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PROBLEMS ENCOUNTERED DURING IMPACT CALCULATIONS USING
ANALYTIC EQUATIONS OF STATE

by

Jerry F. Kerrisk and William B. Harvey

ABSTRACT

During modeling of the impact of a projectile on a target or other
calculations that bring materials together at high velocities, computer
simulations of materials being shocked to high pressure and then
releasing to low pressure are performed. Depending on the
circumstances, the release to low pressure is often accompanied by
release to a very low density. Numerical problems leading to very large
sound speeds (and thus small time steps) or to negative Lagrangian
volumes have been encountered during MESA-2D calculations of this
nature. These problems can be traced to the behavior of the equation of
state (EOS) in the limit as the density becomes much less than the normal
or reference density. Although analytic solutions for expansion
isentropes may show acceptable behavior in the low-density limit,
numerical solutions can show undesirable behavior. Examples of this
undesirable behavior in the low-density regime are given for some
simple, analytic equations of state that have closed-form solutions for
isentropes. The behavior of three analytic EOSs that are frequently used
in MESA-2D calculations are then discussed. These EOSs are the Los
Alamos EOS, the MESA polynomial EOS, and a Mie-Griineisen EOS
based on a linear relation between shock and particle velocity. The
problems in the low-density region can be corrected for the Los Alamos
EOS and the MESA polynomial EOS by the proper choice of EOS
coefficients in the expansion region (density less than the reference
density). Problems with the Mie-Griineisen EOS can be corrected if the
functional relationship between the Griineisen parameter (I') and density
differs above and below the reference density.

INTRODUCTION

In MESA-2D calculations simulating the impact of materials or the penetration of a
projectile into or through a target, high pressures-are calculated in the materials by
the modeling of shock processes and adiabatic compressions. Whenever free
surfaces are modeled, the computation will follow materials releasing from high-
pressure states to zero or nearly zero pressure. If the release proceeds to densities
much lower than the normal density, numerical problems can be encountered in the
simulations. The occurrence of these problems depends on the equation of state
(EOS) of the material involved.




Two classes of problems have been encountered, very high material velocities that
lead to advection difficulties and very small time steps that slow or stop a calculation.
MESA-2D calculations use one or more Lagrangian steps followed by an advection
step in which cells are returned to their original shape. Velocities are calculated at
the vertices of cells. Large material velocities can lead to negative Lagrangian
volumes, which stop the calculation. These velocities can be much larger than any
realistic material velocity that could be expected in the calculation and often occur in
a small region (a few cells) of the problem. An examination of the one or few cells
with this condition usually indicates one or more materials with low density, large
specific internal energy (positive or negative), and sometimes very large negative
values of ¢2, where ¢ is the calculated bulk sound speed of the material in the cells.
Calculations can also be slowed or even stopped if the time step becomes too small.
Frequently, in such situations the time step will be controlled by a single calculational
cell or a few cells that are contiguous. An examination of the cell or cells controlling
the time step reveals conditions very similar to the case of negative Lagrangian
volumes except that c2 is very large and positive.

The numerical behavior of a calculation that encounters such problems can be very
erratic. It is sometimes possible to stop and restart the calculation a short time before
the occurrence of the problem with a different time step and pass over the time when
the problem occurred. However, this technique will often only delay the occurrence
of the problem. The same type of problem will stop the calculation a short time later
in the same computational cell or a nearby cell. A more robust solution is to drop the
offending material from the region where the problem occurs at a time before the
material velocities, sound speeds, or energies have gotten out of hand. In either
case these solutions can be costly in terms of the amount of time the user must spend
to 'fix' the problem. Another solution in MESA-2D is to use the 'CLEAN' option.
However, this option only drops low-density material in mixed cells, so that material
in pure cells that exhibits these problems will still exist.

Experience has shown that problems of negative Lagrangian volumes and small time
steps are intimately connected to the behavior of the EOS of a material. In particular,
if the pressure (P) of the EOS does not approach zero as the density (p) goes to zero
then the problems discussed above are frequently encountered. If the EOS is well
behaved in the expansion region (P — 0 as p — 0), such problems rarely arise.

Any expansion process that is simulated in hydrodynamic calculations in which
strength and viscosity effects are not modeled should occur isentropically. For a
variety of reasons, such calculations do not always maintain the isentropic nature of
the expansion process. Deviations from isentropic conditions can often be traced to
the interplay of the EOS and the numerical schemes implemented in the
hydrodynamic code. When the EOS is not well behaved in a given density region,
the computational results can be catastrophic. For these reasons, it is important to
understand the behavior of isentropes as determined by the EOS. It is also important
to understand the behavior of an EOS as the differential equation defining an
isentrope is integrated numerically. The time-step procedure used in hydrocode
calculations is effectively a numerical-integration process. Although an EOS can
show a well-behaved analytic isentrope in the low-density limit, numerical integration

can lead to large deviations of the energy, pressure, or sound speed from realistic
values.




In this report, a number of simple analytic EOSs are discussed initially. Although -
these EOSs are not often used for realistic calculations, they have closed-form
analytic solutions for an isentrope and provide examples of good and bad behavior
in the limit as density becomes much less than the normal density of the material.
The behavior of three EOSs that are used in impact problems, the Los Alamos EOS,
the MESA polynomial EOS, and a Mie-Griineisen EOS based on a linear relation
between shock and particle velocity, are then discussed. With these EOSs,
unpredictable behavior can occur during an isentropic expansion to low density or in
the calculation of the sound speed at low density. The purpose of this report is to
investigate the behavior of these EOSs at low density and to propose solutions to the
problems found.

EXPANSION ALONG AN ISENTROPE

Along an isentrope, changes in specific internal energy (€) are related to changes in
density (p) or specific volume (V = 1/p) by the equation

de= -PdV = (P/p?) dp , (1)

where P is the pressure defined by the EOS as a function of p and €. Clearly, a
numerical integration of Eq. (1) along a path as the density approaches zero will
eventually cease to be meaningful unless the EOS is well behaved and P — O as
p — 0 along an isentrope. Even if the EOS is well behaved, the numerical
integration scheme inherent in hydrocode calculations may have problems. The
behavior of (dP/de)y, which influences the stability of a numerical integration scheme
for Eg. (1), is also of interest in the limit as p — 0 (Gear 1971).

If Eq. (1) has a closed-form analytic solution for a particular EQS, the behavior of
isentropes at low density can be understood from this solution. A number of simple
EOSs that have closed-form analytic solutions for Eq. (1) are discussed below. The
problem with hydrocode calculations is that analytic solutions to Eq. (1) are not used.
Material energy changes in each cell are calculated from the PV work done during a
time step. This process is effectively a numerical integration of Eq. (1). Thus, the
numerical behavior of Eq. (1) is also important for understanding the problems
discussed above.

SOUND SPEED

In a hydrodynamic code, an important consideration is the calculation of the time
step, 8t. One simple method uses the bulk sound speed of a material, ¢, and the size
of a computational cell, 8h, in the equation

dt<éhi/c . (2)
Equation (2) is frequently referred to as the Courant condition, and for a Lagrangian
calculation it simply states that the time step should not be larger than the time
required for a wave to cross a computational cell.

From thermodynamic considerations, the bulk sound speed of a material is calculated
as




c? = (aP/op)s (3)

where S is the specific entropy. For an EOS where P is given as a function of ¢ and
p, 2 is calculated as -

c2 = (aP/ap)e + (P/p?) (OP/oe)p . (4)

Unless P or (0P/de)p or both approach zero as p — 0 for an EOS, the second term in
Eq. (4) can lead to problems with large sound speeds and thus small time steps. In
hydrodynamic calculations, the bulk sound speed can exhibit a wide range of
behavior. In the limit as p — 0, c2 may become very large, go to zero or asymptote to
a finite value. In some cases, negative values of c2 may be calculated. MESA-2D
ignores negative values of c2 (sets negative c2 to zero), but they are an indication of
possible problems.

NUMERICAL METHODS

As noted above, hydrocodes perform numerical integrations of systems of differential
equations. To assess the numerical performance of the various EOSs discussed
here, two numerical integration schemes were used to integrate Eq. (1) along
expansion isentropes. The first was a simple Euler method (Gear 1971) in which the
energy was advanced from step i to step i+1 as

€1 = & + (Pi/pP) (- pi) (5)

where pi.; = fpi. The value of f was taken as 0.95. This explicit method keeps the
change in density scaled to the size of the density as it approaches zero. The results
were not significantly affected by the value of . EOSs that exhibited numerical
difficulties showed the same difficulties for larger or smaller step sizes in density. The
density at which the difficulties began was a weak function of f.

The second numerical integration scheme was an Adams-Bashforth-Moulton
predictor-corrector (ABM-PC) method of variable order (1-12) (Gear 1971, Shampine
and Watts 1979). This method is recommended for non-stiff and mildly stiff
differential equations. A relative error tolerance of 3x10”° was used. The
implementation employed stops if the differential equation appears to be too stiff to
achieve the required error tolerance.

SIMPLE ANALYTIC EOSs

This section discusses three simple analytic EOSs that have analytic solutions for
isentropes in P-p space and €-p space. Although these EOSs are not often used to
describe solid materials in realistic impact problems, their simplicity is useful for
illustrating the behavior of release isentropes at very low densities.

Ideal Gas

The first EOS to be considered is an ideal-gas form given by the equation

P=(y-1)p€, (6)




where y is a constant such that y> 1. Equation (6) can be directly substituted into
Eg. (1) and integrated to give

€=¢glpl/p)rt, (7)

where & and p, are values of specific internal energy and density at some reference
point along the isentrope. By substituting Eq. (7) for ¢ into Eq. (6), the variation of
pressure along an isentrope is given by

= Pf(p/pf)Y ’ (8)

where Pr and pr are the values of pressure and density at some reference point along

the isentrope. From Egs. (4) and (6), the behavior of the sound speed of an ideal gas
is

2 =yPp =yly-1)E. (9)

Equation (9) holds in general; along an isentrope the sound speed can be related to
density as

c=clp/p) i, (10)

where ¢, and pr are the values of sound speed and density at some reference point
along the isentrope. Since v is greater than one, Egs. (7), (8), and (10) clearly show
that the specific internal energy, pressure, and bulk sound speed all approach zero
as the density approaches zero along an isentrope. Equation (6) also shows that, in
general, the pressure approaches zero as the density approaches zero as long as
the specific internal energy remains finite. Numerical solutions of ideal gas
isentropes are also well behaved in the limitas p — 0.

Stiffened Gas EQS

In the stiffened gas EOS (Harlow and Amsden 1971), the pressure is defined as

P=(y-1)pe+alp-py , (11)

where y is again a constant such that y> 1, @ is a positive constant, and P is the
normal or initial density of the material. The first term in Eq. (11) is the ideal-gas form.
Equation (11) is a form of a Mie-Griineisen EOS. It can also be considered as a kind
of first-order expansion of a gas EOS around p,, except that @ need not be small. In
fact, for a solid, @ equals the square of the sound speed (@ = cg2) at ambient
conditions (€ =0 and p = p).

In the limit as p — 0, Eq. (11) indicates that the pressure approaches a value
independent of p and €, P — ~a p, and that (3P/de)p — 0. However, the behavior
of ¢ must be examined in greater detail to determine the behavior of P along an
isentrope. Substituting Eq. (11) into Eq. (1) and integrating gives a relation
between € and p along an isentrope as




e=Kp/p)t - a{[/y=1] - (p,/p7)} . (12)

where K is a constant along a given isentrope but does depend on the entropy and
thus varies from one isentrope to another. Substituting Eq. (12) into Eq. (11) gives
the pressure along an isentrope as

P = Kpy(y=1)p/py)" —apy/v. (13)

From Eqg. (12) it is evident that € — « in the limit as p — 0 and from Eq. (13) that
P — -ap,/yasp — 0 along all isentropes. The terms in Egs. (12) and (13) that
dominate Por p << p, are independent of K (independent of the initial entropy). Thus,
all isentropes collapse to the same curve in this limit for this EOS.

From Egs. (4) and (11), the sound speed of the stiffened gas EOS is given by
2 =y(y-ne+a{y-[y-1)p,/pl1}. (14)

At first glance at Eq. (14), it would appear that c2 — ~w as p — 0. However, this is
not the case along an isentrope when the behavior of € is taken into account. When
Eq. (12) is substituted into Eq. (14), the variation of c2 along an isentrope is given by

= y(y-1)K(p/py)t", (15)

which is the same as an ideal gas EOS. Thus, ¢c2 » 0 as p — 0 along an
isentrope. The form of Eq. (15) results from cancellation of terms that become large
and positive, and large and negative as p — 0. Thus, a calculation of ¢c2 from
Eg. (14), as is done in a hydrocode, can lead to difficulties even though an isentropic

process is involved because the large positive and negative terms may not cancel
exactly.

As an example of the numerical behavior of this EOS, constants that approximate the
EOS of Al were chosen. Appendix A lists the values of @ and p, used. Figures 1 -3
show plots of the energy, pressure, and sound speed along an isentrope through a
point on the Hugoniot at P = 10 Mbar (p = 5.949 g/cm®, and € = 1.011 Mbar-
cm®/g). In each plot three curves are shown, the analytic relation given by Egs. (12),
(13), or (15), and two numerical solutions to Eq. (1) for this EOS. The numerical
solutions calculate € as a function of p along the isotherm from Eq. (1). The values of

€ and p on the isotherm are used to calculate the pressure from Eq. (11) and the
sound speed from Eq. (14).

The large increase in € as p — 0 is evident for all three solutions in Fig. 1. The
pressure (Fig. 2) approaches the value -a Po/ Yas p — 0; however, in the case of
the Euler solution the result at low density differs noticeably from the analytic solution.
The sound speed (Fig. 3) approaches zero as p — 0 for the analytic solution.
However, the two numerical solutions deviate significantly from the analytic solution
at low density. The sound speed from the Euler solution is quite inaccurate for
densities below ~1 g/cm®, and ¢2 - - as p — 0. The sound speed from the
ABM-PC solution follows the analytic solution to lower densities but eventually drifts




-k
o

- —— Analytic
e L ABM-PC
) —----Eulor

8

6

| \ o

z PO S ST SR ST S i IV ST SHNT R T H Y 2 PR W S S S Y

.01 0.1 1 10
Density (g/cm®)

Fig. 1. Specific internal energy (€) as a function of density (p) along an isentrope
thraugh 10 Mbar on the Hugoniot for a stiffened gas EOS for Al.

Specific Internal Energy - € (Mbar-cm%g)

o9

g °Ff
Qo i
g : /
Q .o.1
= 5
o) 5
(72} >
2 X f
a -0.2
A /i
.0.3 //
5 —_
.0.4L — iy e ———
0.01 0.1 1 10
Density (g/cm®)

Fig. 2. Pressure (P) as a function of density (p) along an isentrope through 10 Mbar
on the Hugoniot for a stiffened gas EOS for Al




0.5 ——

0.4}

0.3}

LIBEL S8 St §

0.2

ToroLvor

0.1

Sound Speed - ¢ (cm/us)?

LA St A §

T

0.0001 0.001 0.01 0.1 1 10

Density (g/cm®)

Fig. 3. Sound speed (¢®) as a function of density (p) along an isentrope through
10 Mbar on the Hugoniot for a stiffened gas EOS for Al.

away. The sound speeds from both numerical schemes become inaccurate because
they do not get complete cancellation of the terms that cancel analytically. The exact

manner in which ¢2 deviates from the zero limit as p — 0 depends on the form of the
numerical solution.

Modified Stiffened Gas EQS

Equation (11) can be modified to eliminate the catastrophic behavior of € along an
isentrope by defining pressure as

P = (bgpy+ bip)e+ alp-py), (16)

where 3, by, and b, are positive constants. Compared to Eq. (11), a term that is
independent of density and linear in € has been added.

in the limit as p — 0, Eq. (16) indicates that the pressure approaches a value
dependent on €, P — -2 p, + bgp, € and that (9P/de)y — bg p,. As with the
stiffened gas EOS, however, cEehavior along an isentrope needs to be examined.
Substituting Eq. (16) for pressure into Eq. (1) gives a differential equation that has
analytic solutions for cases where b, is an integer. Although this is a limitation for a
realistic description of a material, for the purposes of illustrating problems of EOSs at

low density it is an acceptable limitation. With the restriction that by, = 1, the
isentrope is given by




€ = (a/bo)[1-(p/pg)—(p/pybo)] + K (p/py) expl-bopy/p) (17)

where K is a constant that depends only on the entropy of the material along the

isentrope. Substituting Eq. (17) into Eq. (16) gives a relation for the pressure along
an isentrope as

= [(@py/bo) (P/py)° (1+1/bg)] + K[bg+(p/py)lpexpl-bopy/p) .  (18)

In the limit as p — 0, Eq. (17) indicates that € —» (a /by ) and Eq. (18) that P - 0
along all isentropes. For this EOS also, all isentropes collapse to the same curve for
p << Pg-

From Eqs. (4) and (16), the sound speed of the modified stiffened gas is given by
= {1+ [1+(bopy/p)F}e+ a{1+ [1-(pg/p)I1[1 + (bopy/p)]1} . (19)

Equation (19) indicates that in general, ¢® can become infinite as p = 0. However,
when the behavior of € along an isentrope (Eq. (17)) is taken into account, the sound
speed along an isentrope is given by

= K{1 + [1+(bopy/p)F}(p/py) exp(-bopy/ p)

~{(2a/bg) (p/py) (1+1/bg)} .  (20)
From Eg. (20), ¢® — 0 as p — 0 along an isentrope.

As an example of the numerical behavior of this EOS, constants that approximate the
EOS of Al were chosen. Appendix A lists the values of a, by, by, and po used.
Figures 4 - 6 show plots of the energy, pressure, and sound speed along an
isentrope through a point on the Hugoniot at P = 10 Mbar (p = 5.556 g/cm®, and
€ = 0.952 Mbar-cm /g) In each plot three curves are shown: the analytic relat:on
given by Egs. (17), (18), or (20), and two numerical solutions to Eq. (1) for this EOS.
The numerical solutions calculate € as a function of p along the isotherm from
Eq. (1). The values of € and p on the isotherm are used to calculate the pressure
from Eq. (16) and the sound speed from Eq. (19).

The value of € approaches 0.2 Mbar-cm®/g as p — 0 for the analytic solution and for
the ABM- PC solution. However, the ABM-PC solution stopped at a density of
~0.01 g/cm® because of the large number of steps needed to achieve the requested
relative aceuracy. At this density the ABM-PC method was using a density step size
of ~4x107° g/em®. If an attempt is made to push the ABM-PC method to lower
densities by relaxing the error tolerance, large fluctuations in energy are ultimatel ly
encountered. The Euler solution becomes unstable at a density of ~0.02 g/cm®,

leading to large fluctuations in the energy. The pressure (Fig. 5) approaches zero as
p — 0 for the analytic solution and the ABM-PC solution; however, the ABM- PC
solution for the pressure shows small fluctuations below a density of ~0.03 g/cm®.

The Euler solutlon for the pressure shows large fluctuations at a density of
~0.02 g/cm® because it is based on the energy. The sound speed (Fig. 6)
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approaches zero for the analytic solution. For the ABM-PC solution, ¢? begins to
show fluctuations below a density of ~0.2 g/lem®, the fluctuations becoming large by a
density of 0.03 g/cm®. For the Euler solution, large fluctuations in ¢2 begin at about
the same density as those for the energy and pressure. Although the analytic forms
of isentropes of this EOS appear to show acceptable behavior, the numerical
solutions developed numerical difficulties at sufficiently low densities.

LOS ALAMOS EOS

The Los Alamos EOS that is used in MESA-2D defines P as a function of € and p as

P = [Ao(i) + Bol) (Epy) + Colu) & pp?l/Q, (21)
where
Aoll) = ap + ajp + ap p? (22a)
Bo(l) = bo + byp + by 2, (22b)
Col) = co + c1p + c2'p2, (22c)
Q=epo+eo, (22d)
11




andp = (p/pgy) — 1. This form differs somewhat from the original formulation in the
treatment of the terms that are quadratic in . (Zukas et al. 1982). The quantities a;, bj,
ci, and €g are constants, and p, is the normal density of the material. The constant ao
is normally zero and will be assumed so in subsequent discussions. The constants
as’, by", and c” differ depending on whether p is positive or negative (p is greater
than or less than p,). For u>0, ap” = a¢, bz = ba®, and ¢z = c2° where the
superscript ¢ indica?es that the material is in compression. For p <0, a2” = az®,
bs” = bo€, and c2” = c28, where the superscript e indicates that the material is
expanded relative to the initial state. Thus, the user has the freedom to choose all six
coefficients independently.

The sound speed of the Los Alamos EOS is calculated from Egs. (4) and (21) as

2 = {[Alo(n) + Bol) (€ py) + Clolh) (€pe)2 1/ (py Q)}
+ {PlpyBol) + 2p2€Co)]/ (Qp2)} - {(P2py)/(Qp2)} . (23)

where
Alg(n) = a3 + 2a2'p , (24a)
Bfo() = by + 2b2"p , and (24b)
Clo() = ¢4 +2c27p . (24c)

This EOS does not have an analytic solution for an isentrope. However, it is possible
to obtain an analytic solution in the limit for p << p,. That solution provides some
insight into the behavior of the Los Alamos EOS.

Behavior in the Low-Density Limit

The behavior of the pressure in Eqg. (21) as p — 0 can be written as

P = [A" + A'(plpy) + B (pg€) + B (pg€) (p/py)

+ C* (po€)2 + C'(py €)2 (plpg) 1/ Q (25)
where
A' = aj + a® | (26a)
A = ay —2ap® (26Db)
B' = by — by + bge (26¢)
B' = by - 2bo® (26d)
C"=cp—-Cy + C2% (26e)
C' =c¢1 - 2c° . (26f)

12




Unless A®, B", and C" are identically zero, P will not, in general, approach zero as
p— 0.

As with the simpler EOSs discussed above, the behavior of € and P along an
expansion isentrope is more significant than the general behavior. An analytic
solution of Eq. (1) can be obtained in the limit of p << p, using the definition of the
pressure given in Eq. (25). In this limit and assuming that A®, B*, and C" are not zero,
the energy and density along an isentrope are related as

-1/p = {[eo - (B/2C")]/ W} In[(2C" py2 € + B"py — W)/ (2C" py2€ + B py + W)
+[1/(2C"py N[ A" + B*pye + C'(py€)2] + K (27)
where
W2 =p 2[B® - 4A"C"], (28)
and K is a constant along a given isentrope. In the limit as p — 0, the left-hand side
(LHS) of Eq. (27) approaches —oo. The right-hand side (RHS) of Eq. (27) will

approach —oo if the arguments of the 'In' terms approach zero as p — 0. In this limit,
the energy can approach either of two values

e= (W - B"py)/(2C p?) . (292)
or
€= (-W - B"p,)/(2C" p) - (29b)

If the Los Alamos EOS coefficients are chosen such that A", B*, and C* are zero, the
analytic solution to Eq. (1) in the limit of p << p, becomes

(P/Po) =
K[(2C'ps2 €+ B'py— W)/ (2C p2 € +B'py + WM [ A"+ B'p, € + C'(py €)2 I, (30)

where

m= p,{[€ - (B/2C)]/ W} , (31a)
and

n=1/(2C'). (31b)

As p — 0, the LHS of Eq. (30) also approaches zero. The RHS will approach zero
(for m and n positive) if the energy approaches the values

€= (W= Bpy)/RCp2) ., (32a)

or

e=(-W-Bp,)/2C pg2) . | (32b)

13




This analysis indicates that as p — 0 along an isentrope, € approaches a nonzero
value whether the coefficients are chosen so that A", B, and C* are zero or nonzero.
This behavior is analogous to that of the modified stiffened gas EOS. Because of the
complex relation between € and p along an isentrope, even for p << p, , it was not
possible to obtain analytic expressions for P or c? along an isentrope in tgat limit. For
their behavior it will be necessary to examine numerical solutions to Eq. (1).

Numerical Expansion Isentr

To perform numerical integrations of Eq. (1) it will be necessary to choose values of
the coefficients aj, bj, and ¢;. The normal choice of the expansion coefficients is

as® = —a°, (33a)
bo® = bxf,and (33b)
co® = 0. (33c)

For this choice, A", B", and C" are not zero, and the pressure and (dP/de), do not
approach zero in general as p — 0. The pressure calculated by the Los Alamos
EOS can be forced to zero as p — 0 by requiring that the coefficients az®, bp€, and
co® are related to the other coefficients as

ax® = ay , (34a)
b® = by - bg, and (34b)
c2®=¢y - Co. (34c)

This choice makes A", B*, and C" identically zero. The use of Egs. (34) forces P and
(0P/oe), to zero as p — 0. These definitions are not unreasonable. in general, the
lack of experimental data in the expansion region (p < po) precludes experimental
determination of the coefficients. Appendix A contains two sets of coefficients for Al
for the Los Alamos EOS, one set with expansion coefficients defined by Egs. (33)
and the other with expansion coefficients defined by Egs. (34).

Figures 7 - 9 show plots of energy, pressure, and sound speed as a function of
density along an expansion isentrope through a point on the Hugoniot at
P =10 Mbar (p = 7.371 g/cm3 and € = 1.1722 Mbar-cm3/g). The four curves in
each plot show results from the Euler and ABM-PC methods using coefficient sets
defined by Egs. (33) and (34). For energy (Fig. 7), the Euler integration using the
Eq. (33) coefficients experiences large fluctuations starting at a density of
~0.02 g/cm3. The ABM-PC integration using these coefficients stopped at a density
of ~0.005 g/cm® with an indication that the differential equation became too stiff to
continue. If an attempt is made to push the ABM-PC method to lower densities by
relaxing the error tolerance, large fluctuations in energy are ultimately encountered.
When the Eq. (34) coefficients were used, the Euler and ABM-PC integrations
continued to a density of ~1.0x10° g/cm® without apparent problems. The behavior
of the pressure (Fig. (8)) is similar to that of the energy. The sound speed calculated
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with the Eq. (33) coefficients using the ABM-PC integration shows fluctuations
starting at a_density of ~0.2 g/cm®; these fluctuations become large at a density of
~0.02 g/cm?®, the same density at which large fluctuations in the sound speed
calculated by the Euler method begin. Sound speeds calculated with the Eq. (34)
coefficients are negative but well behaved to densities of ~1.0x10° g/em?®.

The two ways of defining coefficients in the expansion region lead to significantly
different behavior of €, P, and ¢2 at densities below po- The energy (Fig. 7)
asymptotes to very different values for the two sets of coefficients. The minimum
pressure (Fig. 8) with the Eq. (33) definition is about —0.09 Mbar but with the

Eq. (34) definition is only about —0.003 Mbar. Similarly, minimum values of c2
(Fig. 9) are quite different. A comparison of the results for this isentrope using the
Eq. (34) coefficients with tabular EOS data (Holian 1984) for Al is given in
Appendix B.

POLYNOMIAL EOS

The polynomial EOS defines P as a function of € and p as

P = Ap(u) + Bp(n) (€ py) (35)

where
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Aplu) = ao + arp + ag"u2 + agp3 , and (36a)
Bp(t) = bo+ bip + b u2 + bap3 . (36b)

The quantities aj and b; are constants. The constant ag is normally zero and will be
assumed so in subsequent discussions. As with the Los Alamos EOS, the constants
ap’, and by’ differ depending on whether 1 is positive or negative (p is greater than or
less than po). In MESA-2D, for p >0, ap = a2® and by" = bo® ; and for p <0,
az" = az® and by" = bpe. These four coefficients can be chosen independently.

The sound speed of the polynomial EOS can be calculated from Eq. (3) as

c2 = {[AT(n) + B'p(1) (€ po) 1/ (po) } + (P/p?) (Bp() po) , (37)

where
Alo() = aq + 2a"p +3azp2 , and (38a)
B'p(i) = by + 2bp"p +3bgp2 . (38b)

As with the Los Alamos EQS, the polynomial EOS does not have an analytic solution
for an isentrope. It is possible here, also, to obtain an analytic solution in the limit for
p << Py -

Behavior in the Low-Density Limit

The behavior of the pressure in Eq. (35) as p — 0 can be written as

P=A"+ A (plpy + By (pg€) + By (p/py) (pgE) (39)
where
A =-a; +a - a, (40a)
Ay = a1 - 2a° + 3as, (40b)
By = bo — by + bp®- b3, and (40c)
By = b1 - 2b2°+ 3b3 . (40d)

Unless the coefficients A,* and B," are identically zero, P will not, in general,
approach zero as p — 0.

An analytic solution of Eq. (1) can be obtained in the limit of p << p, using the

definition of the pressure given in Eq. (39). In this limit and assuming that Ap" and
By" are not zero, the energy and density along an isentrope are related as
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exp(-By" py/p) = K(A* + By py €) (41)
where K is a constant along a given isentrope. In the limit as p — 0, the LHS of

Eq. (41) approaches zero (for Bp" > 0). For the RHS of Eq. (41) to also approach
zero in that limit, the energy will be

€ = -A"/(By'p,) - (42)

Substituting the relation between energy and density of Eq. (41) into Eq. (39) gives
a relation for the pressure along an isentrope for p << Po -

P = Kexp(-B," py/p) - (43)

As p — 0, the pressure approaches zero. The sound speed, in the low-density limit
and assuming that A," and B," are not zero, can be written as

¢ = [(A' +By'py€)/po] + (A" +By" py &) (B, py) / 07l - (44)

The second term in Eq. (44) approaches zero but the first term remains nonzero as
p — 0.

If the polynomial EOS coefficients are chosen so that Ap" and By" are zero, the energy
and density along an isentrope are related as

P/py = K(A)+By'p,e)° (45)

where B = 1/ By’ and K is a constant along a given isentrope. In the limit as p — 0,
the LHS of Eq. F45) approaches zero. The RHS of Eq. (45) will also approach zero
(8 > 0) if in that limit the energy becomes

£= A1 (B, py) - (46)

Substituting the relation between energy and density of Eq. (45) into Eq. (39) gives
a relation for the pressure along an isentrope for p << Po

13

As p — 0, the pressure approaches zero. The sound speed, in the low-density limit
and assuming Ay" and B," are zero, can be written as

ce = [(Ay' +By'py€) (1 +Bp ) pyl - (48)
The sound speed goes to zero as p — O for this choice of coefficients.

This approximate analysis indicates that the energy approaches a nonzero limit as
p — 0 whether the coefficients are chosen so that Ap" and B," are zero or nonzero.
The pressure also approaches zero in this limit. The sound speed does not
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approach zero if the coefficients are chosen so that A;" and B, are nonzero but does
approach zero it Ap" and Bp" are zero. However, it will be seen below that the
numerical behavior of the polynomial EOS along an expansion isentrope differs
significantly depending on whether Ap" and B, are zero or nonzero.

Numerical Expansion Isentr

To perform numerical integrations of Eq. (1) it will be necessary to choose values of
the coefficients aj and b;. Appendix A contains two sets of coefficients for Al for the
polynomial EOS. In one set (called free), no restrictions were placed on the
individual coefficients. For this choice, the values of Ap" and B," are nonzero. In the
second set (called constrained) the coefficients were chosen such that

a® = a1 + az ,and (49a)

b2® =by + b3 - bg . (49b)

This choice forces Ay* and Bp" to be identically zero and P and (dP/de), approach
zeroas p = 0. .

Figures 10 - 12 show plots of energy, pressure, and sound speed as a function of
density along an expansion isentrope through a point on the Hugoniot at
P =10 Mbar (p = 7.091 g/cm3 and e = 1.1552 Mbar-cm3/g). The four curves in
each plot show results from the Euler and ABM-PC methods using free and
constrained coefficient sets. For energy (Fig. 10), the Euler integration using the free
coefficients experiences large fluctuations starting at a density of ~0.004 g/cm3. The
ABM-PC integration using these coefficients stopped at a density of ~0.001 g/cm®
with an indication that the differential equation became too stiff to continue. If an
attempt is made to push the ABM-PC method to lower densities by relaxing the error
tolerance, large fluctuations in energy are ultimately encountered. When the
constrained coefficients were used, the Euler and ABM-PC integrations continued to
a density of ~1.0x10° g/cm® without apparent problems. The behavior of the
pressure (Fig. (11)) is similar to that of the energy. The sound speed calculated with
the free coefficients using the ABM-PC integration shows fluctuations starting at a
density of ~0.02 g/cm®; these fluctuations become large at a density of ~0.003 g/cm®,
about the same density at which large fluctuations in the sound speed calculated by
the Euler method begin. Sound speeds calculated with the constrained coefficients
are negative but well behaved to densities of ~1.0x10° g/em®.

As with the Los Alamos EOS, the two ways of defining coefficients in the expansion
region lead to significantly different behavior of €, P, and c2 at densities below Pa- A
comparison of the results for this isentrope using the constrained coefficients with
tabular EOS data (Holian 1984) for Al is given in Appendix B.

MIE-GRUNEISEN - LINEAR Us-Up EOS

The Mie-Grineisen - linear Us-Up EOS defines P as a function of € and p by using a
linear Us-Up Hugoniot of a material as a reference state and by defining states off the
Hugoniot using the Mie-Griineisen approximation (Harvey 1986). The linear Us-Up
relation relates shock velocity (Us) to particle velocity (Up) as
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Us =cy+sUp, (50)

where cg and s are constants. From this, the pressure along the Hugoniot (PH) is
given by

PH = pyco?n/(1 — sm)2, (51)
assuming a zero initial pressure. The quantity n is defined as n = [1 — (p,/p)].

Defining a Grineisen parameter T" as pI" = (dP/o€),, the pressure relative to a
reference state (Py, &) can be calculated as (Harvey 19§6)

P=P +ple-¢g). (52)

Assuming a linear-Us-Up Hugoniot as a reference state, the \EOS is
P=ple+ [pyce?n/(1 —smn?2]-[pTcen2/2(1 - sn)2] . (53)
Equations (51) and (53) have a problem for compression states (p > pg ), where P
becomes infinite for sn =1 or p =p, s/ (s~ 1). This problem can also lead to

numerical difficulties during a calculation with strong compression. It has not been
considered here.

The sound speed of the Mie-Griineisen - linear Us-Up EOS is (Harvey 1986)
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¢ = {(pgco/pP)2 [1 + s + (sM2Tp/py) 1/ (1 = sn)3)
+Z{€ - [(co?n2)/2(1 - sn)2]}, (54)

where
Z=[(d(Tp)dp]+ (Ip/p)2. (55)

The quantity I is assumed not to be a function of £ but may be a function of p. Some
common functional forms used are

'=Tp, (56a)

pl' = Polo ., and (56b)
pT = pyTo/(1+nTy) , (56¢)

where I'g is a constant. The third form (Eq. (56¢)) has a problem in that T becomes
infinite when n =-1/T (p/p0 = To/[1 + o)) and is negative for lower densities.
For normal values of I'y (~1.5-8), this occurs for densities of 60-75% of normal
density. Thus, Eq. (56c) is not a viable definition for T when significant expansions
are possible. It was not considered further here. Equation (56b) is the preferred
definition of I for calculations involving compression. Using I defined by Eq. (56a)
does not represent high-density data off the Hugoniot well. From the definition of T,

(dP/oe)p — 0 as p — 0 for Eq. (56a), but (0P/oe)p = Po To (2 constant) for
Eq. (56b).

As with the Los Alamos and polynomial EOSs, the Mie-Griineisen - linear Us-Up
EOS does not have an analytic solution for an isentrope. It is possible to obtain an

analytic solution for one choice of T in the limit for p << pg.

Behavior in the Low-Density Limit

For p << pg, Eq. (53) can be approximated by
P=plre-pce2(1+I/2)/s2 | (57)

The behavior of this EOS along an isentrope depends on the variation of T with p.
For I' defined by Eq. (56a), an analytic solution to Eq. (1) in this limit is

l“0=

p K(Tog - cp2(1+T92)/s2) , (58)

where K is a constant along a given isentrope. In the limit as p — 0 the LHS of

Eq. (58) approaches zero since I'o > 0. For the RHS of Eq.(58) to approach zero,
the energy becomes

€= c(1+T0/2)/Tps? . (59)

In the limit as p — 0, the pressure and sound speed also approach zero along an
isentrope for this definition of T.
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A closed-form analytic solution was not found for Eq. (1) in the low density limit when
I' was defined by Eq. (56b). A solution involving an infinite series in density
indicated that as p — 0, the energy becomes

€ = C02/282 . (60)
Relations for the pressure and sound speed were not found for this definition of I".

This approximate analysis indicates that the energy approaches a nonzero limit as
p — O for both definitions of I" considered (Egs. (56a) and (56b)). The pressure
and sound speed also approaches zero in this limit for Eq. (56a). However, it will be
seen below that the numerical behavior of the Mie-Griineisen - linear Us-Up EOS
along an expansion isentrope can be erratic for I" defined by Eq. (56b).

Numerical Expansion Isentropes

To perform numerical integrations of Eq. (1) it will be necessary to choose values of
the coefficients co, s and I'o , and a relation for . Appendix A contains values of ¢y,
s, and I'g for Al. Figures 13 - 15 show plots of energy, pressure, and sound speed as
a function of density along an expansion isentrope through a point on the Hugoniot at
P =10 Mbar (p = 6.519 g/lcm3 and € = 1.0852 Mbar-cm3/g). The four curves in
each plot show results from the Euler and ABM-PC methods using Egs. (56a) and
(56b) as definitions of I'. For energy (Fig. 13), the Euler integration using the
Eq. (56b) definition experiences large fluctuations starting at a density of
~0.03 g/cm3. The ABM-PC integration using these coefficients stopped at a density
of ~0.01 g/cm® with an indication that the differential equation became too stiff to
continue. As noted for the other EOSs, if an attempt is made to push the ABM-PC
method to lower densities by relaxing the error tolerance, large fluctuations in energy
are ultimately encountered. When Eq. (56a) is used, the Euler and ABM-PC
integrations continued to a density of ~1.0x10™ g/cm® without apparent problems.
The behavior of the pressure (Fig. (14)) is similar to that of the energy. The sound
speed calculated with Eq. (56b) using the ABM-PC integration shows fluctuations
starting at a density of ~0.2 g/cm®; these fluctuations become large at a density of
~0.02 g/cma, about the same density at which large fluctuations in the sound speed
calculated by the Euler method begin. Sound speeds calculated with T defined by
Eq. (56a) are negative but well behaved to densities of ~1.0x10® g/em®.

There is little difference between the behavior of P (Fig. (14)) or ¢ (Fig. (15)) at
densities less than p, for the two methods of defining T'. Only the limiting values of €
(Fig. (13)) are significantly different. A comparison of the results for this isentrope
using the Eq. (56a) coefficients with tabular EOS data (Holian 1984) for Al is given in
Appendix B.

DISCUSSION

During modeling of impacts, it often occurs that one or more materials expands to low
density after being shocked. Under these circumstances, unrealistic values of
specific internal energy (€), pressure (P), or sound speed squared (c2) can be
calculated for some analytic EOSs as the density becomes small relative to the
normal or reference density. These unrealistic values of material properties can lead
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to small time steps or large material velocities that slow or stop a calculation. This
behavior has been observed for three analytic EOSs during MESA-2D calculations.
These EOSs are the Los Alamos EOS, the MESA polynomial EOS, and a Mie-
Grineisen EOS based on a linear relation between shock and particle velocity.

An expansion process that is simulated in hydrodynamic calculations in which
strength and viscosity effects are not modeled should occur isentropically. For a
variety of reasons, such calculations do not always maintain the isentropic nature of
the expansion process. Deviations from isentropic conditions can often be traced to
the interplay of the EOS and the numerical schemes implemented in the
hydrodynamic code. When the EOS is not well behaved in the low-density region,
the computational results can be catastrophic. It is important to understand the
behavior of an EOS as the differential equation defining an isentrope is integrated
analytically (if possible) and numerically. The time-step procedure used in
hydrocode calculations is effectively a numerical-integration process. Although an
EOS can show a well-behaved analytic isentrope in the low-density limit, numerical
integration can lead to large deviations of the energy, pressure, or sound speed from
realistic values.

Analytic and numerical solutions for isentropes for three simple analytic EOSs have
been compared. This comparison provides insight into the difficulties that can arise
in the numerical solutions. Approximate analytic solutions (for p << p,) and
numerical solutions for isentropes for the three more-realistic EOSs have also been
discussed. Table | summarizes the behavior of isentropic expansions of all these
EQSs in the limit as p — 0. The term "erratic* used for some entries indicates either
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that large fluctuations occur in the value or that the differential equation becomes too

stiff to continue (ABM-PC method). Question marks are associated with entries that
have not been determined analytically.

Of the three simplified EOSs for which analytic solutions for an isentrope are
available, the ideal gas EOS (Eq. (6)) represents an ideal situation in which energy,
pressure, and sound speed all approach zero as p — 0. The EOS is also well
behaved numerically. The analytic solution for an isentrope for the stiffened gas EOS
(Eq. (11)) indicates that the energy becomes infinite, the pressure approaches a
finite but nonzero value, and the sound speed approaches zero as p — 0.
Numerical solutions for the stiffened gas EOS show similar behavior for the energy
and pressure, but c2 — too depending on the numerical scheme (see Figs. 1-3).
This problem with the numerical calculation of the sound speed occurs because the
analytic limit for sound speed along an isentrope results from the cancellation of
terms that become infinite as p — 0. The energy and density evaluated numerically
are only approximations to the analytic isentrope and the exact cancellation does not
occur. The infinite limit for the energy of the stiffened gas EOS as p —» 0 is
unrealistic. The modified stiffened gas EOS (Eq. (16)) remedies this problem, giving
a finite (but nonzero) limit for the energy and a zero limit for the pressure and sound
speed as p — 0 for the analytic solution for an isentrope. However, a price is paid
in that the numerical results are all erratic for this EOS. A major difference between
these EOSs is that (aP/dg), approaches zero for the stiffened gas EOS as p — 0, but
(oP/og), approaches a nonzero value (b, p,) in that limit for the modified stiffened gas
EOS. ‘?‘he nonzero limit of (dP/d€), leads to a differential equation that becomes very
stiff or unstable as p - 0. The ABM-PC method recognizes the stiffness of the
differential equation and stops the numerical integration; the Euler method does not
stop and produces large fluctuations in the variables (see Figs. 4-6).

The Los Alamos EOS (Eq. (21)) is used to model solids. In the limit as p — O the
analytic solution for the energy along an isentrope approaches a finite (but nonzero)
value. Limiting analytic values for the pressure and sound speed were not obtained
because of the complexity of the energy-density relation along an isentrope. The
numerical behavior of the Los Alamos EOS depends on the choice of coefficients.
When no attempt is made to force the pressure and (dP/d€), to approach zero as
p — 0 (Egs. (33) definition of the expansion-region quadratic coefficients), the
numerical behavior of the energy, pressure, and sound speed is quite erratic in that
limit (see Figs. 7-9). The onset of irregular behavior depends on the numerical
method used. The Euler method shows erratic behavior before the ABM-PC method
stops because the differential equation is too stiff. When the pressure and (0P/o€),
are forced to zero as p — 0 (Egs. (34) definition of the expansion-region quadratic
coefficients), the numerical solutions are well behaved in this limit (see Figs. 7-9).
The erratic behavior seen in the numerical solutions for an isentrope when the
Egs. (33) definitions of the coefficients are used is the same as seen in
hydrodynamic calculations with this definition of the coefficients. Large positive or
negative values of the energy, pressure, or sound speed squared occur in some cells
with low-density material. Time steps become very small if the sound speed
becomes large or material velocities can become unrealistically large if the pressure
becomes large. These symptoms require user efforts to try to correct them, if
corrections are possible, while maintaining the same definitions of the coefficients.
By redefining the expansion-region quadratic coefficients according to Egs. (34), the
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Table I. Summary of the limiting behavior of isentropic expansions for various
equations of state.

Limit as p — O for an Isentrope
Analytical Numerical
EOS £ P c2 £ P c2
Ideal Gas 0 0 0 0 0 0
o finite but 0 o0 finite but oo
Stiffened Gas nonzero nonzero
Modified Stiffened | finite but 0 0 erratic erratic erratic
Gas nonzero
Los Alamos finite but 0(?) 0(?) erratic erratic erratic
Egs. (33) Coeff. | nonzero
Los Alamos finite but 0 0(?) finite but 0 0
Egs. (34) Coeff. | nonzero nonzero
Polynomial finite but 0 finite and} erratic erratic erratic
Free Coeff. nonzero nonzero
Polynomial finite but 0 0 finite but 0 0
Constrained Coeff.] nonzero nonzero
Mie-Griineisen | finite but 0 0] finite but 0 0
Eq. (56a) Coeff. | nonzero nonzero
Mie-Griineisen | finite but 0(?) 0(?7) erratic erratic erratic
Eq. (56b) Coeff. | nonzero

EOS produces well-behaved values of energy, pressure, and sound speed in the
low-density region.

The behavior of the polynomial EOS (Eq. (35)) is similar to that of the Los Alamos
EOS. The free coefficients for the polynomial EOS are analogous to the Egs. (33)
coefficients for the Los Alamos EOS. Although the analytic behavior of this EOS is
acceptable, when the free coefficients are used, erratic behavior of the energy,
pressure, and sound speed is seen for numerical solutions in the limit as p— 0. By
constraining the coefficients so that pressure and (oP/og), approach zero as p — 0,
the numerical solutions for an isentrope are well behaved in that limit.

The Mie-Griineisen EOS based on a linear relation between shock and particle
velocity is well behaved in the limit as p — 0 if Eq. (56a) is used to define T.
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However, this definition does not represent compression states (p > p,) off the
Hugoniot well. Using Eq. (56b) to define I' describes compressions states well, but
results in erratic behavior of numerical solutions as p — 0. A solution to this
difficulty would be to use Eq. (56b) to define I for p > p, and Eq. (56a) to define I'
for p < p,. In this case the pressure would be continuous across this boundary but
the sound speed would not. Alternate definitions of T for p < p, could be devised so
that the sound speed would also be continuous. An example is

pT = poTolp/pgd[2- (p/py)]l - (61)

This definition makes Z (Eq. (55)) and the sound speed continuous across the p,
boundary. In the limitasp -0, " - 2Tp, P - 0, and (dP/de)p — 0.

Table Il lists values of (0P/de), and the limits of P and (9P/o€)p as p — 0, for the
various EOSs discussed here. l1‘he limit of the pressure shown in Table Il is a limit in
general and not necessarily along an isentrope as was shown in Table I. If the limit
of P as p — 0 is a function of €, it follows that the limit of (dP/d€), is nonzero.
Comparing the results of Tables | and Il, whenever the numerical behavior of €, P,
and c2 along an isentrope was erratic in the limit as p — O (see Table 1), (oP/d€)

was nonzero in the limit as p — O (see Table ll). For the Los Alamos, polynomiaf,
and Mie-Grineisen EOSs, requiring the limit of P as p — 0 to be zero in general
also forced (dP/0€), to be zero in that limit. The behavior of (9P/d€), in the limit as
p — 0 is a measure of the stability of the numerical integration of Eq. (1) in that limit
(Gear 1971). Controlling P in that limit is a convenient method of controlling (0P/0€)p.

The analysis presented here has highlighted a fundamental problem with some
analytic EOSs when expansions to densities much less than the reference or normal
density are encountered in hydrodynamic calculations. With the present structure of
MESA-2D, the user can eliminate this problem for the Los Alamos and polynomial
EOSs by the proper choice of coefficients in the expansion region. For the Los
Alamos EOS, use Egs. (34) to define az®, b®, and c2® in terms of the other
coefficients. Existing compilations of coefficients for the Los Alamos EOS normally
use Egs. (33) to define these coefficients. Thus, a user who wishes to follow the
recommendations made here may have to evaluate these three coefficients for
himself. For the polynomial EOS, use Egs. (49) to define az® and bz¢ in terms of the
other coefficients. For the polynomial EOS that was obtained for Al (see Appendix A),
this constraint was applied during the process of fitting the polynomial form to Al data.

For the Mie-Griineisen EOS, there is no mechanism to change the definition of '
when the density drops below the normal density. Adding this option to MESA-2D
should ease the problems encountered with this EOS when materials expand to very
low densities.
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Table ll. Summary of the limiting behavior of pressure and (dP/dg), as p — 0 for

various equations of state.

limit of P as
EOS p— 0 (aP/og)p limit asp— 0
in general (ap/ae)g
ldeal Gas 0 y-1)p 0
Stiffened Gas nonzero (Yy-1)p 0
but constant
Modified Stiffened | function of € bopg+ bip nonzero
Gas
2
Los Alamos function of ¢ | [BolP 0.;C°(;1§2p 01/ Q nonzero
Egs. (33) Coeff. Po
B + ColL)E p,y2
Los Alamos 0 [ O(u)po. p F,O(/Ll ()-;zpo /e 0
Egs. (34) Coeft. 0
Polynomial function of € Bp(k)p, nonzero
Free Coeff.
Polynomial 0 Bp(1)pg 0
Constrained Coeff.
Mie-Griineisen 0 pl 0
Eq. (56a) Coeff.
Mie-Grlineisen function of & pT nonzero

Eq. (56b) Coeff.
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APPENDIX A
VALUES OF COEFFICIENTS USED IN NUMERICAL INTEGRATIONS

The different EOS forms investigated here use a variety of coefficients to define the
behavior of pressure as a function of density and specific internal energy. The values
used in numerical calculations are listed here. For all the EOSs, p, = 2.7 g/cm3 .

Stiffened Gas EQS

The coefficients in Eq. (11) are:

Y= 2.5, and
Modifi iffen as E

The coetfficients in Eq. (16) are:

bo = 1.5,
a=0.3.
Los Alamos EOS

b, = 1.0, and

The coefficients in Eqs. (21) and (22), using the Eq. (33) definition, are:

aq = 1.18674686,
as€ = -0.762995,
bq = 1.5450573,
boe = 0.96429632,
c1 = 0.54873462,
c2€ = 0.0, and

az® = 0.762995,
bo = 3.4447654,
b2t = 0.96429632,
co = 0.43381656,
c2¢ = 0.0,

€o=1.5.

The coefficients in Eqgs. (21) and (22), using the Eq. (34) definition, are:
agt = 0.762995,

bo = 3.4447654,

bat = 0.96429632,

co = 0.43381656,

c2¢ =0.0,

go=1.5.

a1 = 1.1867466,

as® = 1.1867466,

by = 1.5450573,

boe = —1.8997081,

cq = 0.54873462,

co© = 0.11491806, and
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Polynomial EQS
The free coefficients in Egs. (35) and (36) are:

a1 = 0.4092909, az® = 0.5032754,
az® = 0.8517608, ag = 0.4829053,
bo = 2.046899, by = 5.058369,
bot = -5.672175, bo® = 4.643042, and
bz = 1.397754.

The constrained coefficients in Egs. (35) and (36) are:
a1 = 0.745844, azt = 0.7194863,
ap® = 0.8287573, a3 = 0.08291327,
bo = 1.113364, by = 1.970801,
bo¢ = -1.50121, bo¢ = 1.268511, and

bz = 0.4110738.

Mie-Grineisen EOS based on a linear relation between shock and particle velocity
The coefficients in Egs. (53) and (56) are:

Co = 0.5392, s = 1.341, and
['0=2.0.

APPENDIX B

COMPARISON OF ANALYTIC EOS RESULTS WITH TABULAR EOS
DATA

The various analytic EOSs discussed here give different reStgts for the specific
internal energy (€), pressure (P), and sound speed squared (c°) in the expansion
region. For the conditions shown in Figs. 1-15, there are no experimental data that
could be used for comparison. A comparison was made between the isentropes of
the stable-coefficient choices for the Los Alamos, polynomial, and Mie-Gruneisen
EOSs and the same isentrope from a tabular EOS for Al, SESAME material number
3717 (Holian 1984). Figures B1 - B3 show plots of specific internal energy, pressure,
and sound speed squared as a function of density for these four EQSs.

The SESAME isentrope indicates that € asymptotes to a value of ~0.10 Mbar-cm3/g
at low density (see Fig. B1). The asymptote for the Los Alamos EOS is close to that
value; the polynomial EOS asymptote is quite inaccurate. All three analytic EOSs
show poor agreement with the SESAME result at densities of ~1-2 g/cm3. The
SESAME isentrope indicates that the pressure never becomes negative (see
Fig. B2). All three analytic EOSs give negative pressures with the Los Alamos EOS
being closest to the SESAME result. Similarly, c? is never negative along the
SESAME isentrope, but all three analytic EOSs show negative values. Again the Los
Alamos EOS is closest to the SESAME result in the expansion region.
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The primary purpose of this work was to investigate the behavior of analytic EOSs in
the low-density limit and to propose solutions to the problems found. The fact that
none of the analytic EOSs examined here show good agreement with the SESAME
results is incidental to this purpose, but important in itself. The Los Alamos and
polynomial EOSs are empirical. The Mie-Grineisen EOS has a physical basis, but
not very sophisticated. To the extent that the physical basis for SESAME EOSs is
reasonable, even outside areas where experimental data are available, this
comparison would indicate that EOSs such as SESAME should be used in impact
modeling whenever possible. The wide range of conditions that can be encountered
(high compressions followed by expansions to low pressure) are difficult for an
analytic EOS to cover accurately. However, there are situations where an analytic
EOS will be used because a better choice is unavailable. In those situations, the
behavioral problems of analytic EOS in the low-density limit that were described here
should be recognized and eliminated where possible.
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Fig. B1. Comparison of specific internal energy (€) as a function of density (p) along
an isentrope through 10 Mbar on the Hugoniot for four EOSs for Al.
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