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A general formalism is developed from which the average

number of distinct sites visited in n steps by a random walker

on a lattice can be calculated.

The asymptotic value of this

[8n
number for large n is shown to be# m for a one dimensional

lattice and cn for lattices of three or more dimensions.

The

I
constant ¢ is evaluated exactly, with the help of Watson's

integrals, for the simple cubic, body centered cubic, and face

centered cubic lattices. An analogy is drawn with an electrical

network in which unit resistors replace all near neighbor bonds in

a lattice, and the resistance of such a network on each of the

three cubic lattices is evaluated.
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1. INTRODUCTION

Despite the attention devoted to random walks on a lattice,”’

the simple question of the number of distinct sites yisited by a
walker in n steps has not, to our kﬁowledge, been treated before
in a syétematic way.3 The problem'has pracfical importance‘in thé»
theory of anneéling of point defects in crygtals} A defect, such
as an interstitial or a vacancy, difqueé by a random walk on a
-lattice, and the rate at which defects are annihilated at point
sinks is proportional to the average rate at thch defects are
arriving at fresh sites on the lat;ice, that is, at sités which
have ﬁot been visited previously. .Thé physical side 6f this problem
will be:treated at some length in a forthcoming book by Damask and’
Dienes.4

In this note we show how to determine thé average number of
distinct sites.visitea by a walker in n ;teps, examine the limiting
behavior of this number in one and three.dimenéions for large n,
and present numeriéal results for cubic létticeé. The"lapgér duestion
of the distributién of number of distinct'sifes visitéd in n steps

is not treated.

1 S. Chandfaéékhar, Rev. Mod. Phys. 12, 1 (1943).

2 E. Montroll, J. Soc. Ind. and Appl. Math, 4, 241 (1956).
3 J. R. Beeler, Jr., and J. A. Delaney (unpublished) have studied
random walks by Monte Carlo methods on a computing machine and
have deduced results on the asymptotic number of distinct sites

visited. '
'4'A; C. Damasck and G. J. Dienes, Point Defacts in'Metals, to be
-published.
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2. GENERAL FORMALISM

Consider a random walk on:a Bravais lattice of any npmber'
of dimensions. Let the coordination number éf the lattice be z.
The walker is allowed to step only to nearest neighbor sites,
and to étep to'eachAbf these with probability 1/z. .If a site is
considered to be mﬁrked with a "footprint" as soon as the walker
visits it, a cloud pf footprints deveiops iﬁ the latticé as the-
walk progfesses; On the average this éioud will have the symmeﬁry
of the lattice, and, ifAvieQed from thé current position of the
walker atlany stage, will also, on the gverage, possess the lattice
symmetry. Our strgtégy is to calculate the average density of this
cloud of‘footﬁrints, for the rate gt which fresh sites ére being -
visited is'just the probability that a site'adjoiniﬁg the walker
does nét ﬁéar a‘foétptint. |
Thus,-défine the probability Pnéﬁ? tLat; after n steps, the

‘site ét’z from the present position of the walker has been visited

at least once. These probabilities 6bey fhe following relations:

21 | - e
pn + 1§w'vr) = zipn(:/.*ph), r #0, n = 0’:1’2,.-.-.-" (1)

p,(0) =1, ' o n=0,1,2,..., (2)
150(:“) =0, t#0, .. . | . (3).

~w

where‘EIdenotes a nearest neighbor displacement and z:means summation

over the set of z nearest neighbor displacements. -
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‘Equations (2) and (3) are obvious. To p;ove’Eq. ﬁ)obsere
that in the step n + 1 the walker might be displaced by a vector
ME, in ,whiéh case fhe site previously atA: +~13‘ ‘relative .'to the
walker bgCOmes the site at :; Since‘gf# 0 the walkgr-has not
moved on ﬁo this site, and so the probability that the site has
been visited has nb£ changed. Allowing the probability 1/z.for'
the particular disp}acement‘kﬁ and'summing oﬁer tﬁe possible
displacements, one arrives at Eq. 1.
| Equations (1) and (2) ahd the initial conditions (3) determine
the entire set pnga).

Let Sn be the avégage number of distinctAsites visited in
n steps. The increase, in step n + 1, ip average number of
distinct sites visited is just the probability fhat any néarest
héighbér éite‘kfhas nof yet been visited py step n, namgly
l-pnga; (note that éymmetry makes pnszz the same for all nearést

neighbor sites). Thus

Sn+1~Sn=1-pn(Ed),, n=0,1,2,..... ; S, =10 (4)

Equations (1) and (4). determine the set Sn'
Directly from the definitions of Sn and'pn(r) one can also
o I« Iy ,

write the relation
SRR NN (5)
" :
N .

where the summation is over all lattice vectors. The consistency

of Eqs. (4) and (5) is easy to prove, with the aid of Eqs. (1) and (2).
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Without seeking explicit solutions of Eqs. (1) - (4)
certain general conclusions can be.drawn. For n large pn&ﬁ?
becomes indepent of n. Let this limiting value be called p_(r).

el

From Eq. (1)‘p®(r) is determined by
Co i

L1y , . -
P = 1) PR, A0, | (6)
, b :
P (0) = 1.

These equations can be understood more easily by the following
analogy:llf an electrical metwork is cohstructeds.with‘nodes at
thé lattice points and unit resiétoxs replacing all near neighbor
bonﬁs, and if tﬁe nodes at infinity are grounded and the nodé at
the origin.is held at unit potential, pm€£2 will be the pofential :

.
1

of the node at r. From this consideration one can demonstrate.
. X ~NW o

that, for networks of 3 or more dimensions, O <~pm(b) <1.
‘in three or more dimensions o

Equations(4)1leadpfo a limiting form, for large n,
Sn =-a +. [1'19&(3‘)] n’ ) ' . . ‘ ) . (7)
where a is a constant.
For -1 or 2 dimensional lattices, the electrical network
analogy shows that p (b) =1, and here Sn‘must increase 1éss‘répid1y '
. M . .

than linearly with n,-

-

5 Electrical networks have also been employed in random walk

problems by K. Compaan and Y. Havens, Trans. Faraday Soc. 52,
786 (1956). ' ’ ' A



-6 -

3. LIMITING VALUES IN 1 DIMENSION

"For 1 dimension the limiting growth is found by passing

from Eq. (1) to a differential equation for pn(r) , valid in
. , i -

the limit of large n:

3 p,(x) . azpn(x) :
2T T TRz mO=L
. X

The solution of (8) is

..pn(Nx) = 1-Erf (%) .

d s

| T S _ 1Yo [T
In the same limit —— 1-p (1) -Erf<m>n_.m m .

Equation (9) has the solution

s“=a+2,/'-—2,“ , (A=),

showing a square root growth of Sn with n. The meaning of this
is' evident from the consideration that the r.m.s. éxcur_sion of the
walker is proportional to '/;, and, in one dimension, sites inside

this distance will almost always have been visited, sites. outside

it will not.

(8)

(9)

(10)
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4. LIMITING VALﬁES IN THREE DIMENSIONS
Consider‘a 3 dimensional cubic Bravais.léttice and let half
the cubic cell edge be the unif of iength. Let the Cartesian
components of a near neighbor vecForla be donoted.bl,bé,b3, gnd
of a lattice vectorﬁi be denoted rl,rz,rB; all of these components
‘will'be integers. ‘The geneyél golutidn of the Eqs..(6)4for'pm€£)

can now be written down:

, b (o) -1 r&rjrn -cOs(u?i) cos(vr2) cos(w;B)
e Folglede

o] du dv dw, (11)

-z = T cos(ub,) cos(vb,) cos(wb,) ‘
b 1 2 3
~m~

where

R

. du dv dw A'  . ) (i2)

» -1

1 -2z E cos(pbl) cos(vbz) cos(wb3)

To demonstrate that (11) is a solution of (6), write the
latter in the form

Qp(r) =0, r#0
s

e
where () is .an operator defined by
. ‘ -1

Qf(r) = £(¢) - z - .
m .o - b
-~

Observe.that, by virtue of the cubic symmetry, cos(url) cos(vrz) cos(wr3)

'is an eigenfunction of () with eigenvalue

1 - z-l.z cos(ub,) cos(vb,) cos(wb.).
e & 2 3
Then, applying Q to the expression (11)



for pw(r), one finds

. L man .
Qp(z) = T J f r COS(url) cos(vrz) cos(wr3) du dv dw
. o'o’o '
. sinmr,
=%:” —d=0 +0.
. =1 . 7j

Finally, from the definitien of F, it is evident that
p_(0) =‘1, which conpleteé'the demonstration.
For the three lattices simple cubic (s.c.), body centered
'cubdc (b.C;c.), and face centered cubic (f.c.c.), pwggzimay
readiiy'be evaluated. One uses the relation z-1 z pm(H) = pm(b)

to rewrite (11) as 4 - i

Z cos(ub ) cos(vb ) cos(wb )

. p(b) = 7 f jﬂ : du dv dw
hd o lm- 2 cos(ub ) cos(vb! ) cos(wb )
b' N . )

‘ Tt . ' .

= % fnf fﬂ [ 1 1 ' - ' -1] du dv dw
M) 1 -2 72 cos(ubl) cos(vb ) cos(wb3) :
‘ b' ' |

L [e.3]

'F@[FA'"»]-'

Finally, for s.c. lattices F = 3n313, for b.c.c. f = n3Il, and
for f.c,c, F =‘3n312; where 11, I,, and I, are integrals which
_ have been evaluated by Watson.6 |

The asymptotic rate of change of‘Sn witn n, as seen from
Eq. (7), is 1-p_ (b). Values'of this quantity, es determined here,
and also as found by Beeler and Delaney in their Monte Carlo treat-

ments of diffusion are given in Table I.

‘ 6 G.N. Watson, Quarterly J. of Math. 10, 266 (1939).' : 4
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Finally, one notes that, from the electrical network
analogy cited above, the resistance from a node to infinity
0. .

in a %Ftice in which unit resistors have replaced all near

neighbor bonds can be written

1
- z[1p (®)]

This resistance is 0.25273, 0.17415, and 0.11206 ohms for the -

‘'s.c., b.c.c. and f.c.c. lattices, respectively.
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Table I. Lim < ,
. dn .

n—w

where Sn is average number

of distinct sites visited in n steps.

Lattice Present Calculations Beeler and
Delaney
s.c. ~ 0.659 462 670 ‘ 0.667
b.c.c . 0.717 770 010 0.72
f.c.c. 0.743 681 763 | = =====-

6





