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THE EQUIVALENT FUNDAMENTAL-MODE SOURCE

by

Gregory D. Spriggs, Robert D. Busch, Takeshi Sakurai, and Shigeaki Okajima

Abstract

In 1960, Hansen' analyzed the problem of assembling fissionable
material in the presence of a weak neutron source. Using point
kinetics, he defined the weak source condition and analyzed the
consequences of delayed initiation during ramp reactivity additions.
Although not clearly stated in Hansen’s work, the neutron source
strength that appears in the weak source condition corresponds to
the equivalent fundamental-mode source.

In this work, we describe the concept of an equivalent fundamental-
mode source and we derive a deterministic expression for a factor,
g*, that converts any arbitrary source distribution to an equivalent
fundamental-mode source. We also demonstrate a simplified
method for calculating g* in subcritical systems. And finally, we
present a new experimental method that can be employed to
measure the equivalent fundamental-mode source strength in a
multiplying assembly. We demonstrate the method on the zero-
power, XIX-1 assembly at the Fast Critical Assembly (FCA)
Facility, Japan Atomic Energy Research Institute (JAERI).




I INTRODUCTION

In any multiplying system, prompt fission chains must be initiated by & neutron source. This
source can be an external neutron source (e.g., a start-up source), an intrinsic source caused by
spontaneous fission or (a,n) reactions in the fuel, or delayed neutrons produced by precursors
generated during previous prompt fission chains. When the reactivity of the system is below
prompt critical, each prompt fission chain that is initiated is destined to eventually die out. In fact,
even when the system is superprompt critical, most prompt fission chains are still destined to die
out; only occasionally will a prompt fission chain actually diverge. In 1960, Wimett et al.?
performed an experiment which clearly illustrated this effect. Using the Godiva-II burst assembly,
94 superprompt-critical bursts were initiated in which the average time-to-initiation was measured
to be approximately 3 seconds, with a maximum of approximately 13 seconds. At the time each
burst was fired, the effective source strength that includes the delayed neutron contribution,
corresponded to approximately 1000 n/s. Therefore, on an average; 3,000 source neutrons
appeared in the system prior to the initiation of each burst. Since the probability of any neutron
source causing an ;nitial fission in a uranium system is approximately 40%, it follows that an
average of 1,200 fission chains were initiated prior to the first persistent chain. In the case of the
burst that was delayed by 13 seconds, 13,000 source neutrons appeared in the system, initiating
5,200 prompt fission chains, which ultimately died-out before the first persistent prompt fission
chain finally occurred.

In this Godiva experiment, the reactivity of the system was increased to 0.05$ above prompt
critical and held there until the burst was eventually initiated by a source neutron. Imagine a
scenario in which reactivity is being ramped into a system with a large excess reactivity. If the
neutron somcé of the system is too weak, then the potentiai exists to reach a point well above
prompt critical before the first persistent chain can be initiated. As a consequence, a serious
prompt-criticality accident could occur. In 1960, Hansen! analyzed such a scenario in which he

defined a weak source condition that was conducive for such a scenario to occur.
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where @ is the neutron source strength, 7' is the adjoint-weighted, neutron-removal lifetime, VP is
the average number of prompt neutrons released per fission, and I, is the neutron dispersion
factor (also known as the Diven factor).3# Although not clearly stated by Hansen,! the neutron
source strength, 0, in Eq. (1) corresponds to the equivalent fundamental-mode source.

In other somewhat-related work, Spriggs® showed that neutron noise experiments, such as
Rossi-o. and Feynman’s variance-to-mean experiments,’ can be performed in subcritical

assemblies if the following condition is satisfied:
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where g is a spatial factor derived from transport theory®!® and p; is the reactivity of the system in
the units of $. (Note, when the system is subcritical, ps<0; hence, the minus sign in front of the
1/pgterm.) The product, g*S, in Eq. (2) is synonymous with the equivalent fundamental-mode
source, Q, in Eq. (1) but is expressed in terms of the actual source strength, S, and a factor, g*, that
converts the actual source strength to an equivalent fundamental-mode source. The ability to
perform neutron noise experiments is a direct indicator that individual prompt fission chains are
still discernible; the neutron population has not yet reached a level in which the chains overlap to
such an extent that an apparent persistent neutron population results. This level does not occur
until the mean time between equivalent fundamental-mode source neutrons (including delayed
neutrons) is much shorter than the average duration of a prompt fission chain.

The equivalent fundamental-mode source also appears in the reactor point kinetic model and,
as such, is contained in many of its solutions.!! Furthermore, the equivalent fundamental-mode
source is particularly important in reactor experimentation. For example, the equivalent
fundamental-mode source appears in the Cf-source technique originally developed by Carpenter
et al.'? to measure the effective delayed-neutron fraction, Bes in a test assembly. In this technique,
a calibrated point source of strength S is placed somewhere in the system (usually in the center of
the assembly) and the resulting integral fission rate, F, is measured at some known subcritical
reactivify, Ps, just below delayed critical. The effective delayed neutron fraction is related to these
quantities by
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where ¥, is the average of the total number of neutrons released per fission, and ¥ and ¥ £ are
the average importance of the source neutrons and the fission neutrons, respectively. As will be

shown in this work, the qlea}lﬁty

SY¥,
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is the equivalent fundamental-mode source where the ratio of v, v 1 is identically equal to g

Because of its potential importance in the field of reactor kinetics, criticality safety, reactor
start-up operations, and reactor experimentation, it is essential to understand the equivalent
fundamental-mode source. In this work, we describe the concept of an equivalent fundamental-
mode source, and we derive a deterministic expression for the factor, g*, that converts any
arbitrary source distribution to an equivalent fundamental-mode source. We also demonstrate a
simplified method for calculating g* in subcritical systems using deterministic and Monte Carlo
methods. And finally, we present a new experimental method that can be used to measure the
equivalent fundamental-mode source strength in a multip;lying assembly. We demonstrate the
method on the zero-power, XIX-1 assembly at the Fast Critical Assembly (FCA) Facility, Japan
Atomic Energy Research Institute (JAERI).

II. THEORY

In a subcritical assembly in equilibrium with a fixed externalfintrinsic neutron source, the

neutron loss rate must equal the source rate plus the integral fission neutron production rate.
N S+ [x9,2 @dQdE dQdVdE )
T I XfVess ’

where

® = ®(r, Q, E) = angular flux,

X F= X f(r;Q', E' = Q, E) =macroscopic fission cross section,




V, = V,(r, E') =the average of the total number of neutrons released per fission,
X s = fission spectrum (normalized to 1.0),
N = the total, unweighted neutron population, and

T = the unweighted neutron-removal lifetime. -

The neutron loss rate, N/t, in the above expression is the sum of the leakage rate and the

absorption rate. In integral form, this can be expressed as

".;1 = [@ V& dQAVdE + £, dQaVdE ©)

where the total, unweighted neutron population, N, can be defined in terms of the angular flux, @,

and the neutron velocity, v, as
N = [2 agava . ~ ™
v

From Egs. (6) and (7), it follows that the unweighted neutron-removal lifetime, T, is defined as

f%’ dQAVdE

T
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[A more detailed explanation of the definition of a neutron-removal lifetime can be found in
Spriggs et al.1¥]

The steady-state multiplication, M, of a subcritical system is defined as the neu&on
appearance rate due to the injection of source neutrons and the production of fission neutrons

divided by the external/intrinsic neutron source rate, S.

M
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By dividing Eq. (5) by S, we note that the average number of fission neutrons produced per source
neutron is equal to M - 1. Furthermore, if the source § is distributed identically to the fission




source distribution (i.e., angle, energy, and space), then the multiplication, M, will be related to
the effective multiplication factor of the system, kg, as 4

M = . ' (10)

We define the quantity 1/(1 - keff) as the fundamental-mode multiplication, M,,, since it
represents the multiplication that would occur if the source S were distributed as the fundamental
mode fission source. However, in nature, external/intrinsic sources usually occur as uniformly
distributed sources, such as intrinsic sources produced by spontaneous fissioning of one or more
of the isotopes contained in the fuel, or as point sources that have been placed in or near the
assembly, such as an external start-up source. A uniformly distributed intrinsic source or an
external point source placed in or near an assembly will produce a system multiplication that can
differ significantly from the fundamental-mode multiplication, M,,.

Because it is customary in reactor physics to- express most quantities in terms of the effective
multiplication factor, k5, we modify Eq. (10) by including a factor, g, that allows us to express
the actual multiplication produced by an arbitrary source distribution in terms of the fundamental-
mode multiplication. That is,

* g
M=gM, = : (11)

We can derive a deterministic expression for g* from the steady-state transport equation.

When written in terms of the angular flux, @, the transport equation corresponds to
Q- VO+X,® = j'Z'sd)'d.Q'dE' + ffo,Z'fdJ'dQ'dE' + %S (12)
where

Z, = L(r, E) = total macroscopic cross section,
T, = T(r;,Q, E' = Q, E) =macroscopic scattering cross section,

% = external/intrinsic source spectrum (normalized to 1.0),

s = s(r, Q) = source distribution per unit volume per unit angle, and




%sS = X (E)s(r, Q) =energy-dependent source distribution.

[As is customary in k-eigenvalue problems, any (n.2n), (n,3n), etc. reactions occurring in the

system are accounted for by altering the scattering and absorption cross sections such that
Lo =L,+2X),+..., (13)

and

x

a

=%,-25, ., (14)

thus preserving the total macroscopic cross section defined as X, =X, + Z,.]
Equation (12) is merely a statement of neutron conservation as applied to an infinitesimal
element of direction, energy, and space. If it is integrated over all phase space, it becomes a

statement of neutron conservation for the integral system .

[Q VO dQAVAE + [£,® dQdVdE - [L',®'dQ dE' dQdVdE
(15)
= /9% fPdQdE' dQAVUE + (x5 dQAVE .

From the definition of the total cross section, the difference between the total interaction rate and

the total scattering rate is equal to the total absorption rate:
.[ L® dQdVdE - j‘ X ®'dQdE dQdVdE = J' L, ® dQdVdE , (16)

where we again stress that the absorption cross section, X, includes all reactions except the
(n,2n), (n,3n), etc. reactions multiplied by their respective multiplicities. Hence, we can rewrite
Eq. (15) as

0=P-L+S§, , 17
where P represents the unweighted neutron production rate due to fission,

P = jfo,Z'fCD'dQ'dE' dQdVdE , (18)




L represents the unweighted neutron loss rate due to leakage and absorption (i.e., N/1),
L= j.Q- Vo deVdE+IZa(I> dQdVdE , (19)
and S is the mweighmd external/intrinsic source rate,
S = I AsS AQAVAE . (20)

Although Eq. (15) represents a neutron balance for the system, it does not take into account
the importance in the multiplication process of a source or fission neutron born at a certain angle,
at a certain energy, or at a certain location in space. Therefore, implicit in Eq. (15) is the
assumption that all neutrons have equal importance even though neutrons born in the center of an
assembly have a much greater probability of causing multiplication in the system than do neutrons
born at the outer edge. To include the effect of neutron importance in the transport equation,
Eq. (15) is multiplied by the adjoint angular flux, ‘P(r,QE;), which is a direct measure of a

neutron’s importance in the multiplication process. The adjoint angular flux satisfies the equation
-Q-V¥+ LY = IZ‘S‘P'dQ'dE' + Ifo,E'f‘I"dQ'dE’ . (21)

Integrating the adjoint-weighted transport equation over all phase space leads to an equation

of the form

-~

0=P-L'+5", (22)
where P* is the adjoint-weighted neutron production rate due to fission,
P* = ¥V (@dQdE dQVdE (23)
L* is the adjoint-weighted neutron loss rate,
LT = J"PQ - V® dQAVdE + J‘ YI,® dQdVdE , (24)

and S* is the adjoint-weighted neutron source rate,




st = [¥xs dQAVE. : (25)

Dividing Eq. (22) by P*, we obtain
+ ot
0=1-L.5 26)
Pt P

If both the forward and adjoint fluxes in Egs. (23), (24), and (25) are obtained from a k-eigenvalue
solution, then the ratio P*/L" is identically equal to k. Therefore, Eq. (26) can be rewritten as

koeS™

0= keﬁ—l'l' P+

27)

Next, we multiply and divide the last term on the right-hand side of Eq. (27) by the unweighted
quantities S, P, and N. This manipulation leads to

+
0 =keﬁ—1+[£s—+]

o i @

As also pointed out by Spriggs et al.,!® the unweighted removal lifetime, T, from Egq. (8) can
also be written in terms of the fission production rate by noting that &, times the neutron loss rate
equals the neutron production rate.

N b ] { 1] ]
kg = [X/%% fQ'dQdE dQAVAE = P . @9

Hence, the unweighted removal lifetime, written in terms of the unweighted neutron population

and the unweighted fission production rate, is
kN
T = —"PL . (30)

Using the above definition of T, Eq. (28) reduces to




N = , ‘ (31)
where g* is defined as
+
g =5 (32)
SP
Written in terms of the angular fluxes, g* corresponds to
Yy s dQdVdE vz . D'dQ'dE dQdVdE

o = % W Lol (33)

[xss dQAVAE I‘Px I OdQ dE' dQdVdE

The physical meaning of g* is easily seen by noting that the ratio of S*/S is equal to the
average importance of a source neutron, and the ratio of P*/P is the average importance of a
fission neutron. Consequently, g* is the ratio of the average importance of a source neutron to the

average importance of a fission neutron.

¥, (34)
g8 == .

¥ f ,

Also note that we can rearrange Eq. (31) as

N - 1 -n,, (35)
1-k 0
1g S eff
which shows that when the neutron loss rate is divided by the product g'S, we obtain the
fundamental-mode multiplication, M,. Hence, the product g'S is defined to be the equivalent
fundamental-mode source strength, 0. Obviously, when the source is distributed as the fission-
source distribution, g* will be identically equal to 1.0, and the actual source distribution will

produce the same multiplication as a fundamental-mode source.

10




From Eq. (33), we also note that when multiple sources are in the system, the equivalent
fundamental-mode source is the sum of the equivalent fundamental-mode sources of each of the

constituent sources.
* * * -

A separate solution for g: can be obtained for each source constituent. The effective g* of a
multiple-source distribution is simply a source-weighted average of the individual values of g:

for each of the constituent sources.

*

Zg:Si
&= T —. 37

S.

2‘; i

Although Eq. (31) is written in terms of the unweighted quantities V, 7, and S, we could just as
easily have multiplied and divided the last term of the right-hand side of Eq. (27) by the adjoint-
weighted neutron population, N*, and the unweighted source, S, to obtain

* Ys
.=, 39)
T ~ Teff
where t* is the adjoint-weighted removal lifetime (see Spriggs et al.!3) defined by
kN
S M (39)

+

P

The quantity N*/t* is equal to the adjoint-weighted neutron loss rate and, by comparison with
Eq. (31), is equal to the average importance of a fission neutron times the unweighted loss rate.

+

|
Al

(40)
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1t follows, therefore, that the equivalent fundamental-mode source, g*S , is the adjoint-weighted
source, ST = ¥,S, divided by the average importance of a fission neutron. When the adjoint
fluxes are normalized such that ¥ # = 1, then the adjoint-weighted source strength is identically
equal to the equivalent fundamenfal—mode source. '

We can readily derive Carpenter’s equation!? used to measure the effective delayed-neutron

fraction by substituting Eq. (40) into Eq. (38). This substitution yields

g N _ SlT’s
T 1-ky ° “n
which, by Eq. (29), is equal to
g, 2 5% 42)
keff 1- keff

Hence, the neutron production rate due to fission, P; can be written as

koS ¥

= —t 43
(1~ kop)¥s “3)

By multiplying and dividing the right-hand side of this equation by B, and noting that P is equal
to v, times the integral fission rate, F, we obtain

S ¥

-5 (44)
|Ps|Bes ¥

Vi
Upon rearrangement of Eq. (44), we obtain Eq. (3). Although Carpenter did not explicitly state
this, it is assumed that the source placed in the test assembly during this measurement will be
much, much stronger than the intrinsic source. In those cases in which this condition is not
satisfied, Eq. (3) must be rewritten to include the equivalent fundamental-mode of the intrinsic
source as well. In terms of g* for the intrinsic source, g: , and g* for the external point source

placed in the assembly during the measurement, g; , Eq. (3) becomes

12




* *
_ 8iSi+8,5,
Perr = [ *5)

" [ CALCULATION OF g’

In principle, the evaluation of Eq. (33) is rather straightforward when using a deterministic
code to estimate the forward and adjoint angular fluxes from a k-eigenvalue solution. One can
easily develop a post-processor code that will perform the integrals in Eq. (33).

For subcritical systems, a simpler method exists. In most deterministic and Monte Carlo
codes, the user has the additional option to perform a fixed-source solution. From this solution,
one obtains the actual multiplication of the system, M, corresponding to the specified source
distribution. When combined with a k-eigenvalue solution, g* can be determined directly from

g =M1-kyy) . 46)

We now demonstrate this sﬂnpliﬁed method with the following numerical example.

Consider a bare, spherical system comprised of 51.2 kg of 235U and 2.75 kg of 28U and
containing a 100 n/s 252Cf start-up source in the center of the assembly. Using the deterministic
transport code ONEDANT™ and the original 16-group Hansen-Roach cross-section set,!s the
effective multiplication factor, k., of this system was calculated to be 0.9914 when the outer
radius of the sphere was 8.85 cm. It is well known that both 25U and #8U undergo spontaneous
fission; 35U produces 0.01 n/s per kg and 2*U produces 13.6 n/s per kg (see Table I). For this
system, the 25U produces a total of 0.5 n/s, which are uniformly distributed over the volume of
the assembly, and the 228U produces a total of 37.4 n/s, which are also uniformly distributed over
the volume'of the assembly. The spontaneous fission spectra for 235U, 28U, and 252 Cf are listed in
Table II. |

The equivalent fundamental-mode source for this fictitious system was determined by running
a k-eigenvalue solution to determine kg, and three fixed-source problems: 1) a 25U spontaneous
fission source distributed uniformly over the volume of the assembly, 2) a 238U spontaneous
fission source distributed uniformly over the volume of the assembly, and 3) a Z2Cf point source

located at the center of the assembly. Because the 2°U and 28U spontaneous fission spectra are

13




TABLEI: SPONTANEOUS FISSION DATA

Spont. Fission _ Watt Parameters®
I —
232Th 7.82 x 1020 2.14+0.20 1.56 x 1094 0.5934 8.030
B3y 2.65 x 10*17 ~1.76 0.38 0.8548 4,032
By 1.49 x 10*16 ~1.81 6.83 0.7712 4.925
By 1.00x 10*19  ~1.86 0.01 07747 4.852
BSY 249 x 10+16 1.66+0.11 372 0.7352 5.358
237y 9.11 x 1017 ~1.87 0.12 0.6931 5.994
238y 820 x 10+15 2.00+0.02 13.6 0.6483 6.811
By 555 x 10*16 ~2.04 2.03 0.7356 5.261
B6py 2.09 x 10%° 2.12+0.14 570 x 107 0.9883 3.104
B7py 2.05x 10*13 ~1.88 5.09 x 10+03 09546 3.308
Bpy 474 % 10+10 2214006 259 x 10*% 0.8478 4.169
B9py 8.05 x 10*15 22410.10 155 0.8853 3.803
240py, 1.14 x 10+1! 2.151£0.005 1.04 x 10%06 0.7949 4.689
Alpy 5.98 x 10+16 ~2.25 | 2.07 0.8425 4.152
22py 6.74 x 10+10 2.141£0.006 1.74 x 10+ 0.8192 4.367
%3py 2.00x 10*15 ~243 66.2 0.7354 5.387
%4py 6.68 x 10+10 229+0.19 1.86 x 109 0.6947 6.004
B2CE 8.55 x 10*0! 3.768 +0.012 231 x 1015 1.0250 2.926

14

a. Obtained by extracting A and B from the Los Alamos Model,%2% where A and B are defined by
) f(E) = Cexp(—ﬂ sinhJ/BE .

This yields a S. F. spectrum with an average neutron energy that is accurate to within £10% in most
cases.




TABLEII: SPONTANEOUS FISSION SPECTRUM

Group® ﬁ‘;‘;”ggg 235y 28y () 252¢¢
1 3 - o Mev 0.186 0.140 0.011 0.275
2 14 -3 Mev 0.364 0.362 0.307 0.353
3 0.9 - 1.4 Mev 0.174 0.190 0.036 0.149
4 0.4 -0.9 Mev 0.179 0.200 0.237 0.146
5 0.1-0.4 Mev 0.083 0.093 0.342 0.067
6 17 - 100 kev 0.013 0.014 0.064 0.010
7 3-17 kev 0.001 0.001 0.003 0.000
8-16 3kev& | 0.0 0.0 0.0 0.0
Average Energy = 1.89Mev | 1.69Mev| 1.01Mev| 2.31 Mev

a. Corresponding to Hansen-Roach group structure.!
b. This spectrum was calculated specifically for the soft blanket region of the XIX-1 core
using the SOURCES code.27:28

similar, the multiplication calculated by ONEDANT was found to be 98.76 for both source

distributions. Hence, g* for both the 25U and 28U sources corresponds to

g* = 98.76(1 -0.9914) = 0.85 .

The multiplication produced by the centrally located 252Cf point source was calculated to be

204.7. So, g for the 22Cf point source corresponds to

g = 2047(1-09914) = 1.76 .

When combined, the equivalent fundamental-mode source for this particular source distribution

corresponds to

Q = 0.85(0.5 +37.4) +1.76(100) = 208.2 n/s ,

15




with an effective g* of

* _ 208.2 _
~ 05+374+100 %‘51 '

From a physical standpoint we can interpret these results as follows. A uniformly distributed
2517 + 28(J spontaneous fission source producing 37.9 n/s in this spherical assembly will produce
the same total neutron multiplication as an equivalent fundamental-mode source of strength 32.2
n/s (i.e., 0.85 x 37.9). A %2Cf point source emitting 100 n/s in the center of the assembly will
produce the same total neutron multiplication as an equivalent fundamental-mode source of
strength 176 n/s (i.e., 1.76 x 100). The combined sources (Z°U + 28U + »2Cf) of 137.9 n/s will
produce the same total neutron multiplication as an equivalent fundamental-mode source of
strength 208.2 n/s. '

IV. k,~DEPENDENCE OF g’

The factor é‘ is dependent on k. Hdwever, depending on how the source is distributed, this
dependence may be relatively weak. For example, using the assembly described in the previous
section, the radius of the uranium sphere was varied from 8.85 cm to 0.85 cm in 1-cm decrements;
k.5 varied from 0.9914 to 0.0933, respectively. As can be seen in Fig. 1, g* for the uniformly
distributed spontaﬁeous fission source varies from 0.85 to 0.99 as £, decreases. In comparison, g
for a 22Cf point source located at the center of the assembly decreases from 1.76 to 1.03 over the
same range in k¢

As another example, we calculated g* for a reflected system in which the uranium core used in
the previous example was surrounded by a spherical graphite reflector 12 cm in radius. At a core
radius of 7.0 cm, k.= 0.9842. When the core radius was reduced to 1.0 cm (while maintajrﬁng the
outer radius of the graphite at 12 cm), k.5 decreased to 0.1136. For the case of a uniformly
distributed source, g* increased from 0.949 to 0.995 as k.5 decreased. For the case of a point
source located at the center of the assembly, g* decreased from 1.49 to 1.04 (see Fig. 1).

16
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Fig. 1. kg dependence of g* for four different cases: 1) a bare sphere with a

uniformly distributed spontaneous fission source, 2) a bare sphere with
a point source at the center of the assembly, 3) a reflected sphere with a
uniformly distributed spontaneous fission source, and 4) a reflected

sphere with a point source at the center of the assembly.

DEPENDENCE OF g* ON THE SOURCE SPECTRUM

As expected, g* is also dependent on the energy spectrum of the source. However, this
dependence can be relatively weak in some systems. To illustrate this, consider the same assembly
described in Section IV in which a point source is placed in the center of the system. If we assume
that the energy spectrum of this point source corresponds to that of Z2Cf, 25U, or 28U (see Table
I0), then g* calculates to be 1.76, 1.754, and 1.75, respectively. These changes in g* are

surprisingly small when you consider the differences in the average neutron energy of the three




different sources. In terms of the Watt parameters, A and B, the average energy of each spectrum

is given by'’
E = A(—+—) = @7

Using the values of A and B from Table I, %2Cf has an average energy of 2.31 Mev, whereas, 25U
and Z%U have average energies of 1.89 Mev and 1.69 Mev, respectively.

What is even more surprising is the fact that g* increases as the average energy of the source
increases. [In fact, if one assumes that all source neutrons are born in group 1, which would
represent a very hard-spectrum source in which all neutron energies are greater than 3 Mev, g*
increases to 1.84.] Although we cannot positively state that these results are wrong, they do seem
to contradict intuition as they imply that a hard-spectrum source multiplies the assembly more
effectively than a soft-spectrum source. One would think that as the source spectrum becomes
softer in a fast system (such as the one used in this example), an average source neutron should
have a smaller probability of leaking from the system and therefore have a higher probability of
being absorbed in a fission reaction. Hence, the multiplication caused by a soft-spectrum source
should be higher than the multiplication caused by a relatively harder-spectrum source. In fact,
when we assume the point source to have an energy spectrum corresponding to the (o,n) source
shown in Table II, g* increases to 1.85—which indicates that the soft-spectrum (ci,n) source
multiplies the assembly mofe effectively than the relatively harder-spectrum %2Cf source.

Without experimental data to substantiate our logic, we can only speculate as to whether the
behavior of g” as a function of average source energy is real or not. In all likelihood, the observed

minimum in calculated g* is probably an artifact of imperfections in the cross-section set in the

high-energy groups.

VL. MEASUREMENT OF THE EQUIVALENT FUNDAMENTAL-MODE SOURCE

The equivalent fundamental-mode source can be easily measured in a multiplying system.
This is accomplished by placing a neutron detector in or somewhere near the core and observing

the change in the count rate produced by placing a calibrated neutron source at some known
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location within the system. The ‘count rate of the detector is proportional to the unweighted

neutron loss rate and the detector efficiency, , where ¢ is defined as

e= < | 48)
)
and C is the detector count rate.
Based on the above definition of the detector efficiency, we can rewrite Eq. (31) as
C = 85 (49)

S l-kgy

Assume for the moment that we wish to measure the equivalent fundamental-mode source
strength of an intrinsic source present in a critical assembly containing a large amount of one or
more isotopes that undergo spontaneous fission. If the system reactivity is adjusted to be just
slightly subcritical, then the detector count rate produced by the intrinsic source distribution will

correspond to

%

C, = -lff—kS; , (50)

where C; is the detector count rate at that subcritical configuration and S; is the intrinsic source
strength.

If we then place a calibrated point source at some known location within that system and we

reestablish the same subcritical configuration, the detector count rate produced by the intrinsic

source plus the point source will now correspond to

* *
C, = (8;S;+8,5,)

1 - keﬁ ’ (51)

where C,; is the new count rate, S, is the strength of the point source, and g; corresponds to the

g -value at the location of the point source.




*

Taking the ratio of Eq. (51) to Eq. (50) and solving for g;§; leads to

(52)

Note that we have assumed that the efficiency of the detector does not change upon insertion of
the point source. In far subcritical systems, this assumption may not be valid. However, if the
system is just sﬁghtly subcritical, then the multiplication of the system will be high enough to
excite the fundamental mode. When this occurs, the flux distribution will be determined by the
fission source distribution and will be relatively insensitive to the actual source distribution.
Therefore, the detector efficiency will remain essentially constant for both source distributions
used during the measurements.

Furthermore, in the above derivation, we have optimistically assumed that the observed count
rates, C; and C;, are produced only by neutrons. However, most neutron detectors are somewhat
sensitive to gamma rays—which are always present in a multiplying system. When using fission
chambers, this sensitivity can be effectively eliminated by adjusting the lower-limit discriminator
to be high enough to detect only those pulses that are produced by the fission fragments generated
within the chamber when a neutron is detected. When using *He or BF; detectors, it is much more
difficult to discriminate out all gamma rays without simultaneously reducing the ability to detect
neutrons as well. Consequently, one must be able to determine the gamma ray background count
rate, Cy, to obtain the correct values for C; and C,; to be used in Eq.(52). This can be
accom;;lished if these measurements are repeated at several different subcritical configurations in
the vicinity of delayed critical. Eq. (52) can be modified as follows.

When written in terms of reactivity [i.e., pg = (keﬁ -1)/ Bkeff 1, Eq. (49) becomes

*
eg S

C= sg*S- Bos

(53)

where f is the effective delayed neutron fraction. When pg—> - (ie., k= 0.0), the count rate
must approach gg"S, which is the count rate that would be produced by an unmultiplied source in

that particular source/detector geometry. If we define £g*S as C,, we can write Eq. (53) as
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c=cC,-2 (54)

Ps
where m is gg"S/B. Obviously, C, = fm and since [ is no larger than 1%, we expect C, to be
negligible relative to -m/ps; when py is in the vicinity of delayed critical. Therefore, to a first

approximation, we can state that

m;
Ci-Cipp = ——=C; (55)
Ps
and
m..
C..-C,.. =--L=xC (56)

pi pio Ps pi °

From these two equations, we can see that the ratio C};/C; is approximately equal to the ratio of

my;/m;. Therefore, Eq. (52) can also be written as

* g*S

The slopes m,; and m; can be readily determined by plotting the detector count rate as a
function of the inverse reactivity of the system and then performing a least-squares fit of these
data to determine the y-intercept, C,, and the slope, m, for both source configurations. If the
detector system happens to be sensitive to gamma rays, then C, will be noticeably greater than

Bm. When this occurs, we can infer the gamma ray background to be
Cy=C,-Bm . (58)

However, determining the gamma ray background is for information purposes only. When
evaluating Eq. (57), we presume (albeit, somewhat optimistically) that the gamma ray background

does not change much with the reactivity of the system over a small range of reactivity in the

S —— - - i e i e
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vicinity of delayed critical. We expect the slopes m,; and m; to be relatively independent of the

background count rate, whatever it may be. We now illustrate this technique on a real system.

VIL. INTRINSIC SOURCE MEASUREMENT AND CALCULATION FOR THE
XIX-1 CORE

A. Measurement

The experimental procedure described in the previous section was performed on the zero-
power XIX-1 assembly located at the Fast Critical Assembly (FCA) facility operatéd by the Japan
Atomic Energy Research Institute (JAERI). The XIX-1 assembly is a multiregion system
comprised of an inner core fueled with highly-enriched 235U metal. The core is surrounded by an
inner blanket (referred to as the ‘soft blanket’) containing a significant amount of depleted
uranium-oxide and sodium, and an outer -"bla.nk\et (referred to as’ the ‘depleted blanket’) containing
only depleted uranium metal. Cross-sectional views of the core are shown in Figs. 2, 3, and 4.

For this measurement, -four 3He detectors were inserted into the soft blanket region of the
assembly (see Fig. 2). Count rates from these detectors were obtained at three different subcritical
configurations when the system was driven by just the intrinsic source. The reactivity ranged from
-0.072$ to -0.8923. A calibrated 252Cf source was then inserted into the center of the assembly and
the count rates from the 3He detectors were obtained at eight different subcritical configurations
over the same reactivity range. A least-squares fit of count rate vs. inverse reactivity was
performed on these two sets of data.

With just the intrinsic source driving the system, it was found that m; =-55.8 £ 1.3 $/s and
(Cio+ Cyy) =22 10 cps (see Fig. 5). The y-intercept is obviously too large; from the measured
slope and the measured value of the effective delayed neutron fraction, $=0.00729, the y-intercept
should have been approximately 0.4 cps if the detectors were only counting neutrons.
Consequently, from Eq. (58), we can infer that thc; gamrfla ray background, C;,, for these *He
detectors during the intrinsic source measurements was approximately 21 cps.

A similar process was repeated for the count rates obtained with the *2Cf source in the center
of the assembly. The least-squares fit yielded my;=-500.6 * 3 $/s and (C,;o+ Cpv) =39 £ 25 cps.
This y-intercept is also too high; C;, should have been approximately 3.7 cps. So, the gamma ray
background present during the measurements with the Cf source in the center of the assembly

increased to approximately 35 cps.
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Fig. 2.  Cross-sectional view of FCA XIX-1 assembly. Two pairs of He
detectors are located in positions 26-118 and 26-135.

The ratio of the slopes is

3
W

=2006_cg7 4049

(o)

Using the procedure described earlier in this report for calculating g” in a subcritical assembly,
g; for the XIX-1 assembly was calculated to be 1.68 in the vicinity near delayed critical. And, as
determined from a previous source calibration performed at JAERI, the strength of the %2 Cf

source used to perform the experiment was measured to be 97,600 + 1% nfs on the day of the
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Fig. 3.  Effective radii of the three regions of the XIX-1 Assembly. R; =32.958
cm, R,= 68.30 cm, R;= 86.36 cm.

Fig. 4.  Effective heights of the three regions of the XTX-1 Assembly.
H; =50.80 cm, H, = 121.92 cm, H; = 132.08 cm.
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Fig. 5.  Plot of the count rate of the four detectors summed together vs. inverse
reactivity.

measurement. Substituting these values into Eq. (52) yields an equivalent fundamental-mode

intrinsic source strength of

g, = LE8XIT.600 _ o9 600 + 39, s . (59)

B. Calculation

Using TWODANT,“ the equivalent fundamental-mode intrinsic source strength was
calculated using the data listed in Tables I and II. The intrinsic source was separated into its

various constituents so that the neutron spectrum from each spontaneous fission source and the




(o,n) source could be properly accounted for in each region of the assembly. The results of this
analysis are shown in Table ITI.

Although there is a 30% difference between the measured and calculated equivalent
fundamental-mode source strength, this difference is not particularly significant for this system. A
small increase of 2% in g” in the soft blanket (i.e., 0.0896 to 0.1096) and a 2% increase in g"inthe
depleted blanket (i.e., 0.0277 to 0.0477) would increase the calculated effective intrinsic source
strength to 20,800 n/s—which would compare very favorably with the measured value. A 2%
increase in these two values of g" is very plausible considering the fact that the original 16-group
Hansen-Roach cross-section set'® used to perform these calculations is not well suited for this -
particular system since those cross sections are known to yield biased results. This bias is best
seen when comparing the measured and calculated adjoint-weighted neutron lifetimes. Near
delayed critical, the adjoint-weighted neutron lifetime was calculated to be 550 ns, which is 21%
lower than the measured value of 700 ns. Because the neutron lifetime varies as the inverse of the

absorption cross section, it follows that the 16-group Hansen-Roach cross-section set overpredicts

TABLE OI: EQUIVALENT FUNDAMENTAL-MODE INTRINSIC SOURCE

Region Isotope Mass (Kg) S (n/s) g 2's @iy

28y 117 159 0.991 158

Soft Blanket | 25U 117 <0.1 0.0916 0
28y 58412 79,400 0089 | 7114

(aun)? — 772 0.0796 61

Depl. Blan. By 38.8 <0.4 0.0285 0
=8y 18,713.7| 255,000 0.0277 7,064

V'S = 343,160 g:S; = 14,399

a. The uranium in the soft blanket is in the form of uranium-oxide plates. The alpha particles
from the uranium interact via (ct,n) reactions with other elements in the soft blanket (primarily

the 180 and ZNa) to produce an additional source of intrinsic neutrons.
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the absorption rate in this particular system. Hence, in accordance to the calculations, source
neutrons born in the soft and depleted blankets will have a much harder time penetrating those
regions then they would in reality. This shorter mean-free path, in turn, yields a calculated g" that
will be lower than the actual value.

Finally, we note that the measured value of the effective g* corresponds to

+ _ 20,600
& = 343, 160

= 0.060 ,

which shows that the equivalent fundamental-mode source is only 6% of the total neutron source
present in this system.

The XIX-1 assembly is a prime example of the importance of understanding the equivalent
fundamental-mode source. If we were to evaluate the weak-source condition using the total

source strength present in the system, we would obtain

25t _ 2x343,160x700x10~° _
T, 2.6%0.80

023,

which marginally satisfies the condition of << 1. However, when we use the equivalent
fundamental-mode source strength of 20,600 n/s, then the weak-source condition becomes
0.0138, which clearly satisfies the condition of << 1. Hence, the equivalent fundamental-mode
source strength for this assembly is clearly not strong enough to ensure consistent behavior of the

system during start-up despite the fact that the total source strength is in excess of 340,000 n/s.

vill. DISCUSSION

In addition to the applications previously mentioned in this manuscript, the factor g~ also has
an impact on one of the most basic experimental techniques used in the field of nuclear
engineering—the classical approach-to-critical experiment using a 1/M plot. In this experiment, a
source is placed in an assembly, and a reference count is taken with a nearby detector. Then a
small amount of fuel is added to the assembly, and a new count is obtained. The ratio of the
reference count to the new count (i.e., the inverse of the multiplication, M) is plotted as a function

of the amount of fuel in the system and then extrapolated to the point where 1/M = 0.0 to obtain
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an estimate of the critical mass. In principle; if this process is repeated for a series of small mass
additions, the 1/M plot will be a linear function of the amount of mass in the system assuming
each mass addition produces the same Ak In general, this is not a very good assumption; if the
system is loaded with fuel from the center out, then the initial mass additions will produce a much
greater change in k. than will the later mass additions at the outer surface of the assembly.

For the sake of argument, let us assume that we are able to load a new system in such a way as
to produce equal changes in k.. Since 1/M = (1~ k,4)/g", the 1/M plot will be linear with kg only
if g is constant with k.;. However, as shown in a previous section, having a constant g* over a
wide range of %, is highly unlikely. Using the numerical example presented in Section V, when a
point source is positioned in the center of that assembly, g* increases as the radius of the assembly
increases (i.e., ksincreases). As shown in Fig. 6, the 1/M plot for this example is noticeably non-
linear with k. However, in this particular instance, the curve is considered to be conservative
from the standpoint that an extrapolation to' /M =0.0 using any two successive points
underestimates the critical mass. Nevertheless, it is conceivabie to perform an approach-to-critical
experiment in which g* decreases as kg increases, thereby, producing a nonconservative estimate
of the critical mass. When preparing to perform an approach-to-critical experiment, it would be
most helpful to understand how g* is going to change as k. increases before the experiment is

actually performed.

IX. CONCLUSIONS

The factor g" is the parameter that converts any arbitrary source distribution to an equivalent
fundamental-mode source. The equivalent fundamental-mode source, in turn, 1s the effective
source strength that is multiplied by the factor 1/(1 - k.z) to yield the correct neutron production
rate in the system (k4 in this expression corresponds to the k-eigenvalue of the system and is, by
definition, independent of the source distribution).

The equivalent fundamental-mode source has mé.ny applications in reactor kinetics,
particularly point kinetics, as well as being an important parameter in criticality safety, reactor
operations, and reactor experiments. In subcritical systems, the equivalent fundamental-mode
source is easily calculated using deterministic or Monte Carlo methods and can be readily

measured in real critical assemblies using the technique described in this work.
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Fig. 6.  1/M plot vs. ks for a spherical, uranium assembly with a 2°Cf point
source positioned in the center of the assembly.
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