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ABSTRACT

A technique introduced by Symanzik is used to derive a series of equations
obeyed order by order in perturbation theory by the structure functions W" and
vW2 entering the cross ;ection for inelastic electron scattering. These equations -
relate the q2 , v and coupling constant depe‘ndence of WI .and vW2 in:o manner
reminiscent of the renormalization group results of Gell-Mann and Low. The equations
are used to compute the leading logarithmic contribution to vW2 in a theory of

fermions coupled to pseudoscalar particles and a theory of fermions coupled to

vector particles.



). INTRODUCTION

The simple scaling behavior | of the structure functions W, and vW2' 2

observed3 for q2 and my > 2 BaV2 has caused considerable inferest in the large

q2 and v dependence of the matrix element

N '-‘ - 4 ’ .
z felq xdx<p,lep(x)Jv(0),l P, s>
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where ‘p,s > is asingle nucleon state with four-momentum p and z component of
* . . ) . 4 . L .
spin s, Jp(x) is the usual electromagnetic current . In this paper we investigate the

behavior of W. and vW, for large q2 and fixed v.n='2mv/q.2 as computed to .

1 2
arbitrary order in the perturbafibn expansion of a renormalizable field theory.
. | ; | -
As is well knowns, the large 92 and v behavior of the matrix element (1) can

be determined from the singularity of the product inx)'Jv (0) on the light cone,

x2 =0 . We begin with Wilson's oberator expansion6'¥or the short distance limit of

o x+ -x+z
the product JP(T-Z) JV( 7 )
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where OS) a (y) are finite local operators, traceless and symmetric with respect

177 8 (i), 2 (i), 2
to each pair of Lorentz indices . Fn (x°) and En (x%) are C-number functions given

by a perturbation expansion of the form

o +]

F06A = 2 2 FD0g 026

n 2=0 r=0

. oo +]

E 6 =z 2 gD (4,060 6D (3)

=0 r=0

where g is the coupling constant. The remainder terms R( )( Ax, y) and R' (i) (A x, y)
N+1 9, IO

approach zero as N for A\ approaching zero and x =0 The structure
functions W] and vW2 can be directly determined fro'm the coefficients F( )(x ),
E(') (x ) » 0< n < ® , by substituting the expansion (2) into eq. (I) and carrying
out the indicated Fourier transformation.

Using a technique introduced l;y Symonzikn, we derive a set of coupled, first
order, partial differential equations satisfied by the functions E(ri') (x2) 1 <0< v
and by the functions F’fi)(xz) 1 <0 < u, - The derivation is based on the Calldne
Symunzikuequaﬁons obeyed by Green's functions containing the product JI-‘. (g)
Jv (0) . The equations obtained are of the sort predicted in other situations by

o e 13,14 .
renormalization group '’ arguments and connect the x2 and coupling constant

dependence of Ff:)(x2) , E(r.)) (x2) . The equations don't completely determine the



functions Erfi)(x2) , Frsi)(xz) but are instead constraints which must be obeyed to
arbitrary order in perturboﬁ'on theory. When combined with explicit calculations in
lowest order perfurbaﬁoﬁ theory, the equations directly determine the coefficients
%ﬂi)( 2,2+1), e’fi)(Q, 9. + 1) of the leading logarithm in x2 appearing in every
order of perturbation theory. '
These equations obeyed by the coefficients Ef)(xz) and F'Si)(xz) in the Wilson
expansion are derived for\/fwo specific field theories in Sect, Il. We begin the Section by
reviewing the connection between the ligh.f cone behavior of the product Jp(x) Jv 0),
specified by the expansion (2), and the large Aq2 “and v |imi.t of the structure functions
Wl and W2 . Then, in Sect. Il B, a theory of neutral pseudo-scalar particles interacting
with charged spin % particles is considered and the equations for fhe‘ coefficients Ef‘i) (x2)
and Ff‘i)(xz) derived. Next, in Sect. Il C, the corresponding equations valid for a theory
of neutral vector particles interacting with chargedspin % particles are obtained. In both
cases there are two distinct op?rofors O(i) Ca ! i =1,2 which appear for each n and
the resulting equations are two coupled, flirst ord:r, partial differential equations. In
Sect, ill these equations are combined with lowest order perturbation theory calculations
to obtain E'(:)(xz) in the leading logarithmic approxi;rlation for each of these theories.
The re.f;ults are identical to those previously obtained from a detailed analysis of Feynman
amplitudes to all orders in perturbation theory gy Gribov and l.ipc:tov’.s In Sect. IV we
discuss the general solution to these equations. First two sets of approximate eq;sations
are considered which are obeyed by amplitudes in the pseudo-,-s?:alor theéry containing
no self energy or vertex corrections. One set is valid for all such amplitudes whilAe the
other applies only to those ompﬁtudes which do not contain a two pseudo-scalar inter-

mediate state. Both sets of equations imply a simple power dependence for El(_:)(xz)
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for small x2 where the power vg) is @ non-trivial function of n and the v '™ are -

n
constants, Finally the ganeral solution to our equations is obtained for the vecter theory,
determining the two functions of two variables Ef‘i)(xz, g), i =1,2 in terms of seven
functions of a single variable, The possibility that there exists a root S of the Gell=

) ﬁ . . N . ’
Mann Low eigenvalue condition is investigated and shown to determine somewhat more

explicitly the small xz behavior of this solution,
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The amplitudes TL and .TZ are functions of q2 and @, related to W

- I1. DERIVATION OF EQUATIONS For E) (3) F o)

In this section we derive a set of first order partial differential equations

obeyed by the functions E('? (x2) 1<i < v, dnd by the functions .Fg) (xz) ,

1<i < u, s to arbitrary order in perturbation theory. The make up of the

i)

operators 0(0

appearing in the expansion (2) and the precise form of the
l . L] L] n . .
equations to be derived depand, of course, on the particular field theory cansidered.

We will deal explicitly with two distinct theories. The first contains a charged spinor -
field g(x) coupled bilinearly to a neUtr.al pseudoscalar field £ (x) fhrougﬁ the
interaction Lagrangian Xz(x) = iggx) Y tp(x) #(x) . In the second theory, the

charged spinor field couples to a vector field Vp and X’E (x) = igylx) Y P(x) Vp(x) .

A. RELATION BETWEEN W, , vw. and EW x3 , £() ()
: 1 n ‘n

2

 Before deriving these equations for E(':) and F(ri) it is useful te recall the -
connection between W] v vW2 and the coefficients E(':) and FS) in the Wilson

expansion (2). Consider the invariant amplitudes TL and T, entering the spin averaged

2
forward Compton scattering amplitude
+ 2 ST I NN <ps [T(1 (00, 0)]prs>
. _ ) p v d
s—i% : . .
Y 2 2 2 -
=-(8 --E——)TL+—— P e’ q +8" (p-q) - p'q"(p-q)
VY] 2 22
q (9) -
-p'd"(pq )T, , ‘ 5

i and
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W, = ;2-5 im ETL * 2'(13;'23-) TA - (60)
w, = -3 ;mfP-l-‘i 12.‘ | (6b)

for w > 1. If the Wilson expansion (2) is used to evaluate the left hand side ef equation

(5) and the Fourier transform performed, we find thcﬁ for qp large 1
N n
A 4} ) H
L) = 2 (a)z EO@ O+ () (7e)
n=0 i=1 '
N Yn . o
e = 2 (o) 2 FOD B+ q o (7b)
n=0 i=1
where
. n+2 .n’ e el s . '
ED = @D Ly, satae D (2 (6)
- 3(g")
M, 2,.
. . n+l _n . FY7(x“ +i ¢€)
-~ ) 4 - o
FilQ) = & (D DsdtxeT D (8b)
3(q?) x“ +ie
and
1z <ps| o ps> = ol p (#)"
"':i)" l _al...ani nta; ... a
+ (terms containing Sa. a ). . 9
P

2
" For large q2 and small w the remainder terms rN( qz, W), r'N( q" , w) are of order

n+1
@ a

. Note that only the term proportional to Pg * * * P in
: - 1 n
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equdﬁon (9) yields leading terms in the Wilson expansion (2) on the light cone. The
i)

] » L] L] n
tensor that can be formed from the four vector Pp . All terms in this tensor, other than |

matrix element (9) of Oé is proportional to the single symmetric traceless

the Py ‘ a ferml'oconfcin factors of p2 = -'m2 and therefore give contributions |
] e ¢ o n
to T, and T2 smaller by a factor of m2/ qzm'2 . )
The analyticity of TL and ‘72 in v for fixed q2 implies that to any finite '
order in parturbation theory the limit N —~a> of the sums in equation (7) defines two
analytic function of w near w =0 17 |
® n : i
AF ~(i i
o) = 2 Wz ED? N, (100)
n=0 i=0
© “n
AF ~(i i
e =z @z FOA 8 (105)
- n=0 i=0 ' :

These asymptotic forms for TL and T2 can be continued into the entire w plane with
the exception of branch points at w=+ 1, and used iﬁ ec!uaﬁon (6) to compute WI
and vW2 for large q2 and fixed w > 1. The familiar connection between the
large q2 , fixed w behavior of TL or T2 and the x2 =0 singularity of the
coefficients Eg) (xz) , FS)‘(xz) can be seen from equation (8). |

The relationship batween the coefficients Ef)(qz) ’ ‘F'fi)(qzj and the
asymptotic behavior of the structure functions W] and QWZ implied by equations

(6) and (10) can be neatly inverted. Using Cauchy's theorem eq. (10a) can be written

(g2 ) (1)

O =02 _ i T
f°r:+2 BV = 7w S o T

Ny

[ . . - - . » C' - * AF
where c is a contour circling the origin in @ counter-clockwise direction, Since T

2
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has branch points in & at +1 and is even in w , we can open up the contour to

obtain
(r:)+2 E(')(q) = %i;b"-n-ld“ T (q'u) y L
or using eg. (6a)
2t - lfw 72w, (6 0 03
bl 2 JAF 1
= f ('6)‘ vW2(q-,'u) d(z)

likewise

. . @ - - . ) :
c(') F(')(qz) = f u n=1 [-"-’ vWAF(qz, W) - mWAF(qz, w) ]dm .
n n 1 2 2 1 4
(13b)
. A 18,
Equation (13) interpretes the Callen-Gross and Cornwall-Norton sum rule - in the
language of the Wilson expansion. It also identifies Z c(') +2 E'rfi)(qz, w) as the
' .
Mellin transform of vWQ(qz, u) wifh respect to the variable 1/ w. This

transformation can be inverted, giving

' o +im
wWoie% 0t = 2;5{|wdn~."*'[ 0 :)‘ 3] (Mo)

and similarly

© ., AF AF . 8+im '
5 VW, -mWn = 22-'?81 dnd” [zc") F(')( )] " (14b)
-

for sufficiently large, real bositive 6.
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B. PSEUDO-SCALAR THEORY

Let us now consider the pseudo=scalar case, specified by the Lagrangian
==y 2 2 . = 1 4
x-'4»(7}, a,tmly -3 4o f - du 4 tigyy ef + phs

.+ (counter terms) ; : ; (15)

m ond p are the physical masses of the spin % and the‘pseudo-scalar particles while
g and h 'are renormalized coupling constants, The renormalization procedure is
specified in Appendix A,

The startiné point of our derivation is the Callan=Symanzik equafiéns l2for the

matrix elements

r:,l,) (px) = "i Jo PrE=N 4 4 Ps,

<o | 7§y 003,005, 00 w@y] 0>, (16a)
@ (o = s P E Nt <o | TN 0,083 | 05,
(16b)

where the subscript A means that the propagators corresponding to external lines have
been removed. The Callan-Symanzik equations obeyed by these matrix elements and

derived in Appendix A are

D, 1) 6y P = ALY (P Y

for i =1, 2. The differntial operator D, is given by
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' 29 2 23 -9 , 0
D, = m“" = + p"—% +pg— +38 - 2y, (18)
i am2 a'12 ag a3h A i
while 19

af)ep = 2 s P e dh (),
<ol 1fe,003,01 00k @31 0>, (9

A r(:z p = s PENh g o lTay 3,603,00 qﬁ(z)y 0>

(19b)
20

The operator v, in the notation of Zimmerman ;i
o =4sdhfne N [f0o 0]+ we,N [d 0] (20

where the symbol N indicates the inclusion of subtraction terms, choosen in a.manner
specified in Appendix A, so that all matrix-elements of u are finite, The dimensionless
constants B, B, Y17 Yo 8] ’ 82 are functions of g, h, and m/u and can be

computed to arbitrary order in perturbation theory. The Callan-Symanzik equations (17)

are exact but not very useful as they stand since they relate the behavior of the

quantities of interest, (16) , to that of two new unknown functions (19). However, if we

consider the small Xy limit of equation (17) and substitute the Wilson exponsfon (2) into

both the right and left hand sides, then we find that the small - x, dependence of both
sides is determined by the same functions E(L) (x2) and F(ri‘)(xz) 1 2].

The resulting equations-are
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(o0 UZn fo e} uzn .
D.4 z £ EV .22 ) @ (2 iy, . g2n =2
.{F]j:, 2n - 20 Byp (- P) e jil Eon = 2 g (x *p)

@

for i=1,2 and p2 =0. The cqnstunfs o:_:J and b;’J are related to the relevant

matrix elements of O(i) | by

a - L] . a
1 n

1 ip-(z-y) 4 4 ., i) .

2 fe‘ .dydz"#-)&r .<0|T{q’a(y)o(él...an¢8@$l0>A

= b]"j'p @" + (ter taining § )

. a]’ .. pan : ms containing .. ' (22q)
d

je‘P'(z-y)d“yd“zgol'r{,a(y)ogl) . p’(z)3|o>A

- n

_ 2 Can . o |
bn pal, .. pa:l) -+ (terms containing Saiqj) (22b)

'an u‘Ps(z)}I 0 >A .

1 . l. - ’ ' ) .
3 J e'P (z -y d4y d4z : (.«;{)80 <0 l T {gpo(y) Og)l )

... pa(;)” + (terms containing sa.a.) | (22c)

a] n i]

. . - 4 4 . ' .
Se'P (= y)dydz<O|T{J(y) OS) o ud(z)}|0>A
1°° " "n .
N '
e P, (i) + (terms containing saa) - (22d)
n i » '
for p2=0 and 1 < a <3, 1 <i<nandn even. Bose symmetry and charge

conjugation invariance imply that the left hand sides of these equations vanish forodd n .
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In equation (22) we use p2 =0 so that the quantities a';'*‘ and br:"l depend only on
m2 / pzﬁ, g, h. Equating the coefficients of equal powers of ( x « p )", we obtain

a series of equations diagonal in the index n

(j) 2 .1, j; - G) i,j '
DigE"'z(x)b" - ZE 29 ; (23)
d d :
2<n< oo, i=] ,u_, for even n. Equations (21) and (23) are also obeyed
-— - ' e o o n . )

by F(i)(xz) and 0 < n < o . These equations can be Fourier transformed yielding
n - - .

2 ) P
identical equations for the quantities E(n (q")

() 2 i,j§ ) B N A
Dig?En-z(“)bn ZEN @) o0, (24)
d J ‘
. . =(@i) 2

which are also obeyed by the functions F n (q) .

Let us now determine explicitly the operators which appear in the: Wilson expan-
sion (2) for the particular theory ot hand. Because of the requirements of symmetry in
the Lorentz indices and the absence of 80 a factors, there are only two Nt‘h rank

. i
tensor operators with the smallest dimension which can be formed22

(I) =--‘— - n 3 Y 7 | '
) (y) (V+(-1)) = N|py)a ... 2 ) ceed yly)
al...any 4n . i1 [ Y a, uj'-lyaj aj+l anq’)’]
+ (terms containing 80l a ) - (25q)
. %
Oiz) o (y) = N [ﬁ(y) 9, -9, ,{(y)] + (terms containing 8 o )
TR 1 o .

i

(25b)
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where the symbol N again indicates that sufficient subtractions have been made so

that the resulting operator is finite. The subtractions will be chosen so that

oy ¥ (g b mi?) = 5 . | (2

The equatibns obeyed by Eg) (q2) for i=1,2, 2<n < (and Frf')(qz)-, =1, 2,

0 < n < o) then become

=() 2 _ id 7@ (2
D, Ey (@) 'F]z“;JES-z(q?' | (2

These two coupled first order differential equations can be written as uncoupled second

order equations

n .
n

These equations (27 or 28) are the desired equations for the pseudo-scalar theory.
They are the generalization of S:ymonzik'ﬁ exceptional momentum equation to all the
operators iﬁ the Wilson expansion on the light cone. These equations ‘\':vil | be used in |
Section Il to compute the leading logarithmic contribution to \oW2 ond. in Section IV
to speculate about the exact - osymbfofic behavior of fW:l ~and: »vW..2 .
C. MASSIVE VECTOR THEORY

We now consider the theory of a vector field Vp of mass p interacting with

a spin % field of mass m, specufled by the Lagrangian
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- : 1
x = - +me - -G G
() ‘MYP_ a# o 4 v v

- L 2
+igV - V.V
AR tp W

+ (counter terms) (29)

where g is the renormalized coupling constant and
GW (x) = ava (x) -3 v Vp(x) . ' (30)

In analogyzs'With equation (16) we define the amplitudes

1 i ip(z=-y) 4 4 p, .
lipz(p,x) 'Ef,,glp z dedy(,,g)s.a..

<ol Lo 0,004,053 l0>, Gl

JodP b ol w0y @0

2
1 (5, .

(31b)

As is shown in Appendix A, these amplifudes. obey the Callan~Symanzik equation
Di l‘w (Pr_x) = AI‘W (Pl x) . (32

for i=1, 2; where

2 8 2 9 ,.9 2 '
D = [m — B —= + B-——- - 4Y - 2Y. ] Y (33)
i omZ ap2 ag 2 i 3

and
Ang)(x, B o= arePrlEN G 4 N vy

<olro 04,005,005 @310>, (340)
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Al‘g)(x,p) = % JeP e 4 r:f.
<ol {Vp(y).lp(x).[v ) u Vp(z); lo> A (34b)

for B = gy, and
= Ud4xgﬁsl.N ['q_;(x)»up(x)] + p2 82 N[ Vp(x) Vp(x)]3 . (35)

Substituting the Wilson expansion (2) into eq. (32) and equating equal powers of x-+ p
we obtain-an equation identical ‘in form to eq. (23)

v

o LU SEREUS °.i" (2
i= B ol

c

for i=1,2, n even and 2 < n < . The constants o "‘(m /p,g) and !:»i"j
(m /p , §) are defined by equations obtained from- eq. (22) by replocing Ay)é(z) by
V/3 V() V (2) and multiplying the left hand sides of eqs. (22¢ and d) by ,; The
Iongitudmal coefficients F() also obey eq. (36) for 0 <n< o,

Just as in the pseudo-scalar case there are two types of pperators than can

contribute:
R ' n r '
30]..‘0 —.—(] +( ]) ) E N[‘P(aa‘ -igvul)...rg...a(aa 'igva )ij
n =1 | n n
+ (terms containing sa.u.) A (37a)
(] :
2 _3 1 A [
o - == z z N G a' L S .. 08 * s 0 G 1
a...a 4 (n=-1Nn PR S Lt 'ﬂ'jﬂ Yaa ﬂJ
+ (terms containing 8 4 ) . ~ (37b)
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The number of possible operators is limited to only two, for a given n, by gauge

invariance. Both the operator Jp(x) Jv (0) and the first three.terms of our Lagrangian

(29) are invariant under the transformation .
V) = V6 + g A
o) ~ o SNy | (38)
Although the mass term - % p2 VPVP breaks this gauge symmetry, the leading terms in
Wilson's expansion (2) are independent of pz and hence are left unchanged by the
transformation (38). .
Thus only two series of functions Erf]) (x2) and E‘S” '(qz) are needed to determine

\)W2 in the large q2 and v region. If we choose the subtractions required to make

the operators (37) finite in such a way that

n sij - (39)

and transform to momentum space, then eq. (36) becomes

o, E¥ (¢d) g L ol d EQ () (40)

for i=1,2, 2< n< ®,an equatibn identical in form to that found for the

pseudo-scalar theory. This equation is also obeyed by the functions FS)(qz) ,i=1,2,

.0£n<a>.
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HI. PERTURBATION THEORY CALCULATIONS

In this section we use the eqt;ationé derived in Section l- to calculate the
inelastic elecfroproduction structure funtion \)W2 in a leading Iog'arifhmic‘ approxi-
mation. Various aufhorsls’ 24, 25, 2.6 have performed such calculations by applying
infinite~momentum methods directly to specific classes of Feynman graphs. Such
approaches reéuire considerable expertise in the art of extracting asymptotic behavior
from Feynman ompiitudes; We will show how these leading logarithmic results emerge
rather trivially from egs. (27) and (40). Altogether three spe‘cific examples will be
considered: (A) the ladder graphs in the pseudo-scalar fheory calculafed by Chang and
Fishbane (B) the complete leading logarithmic behavior in the pseudo-scalar theory,

first computed by Gribov and l.ipcm)v]5 and (C) the complete leading logarithmic *

behavior in the vector theory, also computed by Gribov and L‘mm,‘r?

- A, CHANG -FISHBANE CALCULATION

Chang and Fishbane consider the ladder graphs of Fig. (1) in the leading loga=-
rithmic approximaﬁ;:n. In our notation this means that they keep all terms in Ef‘l)(qz) |
of the form (92)r ( 92 In q2)2 with r =0, Since no intermediate state containing only

two pseudo-scalar particles appears in the Feynman diagrams of Fig. (1) , the operatbr

O(az) " o should be ommed from the Wilson expansion of J (x) J (0) ; therefore,
l * e o
we set . E (2)(q ) = 0. Furthermore, there are no propagator or vertex corrections

included in this set of graphs.so 8 = 8" =y, = Y2 = 0. (In Chang and Fishbane's

longuage we are taking only their outer rainbow graphs.) Thus eq. (27) becomes simply

[n22 + 22 ]8R = ol E“’( ) . )
am ap -
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Since E,nl (q2) is a dimensionless function of q2 ' m2‘ and pz we may replace

m2d. + PZ_Q_ by -q2-a— so that eq. (41) can be rewritten
2 2 2
am op - 99
= _ M -
@ L BV - o, B “2)
9q
whose solution is
al,l
~ +
EMA = vyemp[ o, @] = v, @ "*Z 3

To obtain the leading logarithmic behavi;r of 'Efjl)(qz) we need only compute the

parameter: ol' ! from eq. (220) to lowest order in g and determine the integration

n+2
constant v from the 92 =0 Born term:. This calculation of the quantities o:" '

involves the evaluation of a simple lowest order vertex correction and is carried out

in Appendix B, yielding

R 1
n+2

161!2 (n+2) (n+3)

(44)

for even n . Since to lowest order in g, the C(r'\) of eq. (9) equals 1 and

Wy = 8(1-3) O

eq. (13a) implies v_ =1 so that in leading logarithmic approximation
n .

2
] n+1

9 ]
2 (n + 2; ln +3)

bj.d(..,)(;',ﬁ W,V (6% ) -E"’(«;) =@ . (46)

This is exactly the result of Chang and Fishbane for the set of outer. rainbow amplitudes.

Thus the Mellin transform used so judiciously by Chang and Fishbane and by Gribov and
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Lipatov is nothing other than the index-continued Wilson expansion, the continuation

being analogous to the Sommerfeld-Watson continuation of a partial wave expansion,

B. GRIBOV -LIPATOV CALCULATION FOR THE PSEUDO-SCALAR THEORY

We will now find all the leading logarithmic terms in 'Ef‘n(q% for the Y,

theory. The basic equations for this calculation are given by eq.(27) which we write

| infullasv
" 29 3 , 9 g2 = M1 g 2 1,2 (3 2
:qa—? Ba—g. +B5F; -27'1.]En (q%) = <:'n+2n( )+° n+2 n( )
" 23 8, vd o 182 - 21 =), 2 . 22 222
| _-qa?- * B3q +Ba—h-9.72]En @) = a';, E @) + a +??n 4

(47)
foreven n > 0. Following Gribovl and Lipatov we set .h and therefore B’ equal to
zero. (In a regularized theary vyifh no pA interaction term h is of order 94.) The
quantities B, g ,‘ond Y, can be computed fc; Iovyest order in g from eq. (A9) of
Appendix A while in Appendix C. the a:"j are-determined and their connection with

various graphs indicated. The results are

2
g - S5 yoe L,
| 32,.2 L 64'1:2 r 72 .1&2
' ql’] = -..93. ] o 01'2 \ = - -—9._2 l
n+2 1on2 P+ +I nt2 e (n+3)
2 | |
2] = - g 1 . 2,2 = .
“n+2 A2 n+2d ' %+ 2 ‘ 0 . . (48)

Since in leading logarithmic approximation Erf')(qz) depends only on 92 In (q-2) it is




2]

convenient to introduce the variable

§ = '3 [1-—51|n(q)]

lén ' ' (49)
The reader will note that
2
2 9 9 _ g ) L
-q — t+ B—— = = brare 5
) ag or? 28 {50)

when acting on a function of ¢ alone. Using egs. (48) and (50), we can rewrite eq. (47)

as
2 . 1.2 1 ~(1), @
(5‘5"’ E)En.(ﬁ) = DRI En (&) + mfh (&)
(R 280 - Hy EPe (51

which are equivalent to

4

) 6 ~20) T |
(ag +[2 - n+2 n T ]ﬁ" L ‘m}fn & = 0 ¢52

~(2 . 1 ] =(1
rd ED0 = o [f g - ey 8O -

Eq. (52 implies that E\(g) has the form
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V-§ vlg .
E(n')(e) = C e "4 C' e no | (54)
where
3
. .5, 1 v (3 1 2 4 4
Vn 4" 2+ +3) ‘\d T 3 T (pF2D(nF3)

3
1 2

, _ 5 1 3 4
Vo T T3 YT D0 ) [(Z+2(n+2)(n+3)> +(n+2)(n+3)]

(55)

The integration constants Cn and C:‘ are determined from the known g~ =0 limit

given by the Born terms

O o
En (§)|§=0_ 1 | - - (56q)
B9 | o | (56b)

which requires

1 [ U ]
n v;‘-v'n h+dn+3) 2 " Vn

’ - 1 - ] . ' .
¢ = v;'-vn[(n+2)(n+37”2' -Vn] ) ' 7.

A continuation of eq. (54) to complex values of the in.de>.< n, when substituted in

eq. (14a) yields

. St - v ¢ v'¢
S dnun+][C e'n+C"en] (58)
8§-ico n n ,
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in exact agreement with Gribov and Lipatov for the leading logarithmic"behavior'df |

the structure function vW_ for deep inelastic scattering of electrons off the ¢ field.

2
The reader is referred to the work of Gribov and Lipatov for a discussion of the physical

significance, if any, of this result.

C. GRIBOV-LIPATOV CALCULATION FOR THE MASSIVE VECTOR THEQRY

Finally we turn to the calculation of the leading logarithms in VW2 for the
vector theory studied in Sect. Il. C. Since this cal{:ulaﬁon proceeds much as in the
pseudo-scalar case, we will simply outline the procedure for bbfoinihg the result —

n identical to that of Gribov and anatov The- qum"hes B 272 , 7] éind 73 RS
determined 'in, Appendix A, can be computed in the Feynman gauge to lowest order in
g with the result

3 | 2

= 9 = g9 ‘ - . . B
P * M T2 s 3l &

Similarly, the constants dr:" are evaluated in Appendix C to order 92.:

11 2 | ' n

n+2 ’ 81'2 in+2$in+35_) 4=0 +2
2 _ 3% o
n+2 .16»1'!2 (n+ D +2)(n +3)

2 S 2

2! _ g nl +5n+8
n+2 -"61!2 (n+2)(n+3)(n+4)
2,2

at, = 0. - e
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Introducing the variable
¢ = In[l-_.L|n(q)]

we can rewrite eq. (40) for E’rf').(qz) as

2

[3 + q;l(n +2)+ q;a(n + 2)]35 9 4 [¢](n +1) + .pa(n + 2):[
ae

- o253 e00 = o

, |
B = 2 1.2 [ 3 ~3 "9+ - gyl 2)] BT (61

n+2

where

2

‘Pl(i) = J-G_"‘—Ty

8(j2+j +2)°

o) =
20 genifgenFieo
W = 4% | w;
¥ = - I
3 2=2 g .

in the nofatio‘n of Gribov and Lipatov. These equations, when coupled with the .
requiremenf~27'(56) can be explicitly solved as in the preceeding section yielding the

Gribov-Lipdiov.resilt,
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IV, GENERAL SOLUTION

We now consider the general solution to tllme equations (23) and (36) obeyed by
the coefficients Erfi)(xz) ’ Frfi)(xz) Appearing in fhe‘Wilson expansion (2). We first'
study the simplified equations which govern the Chang-Fishbane calculation of sectfon_
Il. A in which all self energy cofreqfions; vertex cérrections‘ and amplitudes containing
a two pseudo-scalar intermediate state have been omitted. Next, those omplifudé;'.
containing a two 'pseudo-scc‘:la‘r intermediate state are included and the res;.alting
equations solved. In both cases the functions Eg) (q2) show- a power dependence on q2,

where the exponent of q2 depends explicitly on n . Thus for these examples. the operators
off)
a e & o a
1 n ‘ ~(i), 2
the general solution of eq. (40) for the vector theory is found, determining E"'(q*, g)

6
possess an n-dependent-anomalous dimension in the sense of Wilson. Finally

in terms of two unknown funcf-iéns of a single variable and the quaﬁfiﬁes B(o) , 71(9) ’
a:'j(g) . Ifwe assume that B(g) has a zeroat g = 9o ! and rHat the quantifies Ersi)(qz,g)
y'(g) and c:."i(g) are regular at .g = 9., + then this solution also shows power 'dgpendenc‘e
in q2 , with the povéer depending on n ., Although in each of these‘f‘hl"ee cases we

find or hypothesize solutions which display a power behavior in 'q2 , We see no sugges- |
tion that these power; should be identically zero for all n as is reguired if the structure - '.

function v W2(q2, w) is to be independent of q2 for large q2 .

A, CHANG-FISHBANE AMPLITUDES

We begin by examining the set of amplitudes first studied by Chang and Fishbane,
These amplitudes contain no self energy corrections, no vertex cérrecﬁons and no inter-

mediate state composed of only two pseudo-scalar particles. As was shown in Sect. Ill. A,
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the resulting functions Eﬁl)(qz) have the form
1,1

w . ] .
n n
where the constants v, and a],;] 49 can be computed in perturbation theory:

L 2
Vo = 1 + O(g9)

) |
1,1 _ -g .

alrl, = + 0gh . 4

n+2 16 1r2(n + 2)(n +3) ‘

The position space funcﬁon Erfi)(xz) follows from egs. (8a), (23) and (63)28:

l 1
(x2/4) N+ 2 (650)

), 2 o +2 r(t-ae’, )
E, 6D = - 27,1 11
2n7a ', Tin+a’ ,+2)

1,1

Vet 2% 42

- ]’] (X)
°n+2

where 1(z) is Euler's gamma function. A similar argument yields the longitudinal

coefflcwnts F( )(x ),

m, 2 _ Vv’ a ‘ |
Fo ) = LA " . (65b)
a’' -1 '
n

If these expressions are substituted into the Wilson expansion (2), we find

x+ty xty, Hv 1,1 e 12 .
I (=%) J 5 ') ~ 4,,20{8 xcl xa [(on DV -ladien y i)V,‘]

2[11 Sloe-1)
pa vc h 4 Il ‘n

-1
“n
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- L1 n ]
(xvxa Spa XX va)[(an 1) Vn + 2M",
2771 2 1
a 1,1
=X X X, X, [(q'l-Z)Vr" -1-2]3 (><2)n Oc(«]) a %ot %q
H 172 x 1°°*"n 73 n
(66)

for Vo. = V;] =0.

Thus if we consider only amplitudes containing no self energy or vertex corrections
and no two pseudé-scalar intermediate éfates, the operators O(‘:) g Possessan

N . ] ® o o n

anomalous dimension dn '

d = 2 *n +2a"l (67

n n
in the sense of Wiison. _Here dn is just the dimension(in units of mass) of the current x
current product or; the left hand side of eq. kéé), minus the dimension of the singular
coefficient of the operator OS]) P the right hand side of that equation. The
dimension d_ clearly depends on n i_.d_rtc;ra}he‘r.:c»ampli-"‘(';cfed way since to order g2
2

d = 2+n - 9 - (68)
n 8.sn2ri(n+l) : '

B. AMPLITUDES WITH SELF ENERGY AND VERTEX CORRECTIONS OMITTED

Next we study all the amplitudes of the pseudo-scalar theory which do not
contain self energy or vertex corrections. The resulting functions Ef:) (q2) obey eq.(27)

with B =y =y,=0. Thus

- 22 E(nl) = oM (), L2 72

: +
aq2 n+t+2 n n+2n
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R F@ _ 20 (), 22 §(2
i 2En : n+2En +2En : (69)

The general solution to this set of coupled first order differential equations is

0 m o '() L2
>, 2 _ .1 2 "% +2 (2 2 n+2
EL Q) = Vo4 px(q) oV spx@)
(2) M M. | o,
=(2), 2 _ 1 1 1 2"Vn+2
En @) = n+2( n+2 °n+2) 12 (q) -
n+2
2 J2 v
2 R A 1 2 Vn+2
“Vaat2(Vnaa o) 3 — @) (70)
“n+2
where the av(;) are iﬁtegraﬁon constants and
1,1 2,2 .
. . + a . 3
M _ %n % . [1 L1232, 122,1]
Vn 2 +(2l-3) Z(On )
(71)
for i =1, 2. Asin the previous case, we can obtom the posmon space functions

E @i )(x ) and Fr?)(x ) and substitute them mfo'the Wilson expansion (2), with the result

Xty *xty (o 1 R ) B TR Oy
JP( 2 )J'v( 2 ) 4j£],2f=0 {8 x'a]xa2[(‘.¢' ])'\& (-an "+',‘."é)vn0]

Ha, va

‘5 [’ 0 y0 - '\:(n; 1) V.(nl

5 Do D o ® ol
- (% 8 xpx°28v°2) [( v,fl .1)\_/;«' +3 vn(lﬂ

V- g, “Ha,

PVGIGZ x

-X X X X (vr?)-Z)V;G) -1-2; (x2) ".
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AR »
. . + q .
(D) _Vn n (2 ]
[oal...a(y) 1,2 ou v..Q (v) Xa.**%Xq (72)
: n . a. 1 n 3 n .
. Here the constants Vf) ’ V;(') can be obtained from the'v(n'), v:‘(') by using eq. (8), -

M «
ST () R s AVn , 702
where xv; is the integration constant multiplying (q“) in the expression for Fn q

analogous to eq. (70). Equation (72) implies that. fhe'bpera?or

(i) + Ll ) ’ ,
(m Yn "% (2 . | 4
ocl coed - 0%1’2 Oa,] ceea : A
n

has anomalous dimension
' 'ds)' = n+ 2 \+2vg). ' : (74)

for j=1,2,

C. GENERAL SOLUTION

Finally we solve the exact equations (40) obeyed by. the functions _E’?)(qz) in

the vector theory. Eq. (40) can be rewritten as

+ @] [E0Za | [8RaER G2

a .
-q — + ﬂ— ‘ = (75)
aq2 - 09

@ || v@24] | g zm2, |
tA (9)_ e @.e)| | B @E @9 ]

where Arf') and .Brf')‘ are linear combinations of f and vo'i" k « Now define the new

independent variables
. ] o i
ple) = gj 5 : S (76a)
() ‘ .

?(qz,g) = In q2/ q: -+ plo) /‘ ~(76b)
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for some fixed values 9’ qo2 . Let G(p) be the inverse of the function p(g) defined

by eq. (760). In terms of these new variables eq. (75) becomes .

Ay rED 82 B2 ~
_ = (77)
dp A
+ A6 |z Brsl)(G(p)) g |
n

where the fuﬁctions 'Er?) ( qf exp(z-p) , Glp)) are to be treated as functions of z and
p. This set of two first order coupled differential equations in the single variable p has

a general solution of the form
E 020 = vina%e? + ot@) V(@) + Pain ¥/ 2+ (@)

(2 '
L™ (pla))

in 4%/62 + ot )

2 82 ) ['d? b P@ )t Afxl)(g) et )]
n

19)

12(pg)) + A(,: @ Lfiz)( ple) )]

* dpn

'V;SZ)(ln 9%/ q: +pl9) ) [
35,2)(9). | |
(78)

where Vf‘l)(z) and ‘\\7,(‘2)(2) are integration “constants" which can depend on z =
In q2/qz + p(g) while Ll(‘l-) (p) and L‘(_.z)(p) are the two independent solutions of the

second order differential equation

d

(3 A (G6)) L") ®

P
+ AQ(G())) <
""’(G()) &%

- @) 1P =0 . | 7
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Thus the original equations (40) allow the two functions Ef") (qz, ) thch depend on
two variables to be determined in terms of the two unknown functions v f)(z) of a single |
variable. |

Now let us speculate about a possible large ‘qz behavior of the solutions

'Es) ('q2,g) given by eq. (78). Since the unknown functions vf)(z). ~appedrin§ in eci. (78)
depend only on the sum of In qz/qz and plg) , fhé 'Iorge q2 behavior and the large p
behavior of the functions Erfi)(qz, G(p) ) are directly related once the large p bghovior
of Ag)( Glp)) , ‘Bf:)( G(p)) and Lg) (p). is known, In fact, carrying out the algebraic
steps outlined in Appendix D, we find: | |

EeZa) = L, wid (1n o%/4% + (@), 9 EP( 2, S(1n a/57 +pla)) (80)

(k)

where the quantities w:”x-l (z,9) , defined in Appendix D, are rational functions of An ’

Bf‘k) and Lf‘k). Thus.the large p behavior of 'Elsi)(éz, , Glp) ) determines, through eq. (80),.
the large q2 dependence of Ef:) (qz,g) . Following Gell-Mann and Low, we consider
the possibility that B(g) has a root:, 9y ¢ 5° that
alim  plgd = o .. ' (81)
99, |
If we assume that the quantities 'E(;)(qi , 9) are well defined aﬁd ﬁm;te at the point
9=9 then eq. (78) determines the large q2 behavior of Ef)(qz,g) in‘terms. of the
functions p(g) , ._A(:)(g) and B'(:)(g) wBich appear in our eqﬁation.
A particularly simple asymptotic q2 behavior of Igf)(qz) results if‘ we assume
th;:f S is a simple root of B(g) and tﬁat_ Af)(g) and Bf)(g) are reguiar at 90 *
As is shown in Appendix D, these assumptions when combined with egs. (79) aﬁd (80)

‘imply a simple power behavior for E'(:)(qz) .
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V. CONCLUSIONS

Using a technique of Symanzik and the Callan-Symanzik equations, we obtain a

series of equations obeyed to arbitrary prder mL pe.r'urboflon}theory by all the c=number

coefficients of the operators appearing in the Iight cone expansion of Jp(x) Jv (0)‘ .

These equations are used to determine <~ the leading logarithmic behavior of.

vW,, for two specific field theories, giving results in agreement with previous, more

2

laborious calculations. For simplified classes of amplitudes in which no coupling constant
renormalization is required, the equations predict a power ldw behavior of the coefficients

E:')(xz) and a corresponding anomalous dimension d = 2+n +'v‘r!.-’ for linear com=

binations of the operators o(‘)
' ay ... 0

the added quantity vn " depends in a non-triwial fashion on n . Since the same

: oppeqﬁng in the Wilson expansion. In general,

operators OS) . ent;r both the frﬁnsverse and long'itu&ino_l terms in the Wilson
gxpansion, the functi:ns Ef)(x'z) and F:i)(x% both obey the same set of equations.
Thug, in this formalism only the presence of different integration constants disﬂnéuish_es
the small x2 behovfor of the transverse and Iohgitudinoi components of the product
JP(x) Jv (0) . Finally, these equﬁﬁons allow u;_to speculate about the large q2 and v
behavior of AWI "and W2 '
and Low, Wilspné, and ‘Sxman;ik'l.

following the path previdusly considered by Gell-Mann |
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APPENDIX A

12,29

In this appendix we provide a derivation of the Callan-Symanzik equations |

used in Sect. Il. Let us begin by considering the pseudo-scalar theory specified by the

Lagrangian (13). The complete Lagrangian, fncluding counter terms is
— » 2.2 _  h S
= - + - - [ i +

X ¢ (y,9,+my "%apﬁapﬁ‘ e 4!:{4 igByyse

~smZ gy - 6022 8% - (Z,- Doy 2, +mly - HZy- 1) x
¥ 3% T V5 "uh 3

@, 83, F+e%0) + 12, -Dohy e + 2, N g (@A)
i % H T 92%Y ¥ T &y N .

In order to specify the subtraction procedure répresenfed by the dbove counter terms we
consider the propagators S( g, m, M, A(kz, m, B) and the amputated vertex

functions rs(p', PZ) , O (kl‘ k2, |<3) defined by |

S(hmu =i eP X dh <olt(yo3a) o>

a0imp) = ige K d% <ol (401 d0) o>
Popbymi) = -i 7P P2 ahedt, <ol T (yt) 0 500 0>,

Oty ky kyy m ) = =i ol xtkyythyz) 4 4 4

<oltigagmngrlos, . - (a2

The subtraction constants Z" , Z Y 23 , L 4’ 8}12 and 8m2 are chosen so that the

following conditions are satisfied:



s Amw = 0; %A = -1 ag=m

|
o
~
|<»
(>4
[
—
o~~~
==
N
S
Il
—
Q
-
=
N
I
]
=

-1 '
A (kzlmip)
rs( mp):i Of# =‘# ="m'( - ) = =M

o 2 2 _ 2 _
D(k],kz,ka,m,p) = h at k‘ —k2—k3 = -p ,

2

= (k, -k = ==p . (A3)

(ley -k 17 ky

1 2)

Having made this choice of subtraction constants we can now calculate order by order in

perturbation theory each Green's function 1( Pyr s v v Popy k, g oo kp ) for

2n 4 ip, -x
P(pl""’pZn’kl""'kp) =iiI'_/'dxie i i'

©

J <:|4)'i ei ki Y

=]

1

<olt ( q;(xl) e qa(xn) ;(xn w7 - .'q-;(xZn)
dyy) -y Lo (A4)

as a functionof g, h, m and p.
In order to derive the Callan-Symanzik equations we consider a second procedure
for computing the Green's functions of this theory in which the subtractions are carried

1 2
Py, / p’>‘ and coupling constants gy s h)\ normalized at these new points

out at arbitrary points A\, and A,. We rewrite the Lagrangian & in terms of fields

L= -3 d, +tmy, -323 4,3 £ -%232+—h—)‘-¢4
Ay 0, T Mgy = 29,29, 2y H2% 31 #a
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i ¥y Ve m 2 2 -
+i gx %}\ ‘p)\ 75 q’)\ - &m 22’)\ tl’)‘ 4’>‘ = %SP Z3,A¢ - (22')‘ - ]) ‘PA x

S22 -

+ (2,5 4_!”,,{;‘ - S (A5)

The subtraction constants Z],>‘ Y 22,>\ , Z3’)\ , 24-,)‘ , 5m, 8p are sé chosen that
the functions S)\ ' A)\ , r‘; and D)\ defined from eq. (A2) by replacing the fields

$ , £ by N ;5)\ satisfy the following normalization conditions

S;](;K,m,p) = 0ot g = m, % S;‘](;f,)\],)\z) = = ofﬂ = )‘l‘

"~ (Aba)
-1 ,2 _ W2 .2 3 1,2 _ 2 _ 2
A, k", m, ) =0 at k© = p.,a—szA (k,)\],)\z)—latk = )2
(Aéb)

T2 (Py s Pas AsA) = iyege at B = o = A s (p. -p)2 = A2

AP Py N M) V59 1 2 o Py-p) 2
(Aéc)

D)‘(k],kz,k:s,)\l,)\z)—h)‘otk] ky = kg ==\,

2 _ o2 2 4,2

(k, - k) —(kl kg)® = (ky = k) 3N

 (A&d)

JThe Lagrahgidns;- .. (A1) and (A5) are equal, the quantities N h)\ being funcﬁqns of

9, h,m,p, )\] , )\2 . The Greens.functions h, ( Pyso-- k .. kp)

‘ L Pzn ’ ] 7
computed by replacing the fields ¢ , g by 9y ¢ ")\ in eq. (A4) are . proportional



to the original 1 ( Pys-e k] s oo ey kp)

-:Pzn:

_ n  p/? . ' :
I‘(p],...,.p2n,k],...,kp) = 22’}‘ z%’)\ r)‘(p],...,pzn,.k],...,kp),

(A7)
The Callan-Symonzik‘ equations can be obtained by differentiating eq. (A7) with

respect to m and p and then setting )\] =m, )\2 =

.. ;) 0 2 3 29 { .
Dr={n(02)+9(Dz)+(Dg)-—-+Dh——+m——+P‘—3r>\'

for D = | m2-—a—2 + pz—a-z- . (A8)

am: oM
When computed in perturbation theory from the Lagrangian (A5), the Green's function
Ty is determined as a function of gy + h)‘ s, M, H, )\‘ , )\2 ; the last two partial
derivatives in eq. (A8) of this function 5, a/am2 and a/apz , are to be performed
with 9 and h>‘ held fixed. This can be recognized as just the Callan-Symanzik

Eg. (18), if we (a) identify

Y] = %Dzzl)\ ’ 72 = %Dza’)\ ’ p = -Dg)‘ ’ B' = ..Dh)\ (A90)
Ar = [m2——-a + Hz-——a ] r : (A9b)
2 2 A . .

am aH

all evaluated at )‘l = m, )\2 =p; (b)set n=1,p=00r n=0, p=2 ; and
() insert Jp(x) '!v (0) into the time ordered product defining T and Ty - We need
only show that the amplitude AT can be obtained by inserting the mass operator u of

eq. (20) into the time ordered product (A4) defining T. Since only the mormalization
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condition for S)‘ and %‘ involve the masses m and p, the operation m2 a/am2
+ p2 a/a}-l2 when applied to the amplitude L, yields a series of terms, each obtained

from 5, by (a) replacing a spinor propagator S)‘(ﬁ) by

-S)‘(ﬁ)g[ m2

or (b) replacing a pseudo-scalar propagator AA(kz) by

2+ w22 ] s;'(KB s(F) (A10c)
am B T : .

- AA(kz) i [ m2 ;"—2 + p2-—a—2] A-)] (kZ)KAA(kz) . (A10b)
B m oM | . A ‘

On the other hand, the effect of inserting =iu into the time ordered product defining T

is similar, yielding a sum of terms obtained for T by (a) replacing a spinor propagator .
S(4) by o i
s PTx g4 <ol [q,(d) u-q-;(O)] lo> = -S(E) U(AS(H). (Ar20)
or (b) changing a pseudo-scalar éropagafor A(k?)l to
s dkex g olt [,4(0) ug{(x)] lo> = - k) U ) AKY . (A1)

It is not difficult to see that U2(l<2) and

-1 '
(m?-% + w22 A"l |
am oM MN=m, A=

obey Dyson integral equations with the same kern®l. Since the: normalization condition

for - a/akz A-): (k2) in eq. (A6b) does not involve m or ‘pA , Z3 A depends on 9y, and
. A ,

h)‘ but not on m or p . Thus the D'yson equations obeyed by both quantities contain ~

only a constant inhomogeneous term. Therefore the two functions of k2 must be
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proportional. If welet:

- [0 0 25] ] e
am p )\] =m, )\2 =p

and normalize the finite operators N [qT (x) qa(x)‘] , N [p’(x) p'(x)]' so that

< 'p, s I N [E(x) q:(x)] I p,s> = <k l N[‘ﬁ{(x) {(x)] I k> =
<psIN [p’(x) ,a(x)] lp, s> = <k Iirslz [:p’(x> q,(x>] lk > = 0 (a4

where the state l k > contains a single pseudo=-scalar particle of momentum k , then

[‘mzl + p?—a——] £y (A | = Uk . (Al50)
2 2 A _ 2
2 =
Similar arguments imply
o I A7) I TN ' SR /N 1)
om M }\l =m :
>\2 =p
if '
5, = 2[m2-12- + pz%] sy () | . (A13b).
' am u )\l =m, )\2 =u :

Thus equation (A9b) is justified and the Callan-Symanzik equations proved for the neutral
pseudo-scalar- theory.

Let us now consider the vector theory. The complete Lagrangian, including -



counter terms, for this theory is

L= .3 tmy -46 6 -3 2VV +igVv By
‘P(Ypap m)y 7w Py Ty o'p ig pAq;YPq,v

- . 7 -on '
§mZ,py - L6p Z3 VY, @z, l)q»(rH 3, +m ¢

. 2 » - | |
-z, - NG Gw c;W +p vpvp) +iZ,- Mo Py eV, - (A19)

Introducing the propogororsao.and: vertex functions

S, mu) = ifeP “ab <olT(e700) 0>

AKS m, WG, - kpkv./kz" ) = if Fi ke x g4 <ol V(0 V, () lo>

| L iptxmimyy 4
I‘p(P]apzpm:P) = -ife . 2 dxdy

<olrcv@swrlo> (A17) .

we choose the subtraction constants Zl ’ Z2 , Z3 , &m, 8p2 so that

-1 —n ¢« 0 -1 —e
S (.#imrP)I":m 0, 875‘ (#'m"p)I#:m- 1

A-'(kzr m, p)l 2 2 = 0. Lz A.'(kzl m, P)I 2 2 =1
k™ = -p ok kT = -p
P(PrP :m:P) = igy . (Al8) '
v IJ‘1=I‘2="‘ " | o

by - p)" ="

The electromagnetic interaction of the charged spinor field is now included by adding

the interaction term



| R %
= +ieA fF G _ +isfZ
Xy ieAby, v HIF G 43t

+ ie(Z] -1) qu’qu’

where the subtraction constant &f is so defined that

2 _ o2
8 & ."."'")|k2='-p2 = fu

for .

3 va
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G - +38(Z: - G
b %-(3 ]?w BV

(A19)

<O|T(VP(O)AV(x))|0>A.

(A20)

We have not included counter terms of order e? or higher in eq. (A19). Just as in the

pseudo-scalar case we can consider fields N V)\' 0 and coubliné‘cdnstants gy

f)\ defined according to a second normalization scheme:

N ?

-1

sk, m"")l,a;m =05 Z0hn )

£
I
WZm| =02
Ax(klmlp) 2. 2 =0; 2(k1)‘]l)‘2)|
k = - ok ..
rx p(p]lpzl)‘]l)‘2)|# =# — '-g)\YP
17PN
2 2
(P]-pz) -=-)‘2
2 Ly 2
(220 = £, A
G N2 2 T

(A21a)

(A21b)

' (A21c):

(A21d)
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Differentiating eq. (A7), rewritten for the vector case, we find

4y 2.0, 20
or =§fn0z,,) + 2(oz3 W+ 0gy) - (ka) __2+,,__.2.3r)‘|
‘ )\ )\ am’ aH
s A
. (A22)

This is the complete Callan-Symanzik equation obeyed by the amputated time ordered

product of 2n spinor Afields, p vector fields and r electromagnetic currents,
eJ ‘=Aa F ) o , (A23).

The quantities DZZ,)\ ’ Dzs")\ alnd' Dg)‘ can be i}dentifi.ed with Yy Y5 and 8 of.
eq. (33) respectively while an drgumenf similar to that given in the preceeding pseudo-

‘scalar case shows that

par = (2l 4 W2 r)\l L (a4
'- am~ ap )‘l =m, A, =p ‘
2
Finally we can dirécfly compute Df by noting fhaf A,I(k2 m, B) and I/g : A-]
'(k m, p) can, by deflmhon, differ only by a first degree polynomlol in k so. fhat

eq. (A20) and current conservation ( A1(0 m, p) =0) lmplnes

2 KZ+p? g

2 e . 1, L1 e1,2 -
A,(k,m, p)'—ﬂ 'fk ——-—pz gA O m, ) + gA k%, m, ) . 4(A250)
Likewise
(k2 )=-fk2,~f-"21 o, ., A --A o, )
A\ m, p S WA & O N, ? 5, A Qe
] 2 o '
a1 A)\ 2 m, ) (A25b)

N
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where the coefficient of k2. is guaranteed by our subtraction procedure to be independent
of m and p for fixed f>‘ and is therefore determined. by.the condition (A21d). In

analogy with eq. (A7) of the pseudo-scalar case we have

A‘ A(kzl m, P) = ;3,)\ A‘(kzr m, l") ‘ (A260)
- . .
A)} (k2r m, “) =z 3,>\A b<2l m, “) (A26b)
61 -l - | ‘
A( #l m, P) = 22’)\ S (#l 'T'l P) . (A26C) .
_ -3 - ’ '
BoulPyr Py mop) = zsj‘;\ Zox LlPyepyymp) o (A26d)

Eqgs. (A26c) and (A26c§) 4fogefher with the Ward identities
Ty -p) Ty p) = STR) - 5Ty
g P 2)pp1’_2) 2 R, -_2)
o R T ) = 5T - ) | (a27)
S gy | BoARTTY St N Y
implied by current conservation and our normalization procedure§ ‘(A18) and (A21), yie4|d.
| - . (A28)
N 39 - g

Combining egs. (A25), (A26a), (A26b) and (A28) we obtain

1 »A;](Q' AMoA)

. -1
= 'i' 1 "% A (ol m, |")
Y zs,xf 5)\ 22 Yei A T2 ¢ (A29)
. 2 M
or
. ! a : ] A (ol m, P)
Df _ = ..Yf+,[a_- Y]_._—_ ; ) (A30)
A }‘|=m' )‘22 " 2 a9 2) g PZ ,
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so that our complete Callan-Symanzik equation reads

2 93 29 . 0 '
{M'7+P—7+353'2"71'972

om" [
TV I -0} [ S '
¥ ["2f (P3g ~ 723 2 daF )T T war (A31)

If I is computed to lowest order in e , the dependence on f is known, allowing the:
partial derivative with respect to f in eq. (A31) to be explicitly carried out. If we
assume that each electromagnetic current. carries a momentum transfer squared much

\

greater than p2 , - then eq. (A25a) implies that if each current Jp(x) is replaced by |
| O '
f+ —5 A (0, m, p). Vb
g
- the Green's function T is not cﬁanged. Thus
. ’ . }_r .
[gf + ]—2 80, m, p2)1 r
M

is independent of f and eq. (A31) can be rewritten

29 29 ) | 1 -1 -

am op 9 ‘
- Ar - - ‘ (A32)
for
1 -
73 = [gf + _2' A (0, m, P)] ) Co (A33)
H ' ’

which is just eq. (33). In obtaiﬁing the form (A32) we have used the relationship




(A34)

B=972

implied By eq. (A28).



APPENDIX B

. ' 1,1 ‘ :
In this appendix a detailed calculation of an' to order 92 is presented for

the pseudo-scalar theory. Recall that : : ' f

fei Prle -Y)lQMSU < OIT(¢0(Y) Of:]) a (o)uj'-“-b(z)")'||0>| 2 0
o . S ; 7 'n? =

— o ]Il . . - ial e e ‘ | '
= (i) a Py * P, + (terms containing ;,Sa a) (B1)

R R CuY

for 1 < a, < 3. Since to lowest order in 92 no counter terms must be added to
make the operator O(l) finite,
N LR
1
o w = 3 0+ )\
i

n . , ‘
4—?. Ce Vg v aq p(x) + (terms containing 80.0.).
i=1 d n id

(B2)

a - 000 a
1 n

W7

- Figure (2a) illustrates the three graphs conrribﬁting to an]' ] to order 92 . In fact, to

order 92, an]']

oM

Gl...

requires no renormalization of any sort, either within the operator
or of propagotorsor other vertices. Consequently, the effect of the operator
u is simply to differentiate the order 92 matrix element of O( ) a represented by

a o e e
1 n
figure 2b with respect to the internal masses: -

1,1
an pa ® o @ p .
] %

o g dk[za 1»{;{0(+m)(k ..k\(x+m)§

441(21:) E‘*"‘ TiE‘P)*P N E:

a.a,

-+ (terms containing ‘'§ ) . - (83
. '~l
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for p2= 0. (The quantities 5, and 82 appearing in the definition (20) of v are
both unity to lowest order in g.) It is useful to observe that the mass terms in. the

numerator do not contribute to the Py oee P, termsince, if the differentiation
~ 1 n o

mz' a/am2 + P2 8/8}12 were performed. after the iﬁtegraﬁon over k, then upon integ-
ration such terms would ;)ield finite vfuncfions of |.12/m2 ‘which would be annihilated |
by the derivatives. |

The Puw. .o Pak" term in the abcl:ove‘integg'dl can be easily evaluated if f}\e:

' ] o n
integration variables are changed to those of Sudakov, Let

(ol OIPIiP) l; = (Ol OI +Pl 'iP)

P o=
ﬁnd
k =‘q'§+ Bp + k.L“
for: )

In terms of the var{ables a B, k] ’ k2 , €q. (33) becomés ‘

» 220 o -
L1 2Pg° fd j‘ddek[za +92%]

"o (2ﬂ) -0 am* u

( ' n : .
eraB+k +m? ]——[4P2%(ﬁ 1)+k +is -.e] . ‘9- {8

where we have equated the coefficients of Ip‘u .. Py and evaluated the trace in eq.
' 1 n '

(B3) according to

G

(g K Yqil) = -4i ka + (ferms wnfh P or (k.l)J” . : (36)
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The integral over a can be performed using contour integration so that

2 A \ :
N _ g 2 2 3 2 3
ar! = S B Sk | mi2 4 W28
n 2A2m° 0 [‘ amZ ap2J

g Ik2
[;u +(1 -B)m +k2T2
= - jdﬁﬁ""(l-ﬁ)" - L T
16n2 0 -- TR



APPENDIX C

We now give the results of a calculation of all fhe constants a;"j to o'rde'r‘ g
in both the pseudo-scaiar and vector theories. The values of o:"j found for the pseudo-
scalar theory are shown in figure 3. Also shown are Feynman diagrams representing |
fhos_eumplitudes which when differentiated ;vith respect to the internal ma;ses give the
’adiacent values of a:’j k. The vertex joining two photon lines and two fermion lines
represents the factor |
n
s
=

()

:ld

] 4
- -5 Palo . .Ya,. o o Pa
J n

in the corresponding Feynman amplitudes, where .p is the four-momentum carried by the
“ incoming fermion line. Likewise, the vertex connecting two photon and two pseudo-

scalar lines represents the factor

k, ooook | (C2)

where k is the momentum carried by one of the pseudo=-scalar pcjrﬁcles.
The results in the vector theory, shown with their corresponding graphs in fig;' 4,

are somewhat more complicated. The presence of the vector fields 'Va. in the operator
O‘(:l]) . defined in eq. (37a) implies that this operator not only c;nfribu.tes..fhe
two photon- = two fermién -vertex found in fig. 4, representing the factor (C1), bﬁt giso
givessa two p!'ioton - two fermion - vector particle vertex cohfributing to cu-ﬂl’l _and anz".
. This vertex fepresents the factor

. n n - '

! ! - . .
‘T—ay_ Z Z (p+k)_...(p+k) & p ooy oo P (C3)
.2(n -1 2=1 j=1 a, G - PO 9L aj a

7 |
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where P and k are the momenta carried in 'by the spinor.and vector particles respec- '
tively while . P is the vector particle's polanzahon index. Fmally the two- photon - two
vector pomcle vertex in fig 4 represents the factor

T—j EIJE](kl'.'sazp.'.sa,v'..ku)

n
ki) oo |

Chiky ,509 ' kzspusov i kp % Bou = Koky % w : - (CY)

where k is the momentum carried by the vector line and p » 0 the vector particles'

polarization indices.
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"APPENDIX D

finolly, we investigate the large q2 behavior of the solutions (78) fo eq. (75).
First the large q2 limit of E,Si) (qz,g) is related to the large p limit of Ag)( Glp) ) ,
Bg)( G(p) ) and Es)(qi » G(p)) . Then we consider the possibility, first identified by
Gell-Mann and Low, that the function B(g) has a zero at g = 9 ° In that case, if
En(qz, g) is well defined and non-zero at g = 9op / then the asymptotic behavior of
E:i)(qz , g) for large q2 is determined by the functions Arsi)(g) , B'Si)(g) and p(g) .
If in addition 9 is a simple zero of B and Af)(g) ’ Brfi)(g’) are regular at 9o then
a power behavior in q2 for ’Evn(;)(qz, g) is deduced for large q2

First, q2 is replaced by q: in eq. (78) so that z - plg) , or g =G(2), and

the resulting equation solved for the functions vf:)(z) :

Wa = oo i[ 2% + Ao 1Pa] eMe?, cen

-8%(6() erZ)(z) Eer)(qc2 , G(2))3

e = AL + A o) @] a2, 6t
2.7 (6@) 1" £ A2, o) 3 e
where
i) = [21800] O - [£06] P . (©2

The equations can now be used to eliminate the functions. v'(:)(z) from eq. (78), yielding
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. an expression for Ef‘i)(qz,g) in terms of Eg)(qf> » G( In(qz/qi) + p(g) ) ) so that the

large q2 and the large p behavior of E(r:)(qz, G(p) ) are related:

EV e = Ly wil 9 B0, o)) | ©3)

+

for z= In qz/q: plg) ond

wlwo = gr{lE P + Alew) P ] )

- [£ P + A% 6@) V0] 1@ (o0 )}

g = oo {Lﬁ"(:) Do) - 12 Do)} 82 (00)

sy Wlai [P + Alew) P ] [0 )

+ A% 0@ ] - [2 10 + A ew) 1w ]

3 W2e@) + A L2 p(g)‘)]’g [8%a] "

89 G())
n

2
wrleg) = Do

| B “(g)

w(plg)) 11
_TNEGY— wn (p(_g) ’ G(Z) ) . . (04)
If we assume that -B(g) has a root 9 and that E’Ei)(qi , 9) is regular and non-
zeroat g = 9o / ‘then eq. (D3) determines the asymptotic form of E"f‘i)(qz,g) , for
g < 9 ¢ in terms of the functions Ag)(g) ’ Bg)(g) and p(g) appearing in our eq. (79).

In particular, if we assume that Af")(g) , Bf:)(g) are regular at gm and that 9 isa
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. : : . =), 2 .. . 31
simple zero of B(g) , then a power behavior for En (q") is implied by eq. (D3)" . In
order to show this, we must determine the large z behavior of Lf:)(z) and hence of
w:"'(z,g) . It is not difficult to see from eq. (79) that, under these conditions on An' (@),

Bi‘ (9) and p(g) , the functions Lg)(z) can be so:chosen tHat
. . 1
LDy ~ i [1+ Q(;)] | | (05)
for y large and
v = T+ AP )+ @i -3 [, - AP )

& |
D, 5@ |
+§w%%ﬂ. 8

This asymptotic form for LS)(Z) can then be substituted into eq. (D3) yielding

(0
< e . ) : -v_
t0@Ze = = & 2% L) @)
i=1,2
. . . -v(i)
ED(la) = 'ilzof," [£9¢@) + AV 0w ] @) " ©7
for . ' | | .
M (2 2,2\ T.@, 0 m,.2
) - (q )"n Brf )(gm) E,S )(qo,gm)-['vn tA (gm)lﬁn (., 9)
; P(Q)V( ) . (Vrfl) - vrSZ) ) 3:2)(9) |
(2 o -
@ @ 8‘2’< 3e@e2 ) [V0e aAM ]2 5 )
g, = .
" p(g)v” 02 - ,f‘)> 8%(g)

(D8)
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This would imply that the operator

5 %) L0 o >~°§:). e [% W pg)) + AV 19t | c%(‘z)., ,
| - - (D9)

has anomalous dimension
ds) = n + 2+ 2";9). o . (D10)

for j=1,2..

n -
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FIGURE CAPTIONS

Figure 1. Ladder graphs representing the "outer rainbow" amplitudes considered in the
Chang-Fishbane calculation. The solid lines represent fermion propagators,

- the dashed lines pseudo-scalar propagators and the wavy lines virtual photons.

' e . . . . 1,1
Figure 2. o) Diagrams representing the matrix element which determines on' to order

92 in the pseudorscala} theory. The cross indicates insertion of the mass
operator u while the two photon - two fermion vertex represents. the factor
given in (C2). b) The diagram representing the order 9"2‘, two fermion matrix

element of the operator specified by eq. (B2).

Figure 3. The results of a calculation of ar:"‘ .to order 92 in the pseudo-scalar theory

and those Feynman diagrams, described in Appendix C, from.which their. values

were obtained. .

Figure 4, The quantitie$ ar:'J computed to order 92 in the vector ﬂ;teor‘y accompanied

by the corresponding graphs as desc}ibéd in Appendix-C. Here the dashed

-lines represent vector particle propagators.
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