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Abstract 

A general Eonnalism i s  developed from which the  average 

number of d i s t i n c t  sites v i s i t e d  i n 2  s teps  by a random walker 

on a l a t t i c e  can be calculated. The asymptotic value of t h i s  

number fo r  l a rge  2 i s  shown t b  be JF fo r  a one dimensional 

lattice and 9 f o r  l a t t i c e s  of th ree  o r  more dimensions. The 

constant - c i s  evaluated exactly,  with the help of Watson's 

i n t eg ra l s ,  f o r  the  simple cubic, body centered cubic, and face 

centered cubic l a t t i c e s .  An analogy i s  diawn with an e l e c t r i c a l  

network i n  which un i t  r e s i s t o r s  replace a l l  near neighbor bonds i n  

a l a t t i c e ,  and the  res i s tance  of such a network on each of t he  

th ree  cubic l a t t i c e s  i s  evaluated. 
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1. INTRODUCTION 

~ e s ~ i h e  t h e  . a t t e n t i o n  devoted t o  random walks on' l a t t i c e ,  1 , 2  

t h e  simple ques t ion  of  the  number of d i s t i n c t  si tes vi-si ted by a 

w a l k e r , i n  n s t e p s  has n o t ,  t o  our  knowledge, been t r e a t e d  be fo re  

3 
i n  a sys temat ic  way. The problem has p r a c t i c a l  importance, i n  t h e  

theory of annealing of  po in t  d e f e c t s  i n  crys ' ta ls .  A d e f e c t ,  ,such 

a s  an i n t e r s t i t i a l ' o r  a vacancy, d i f f u s e s  by a random walk on a 

l a t t i c e ,  and t h e  r a t e  a t  which d e f e c t s  a reann ih i l a t ed  a t  po in t  

s inks  i s .  propor t ional  t o  t h e  average r a t e  a t  which d e f e c t s  , a r e  

a r r i v i n g  a t  f r e s h  s i t e s  on t h e  l a t t i c e ,  t h a t  i s ,  a t  s i t e s  which 

have not  been v i s i t e d  previous ly .   h he physica l  s i d e  of t h i s  problem 

w i l l  be  . t r ea ted  a t  some lerigth in .  a forthcoming book by Damask and 

4 
Dienes . 

I n  t h i s  note  we show how t o  determine t h e  average number o f  
. . 

d i s t i n c t  s i t e s  . v i s i t e d  by a 'walker i n  n s t e p s ,  examine t h e  l i m i t i n g  

behavior of t h i s  number' i n  one and t h r e e  dimensions f o r  l a r g e  n ,  
. .  , 

and present  numerical r e s u l t s  f o r  cubic l a t t i c e s .  The' l a r g e r  ques t ion  

of t h e  d i s t r i b u t i o n  o f  number of d i s t i n c t  s i t e s  v i s i t e d  i n  n s t e p s  

is  not  t r e a t e d .  

S. ~handrast ikhar , Rev. Mod. Phys. , 1 (1943). 

Z E. Montroll , J . Soc. Ind .  and Appl. Math., 2, 241 (1956) . 
J .  R.  Beeler ,  Jr.  , and J . A. Delaney (unpublished) have s tudied  
random walks by Monte Carlo methods on a computing machine and 
have deduced r e s u l t s  on t h e  asymptotic number of  d i s t i n c t  si tes 
v i s i t e d .  

4 . ~ .  C.  ~omnoh 'and G. J .   toner , Point  ~ e f e c t r  i n '  Meta ls ,  t o  be  
published.  



. . 2 .  GENERAL FORMALISM . . 

Consider a  random walk on a  Bravais l a t t i c e  of any number ' 

of dimensions. Let t h e  coo'rd.ination number of t h e  l a t t i c e  be z .  

The walker i s  allowed t o  step. only t o  neares t  neighbor s i t e s ,  

and t o  s t ep  t o '  each of these  ,with l / z .  1i a  s i t e  i s  

considered t o  be marked with a  ' ' footprint"  a s  soon a s  t h e  walker 

v i s i t s  i t ,  a  cloud of f o o t p r i n t s  develops i n  t h e  l a t t i c e  a s  t h e -  

walk On t h e  average t h i s  cloud w i l l  have  t h e  symmetry 

o f . t h e  l a t t i c e ,  and,  i f  viewed from t h e  current  p o s i t i o n  of t h e  
.. 

walker a t  any s t a g e ; w i l l  a l s o ,  on t h e  average,  possess t h e  l a t t i c e  

symmetry. Our s t r a t e g y  i s  t o  c a l c u l a t e  t h e  average dens i ty  of t h i s  

cloud o f .  f o o t p r i n t s ,  f o r  t h e  rate a t  which f r e s h  .s i tes  a r e  being . . '  . 
. a  

, 
v i s i t e d  i s  j u s t  t h e  p r o b a b i l i t y  t h a t  a  s i t e , a d j o i n i n g  t h e  walker . , : .  

does not bear a f o o t p r i a t .  
5 

Thus, d e f i n e  t h e  p r o b a b i l i t y  p  ( r )  t h a t ,  a f t e r  n  s t e p s ,  t h e  
n m  

s i te  a t  r from t h e  present  p o s i t i o n  of t h e  walker has been v i s i t e d  
Flcl 

a t  l e a s t  onCe. These obey t h e  following r e l a t i o n s :  

p 0 ( 2  '0 , .  r f  0 ,  . . 
w 

(3) 

C where b  denotes a  neares t  neighbor displacement and means summation 
ml L .  over t h e  set of z neares t  neighbor displacements. 



Equations (2) and (3) a r e  obvious. To prove Eq . (1) observe 

t h a t  i n  t h e  s t e p  n  + 1 t h e  walker might be  d isplaced by a  vec to r  

b y  i n  which case t h e  s i t e  previously a t  r + b  r e l a t i v e  t o  t h e  * Y Y 

walker becomes t h e  s i te  a t  r .  Since r # 0 t h e  walker ,has  not 
n..' m 

moved on t o  t h i s  s i t e ,  and so  t h e  p r o b a b i l i t y  t h a t  t h e  s i t e  has 

been v i s i t e d  has  not  changed. Allowing t h e  p r o b a b i l i t y  112 f o r  

t h e  p a r t i c u l a r  displacement 5, and summing over t h e  poss ib le  

displacements, one a r r i v e s  a t  Eq. 1. 

Equations (1) and (2) and t h e  i n i t i a 1 . c o n d i t i o n s  (3) determine 

t h e  e n t i r e  s e t  pn( r  . 
t r J  

Let Sn be t h e  average number of d i s t i n c t  s i t e s  v i s i t e d  i n  

n  s t e p s .  The inc rease ,  i n  s t e p  n + 1, i n  average. number 'of  

d i s t i n c t  sites v i s i t e d  i s  j u s t  the 'p robab i l ' i t y  t h a t  any neares t  

neighbor s i t e  b  .has not ye t  been v i s i t e d  by s t e p  n ,  namely 
mJ 

1-p (b) (no te  t h a t  symmetry makes p  (b) t h e  same for a l l  nea res t  
n d  n f d  

neighbor s i t e s ) .  Thus 

Equations (1) and ( 4 ) ,  determine t h e  .set  S  . 
n  

D i r e c t l y  from t h e  d e f i n i t i o n s  of S  and' p  ( r )  one can a l s o  
n  n w  

wr i t e  t h e  r e l a t i o n  
b 

where t h e  summation i s  over a l l  l a t t i c e  vec to r s .  The consistency 

of Eqs. (4) and (5) i s  easy t o  prove, with t h e  a i d  of Eqs. (1) and ( 2 ) .  



Without seeking e x p l i c i t  so lu t ions  of Eqs. (1)  - ( 4 )  ' 

c e r t a i n  general  conclusions can be.drawn. For n l a r g e  p ( r )  
n m  

becomes indepent of n. Let t h i s  l i m i t i n g ' v a l u e  be  c a l l e d  pP1(r). 
M 

From,Eq. ( l ) 'pP1(r)  i s  determined by 
M 

These equations da'n be understood more e a s i l y  by t h e  following 

5 analogy: '1f an e l e c t r i c a l  network i s  c o h t r u c t e d  . with' nodes a t  

t h e  l a t t i c e  points  and u n i t  r e s i s t o r s  replac ing a l l  near neighbor 

bonds, and i f  . the nodes a t  i n f i n i t y  a r e  grounded and t h e  node a t  

t h e  o r i g i n  is  held a t  u n i t  p o t e n t i a l ,  pP1(r) w i l l  be t h e  p o t e n t i a l  
I .  

NIH 

d i  t h e  node a t  r . ~ r o m  ' th is ' ,  consider,at ion o n e  can demonstrate 
Nw 

t h a t ,  f o r  networks of 3 o r  more dimensions, 0 <.pP1(b) < 1. . . 

d . . . i n  th ree  o r  more dimensions 
Equations (4 ) ' l eaqh~o  a l i m i t i n g  form, f o r  l a r g e  n ,  . . .. . . . . . 

where a is  a constant .  . . 

For 1 o r  2 dimensioiial l a t t i c e s ,  t h e  e l e c t r i c a l  network 

analogy shows t h a t  pm(b) = ' 1, and here  S .must inc rease  less ' r a p i d l y  
r k ~  . n 

than l i n e a r l y  with n, 

5 E l e c t . r i c a 1  networks have a l s o ,  been employed i n  random walk 
problems by K .  Cpmpaan and Y .  Havens, Trans. Faraday Soc.' 52, 
786 (1956). 



3 .  LIMITING VALUES I N  1 DIMENSION 

. . 
'For 1 dimension the limiting growth is found by passing 

from Eq. (1) to a differentiaL equation for p (r), valid in 
n w  . 

the limit of large n: 

The solution of (8). is 

d S '  
n 

I n  the same limit - = 1-pn(l) = Erf dn (9) 

Equation (9) has the solution 
-.. ' 

showing a square root growth of S with n. The.meaning of this 
n. 

is. evident from the consideration that the r .m.s. excursion of the 

walker is proportional to G, and, in one dimension, sites ' inside 
this distance wil.1 almost a1,ways have been visited, h i L r s  : outs-ide 

it will not. 



4. LIMITING VALUES I N  THREE DIMENSIONS 

Consider a 3 dimensional  cubic  B r a v a i s - l a t t i c e  and l e t  h a l f  

t h e  cub ic  cel l '  edge b e  t h e  u n i t  o f  l e n g t h .  Le t  t h e  C a r t e s i a n  

components of a nea r  neighbor v e c t o r  b be  donoted bl ,b2,b3, and 
. tw 

o f  a ' l a t t i c e  v e c t o r  r b e  denoted r ,r  ,r a l l  of  t h e s e  components 
A 1 2. 3; 

w i l l  b e  i n t e g e r s .  The gene ra l  s o l u t i o n  of  t h e  Eqs . (6)  ' f o r  'pm(r) 
d 

can  ndw be  w r i t t e n  down: 

cos ( u r  ))  cos (vr2)  cos (wr3) 
1 

- 1 du dv dw, (11) 
1 - z Z cos(ubl) cos ( ib2 )  cos(wb ) 

b 3 
#w 

where 

' d u d v d w  . , 

- 1 - z Z cos(ubl) cos(vb2) cos(wb3) 
b 
r r O r r C .  

To. demonstrate  t h a t  (11) i s  a s o l u t i o n  of  (6) ,' write t h e  

l a t t e r  i n  t h e  form 

where f2 is  .an operator defined by 

- 1 
62 f z f - i C . f ( r  + b) .  

w . @  . b  M A . l  
4' . ... 

. . 

Observe t h a t ,  by v i r t u e  o f  t h e  cubic  symmetry, cos (u r  ) cos(vr2)  cos(wr. ) . 

1 .  3 

' i s  a n  e igen func t ion  o f  62 wi th  e igenvalue  

nul 

Then, apply ing  62 t o  t h e  exp res s ion  (11) 



f o r  pa( r ) ,  one f i n d s  

. . n TT n 
n p,(r) = eos,(ur ) cos (vr2)  cos ( w 3 )  du dv .dw 
4. 0 0 ' 0  

1 

2 
s i n n r  

''Ti- -= 0,  ( f ; +  0) .  = - 
F r j=1 . j 

F i n a l l y ,  from t h e  d e f i n i t i o n  of F, it i S  evident  t h a t  

p_(O) = 1, which completes ' the  demonstrat ion.  

For t h e  t h r e e  l a t t i c e s  s imple cubic ( s . ~ . ) ,  body centered  

cubic  (b .c.c.)  , and f a c e  centered cubic ( f  . c .c . )  , ~ _ ( b ) '  may 
%d 

- 1 r e a d i l y  be evaluated.  One uses  t h e  r e l a t i o n  z C ~,(b? = p,(b) 
, , ' A " + . # /  

t o  r e w r i t e  (11). a s  

3 3 
F i n a l l y ,  f o r  S .C.  l a t t i c e s  F = 3n 13, f o r  b.c .c .  F = n I and 

1 ' 
3 

f o r  f . c . c .  F = 3n 12, where 11, 12, and I3 a r e  i n t e g r a l s  which 

6 
have been eva lua ted  by Watson. 

The asymptotic rate of change of S wi th  n ,  a s  seen  from 
n 

Eq .  (7) ,  i s  1-pa(b). Values of t h i s  q u a n t i t y ,  a s  determined h e r e ,  
M .  

and a l s o  a s  found by Beeler and Delaney i n  t h e i r  Monte Carlo t r e a t -  

ments of diffus ion a r e  given i n  Table I. 

- -- 

G . N .  Watson, Q u a r t e r l y  J. o f  Math. l0, 266 (1939) . " 



F i n a l l y ,  one not,es t h a t ,  from t h e  e l e c t r i c a l  network 

analogy c i t e d  above, t h e  r e s i s t a n c e  from a node t o  i n f i n i t y  
& 

i n  a 1;tice i n  which u n i t  r e s i s t o r s  have rep laced  a l l  nea r  

ne ighbor .  bonds can 'b.e w r i t t e n  

Th i s  r e s i s t a n c e  i s  0.25273, 0.17415, and 0.11206 ohms f o r  t h e  

s . c . ,  b . c . c .  and f . c . c .  l a t t i c e s ,  r e s p e c t i v e l y .  
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dSn 
Tab le  I. Lim ,=, , where S i s  average number 

n 

of d i s t i n c t  s i t e s  v i s i t e d  i n  n s t e p s .  

L a t t i c e  

S.C. 

. b.c.c  . 

f.c.c. 

P resen t  Ca lcu la t ions  

0.659 462 670 

0.717 770 010 

0.743 681 763 

Beeler  and 
Delaney 

0.667. 

0.72 

, 

----- 




