and his Advisory Panel advised concerning meteorological aspects of the Safety Program.

Weather parameters pertinent to the test included:

1. Vertical profiles of wind and temperature in the layer through which any released radioactive material might be expected to rise.

2. Time and spatial variation of wind direction and speed at the surface and aloft within the general test area.

3. Air-flow patterns (streamlines) and air trajectories at various levels from the surface through the layer of concern.

4. Significant cloudiness and precipitation in the general area and downwind.

2.1.2 Data Requirements--Technical Programs

The Test Group Director and others required daily forecasts and surface weather observations for routine site operations and for final preparations in the bioenvironmental programs. Sea, surf, and swell forecasts were of particular interest to the small ships operating near Amchitka in support of the test.

2.1.3 Data Sources--International Meteorological Network

The sources of large-scale meteorological data available to the weather forecasters included:

1. Weather Facsimile, Intra-Alaska Circuit--by radio from Anchorage via Adak.
2. Weather Teletype, Service A--by radio from Anchorage via Adak.
3. Weather Teletype, Service C--by radio from Anchorage via Adak.
4. Weather Teletype, Synoptic Broadcasts, Tokyo--by radio receiver in the HF Communications Facility.
5. Weather Satellite Pictures--by radio from Adak, Alaska.

The only fixed weather observing stations within 500 miles of Amchitka are at Shemya (297° / ~200 n mi) and Adak (083° / ~160 n mi). There are only widely scattered reports from transient surface ships. Weather

satellite pictures were required to augment the sparse and irregular data in the area.

Arrangements were made for special D-Day upper-wind soundings by the National Weather Service Office at Shemya and by the U. S. Navy at Adak. The data were received at the CP by telephone and teletype.

2.1.4 Data Sources--ARL-LV Instrumentation

Instrumentation established by ARL-LV consisted of surface weather instruments, surface wind towers, an upper-wind and temperature sounding station, and a weather satellite ground receiving station. Data from these sources augmented the large-scale data.

Surface Instrumentation. Maximum and minimum thermometers were housed in a standard instrument shelter at the Control Point (CP) Weather Station.

Hourly humidity data were obtained at the CP Weather Station, using a standard sling psychrometer.

A standard microbarograph and a precision aneroid barometer were used to record atmospheric pressure.

Surface wind towers were located near surface ground zero (SGZ), in the Main Camp area, and at the Northwest Camp. The SGZ wind data were telemetered by hardwire to a recorder in the CP Timing and Firing Trailer, while data from the other two towers were radiotelemetered to the CP Weather Station.

Wind towers and sensors were also installed on Rat, Semisopochnoi, and Amatignak Islands. The data from these stations were radiotelemetered to the CP Weather Station. Wind sensors and towers on these islands were

extensively damaged during violent storms just prior to D-Day and data were not available from them. Repairs were impossible within available time and transportation facilities.

Rawinsonde Observations. A Ground Meteorological Device (GMD) located at the CP upper-air complex was used to track balloon-borne radiosonde instruments to measure vertical profiles of temperature, pressure, humidity, and winds.

2.2 Operations

2.2.1 Pre-Event Operations

Planning for meteorological support of underground events at Amchitka Island began in the fall of 1966. A site climatology, prepared and issued in October 1967, was based on long-term data available from earlier periods when Amchitka was a military base. Operational meteorological support was provided during September and October 1969 for the MILROW event, after which ARL-LV equipment was returned to the NTS.

ARL-LV meteorological support plans and logistic support requirements and a Preliminary Effects Evaluation Report for CANNIKIN were submitted to NV in June 1970. Event-related cost estimates were submitted in August 1970. Support plans, logistic requirements, and cost estimates were updated as necessary to meet changes in program plans and schedules.

Communications requirements were identified in December 1970. The procurement of weather satellite ground receiving equipment for use on CANNIKIN was initiated in January 1971. Meteorological equipment and supplies were assembled during April and May 1971 and shipped to Amchitka.

ARL-LV electronics technicians arrived at Amchitka on August 11, 1971, to set up and check out equipment and instrumentation on Amchitka and to install equipment on the neighboring islands.

Operational support was initiated on August 26, 1971, with a 24-hour schedule of surface weather observations; four-a-day upper-air soundings of temperature, pressure, humidity, and wind; and routine twice-daily site weather forecasts.

2.2.2 Event-Oriented Operations

On D-Day, the normal schedule of upper-air observations was expanded to provide a complete sounding every three hours. Three-hourly rawinsonde observations were also made at Shemya and Adak, Alaska.

2.2.3 Post-Event Operations

Hourly surface weather observations were continued through D+2 days, after which operational meteorological support was terminated.

ARL-LV support of post-shot re-entry for CANNIKIN was limited to providing wind sensors at the drillback pad with a recorder in the access-control trailer. The wind system was installed by an ARL-LV electronics technician and maintained by personnel of the Eberline Instrument Corporation.

At the request of Radiological Operations Division, NV, ARL-LV meteorologists were on call to provide assistance from the forecast office in Las Vegas in the unlikely event of a release of radioactivity during CANNIKIN re-entry. Current weather information for the entire North Pacific Ocean area is maintained regularly at the Las Vegas office. Low-altitude air-trajectory forecasts for Amchitka are received twice daily

from the National Meteorological Center.

2.3 Results

2.3.1 Weather Observations

D-Day meteorological data are included as Appendix A.

2.3.2 Weather Briefings

Forecasts of pertinent meteorological parameters were presented to the Test Manager and, following their arrival on-island, members of his Advisory Panel. Formal and informal readiness briefings were presented

as follows:

October 15, 1971	0600 BDT*
October 15, 1971	1500 BDT
October 26, 1971	1500 BDT
October 27, 1971	0600 BDT
October 28, 1971	0900 BDT
November 2, 1971	1330 BST**
November 3, 1971	1600 BST
November 4, 1971	2000 BST
November 5, 1971	1500 BST
November 6, 1971	0400 BST

Briefings during October were scheduled by the Test Manager according to operational requirements such as ship and aircraft "dry runs" and island evacuation rehearsals.

The D-1 and D-Day presentations follow:

D-1 November 5, 1971 1500 BST

(Briefing charts are included as Figures 1 through 5.)

The surface weather chart for 0700 BST today has a deepening low-pressure area southeast of the Kamchatka Peninsula. This storm is moving northeastward at 35 knots. The low-pressure area in northeast Siberia is

* BDT - Bering Daylight Time

** BST - Bering Standard Time

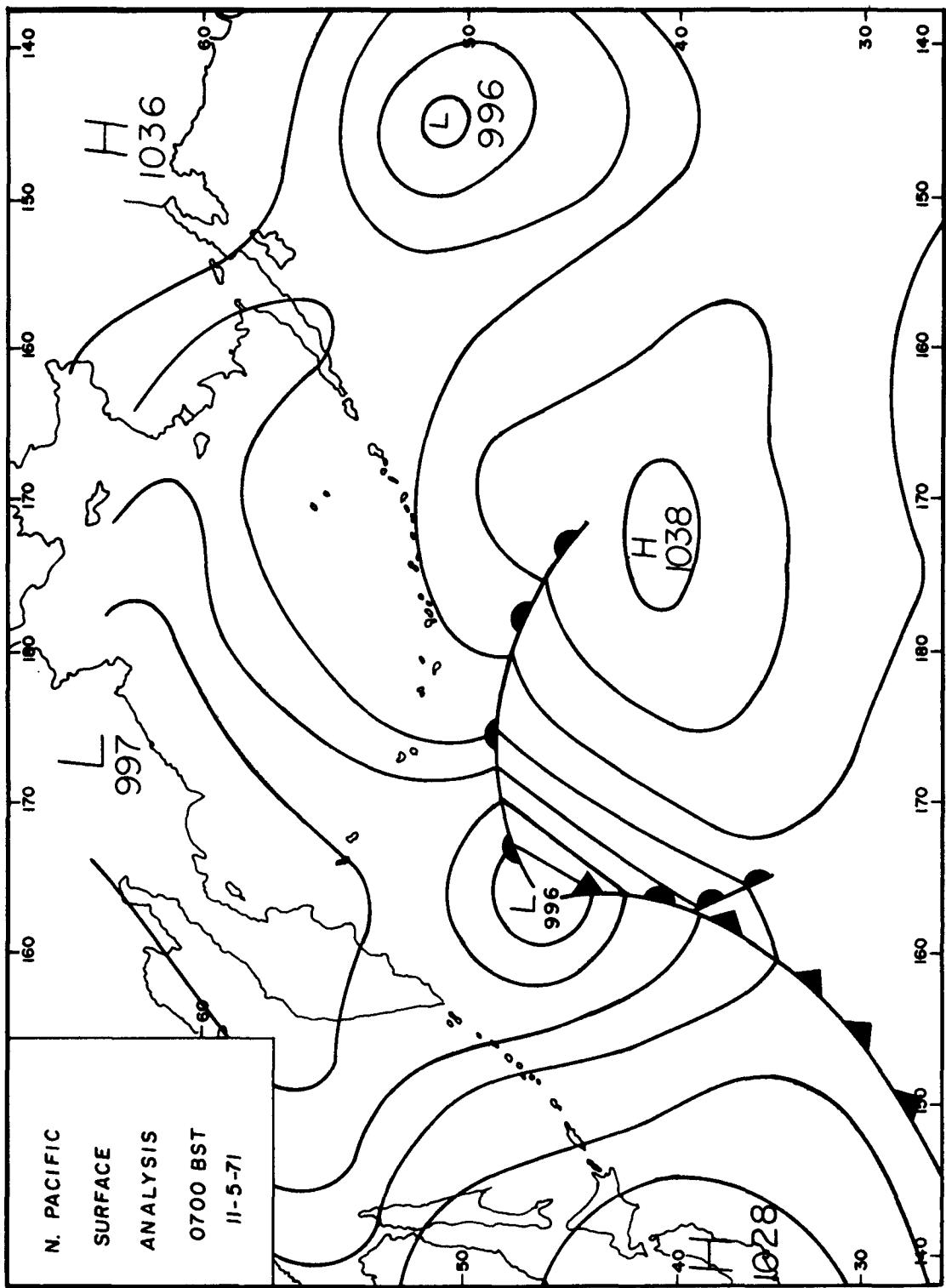


Figure 1. North Pacific Surface Weather Analysis, 0700 BST, November 5, 1971.

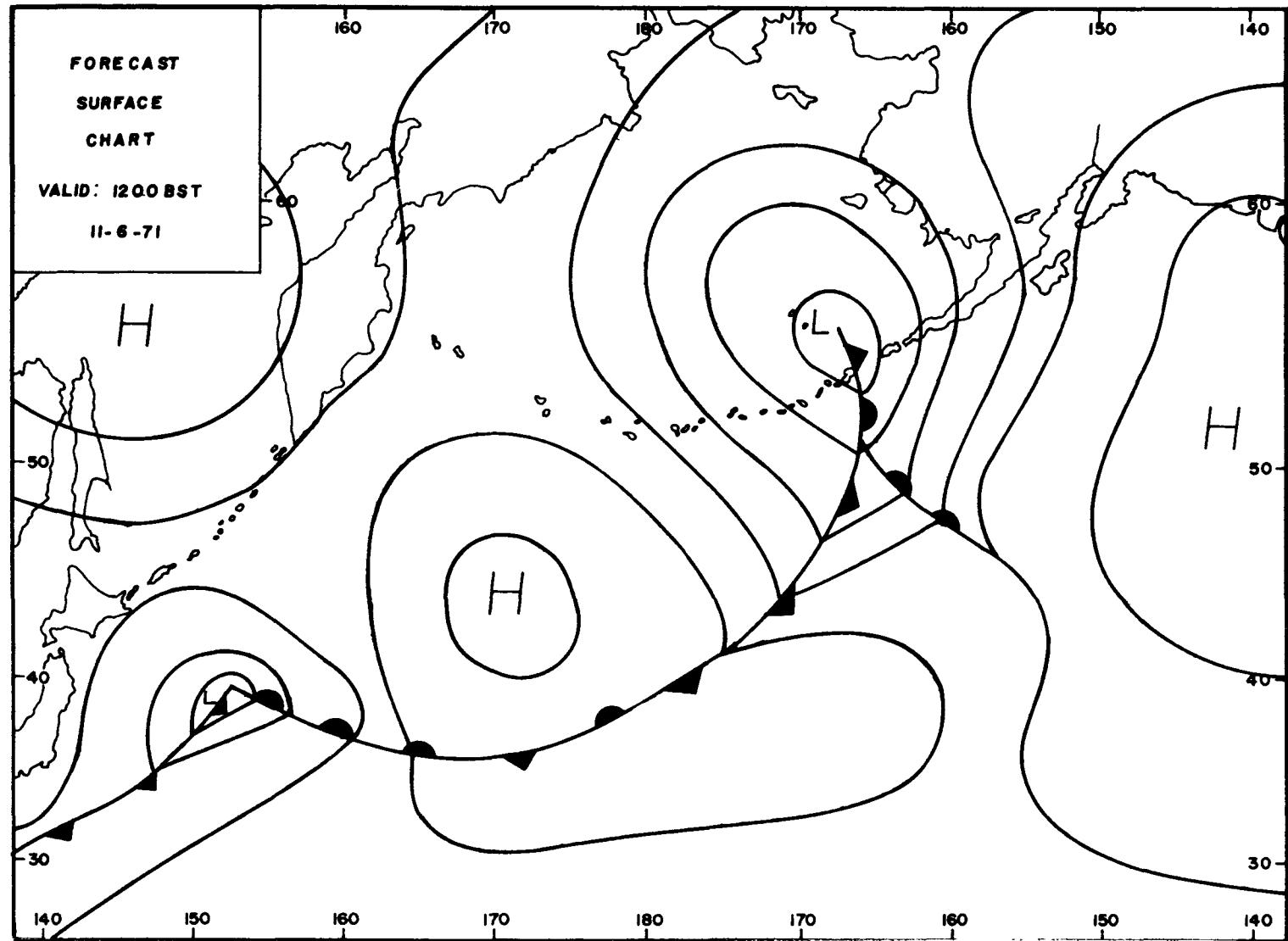


Figure 2. North Pacific Surface Weather Forecast Chart, Presented at 1500 BST, November 5, 1971.

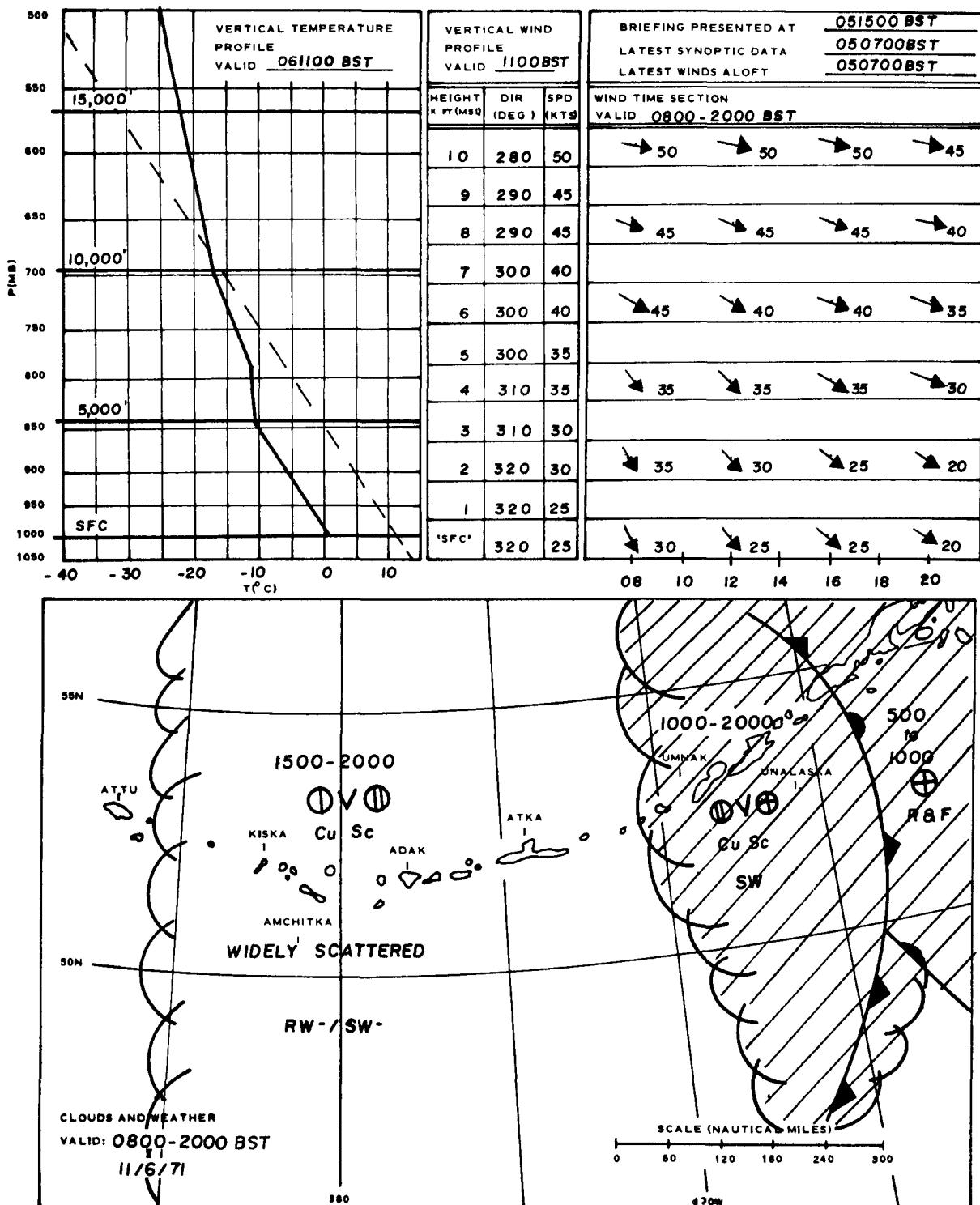
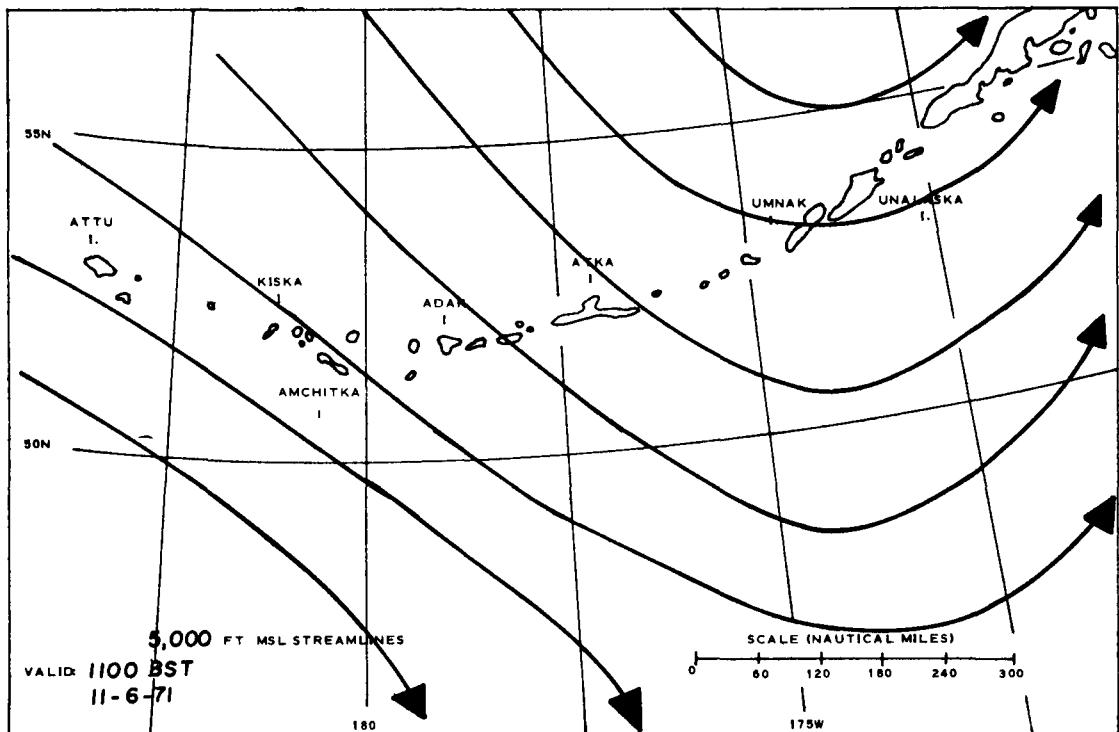



Figure 3. Composite Briefing Chart, Presented at 1500 BST, November 5, 1971.

BRIEFING FORECAST PRESENTED AT 1500 BST

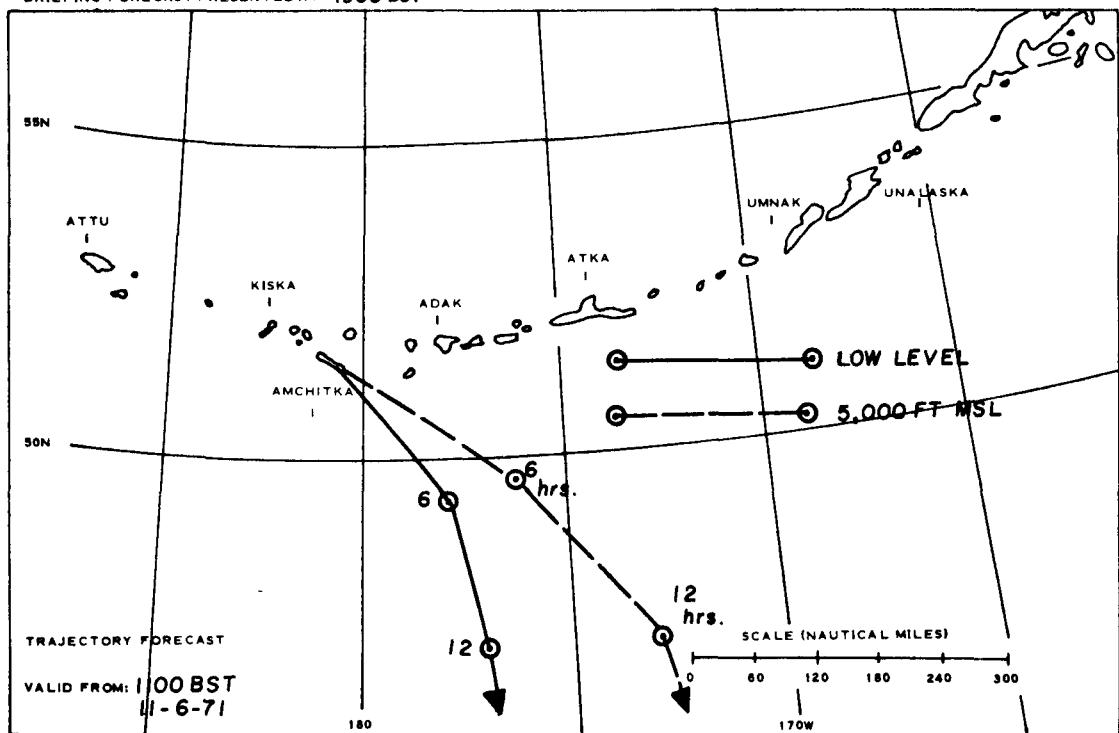


Figure 4. Streamlines and Trajectory Forecast Chart, Presented at 1500 BST, November 5, 1971.

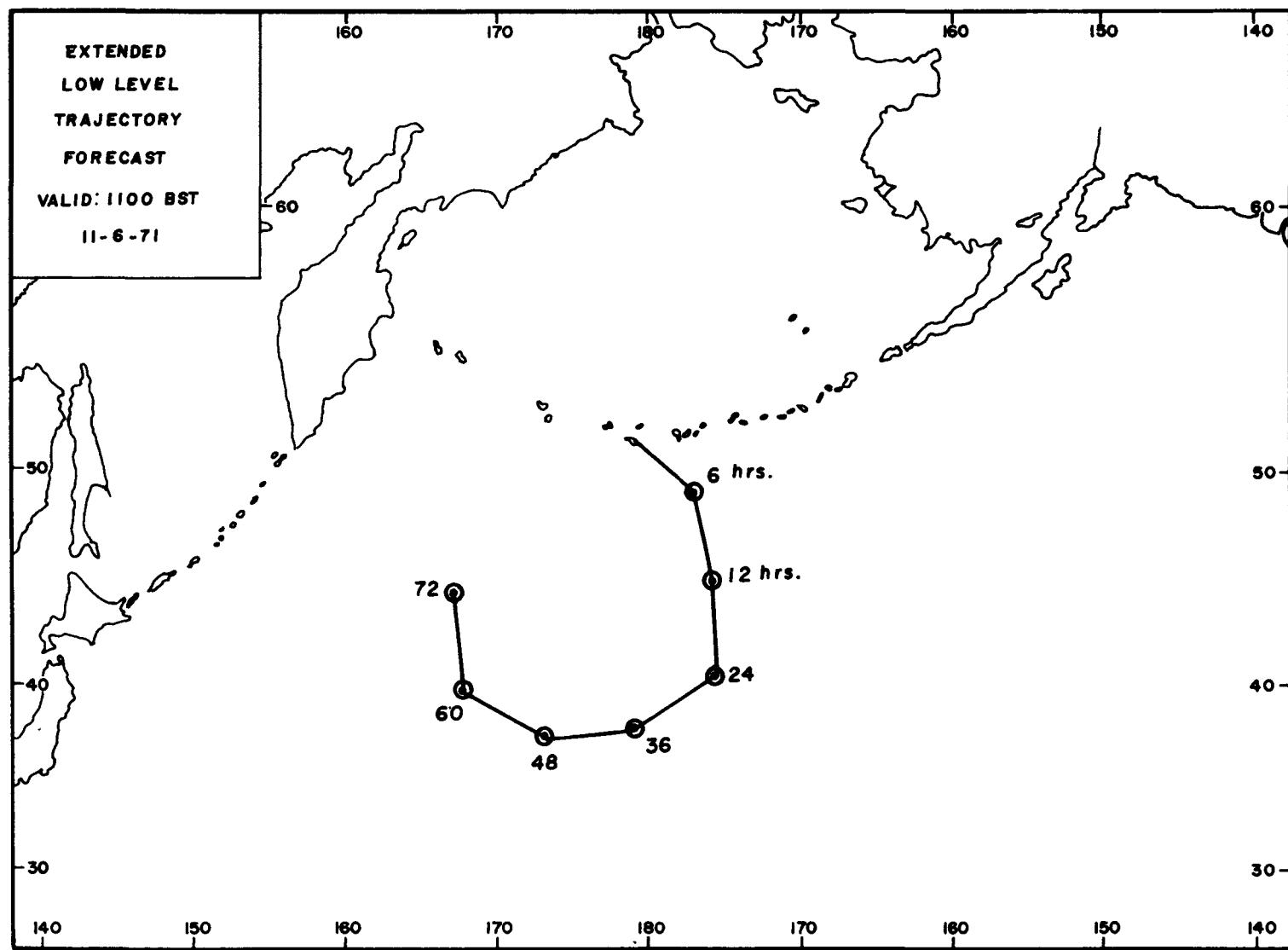


Figure 5. Extended Low-Level Trajectory Forecast Chart, Presented at 1500 BST, November 5, 1971.

nearly stationary and is filling.

The low southeast of Kamchatka is forecast to continue its 35-knot speed of advance and to be centered near the Pribilof Islands by noon tomorrow, with an occluded frontal system extending southward from just east of the low center and crossing the Aleutians near the east end of the Chain. A ridge of high pressure, expected to develop to the west of the low, will produce northwesterly winds at the surface and aloft in the western Aleutians. (Forecast surface charts represent expected weather patterns, without pressure values.)

The forecast vertical temperature structure valid at 1100 BST tomorrow indicates a neutrally stable lapse rate to near 5000 ft MSL with stable air above that level.

We expect scattered to broken low clouds in the local area tomorrow with bases near 1500-2000 ft MSL. Widely scattered rain or snow showers are likely in the general area.

Air trajectories throughout the layer of concern will be toward the southeast, curving southward downwind.

The extended low-level air-trajectory forecast indicates recurving of the trajectory toward the west near 40°N, then recurving northward near 170°E to a position some 600 n mi southwest of Amchitka at H+72 hours.

D-Day November 6, 1971 0400 BST

(Briefing charts are included as Figures 6 through 10.)

There are no significant changes from yesterday's forecast.

The movement of the storm which was southeast of Kamchatka

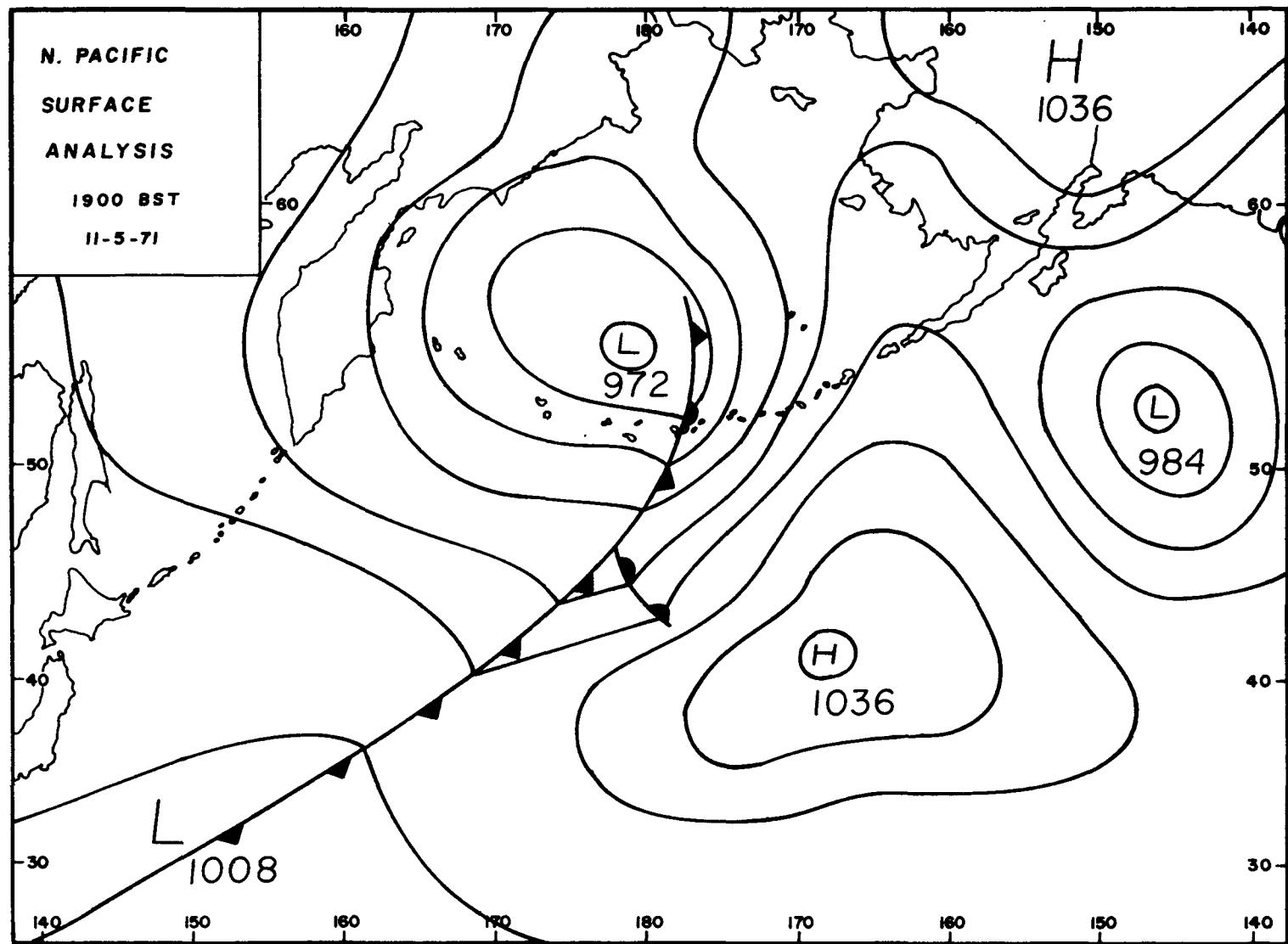


Figure 6. North Pacific Surface Weather Analysis, 1900 BST, November 5, 1971.

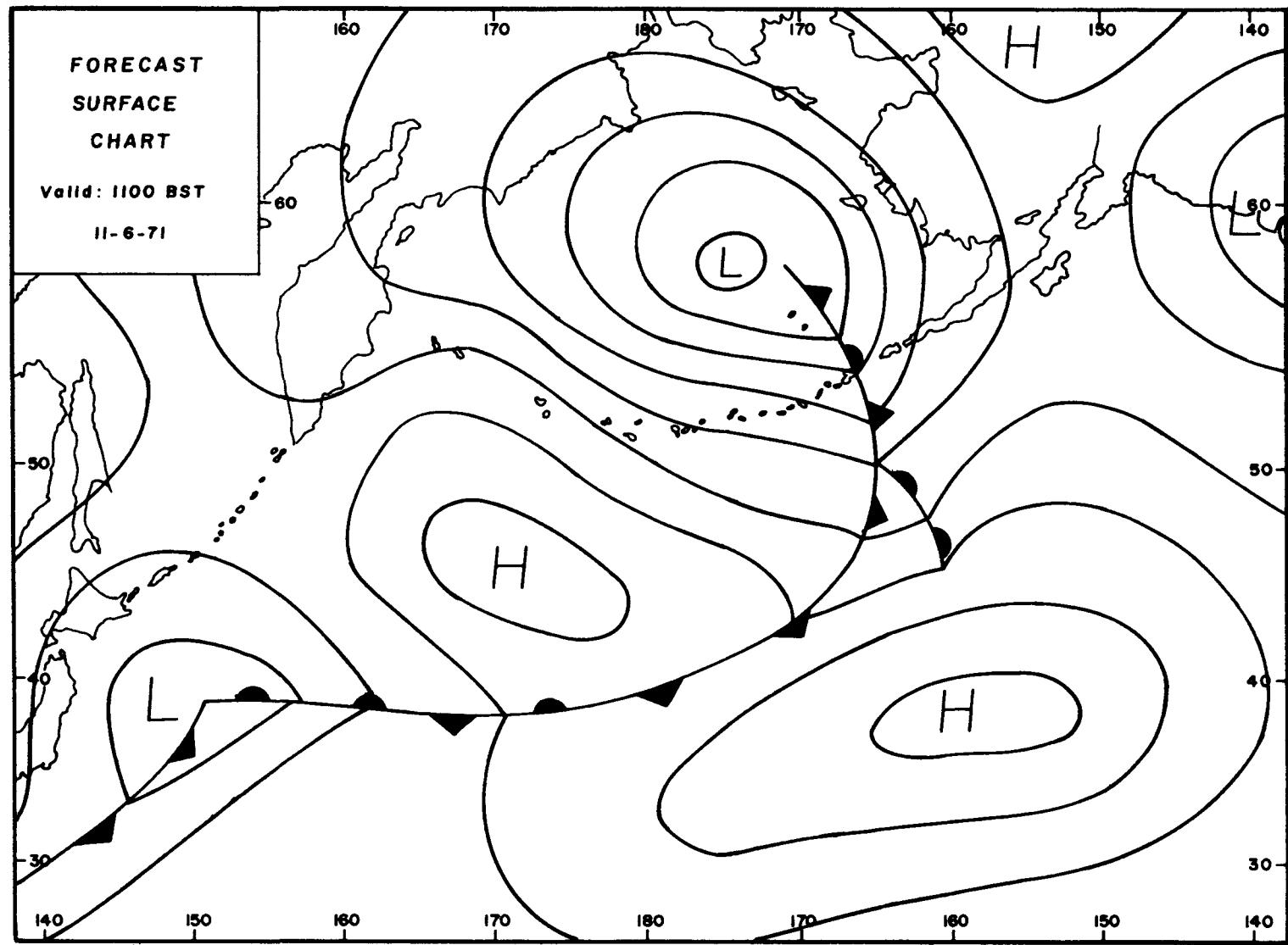


Figure 7. North Pacific Surface Weather Forecast Chart, Presented at 0400 BST, November 6, 1971.

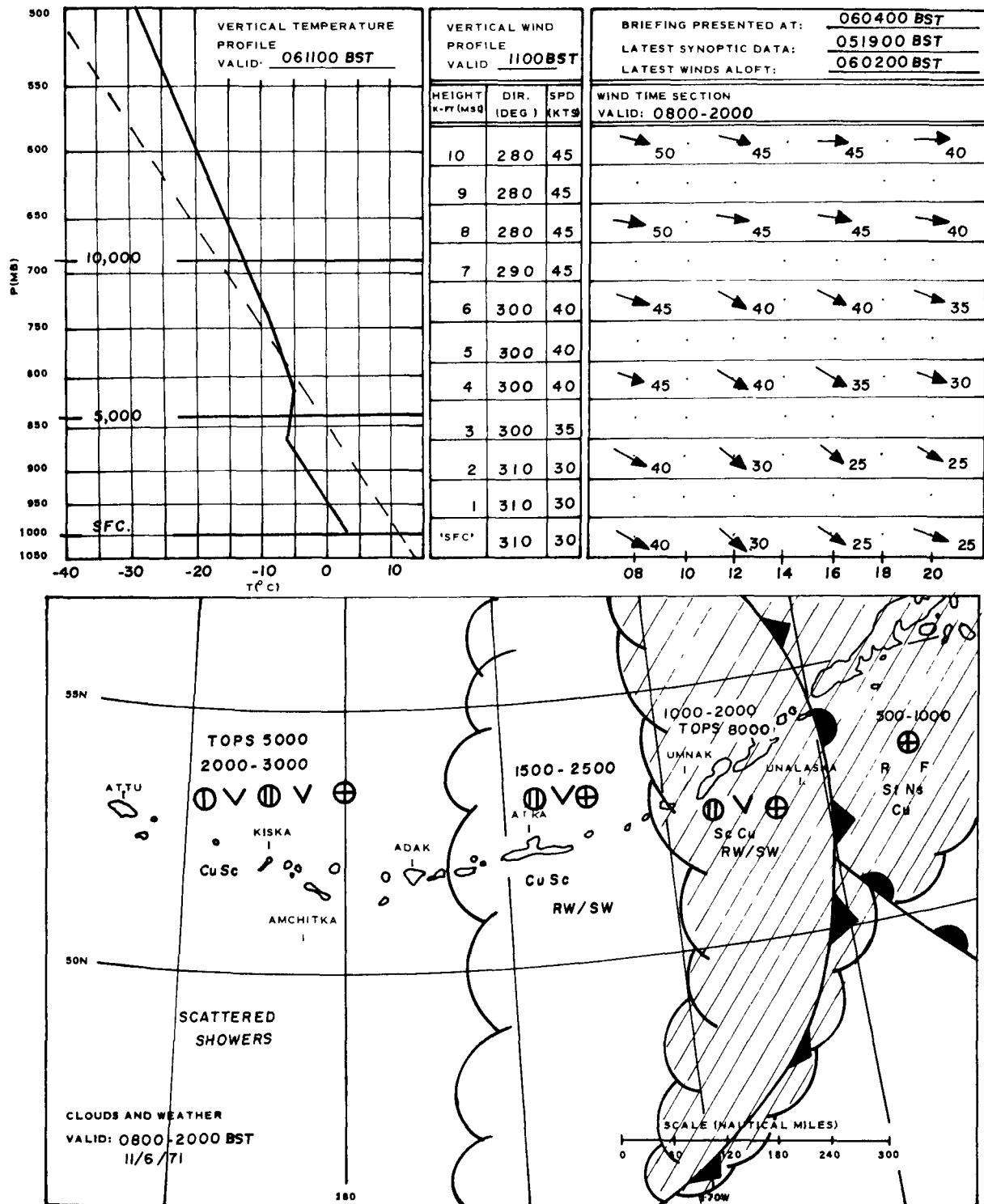


Figure 8. Composite Briefing Chart, Presented at 0400 BST, November 6, 1971.

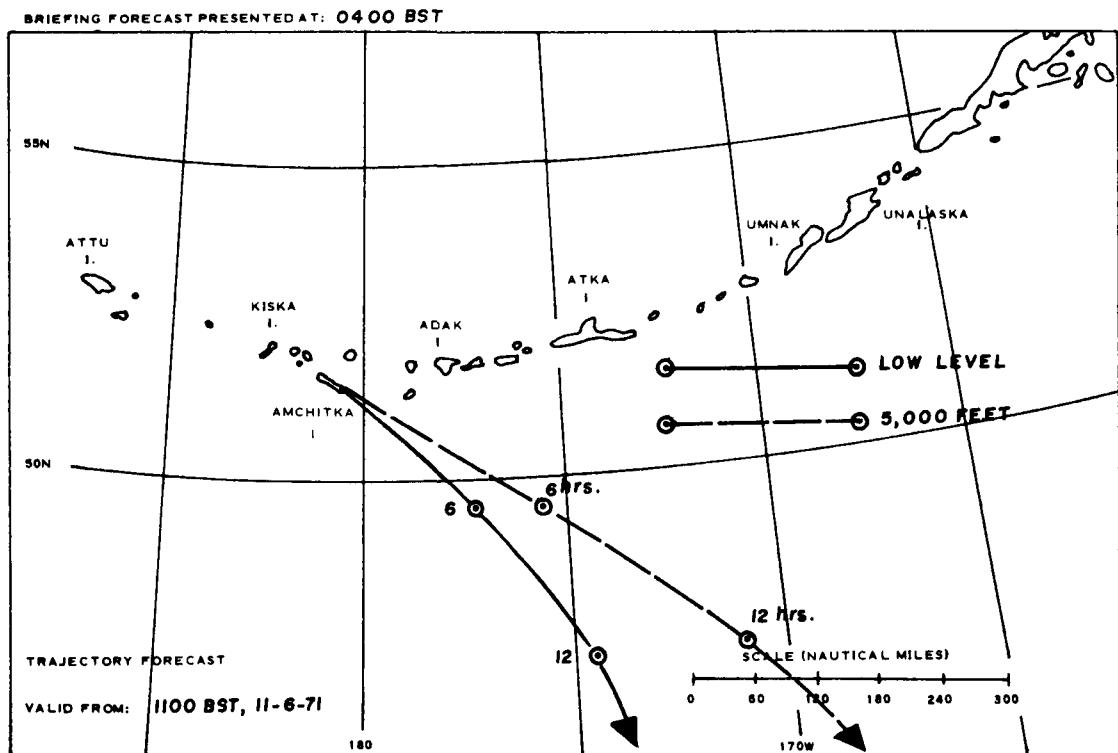
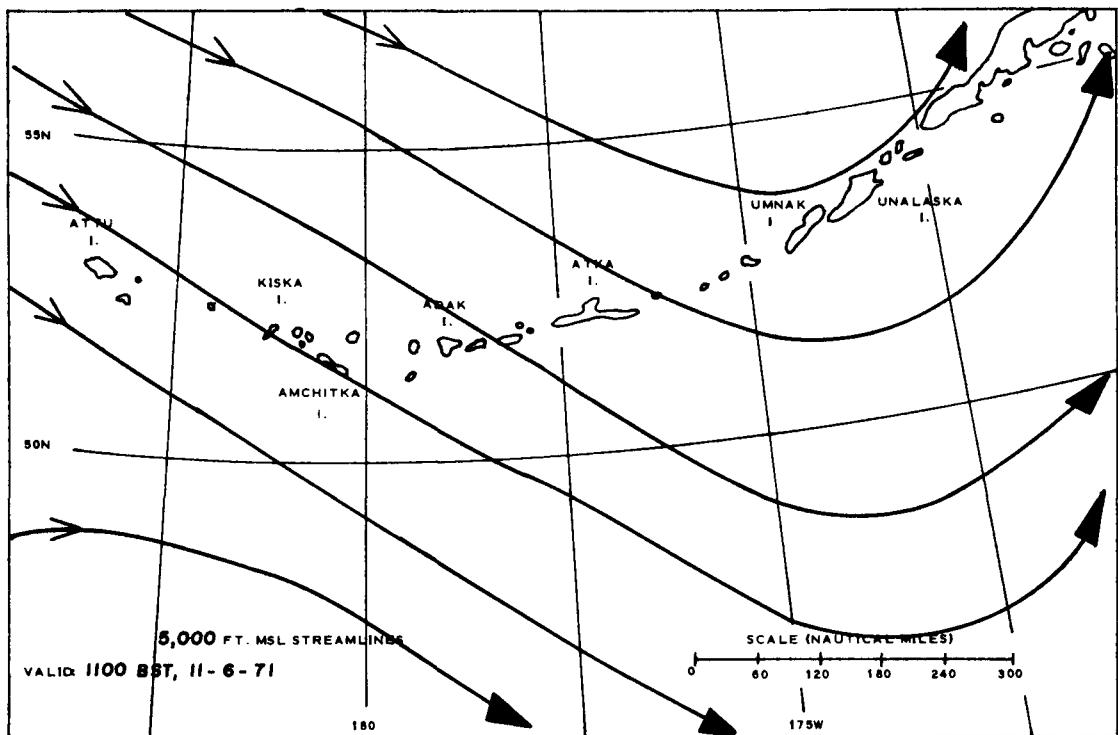



Figure 9. Streamlines and Trajectory Forecast Chart, Presented at 0400 BST, November 6, 1971.

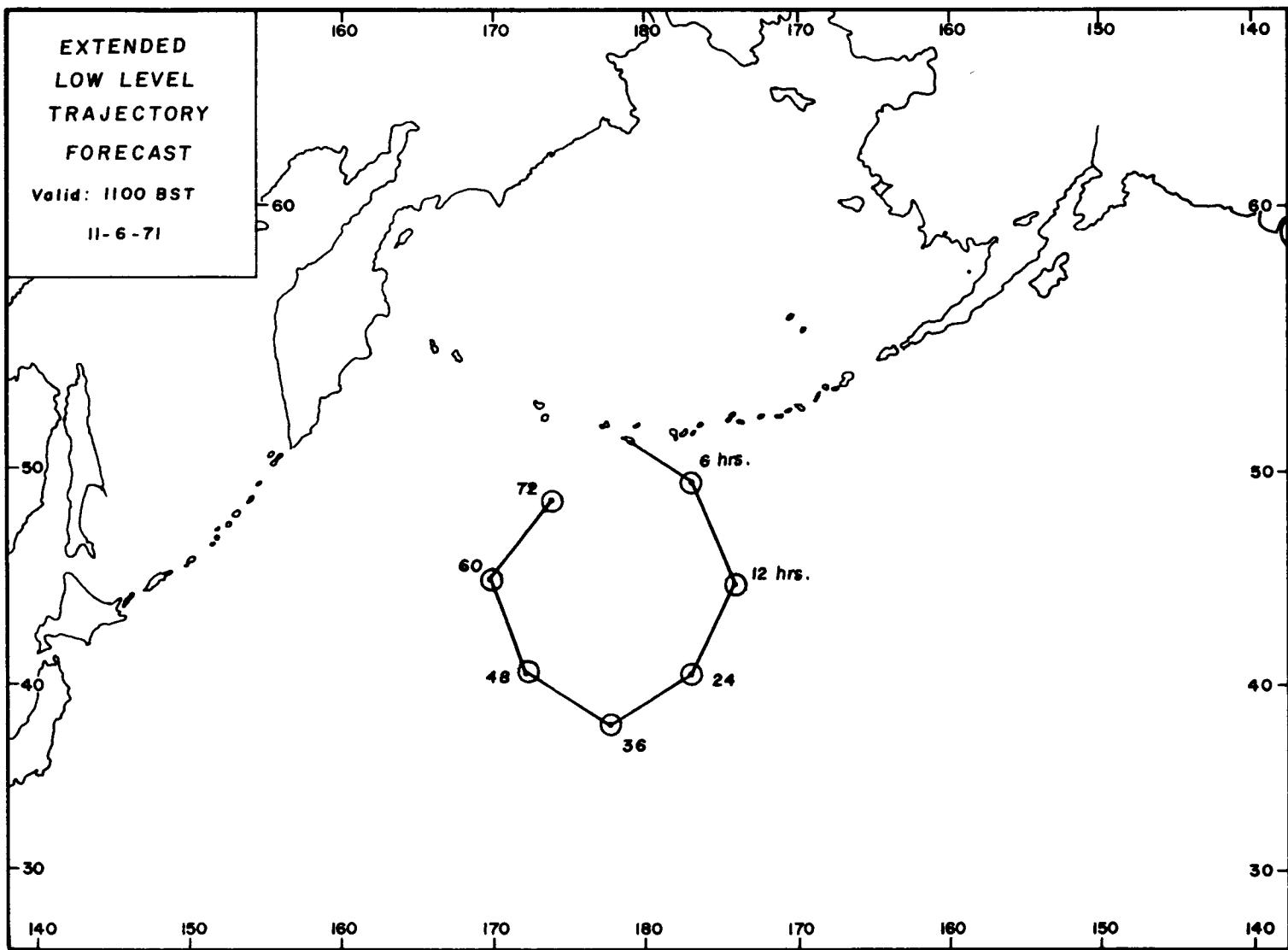
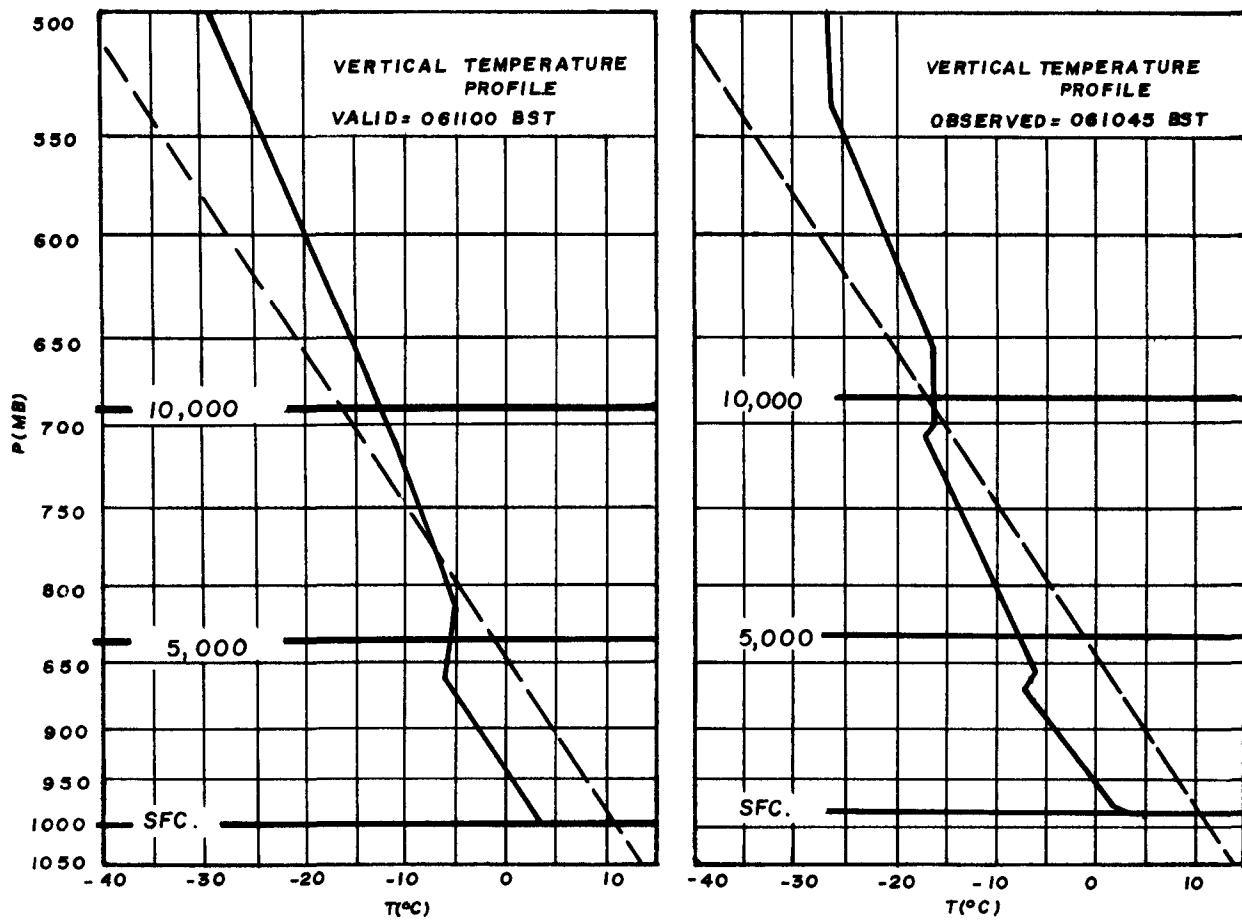


Figure 10. Extended Low-Level Trajectory Forecast Chart, Presented at 0400 BST, November 6, 1971.

yesterday has exceeded expectations, and the storm is now forecast to be slightly further east than forecast yesterday. The storm is also somewhat more intense than was expected. Accordingly, low-level winds will be more west-northwesterly than forecast yesterday and slightly stronger.

2.4 Discussion

2.4.1 Weather Description and Forecast Verification


D-1 day weather at Amchitka was characterized by a violent storm that produced hurricane-force winds, rain, and fog. Precipitation totalled 0.47 inch, and wind gusts exceeded 80 knots. Sea level pressure fell from a value of 1020.7 mb at midnight to a low of 975.1 mb at 1730 BST. Wind damage was extensive.

By the morning of D-Day, the storm was centered near the Pribilof Islands and fair weather prevailed in the western Aleutian Islands. Skies were mostly clear and horizontal visibility was unrestricted.

Surface winds and low-level winds aloft were from the west-northwest at speeds of 30-40 knots.

The weather forecasts were generally accurate. D-Day sky conditions and visibility were somewhat better than had been expected. Figure 11 permits a comparison of forecast and observed vertical profiles of temperature and wind.

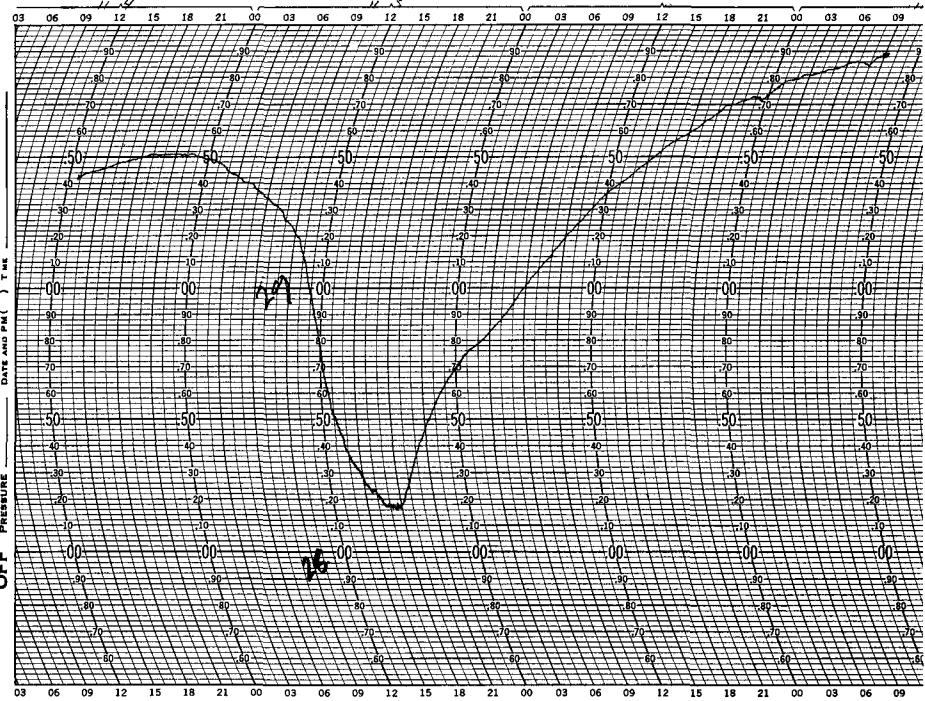
Figure 12 includes copies of the atmospheric pressure trace recorded during the D-1 major storm and a satellite cloud picture taken at 1130 BST, 30 minutes after CANNIKIN zero-time. The pressure fell rapidly from a high of 29.51 inches of mercury at 2230 on November 4, to a low of 28.16 inches at 1730 on November 5, then rose to 29.31 inches

Height K-FT(MSL)	DIR. (DEG.)	SPD (KTS)
10	280	45
9	280	45
8	280	45
7	290	45
6	300	40
5	300	40
4	300	40
3	300	35
2	310	30
1	310	30
SFC.	310	30

D-DAY FORECAST

Height K-FT(MSL)	DIR. (DEG.)	SPD (KTS)
10	285	63
9	290	56
8	290	50
7	295	48
6	300	46
5	305	43
4	300	39
3	300	37
2	300	37
1	285	31
SFC.	300	34

OBSERVED


Figure 11. Forecast and Observed Vertical Temperature and Wind Profiles.

BAROGRAM

TIME OF RECORD 11:45 AM ELEVATION (H_P) 1836 - 596 FEET

ON PRESSURE 29.420 DATE AND TIME 11-6-71 1250 EST

OFF PRESSURE 29.420 DATE AND TIME 11-6-71 1250 EST

by CANNIKIN zero-time. The satellite cloud picture, taken by the ESSA 8 spacecraft at an approximate altitude of 800 n mi, shows the vortex of the storm far to the northeast of Amchitka. The storm's frontal zone is clearly indicated by the broad band of clouds in the lower right portion of the picture. Amchitka is under nearly clear skies.

2.4.2 General Comments

Classical "text book" weather forecasting principles are normally applicable in the upper-mid-latitude ocean areas where there are no strong surface-temperature gradients and no significant terrain effects. This enables meteorologists to prepare reasonably accurate weather forecasts by charting positions of the large-scale pressure systems and, with the aid of the forecast centers, predicting their movement. Forecasting the movement of pressure systems is relatively easy when the progression of storms is regular--without significant instances of retardation or acceleration. During the CANNIKIN event, the progression of storms was very irregular, making the forecast problem more difficult. However, the general excellence of the National Weather Service computer-prepared forecast charts for the North Pacific, together with the capability of direct readout of weather satellite pictures at Amchitka, resulted in the same relative degree of success in the weather predictions as during the MILROW event. The satellite pictures, in particular, were of incalculable value to the weather forecasting effort by offsetting the sparsity of weather observations in the North Pacific Ocean.

CHAPTER 3 RADIATION ESTIMATES

3.1 Procedure

3.1.1 Pre-Event Planning

In May 1970, preliminary estimates of potential radiation exposures were prepared for the Office of Effects Evaluation, NV, for inclusion in the "CANNIKIN Effects Evaluation Report." In October 1970, probability of fallout occurrence over the Base Camp region and the associated center-line exposure estimates for the fall season (September-November) were prepared for the Test Manager. Also in October 1970, estimates of potential aircraft exposures as functions of horizontal distance from SGZ and aircraft altitude were prepared for the Operations Support Division, NV. Estimates of potential radiation exposures based on revised source-term data were prepared, in August 1971, and provided to the Test Manager and Office of Effects Evaluation, NV, and to the Test Sciences Department, Sandia Laboratory. Later in August 1971, D+4- and D+5-day 30-minute fallout exposure estimates for a distance corresponding to that of the Northwest Camp were prepared for the Test Manager, the Director of Control Point Operations, and the Radiological Operations Division, NV.

The various preliminary radiation exposure estimates were prepared for a range of meteorological conditions, using an analog-scaling technique. Device-related data were provided by the Lawrence Livermore Laboratory (LLL). Final selection of the technique best suited for the estimation of potential radiation exposure levels was coordinated with the LLL and the Test Manager.

3.1.2 Event-Oriented Support

Estimates of potential radiation exposure levels were made using the analog-scaling technique. The NTS prompt massive-venting model was selected as the scaling analog. The meteorological parameters required as input to this method are:

1. The height above terrain to which the potential effluent cloud will rise.
2. The angular shear in the winds-aloft hodograph through the cloud layer.
3. The mean wind speed in the cloud layer.

Prior to a scheduled readiness briefing, the weather forecast prepared by the Weather Briefer was utilized by the Radiation Briefer to estimate the above parameters and their temporal and spatial variability.

At the readiness briefings, the Radiation Briefer presented the following information:

1. The estimated fallout sector, hotline orientation, and arrival times of the main portion of the potential debris cloud.
2. Curves of potential external-gamma exposure during cloud passage and deposition infinite exposure along the hotline as functions of distance from SGZ.

3.1.3 Radiation Analysis

Post-event responsibilities assigned to the RERB include the evaluation and analysis of radiological data to document the observed radiation pattern, to obtain empirical information for improving radiation estimates, and to provide additional analogs for future events.

3.2 Results

3.2.1 Event-Oriented Support

At the D-9 readiness briefing the fundamental assumptions adopted for deriving radiation estimates for the CANNIKIN event were presented. In essence, these were:

1. The worst credible accident would be one in which radioactive gaseous and particulate debris would be released to the atmosphere through a prompt dynamic venting mechanism analogous to that of the NTS prompt massive venting model.
2. The analog-scaling technique would be the most applicable technique by which radiation estimates could be derived.
3. The NTS prompt massive venting model would be used as the scaling analog.

At the final readiness briefing on event day (H-7 hours), the predicted atmospheric stability and wind structure were discussed and interpreted as the basis for predicting the vertical mixing of the potential nuclear debris cloud, the cloud mean-transport speed, and the delineation of the fallout sector and hotline orientation. It was expected that any dynamically vented material would mix upward to about 4,000 ft above the surface by H+1 hour with little change thereafter. The potential effluent cloud was predicted to move toward the southeast (bearing 125 degrees True) at about 33 mph (29 kt).

The ten-degree shear in the predicted winds-aloft hodograph was expected to remain about the same throughout the day.

The estimated fallout sector, hotline orientation, and hourly positions of the potential main debris cloud through H+5 hours are shown in Figures 13 and 14.

3.2.2 Post-Event Support

The Radiation Briefer remained on site to provide support until he was released by the Test Manager on D+2 days, 8 November 1971.

3.2.3 Radiation Analysis

All post-event radiological data that were acquired indicate that no radiation was released to the atmosphere as a result of the CANNIKIN test, and no radiation analysis was required.

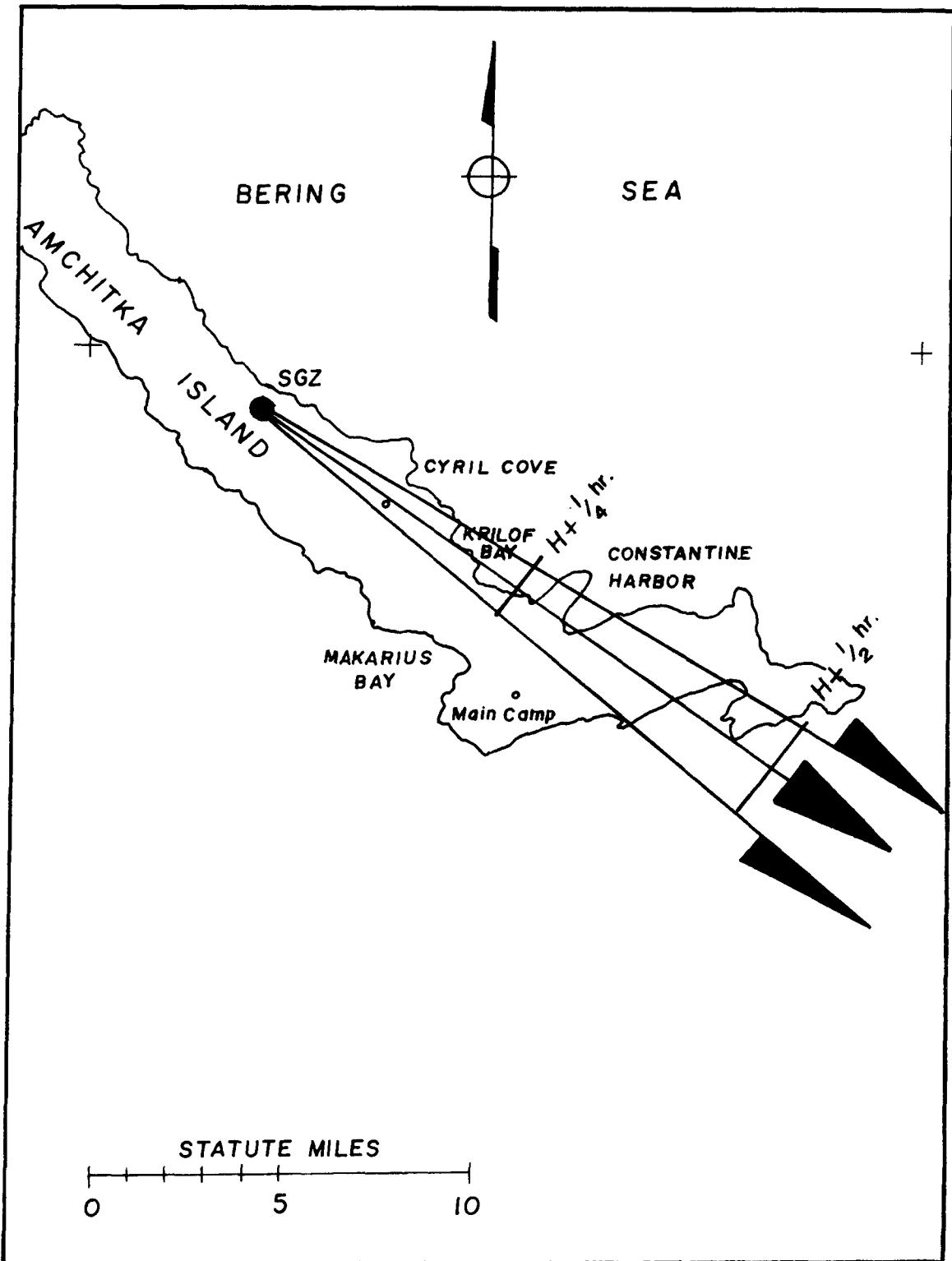


Figure 13. Fallout Sector Estimate, Presented at 0400 BST,
November 6, 1971.

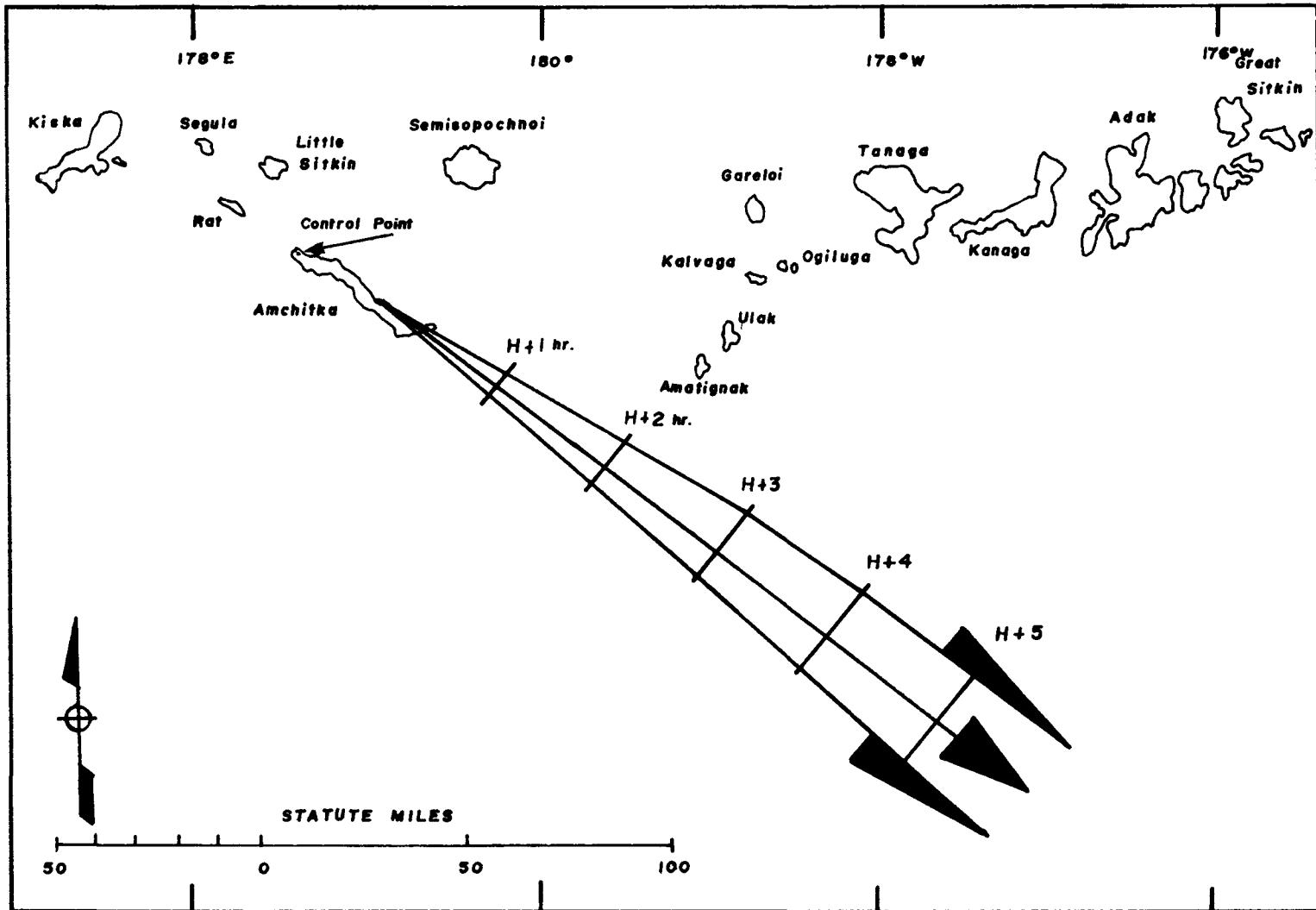


Figure 14. Extended Fallout Sector Estimate, Presented at 0400 BST, November 6, 1971.

CHAPTER 4 CONCLUSION AND RECOMMENDATIONS

4.1 Conclusions

All ARL-LV objectives were met. Climatological data provided were sufficient for pre-event planning and preparation. Meteorological observations, data, and forecasts in support of the Safety Program were adequate for the particular weather conditions that occurred during this period. Data might have been inadequate to describe slowly moving, more complex circulations that can occur in this area.

4.2 Recommendations

Any future operations at Amchitka (or any other remote location) requiring meteorological support must have weather communications of the excellent quality available during CANNIKIN.

The usefulness of weather satellite pictures to the forecasting effort in remote, data-sparse areas cannot be overemphasized. Thus, the capability of direct readout of the satellites is considered a "must" in such areas.

APPENDIX A
CANNIKIN METEOROLOGICAL DATA

SURFACE OBSERVATION AT : AMCHITKA ISLAND, ALASKA; Eleva-
tion 590 ft MSL, 1045 BST,
November 6, 1971

Sky Condition and Weather: 1500 Scattered
Cloud Amount and Type : 4 Tenths Cumulus
Visibility : Unrestricted
Atmospheric Pressure : 991.5 Millibars
Temperature : 3.9°C
Dew Point Temperature : 0.1°C
Relative Humidity : 75%

UPPER AIR DATA AT : NORTHWEST CAMP CP, AMCHITKA ISLAND,
ALASKA, 1045 BST, November 6, 1971

HEIGHT (Ft MSL)	WIND (Deg/Kts)	PRESSURE (mb)	TEMPERATURE (°C)	DEW POINT (°C)	RELATIVE HUMIDITY (%)
SFC	290/28	991.5	3.9	0.1	75
900	285/31	980	2.6	-6.7	50
1000	285/32	976	2.2	-6.6	52
1750	295/37	949	0.0	-7.1	59
2000	300/37	940	-0.7	-6.8	63
3000	300/37	904	-3.6	-7.0	77
3800	300/38	878	-5.7	-7.5	86
4000	300/39	870	-6.3	-12.8	60
4100	305/40	867	-6.4	-14.6	52
4400	305/40	856	-5.7	-19.8	32
4610	305/42	850	-6.4	-20.3	32
5000	305/43	838	-7.5	-20.7	34
6000	300/46	806	-9.8	-21.8	37
7000	295/48	772	-12.1	-23.0	40
7900	290/50	745	-14.4	-24.5	42
8000	290/50	742	-14.5	-24.9	41
9000	290/56	713	-16.7	-32.1	23
9488	290/60	700	-15.9	-34.8	18
10000	285/63	686	-15.7	-34.6	18
10100	285/63	682	-15.7	-34.6	18
10850	285/64	662	-15.8	-34.7	18
11000	285/64	658	-16.2	-35.0	18
12000	285/72	632	-18.0	-36.6	18
13000	285/71	607	-19.8	-37.1	20
13500	285/70	594	-20.7	-38.3	19

<u>HEIGHT (Ft MSL)</u>	<u>WIND (Deg/Kts)</u>	<u>PRESSURE (mb)</u>	<u>TEMPERATURE (°C)</u>	<u>DEW POINT (°C)</u>	<u>RELATIVE HUMIDITY (%)</u>
14000	285/71	582	-21.6	-39.6	18
15000	285/72	558	-23.4	-40.6	19
16000	280/75	536	-25.0	-42.5	18
16250	285/78	530	-25.3	-41.2	19
17000	280/85	512	-25.7	-42.6	19
17644	280/92	500	-26.2	-43.0	19
18000	280/95	492	-26.9	-43.6	19
19000	280/103	472	-28.8	-45.3	19
20000	280/113	452	-30.4	-46.6	19
21000	280/128	432	-32.5	-48.4	19
22000	275/117	414	-34.2	-49.4	20
22835	270/104	400	-35.6	-50.6	20

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
 DATA (Degrees and Knots) : November 6, 1971

Observational Point : AMCHITKA ISLAND, ALASKA
 (NORTHWEST CAMP)

Time of Ob. (BST)	0230	0700	0835	0900	1000
Type of Measurement	RAWIN	RAWIN	PIBAL	RAWIN	RAWIN
H Surface	260/30	280/30	290/30	280/30	290/30
E 1000	260/39	285/33	290/36	290/25	295/31
I 2000	265/54	290/49	285/47	295/34	300/38
G 3000	270/55	290/58	290/42	300/37	300/45
H 4000	275/58	290/54	290/40	300/40	300/49
T 5000	285/56	300/52	290/55	300/47	300/49
6000	280/39	295/52	--	300/50	300/47
7000	275/50	290/47		295/54	295/47
8000	280/52	290/48		290/55	290/50
9000	270/42	285/45		290/60	285/44
10000	270/45	280/47		290/63	290/70
11000	--	280/51		290/55	--
(Ft MSL) 12000	270/58	--			
13000	--				
14000	270/64				
15000	--				
16000	270/68				
17000	275/64				

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
 DATA (Degrees and Knots) : November 6, 1971

Observational Point	:	AMCHITKA ISLAND, ALASKA (NORTHWEST CAMP)			
Time of Ob. (BST)	:	1045	1300	1600	1900
Type of Measurement	:	RAWIN	PIBAL	RAWIN	RAWIN
H Surface		290/28	280/30	300/18	290/18
E 1000		285/32	280/32	300/20	295/20
I 2000		300/37	290/35	300/29	300/28
G 3000		300/37	300/40	300/29	295/32
H 4000		300/39	300/48	295/32	295/35
T 5000		305/43	300/50	300/35	295/37
6000		300/46	300/50	300/34	295/39
7000		295/48	--	300/33	295/41
(Ft MSL) 8000		290/50		295/43	290/37
9000		290/56		300/60	285/40
10000		285/63		300/77	285/47

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
 DATA (Degrees and Knots) : November 7, 1971

Observational Point : AMCHITKA ISLAND, ALASKA
 (NORTHWEST CAMP)

Time of Ob. (BST) : 0100 0700 1300

Type of Measurement : RAWIN RAWIN RAWIN

	Surface	270/10	240/10	240/08
H	1000	275/13	250/13	245/08
E	2000	285/18	265/18	250/09
I	3000	290/20	270/21	250/20
G	4000	290/21	265/23	250/21
H	5000	295/23	270/20	250/16
	6000	300/26	280/21	250/18
	7000	295/30	290/22	260/21
	8000	285/34	290/25	265/24
	9000	285/36	290/29	270/27
	10000	285/41	290/34	285/33
	11000	--	--	--
(Ft MSL)	12000	280/48	280/50	290/42
	13000	--	--	--
	14000	275/50	280/60	285/65
	15000	--	--	--
	16000	275/62	280/63	280/74
	17000	--	--	--
	18000	270/52	285/76	280/76
	19000	--	--	--
	20000	275/62	290/85	280/69

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
DATA (Degrees and Knots) : November 5, 1971

Observational Point	:	SHEMYA, ALASKA		
Time of Ob. (BST)	:	1600	2000	2200
Type of Measurement	:	RAWIN	RAWIN	RAWIN
H	Surface	270/08	290/34	310/22
E	1000	280/25	295/47	295/23
I	2000	290/33	300/53	290/33
G	3000	310/34	300/53	290/46
H	4000	315/33	300/52	300/43
T	5000	320/33	300/50	--
	6000	320/33	300/49	300/41
	7000	310/33	300/52	300/46
	8000	305/32	300/56	300/44
	9000	300/31	295/52	285/46
	10000	280/28	295/53	--
	11000	275/23	290/53	--
(Ft MSL)	12000	285/20	285/48	275/43
	13000	295/22	280/49	--
	14000	290/24	285/54	275/45
	15000	280/25	280/50	--
	16000	270/26	280/48	270/39
	17000	275/33	280/55	--
	18000	270/38	280/58	--
	19000	270/42	275/48	--
	20000	270/44	275/43	265/39

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
 DATA (Degrees and Knots) : November 6, 1972

Observational Point : SHEMYA, ALASKA

Time of Ob. (BST) : 0400 0700 1000

Type of Measurement : RAWIN RAWIN RAWIN

H	Surface	310/27	310/28	280/14
E	1000	305/43	300/31	285/19
I	2000	300/41	300/34	295/25
G	3000	300/39	305/37	300/25
H	4000	300/37	305/41	300/24
T	5000	300/36	300/41	295/24
	6000	300/35	295/40	290/27
	7000	295/37	290/37	280/28
	8000	295/37	290/36	275/29
	9000	285/39	285/38	275/32
	10000	280/42	280/40	275/38
	11000	275/40	280/43	280/55
(Ft MSL)	12000	280/39	280/46	285/52
	13000	275/40	280/52	285/65
	14000	270/44	280/57	280/70
	15000	270/45	280/57	280/70
	16000	265/45	275/59	280/68
	17000	265/50	275/63	280/77
	18000	265/53	275/66	280/82
	19000	265/58	275/69	--
	20000	265/62	275/76	--

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WINDS ALOFT
DATA (Degrees and Knots) : November 6, 1971

Observational Point : ADAK, ALASKA

Time of Ob. (BST) : 1000 1300

Type of Measurement : RAWIN RAWIN

H	Surface	270/28	270/28
E	1000	--	--
I	2000	--	--
G	3000	280/52	280/52
H	4000	280/58	280/58
T	5000	285/62	280/62
	6000	285/62	285/62
	7000	290/56	290/56
(Ft MSL)	8000	290/51	290/49
	9000	285/52	285/52
	10000	285/58	285/54

CANNIKIN METEOROLOGICAL DATA

SUPPLEMENTARY WIND DATA
(Degrees/Knots)

: November 6, 1971

TOWER		MAIN CAMP TOWER #8	SHEMYA, ALASKA	ADAK, ALASKA
TOWER Ht. (Ft. Abv.Sfc.) :		88°	--	--
T	0000	270/40	310/26	230/34
	0100	270/41	310/31	230/30
I	0200	270/34	300/27	220/28
	0300	280/32	290/16	220/28
M	0400	280/31	300/27	--
	0500	290/39	310/27	240/26
E	0600	300/40	310/24	240/26
	0700	310/37	310/28	240/20
	0800	290/36	290/18	280/32
	0900	310/40	290/15	270/36
	1000	300/32	290/12	270/28
	1100	300/35	280/16	270/30
(BST)	1200	310/28	340/14	260/24
	1300	310/34	280/14	290/24
	1400	310/33	280/20	280/34
	1500	310/30	270/20	--
	1600	310/26	290/12	280/26
	1700	310/26	280/15	290/26
	1800	310/32	270/14	290/20
	1900	310/27	300/10	280/26
	2000	310/26	290/09	280/20
	2100	300/22	250/26	300/20
	2200	300/24	250/26	290/22
	2300	320/18	230/21	290/19

HOURLY WEATHER
November 6, 1971

AMCHITKA, ALASKA (NW CAMP)

TIME (BST)	Sky Condition	Visi- bility (mi)	Weather and Obstructions to Vision	Sea Level Pressure (mb)	Temp. (°F)	Dew Point Temp (°F)	Wind Dir. (deg)	Wind Spd. (kt)
0000	Estimated 1500' Ovc.*	10		994.1	41	39	270	40G50**
0100	Estimated 1500' Ovc.	10		996.2	41	39	270	31G41
0200	Estimated 1500' Ovc.	10		997.7	41	39	280	34G44
0300	Estimated 1500' Ovc.	7		999.0	40	40	260	31G43
0400	Estimated 1500' Bkn.	7		1000.8	40	37	250	36G45
0500	1500' Sctd. 14,000' Thin Bkn.	10		1002.4	39	37	260	35G45
0600	Estimated 1500' Bkn.	10		1004.8	38	36	270	26G35
0700	Estimated 1500' Bkn	7	Light rain showers	1006.8	37	35	270	28G38
0800	1500' Sctd. 14,000' Sctd.	10		1008.9	37	35	300	25G35
0900	1500' Sctd.	10		1010.9	37	33	300	36
1000	1500' Sctd.	10		1013.2	38	31	300	37

* Ovc. - Overcast (More than 9/10 sky cover)

Bkn. - Broken (6/10 - 9/10 sky cover)

Sctd. - Scattered(1/10 - less than 6/10 sky cover)

** G50 - Gusts to 50 knots

24 Hour Precip. (inches) Trace

HOURLY WEATHER
November 6, 1971

AMCHITKA, ALASKA (NW CAMP) (Continued)

TIME (BST)	Sky Condition	Visi- bility (mi)	Weather and Obstructions to Vision	Sea Level Pressure (mb)	Temp. (°F)	Dew Point Temp (°F)	Wind Dir. (deg)	Wind Spd. (kt)
1100	1500' Sctd.	10		1015.6	38	33	300	35
1200	2000' Sctd.	10		1017.0	40	32	300	32
1300	2000' Sctd.	10		1018.2	40	31	300	30
1400	2000' Sctd.	10		1019.4	40	34	310	36
1500	2000' Sctd.	10		1020.8	39	30	310	26
1600	2000' Sctd.	10		1022.1	38	30	310	29
1700	1500' Sctd.	10	Light snow showers	1023.4	37	31	310	28
1800	1500' Sctd.	10		1024.6	36	28	310	26
1900	1500' Sctd.	10		1025.8	36	28	310	26
2000	1500' Sctd.	10		1026.9	36	29	300	20
2100	1500' Sctd.	10		1028.3	35	29	300	24
2200	1500' Sctd.	10		1028.8	35	29	300	23
2300	1500' Sctd.	10		1029.5	35	30	310	20

HOURLY WEATHER (As Available)
November 6, 1971

AMCHITKA, ALASKA (AIRFIELD)

TIME (BST)	Sky Condition	Visi- bility (mi)	Weather and Obstructions to Vision	Sea Level Pressure (mb)	Temp. (°F)	Dew Point Temp (°F)	Wind Dir. (deg)	Wind Spd. (kt)
0000	Measured 1500' Ovc.	4	Very light drizzle Fog	995.3	43	39	240	30G50
0100	Measured 1500' Ovc.	4	Very light drizzle Fog	997.1	43	39	240	32G48
0200	Measured 1000' Ovc.	6	Fog	998.4	43	39	250	28G40
0300	Measured 1500' Bkn. 3000' Ovc.	6	Light Drizzle Fog	999.8	43	39	260	26G40
0400	Measured 900' Bkn. 2500' Ovc.	6	Fog	1000.9	42	40	260	25G40
0500	Measured 1500' Ovc.	6	Light rain Fog	1002.5	42	40	250	25G40
0600	1500' Sctd. 3000' Ovc.	7	Very light rain	1004.5	41	40	260	25G44
1500	2000' Sctd.	20		1019.9	41	30	280	20G30
1700	Measured 2500' Bkn.	20		1023.3	39	32	290	20G30
1800	Measured 2500' Bkn.	20		1024.2	M	M	280	20G30

HOURLY WEATHER
November 6, 1971

ADAK, ALASKA

TIME (BST)	<u>Sky Condition</u>	Visi- bility (mi)	Weather and Obstructions to Vision	Sea Level Pressure (mb)	Temp (°F)	Dew Point Temp. (°F)	Wind Dir. (deg)	Wind Spd. (kt)
0000	600' Sctd. Estimated 1800' Ovc.	1½		989.4	45	41	230	34G45
0100	200' Sctd. Estimated 1000' Ovc.	3	Light rain Fog	991.1	45	41	230	30G42
0200	Estimated 1000' Ovc.	6	Fog	992.5	45	41	220	28G42
0300	200' Sctd. Estimated 1500' Ovc.	5	Fog	993.1	45	40	220	28G42
0400	Missing	--	--	--	--	--	--	--
0500	Estimated 2000' Ovc.	5	Fog	995.7	45	41	240	26G35
0600	Estimated 2000' Ovc.	5	Fog	997.0	44	41	240	26G38
0700	Estimated 2500' Ovc.	7		998.3	44	42	240	20G29
0800	Estimated 1000' Bkn. 2500' Ovc.	7	Light rain showers	1000.3	42	38	280	32G41
0900	Estimated 1000' Bkn. 2500' Ovc.	7	Light rain showers	1002.4	42	36	270	36G42

HOURLY WEATHER
November 6, 1971

ADAK, ALASKA (Continued)

<u>TIME (BST)</u>	<u>Sky Condition</u>	<u>Visi- bility (mi)</u>	<u>Weather and Obstructions to Vision</u>	<u>Sea Level Pressure (mb)</u>	<u>Temp (°F)</u>	<u>Dew Point Temp. (°F)</u>	<u>Wind Dir. (deg)</u>	<u>Wind Spd. (kt)</u>
1000	Estimated 3000' Bkn.	7		1004.4	42	35	270	28G42
1100	1000' Sctd. Estimated 2500' Bkn.	7		1006.0	44	35	270	30G45
1200	Estimated 2500' Bkn.	7		1007.9	44	35	260	24
1300	Estimated 2500' Bkn.	3	Ice pellets	1009.5	43	38	290	24
1400	600' Sctd. Estimated 2500' Bkn.	5	Ice pellets	1011.2	40	35	280	34G42
1500	Missing	--	--	--	--	--	--	--
1600	Estimated 2000' Bkn. 7000' Bkn.	7	Light rain showers	1014.2	41	33	280	26
1700	Estimated 2000' Bkn.	7		1016.0	37	32	290	26G36
1800	Estimated 2000' Bkn.	7		1017.5	38	30	290	20
1900	Estimated 2500' Bkn.	7		1019.4	39	29	280	26G39
2000	3000' Sctd.	7		1021.1	38	29	280	20G40
2100	3000' Sctd.	10		1022.2	38	22	300	20G37
2200	3000' Sctd.	10		1024.0	39	23	290	22
2300	Estimated 3000' Bkn.	10		1024.1	38	25	290	19

HOURLY WEATHER
November 6, 1971

SHEMYA, ALASKA

TIME (BST)	Sky Condition	Visi- bility (mi)	Weather and Obstructions to Vision	Sea Level Pressure (mb)	Temp. (°F)	Dew Point Temp. (°F)	Wind Dir. (deg)	Wind Spd. (kt)
0000	Measured 1900' Ovc.	5	Rain	995.6	40	35	310	26G32
0100	Estimated 1500' Ovc.	7		997.6	39	33	310	31G38
0200	Measured 1400' Ovc.	7	Light rain	1000.0	38	33	300	27G36
0300	Measured 1600' Ovc.	7	Light rain showers	1002.0	39	33	290	16G25
0400	Measured 1300' Bkn.	7	Light rain showers	1003.7	38	32	300	27G37
0500	1300' Sctd.	7		1006.1	38	30	310	27G37
0600	Measured 2800' Bkn.	7		1008.1	38	27	310	24G31
0700	1500' Sctd.	7		1009.8	38	25	310	28G37
0800	2000' Sctd.	10		1011.9	38	26	290	18G30
0900	1500' Sctd. Estimated 4000' Bkn. 20,000' Bkn.	10		1013.5	37	25	290	15G23
1000	Missing	--		1015.6	36	24	290	12G20
1100	1500' Sctd.	10		1016.9	38	26	280	16

HOURLY WEATHER
November 6, 1971

SHEMYA, ALASKA (Continued)

<u>TIME</u> <u>(BST)</u>	<u>Sky Condition</u>	<u>Visi- bility (mi)</u>	<u>Weather and Obstructions to Vision</u>	<u>Sea Level Pressure (mb)</u>	<u>Temp. (°F)</u>	<u>Dew Point Temp. (°F)</u>	<u>Wind Dir. (deg)</u>	<u>Wind Spd. (kt)</u>
1200	1500' Sctd.	10		1018.6	46	29	340	14
1300	1500' Sctd.	25		1019.3	39	28	280	14
1400	2000' Sctd.	25		1020.3	40	20	280	20G29
1500	Estimated 2000' Ekn.	25		1021.3	38	26	270	20G29
1600	2000' Sctd. 10,000' Sctd.	20		1022.4	38	25	290	12
1700	2000' Sctd. 10,000' Sctd. 15,000' Sctd.	20		1023.0	38	21	280	15
1800	2000' Sctd.	25		1023.7	38	24	270	14
1900	2000' Sctd.	7		1025.1	37	23	300	10
2000	2000' Sctd.	7		1025.9	36	28	290	09
2100	2000' Sctd.	7		1026.1	39	27	250	26
2200	Clear	7		1026.4	40	27	250	26
2300	1500' Sctd.	7		1026.4	40	28	230	21

DISTRIBUTION LIST

AEC/NV, Technical Information Branch	30
AEC/NV, Technical Library	2
AEC/Oak Ridge, Technical Information Center	2
NOAA, Publication Services, Boulder, Colorado	15
NOAA, ARL, Silver Spring, Maryland	3
NOAA, ARL-LV Library	73
 Total	125