

3dr
RECEIVED BY TIC DEC 26 1972

Junction Field Effect Transistor Degradation Caused by Electrostatic Discharge

BDX-613-815

December, 1972

Prepared by:
W. J. Kirk
Department 845

Project Team:
F. H. Lewis
M. L. Waddell

Prepared for the U. S. Atomic Energy Commission
Albuquerque Operations Office under Contract
Number AT(29-1)-613 USAEC.

Kansas City
Division

MASTER

DISTRIBUTION OF THIS DOCUMENT IS IMPLIMENTED

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency Thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document.

JUNCTION FIELD EFFECT
TRANSISTOR DEGRADATION
CAUSED BY ELECTROSTATIC
DISCHARGE

BDX-613-815

Distributed December 1972

Project Leader:
W. J. Kirk
Department 845

Project Team:
F. H. Lewis
M. L. Waddell

NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

Technical Communications

**Kansas City
Division**

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

GG

**THIS PAGE
WAS INTENTIONALLY
LEFT BLANK**

JUNCTION FIELD EFFECT TRANSISTOR DEGRADATION CAUSED
BY ELECTROSTATIC DISCHARGE

BDX-613-815, UNCLASSIFIED, Distributed December 1972

Prepared by W. J. Kirk, D/845

Electrostatic buildup of several hundred volts on the body of an operator is common in a low-humidity environment. This charge across measured 100- to 400-pF distributed capacitances of the human body may be discharged into a low-current FET, thereby degrading or destroying the gate-drain junction. Experiments have shown that static charges as low as 140 volts may damage JFET junctions and that normal body equivalent series resistance (less than 1000 ohms) does not limit the flow of current significantly. Safeguards against the effects of static discharge on JFET junctions during assembly and handling are therefore necessary.

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

THE BENDIX CORPORATION

KANSAS CITY DIVISION

KANSAS CITY, MISSOURI

A prime contractor for the
Atomic Energy Commission
Contract Number AT(29-1)-613 USAEC

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

CONTENTS

Section	Page
SUMMARY	9
DISCUSSION	11
SCOPE AND PURPOSE	11
ACTIVITY	11
<u>JFET Static Damage</u>	11
<u>Energy Storage on the Human Body</u>	19
ACCOMPLISHMENTS	24
FUTURE WORK	24
REFERENCES	25

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

ILLUSTRATIONS

Figure		Page
1	Static Discharge Test Circuit	13
2	JFET Test Circuits.	14
3	Degraded 2N2608 FET (P77698)	17
4	Method of Measuring Human Body Equivalent Series Resistance and Distributed Capacitance	22

TABLES

Number		Page
1	Effect of Capacitance and Voltage Polarity on Static Catastrophic Failure of JFET's	12
2	Effects of Capacitance and Voltage on JFET Degradation . . .	15
3	Published Values of Body Capacitance and Resistance	20
4	Human Body Capacitance to Earth Ground or to Metal Plate. .	21
5	Body Distributed Capacitance and Equivalent Series	23
6	Effects of Series Resistance and Inductance on 2N41184 JFET Static Degradation.	23

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

SUMMARY

A literature search and physical experiments were conducted to determine the effects of electrostatic discharge on four types of junction field effect transistors (JFET's) that are required in a new electronic assembly. These JFET's had not been used previously in a low-humidity manufacturing environment; therefore, preparations for production required that processes and facilities necessary to ensure product performance and reliability be evaluated. Common knowledge that the gate-drain junction of FET's is susceptible to damage from electrostatic discharge prompted special attention to this phase of the work.

Electrical models of the human body were devised and tests were conducted to determine approximate values of capacitance and equivalent series body resistance that can be expected at typical work stations, the electrostatic potentials that can be expected on the bodies of operators, and the effects of discharging electrostatic energy into the high-impedance low-current JFET's that are to be used in this assembly.

Tests to determine the effects of electrostatic discharge on the JFET's resulted in several significant findings:

- A 2N4118A, the most susceptible of the four types tested, was degraded by a static discharge from the body of an operator charged to only 140 volts. This energy level is about 1/100 of that required to detonate an explosive hydrocarbon gas.¹⁴
- Many samples of the four types of JFET's were degraded by static voltage, but remained functional in assemblies. This posed a potential reliability problem which was solved by including an additional test to the in-process inspection procedure.
- Measured operator body capacitances of 90 to 405 pF were much more significant than measured equivalent body series resistances of 87 to 190 ohms when considering the JFET static damage potential.

Study and evaluation of static prevention methods will be continued to determine the most effective means of preventing JFET junction damage in production assemblies. Humidity control, operator clothing, fixturing, and grounding techniques such as conductive floors and work surfaces are some of the aspects to be considered.

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

DISCUSSION

SCOPE AND PURPOSE

This work was conducted as a part of preparations for manufacturing an electronic assembly that contains four junction field effect transistors (JFET's) which had not been used previously in a low-humidity production environment. Common knowledge that FET's are susceptible to junction damage caused by electrostatic discharge prompted this investigation to determine the problems that might be encountered and the safeguards necessary to ensure product reliability.

The electrostatic-control work includes

- Determining the effects of various static voltages on the JFET's,
- Establishing the maximum allowable value of static voltage for each of the four JFET types, and
- Developing procedures to ensure that allowable static voltage values are not exceeded in environments of 5- to 50-percent rh.

When the necessary static-control techniques have been developed, they will be applied to

- JFET lead forming and pretinning,
- Fixturing and assembly operations,
- JFET and assembly testing, and
- Special JFET packaging, both in and out of assemblies.

ACTIVITY

JFET Static Damage

The four JFET types were tested to determine which is the most susceptible to damage from static electricity. A capacitor was charged to a known voltage, then discharged through the gate-drain junction of the JFET, as shown in Figure 1. The results of those tests (Table 1) show that the 2N4118A is the most susceptible of the four types to static discharge and that all of the four types are more sensitive to reverse breakdown polarity than to forward conducting polarity.

Table 1. Effects of Capacitance and Voltage Polarity on Static Catastrophic Failure of JFET's

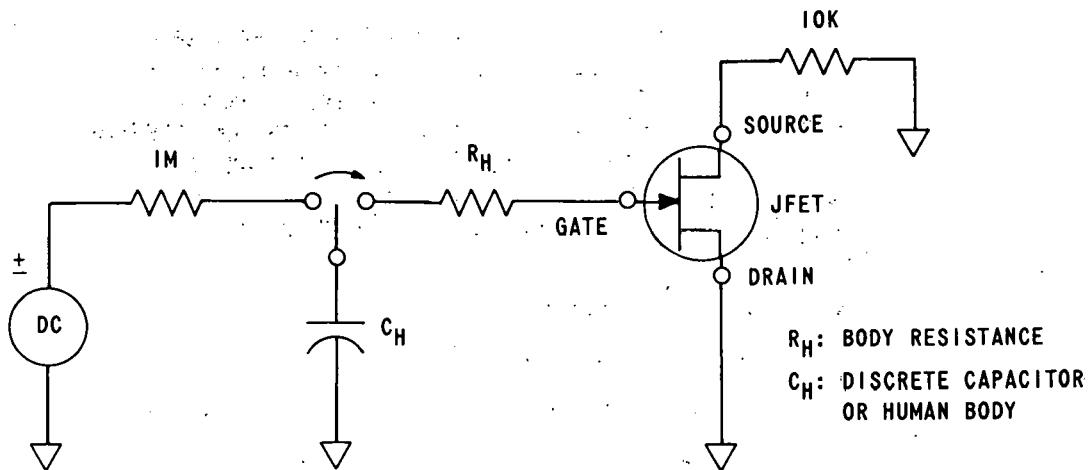
JFET Type	2N2608 (P Channel)				2N3112 (P Channel)				2N3971 (N Channel)				2N4118A (N Channel)			
Voltage Polarity	Reverse Breakdown		Forward Conducting		Reverse Breakdown		Forward Conducting		Reverse Breakdown		Forward Conducting		Reverse Breakdown		Forward Conducting	
Capacitance (pF)	218	425	218	425	218	425	218	425	218	425	218	425	218	425	218	425
Test Voltage																
170																
255																
340																
425																
510																
595																
680																
765																
850																
935																
1020																
1105																
1190																
1275																
1360																
1445																
1530	PP	PP	C	PP	PP	P	C	P	P	PP	P					

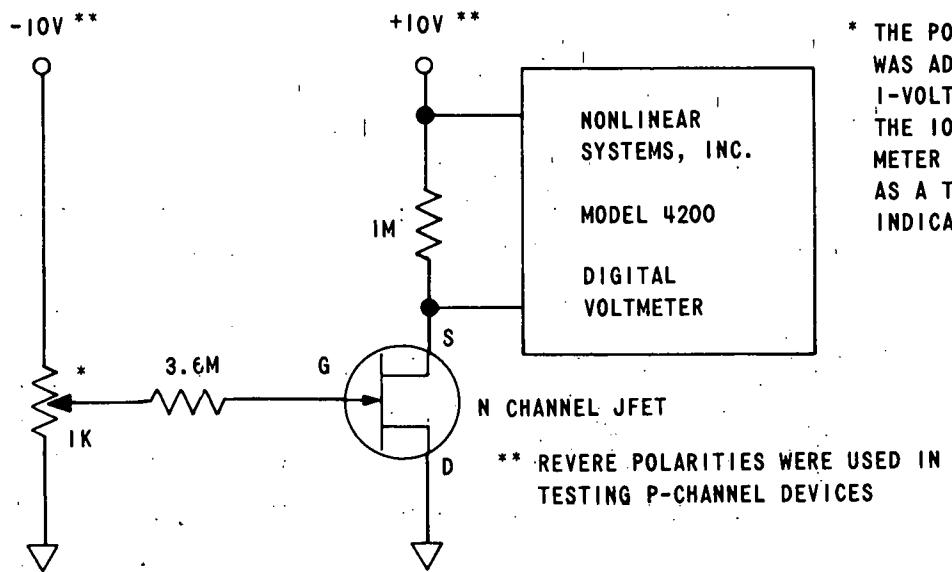
Procedure:

The gates received one discharge pulse at each test voltage in sequence (starting at 170 volts) until failure occurred (see Figures 1, 2A and 2B). No series resistance was used in the tests.

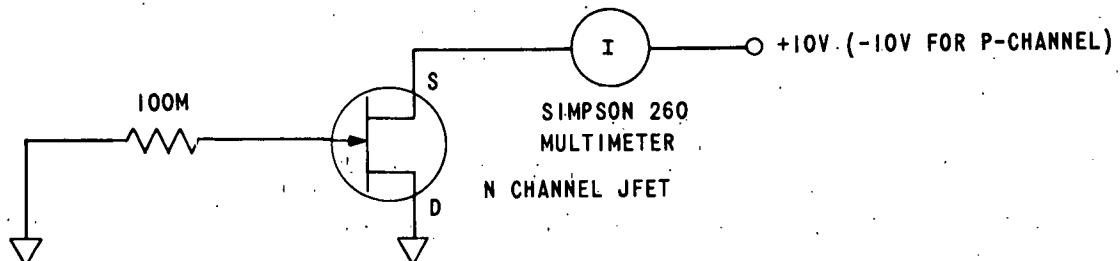
Key:

C = Catastrophic failure
 X = Catastrophic failure after passing 1530 v reverse polarity
 P = Passed
 Each letter represents one data point.

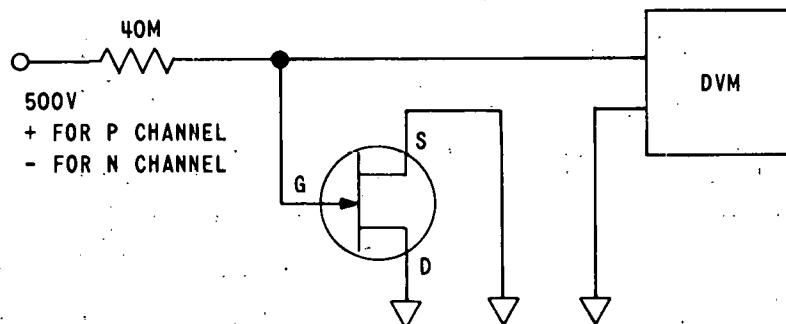



Figure 1. Static Discharge Test Circuit

The failure criterion for these first tests was a change in either turn-on voltage (gate-drain) or saturated source current. The test circuits are shown in Figure 2.


The results of this catastrophic test were so inconsistent and the voltages were so high that the validity of the test method was reviewed. Although the method simulated the product usage, it did not indicate the point of first transistor degradation. Therefore, four 2N2608 transistors that still passed the catastrophic failure test after stressing to ± 1500 volts were subjected to complete electrical tests which revealed that the gate reverse breakdown voltage was grossly reduced. Postmortems of these units revealed dark brown burn paths between the gate and the drain elements, as shown in Figure 3.

The test circuit was modified as shown in Figure 2C to use gate breakdown voltage as the test criterion. This part of the work showed that it is possible that a degraded JFET in an assembly might not be detected by the present product test procedure. Since long-term product reliability is a paramount requirement, these tests emphasized the need for static protection.


Sensitivity to reverse breakdown voltage was used as the criterion to obtain the refined data of the effects of static voltage shown in Table 2. Most of the data points represent less-than-catastrophic degradation.

A. TURN-ON VOLTAGE FOR 1-MICROAMPERE SOURCE CURRENT

B. SATURATED SOURCE CURRENT

C. REVERSE BREAKDOWN VOLTAGE

* THE POTENTIOMETER WAS ADJUSTED FOR A 1-VOLT DVM READING. THE 10-TURN POTENTIOMETER DIAL WAS USED AS A TURN-ON VOLTAGE INDICATOR

Figure 2. JFET Test Circuits

Table 2. Effects of Capacitance and Voltage on JFET Degradation

JFET Type	2N2608			2N3112			2N3971			2N4118A						
										Charge on Body of Operator						
													Standing		Sitting	
Capacitance (pF)	97	218	425	97	218	425	97	218	425	97	218	425	Power Supply Charge	Static Movement Charge	Power Supply Charge	Static Movement Charge
Test Voltage	97	218	425	97	218	425	97	218	425	97	218	425	190	118	110	99
70																
85																
100																
120																
140																
160																
190																
230																
270																
320																
380																
450																
530																
620																
730																
860	X															
1000																
1105																
1190																
1275																
1360																
1445																
1530			P	C												
Procedure: Each FET gate received one discharge pulse at each test voltage in sequence (starting with 70 volts) until the gate-drain breakdown voltage at 5 microamperes decreased significantly (Figures 1 and 2C). No series resistance was used in the tests.																
Key: D = Degraded C = Catastrophic, reverse breakdown <3 volts X = Degraded after passing 1530 volts reverse polarity P = Passed Each letter represents one data point.																

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

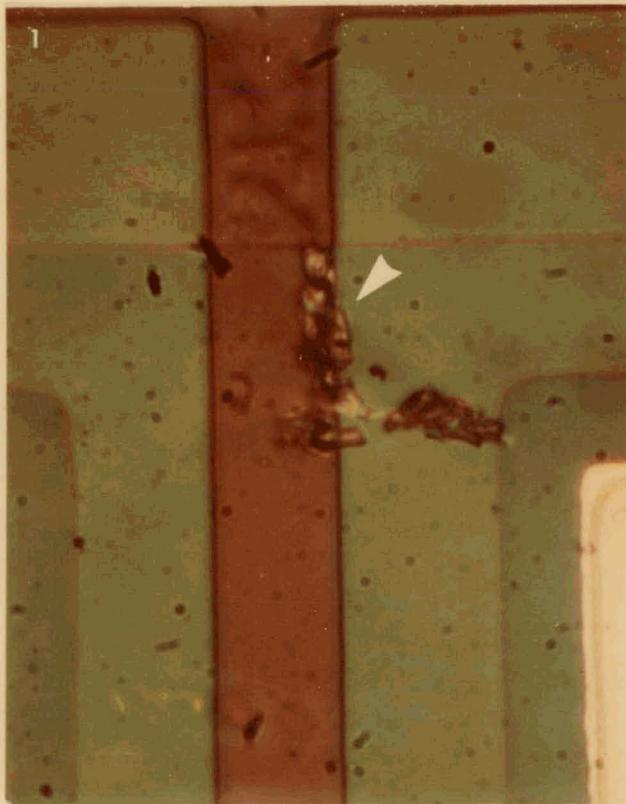
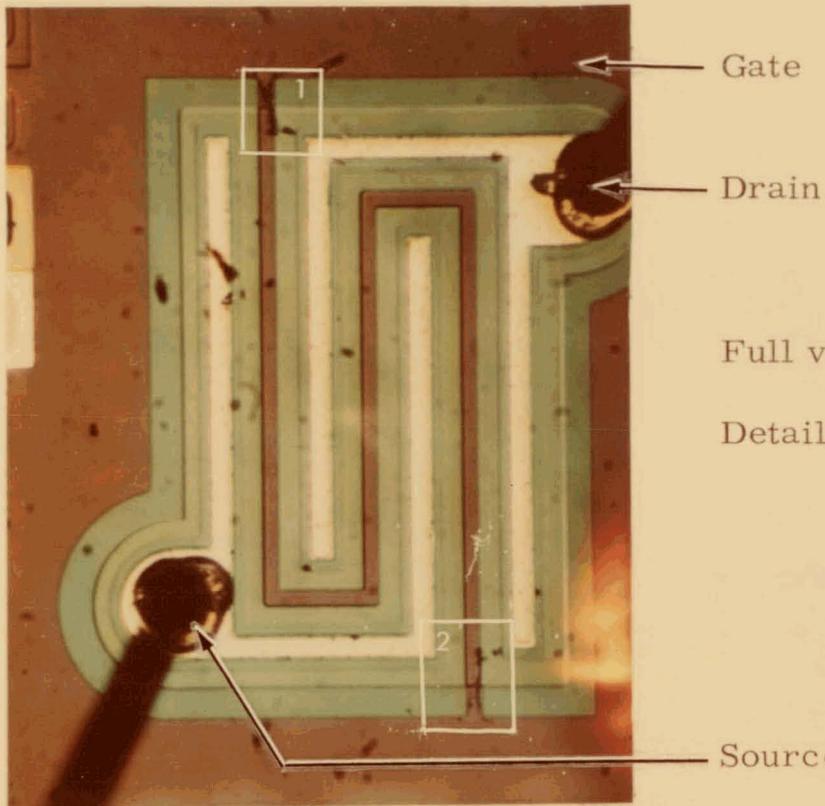



Figure 3. Degraded 2N2608 FET

UNCLASSIFIED

P 77698 JUL 12 1972

THIS PAGE
WAS INTENTIONALLY
LEFT BLANK

In the first Bendix controlled-condition experiments a discharge from a standing operator charged to 140 volts degraded a 2N41184 JFET. The energy discharge from a 218 pF capacitor charged to 140 volts is 2.1 microjoules, about 1/100 of that required to detonate an explosive hydrocarbon gas.¹⁴

The effect of the static discharge from the measured 190-pF distributed capacitance of a standing person on 2N4118A degradation was essentially the same as that from a 218-pF discrete capacitor. The effect of the measured 110-pF capacitance of an operator in sitting position was comparable to that of a 97-pF discrete capacitor. Since these capacitance values are not identical and body equivalent series resistance was not considered, the comparisons are only approximate. Exact values of body capacitance and voltage charge vary between individuals and depend on such factors as clothing, movement, proximity to surrounding objects, and moisture content in the atmosphere.

Energy Storage on the Human Body

A reasonably accurate energy-storage model of the human body must be used to obtain conclusive results of the effects of static energy on JFET's. A review of published literature revealed that a rather wide range of body capacitance and resistance values have been used by others.¹⁻¹⁴ These published values are listed in Table 3. Equivalent body resistance was reported to be a function of voltage,^{3, 5} but most models ignored that consideration.

Several different test methods were used to measure body capacitance under a variety of conditions. The results, shown in Tables 4 and 5, indicate that measured values are dependent on the test location and the test method used; however, the values obtained were in general agreement with the values given in the literature. Capacitances of 97, 218, and 425 pF used to obtain the data in Table 2 appear representative of the values expected at a typical work station.

The RC discharge method used to measure apparent body resistance was prompted by Petrick,⁸ although the technique was altered slightly, as shown in Figure 4. The test results shown in Table 5 are somewhat inaccurate because of the methods used, but are considered sufficiently accurate for use in static tests. The apparent body resistance of one person varied from 87 to 190 ohms, and did not appear significantly voltage sensitive. The data in Table 6 indicate that body resistances below at least 1000 ohms offer no significant FET protection. For that reason, the effects of body resistance will not be investigated further. A slightly conservative but realistic value of 100 ohms will be assumed for continued work on this project.

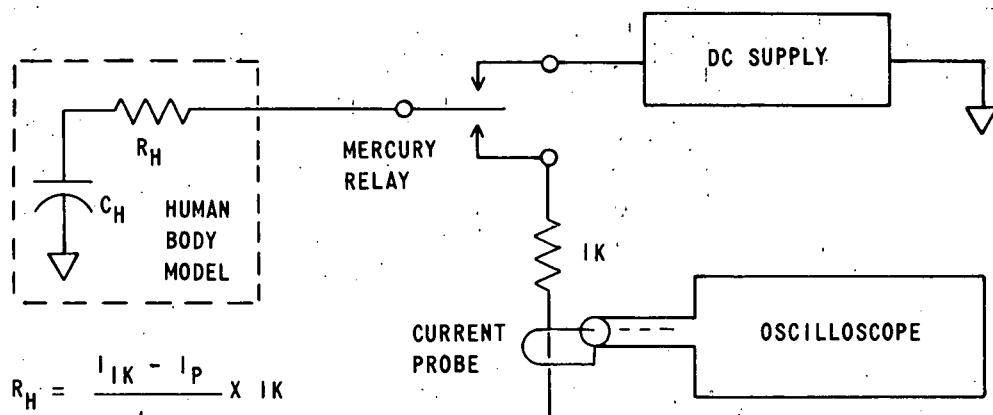
Text continues on page 26.

Table 3. Published Values of Body Capacitance and Resistance

<u>Purpose</u> <u>Reference</u>	C_H (pF)	R_H (ohms)	
		Value	Test Voltage
<u>Electronic Circuit Protection:</u> Lenzlinger ¹	100	1500	*
<u>Protection From Electrocution:</u> Morse ²	- - -	4000 to 15,000	*
Lee ³	- - -	200 to 1000	>600 ac
Hewlett-Packard ⁴	- - -	1000	*
Molinski ⁵	- - -	5000 to 18,000	50 ac
		800 to 1800	500 ac
		800 to 1800	1000 ac
Friedlander ⁶	- - -	1000 to 1600	*
<u>Protection From Explosion:</u> Montesi ⁷	10,000	100	*
Petrick ⁸	100 to 4000	- - -	*
Silsbee ⁹	110 to 273	- - -	*
Schrueeder ¹⁰	600	500	*
Eichel ¹¹	100 to 400	- - -	*
MIL-I-23659B	500	5000	*
Taylor ¹²	150	0	*
Pitts ¹³	500	600	*
NFPA ¹⁴	200	- - -	

*Test voltage not stated

Table 4. Human Body Capacitance to Earth Ground or to Metal Plate


Operator Position	Floor Covering	Measured Capacitance (pF)			
		D/845 T Laboratory		D/48 D Laboratory (10% rh)	
		Tektronix 130 LC Meter	RC Discharge ^b	Tektronix 130 LC Meter	Charge Transfer ^c
Standing Shoes on	Bare concrete	120	150 to 177	190	610
	Vinyl over concrete			118	174
	3/4-inch plywood	160		215	1400
	Grounded metal plate		70	103	
	Guarded metal plate				
Standing Stockings only	Bare concrete	150		405 ^d	860
	Vinyl over concrete			125	165
	3/4-inch plywood			1430 ^d	3300
	Grounded metal plate ^a				
Sitting on chair Feet off floor	Bare concrete	90	132 to 141	110	126
	Bare concrete with guarded chair	50		57	
	Vinyl over concrete			99	117
	Vinyl over concrete with guarded chair			125	182
	3/4-inch plywood				
	Guarded metal plate				
Sitting on chair Shoes on floor	Bare concrete	140		186	385
	Bare concrete with guarded chair	100		150	
	Vinyl over concrete			131	171
	Vinyl over concrete with guarded chair			225	610
	3/4-inch plywood				
	Guarded metal plate				
Chair only No operator	Bare concrete	55			
	Guarded plate over bare concrete	40			

Notes: a. Two 0.004-inch polyethylene sheets between feet and plate.

b. From Table 5.

c. Body of operator was charged to 200 volts, then discharged into 2100 pF. $C_H = (V_{final})(2100)/(200 - V_{final})$.

d. Values above 300 pF were measured with 260 pF in series with C_H . $C_H = (C_{mea})(260)/(260 - C_{mea})$.

$$R_H = \frac{I_{IK} - I_P}{I_P} \times 1K$$

$$C_H = \frac{TC}{R_H + 1K}$$

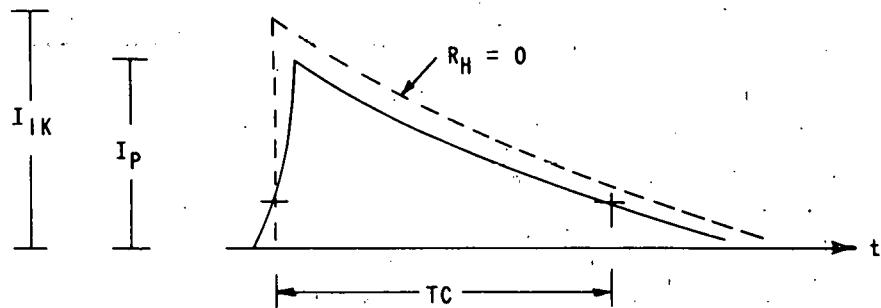


Figure 4. Method of Measuring Human Body Equivalent Series Resistance and Distributed Capacitance

Table 5. Body Distributed Capacitance and Equivalent Series Resistance

Test Condition	Voltage	I _{pk} (A)	Time Constant (microsec)	R _H (ohms)	C _H (pF)
Standing on bare concrete floor	200	0.18	0.18	110	162
	500	0.44	0.20	135	177
	1000	0.88	0.18	135	159
	2000	1.68	0.18	190	150
Sitting on chair on bare concrete feet off floor	200	0.176	0.16	135	141
	1000	0.88	0.15	135	132
	2000	0.92	0.15	87	138
Calibration:	200				
	135 pF	0.48	0.16	40	135
	270 pF	0.50	0.31	0	270

Measured by RC discharge method, as shown in Figure 4.

Table 6. Effects of Series Resistance and Inductance on 2N4118A JFET Static Degradation

Test Voltage	Series Resistance (ohms)			Inductance (uH)
	0	1000	50,000	
170	D	D		C
255	D			D
340	D	D		D
425		D		D
510		D		D
595				
680				
765		D		
850				C
935				
1020				
1105		C		
1190		D		

C Catastrophic failure (Capacitance 97 pF)
D Degraded
Test procedure as described in Table 2.

ACCOMPLISHMENTS

Evaluation of static damage in junction field effect transistors has yielded the following conclusions.

- The 2N4118A JFET's can be degraded by contact with the body of an operator charged to 140 volts.
- All of the four types of JFET's could have been significantly degraded before passing the catastrophic failure tests or during the tests. Because this is a potential reliability problem, an additional test will be included in the product test procedure to detect a decrease in gate-drain reverse breakdown voltage.
- The 2N4118A is significantly more susceptible than the 2N2608, the 2N3112, or the 2N3971 to static damage from extraneous sources.
- The static energy required to degrade a 2N4118A JFET is approximately 1/100 of that required to detonate a sensitive explosive gas.
- The polarity of the static voltage applied to the gate-drain junction of the JFET is significant. The reverse (breakdown) polarity produces greater damage than the forward (conducting) polarity.
- Series resistances up to at least 1000 ohms, which encompass the range of apparent body resistance, have no appreciable effect on the value of static voltage required to degrade a JFET.

A series RC circuit was devised to approximate the discharge mechanism of the human body. Equivalent body resistance values of 87 to 190 ohms and body distributed capacitances of 90 to 405 pF were measured. These values are believed representative of those that can be expected at typical work stations.

FUTURE WORK

Additional 2N4118A JFET static degradation tests will be conducted to accumulate sufficient data to increase statistical confidence in the data listed in Tables 2 and 5, and the findings of this investigation will be applied to static control measures required to protect the JFET's from static damage during manufacturing operations.

REFERENCES

- ¹ Martin Lenzlinger, "Gate Protection of MIS Devices," IEEE Transactions on Electron Devices, Vol. ED-18, No. 4, April 1971, pp 249-257.
- ² A. R. Morse, comment on "Field Treatment of Electric Shock Cases-1," by W. B. Kouwenhoven, and W. R. Milnor, AIEE Transactions Power Apparatus and Systems, Vol. 76, April 1957, pp 82-87.
- ³ Ralph H. Lee, "Electrical Safety in Industrial Plants," IEEE Spectrum, June 1971, pp 51-55.
- ⁴ "Using Electrically-Operated Equipment Safely with the Monitored Cardiac Patient," Hawlett-Packard Company, Waltham, Mass., March 1970, p 22.
- ⁵ A. E. Molinski, "Effects of Electricity on the Human Body," Mining Congress Journal, Vol. 56, No. 7, July 1970, pp 64-68.
- ⁶ Gordon D. Friedlander, "Electricity in Hospitals: Elimination of Lethal Hazards," IEEE Spectrum, September 1971, pp 40-51.
- ⁷ Louis J. Montesi, "The Development of a Fixed Gap Electrostatic Spark Discharge Apparatus for Characterizing Explosives," Proc. Sixth Symposium on Electroexplosive Devices, San Francisco, Calif., July 8-10, 1969, pp 2-8.1.
- ⁸ John T. Petrick, "Discharge of an Electrostatically Charged Human," Proc. Sixth Symposium on Electroexplosive Devices, San Francisco, Calif., July 8-10, 1969, pp 3-5.1.
- ⁹ Francis B. Silsbee, "Static Electricity," National Bureau of Standards Circular C438, June 10, 1942, p 23.
- ¹⁰ C. F. Schroeder, Jr., "Energy Transfer in Electrostatic Arcs," Proc. Fifth Symposium on Electroexplosive Devices, June 13-14, 1967, p 2-5.1.

¹¹ F. G. Eichel, "Electrostatics," Chemical Engineering, March 13, 1967, pp 153-167.

¹² Boyd C. Taylor, "Electrostatic-Insensitive Detonator for Precise Syncronization," Proc. Sixth Symposium on Electroexplosive Devices, San Francisco, Calif., July 8-10, 1969, pp 1-10.1.

¹³ L. D. Pitts, "Demythologizing Electrostatics," Proc. Sixth Symposium on Electroexplosive Devices, San Francisco, Calif., July 8-10, 1969, pp 3-7.1.

¹⁴ "Static Electricity," National Fire Codes, Vol. 9, No. 77, 1966, National Fire Protection Association, Boston, 1970-71, pp 77-44.

¹⁵ Ibid, pp 77-10.