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ABSTRACT '

Nusselt numbers have been calculated for heat transfer to fluids
flowing through aﬁnuli under conditidns of uniform heé.t flux and fully-
established veloéity and temperature profiles. The following cases
were considered: (a) laminar flow, (b) Slug fldw, (c) turbulent flow with
molecular conduction only, and (d) turbulent flow with both molecuiar
and eddy conduction. These Nusselt numﬁers were determined for two
conditions: heat transfer frdm the inner wall oﬁly and heat transfer from
the outer wall only. The results wére cofrelated by ser.ni-empirical equa-
tions.

The final results obtained on cases (a), (b), and (c) are applicable
to any fluid, whereas those obtained on (d) are for ligquid metals bnly.

Wall- and bulk-temperature relationships for the above four cases
were also determined. These relationships were treated as dimension-
less temperature ratios.

Both the Nusselt numbers and tefnpe'ratdre ratios were evaluated

over the rl/r2 range, zero to unity; the former being the case of the cir-

cular pipe, and the latter, the case of infinite parallel plates.



INTRODUCTION
. This paper is the third 'in a series, originating at the Brookhaven
National Laboratory, on the general :subject of heat transfer to liquid
metals flowing through annuli. The first (1) was entitled “Unilateral
Heat Transfer to Liquid Metals Flowing in Annuli” and ;ihe second (2),
“Equations for Bilateral Heat Transfer to a Fluid Flowing. in a Concen-
tric Annulus.”

The one geometrical variable correlating convective heat transfer
and flow behavior in a.nnuli‘is thé radius fatio, rl/ ry. In the present
study, this ratio was varied froﬁ zero to unity, the fox:mer being the case
of a circular pipe, and the latter, that of infinite parailel plates. Thus,
whereas the main emphasis of this paper is on heat'transfer to fluids
flowing in annuli, results on both pipes and parallel plates were also col-
lected.

The present paper deals with a number of miscellaneous topics,
all for the case of uniform heat flux with fully-established velocity and
temperature profiles. i\Iusselt numbers are presented in tabular, graphi-
cal, and equation form for the following flow conditions: (a)h laminar flow,
(b) slug flow, (c) turbulent flow with molecular conduction only, and (d)

turbﬁlent flow with both molecular conduction and eddy conduction. Also,
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relationships are given for obtaihing the difference between wall tem-
peratures,‘with heat transfer from either the inner or outer wall.

In the case of turbulént—flow heat transfer, with both molecular
and eddy conduction operating, the results are correlated by use of.th'e
term ¢, which is the average value of the ratio of the eddy diffusivity
of heat transfer to that of mass transfer. It is recommended that z_/;
be evéluated by‘ the recent correlation of DWyer (3).

The work summarized in this paper was :undertaken with special
réference to liquid metals. It ha.ppens,h(')wever, that several of the
mathematical relationships, which were developed, are valid for.any

fluid. For this reason, the term “liguid metals” was not used in the title.

BASIC HEA&* TRANSFER EQUA’fIONS |
The Nusselt number for.tiht‘e caéé of heatt‘ran"sfer to a fluid flow-
ing throﬁgh a concentric anﬁulus, und;:r conditidﬁs’ of fully-established
.flow, unifor'm heat flux, and heat transfer from the inner wall only, is

given (2) by the expression

r

2
2(y-1) | [ * vrdr
r,

Nu (1)

f vrdr |
¢€ Pr> dr | vrdr




The only simplifying assumption made in-the derivation of thig equa-
tion is that the physical properties were assumed to be independent of
témperature — an assumption which is usually quite acceptable for
liguid metals. The -above equation is valid for either laminar, turbu-
lent, or slug flow. The corresponding equation for the case of heat

transfer from the inner wall only is
1 2
2(1-=) [f vrdr
Y |'r

‘Nu_ = - (2)

[ f f;;d; | v
o)

LAMINAR FLOW

In this case, the variation of linear velocity with radius is given

by Lamb’s (4) equation,

2 -2
(22,2 e 3)
V= 4N [ 1 * r r ]
2 1
In —
1
It can easily be shown that |
(Ap)g0 2v, (4.) .
4
uN 2 v2 -1



Combining Equations (3) and (4) then gives the equation

2va 2 y2-1 n L
y2-1] f rl 1
Iny

2

[ye+1=

which, for a given annulus, gives v as a function of~va and r, only. Now,
combining Equations (1) and (5), remembering that for laminar flow
(¥ M Pr)/v =0, gives

2
y-152-nZy2e1 - 222 8

Iny 1
[NuL]l = ' 8t - : (6)
1 .
where r r2
f 2 f ' fr zrdr
gl = i ' " dr | zrdr (7
1L
and ] 9 . 9
z=r12-r2~+ —‘z—i.'__l’f"lnr—r' (8)
In 2 1
N

From these three equations, it is obvious that [NuL]1 is independent of
veldcity and therefore independent of both Reynolds and Prandtl numbers.

It turns out that [NuL] depends only on the geometrical variable y.

1
Equation (6) was solved, with the aid of an IBM 7090 computer, for

diffei'ent values of r, and y. The results are shown in Table I and Figure 1.

1
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[Nuy ] ; is almost a linear function of y.
The eguation for [NuL]z’ corresponding to Equation (6), is
1, 9 .2 9 y2-1.2 8
-5 D[y +1 - =] r

—— Iny. 1

where

r .
r r : :
2| 2 [ e
‘ r. zrdr
gz‘f f 1 = dr | zrdr (1_0)
r r :

-and where z is defined by Eqguation (8), as b.efore. Equation (9) was also
solved on the computer, and the results are also shown in Table I and
Figure 1.

The limiting case of a cqnéentric énnulus as 1/y approaches zero
is that of a circular pipe, foriwhli‘ch tﬁe well-known equation for the Nusselt

number is

[Nu ] =48/11 , (11)

The limiting case, as 1/y approaches unity, is that of infinite paral-
lel plates. The Nusselt number for this case will now be derived.
The partial differential equation giving the temperature distribution

for a fluid flowing between parallel plates under stéady-state conditions is



— =V — (12)
3y2 dx
The linear velocity distribution is gi\}en by the equation
- 9 4
- y _ Y- :
V= 6Va(b 2 ) (13)
Substituting Equation (13) into (12) gives
?_2i - Ev_a at o _ (T_a_ gl_t_) 2 (14)
ayz " tab dx abz dx

The terms inside the parentheses are all constant for a particular case,
the constancy of the ratio dt/dx being a consequence of the boundary con-
dition that the heat flux is uniform. Integration of Equation (14) in ac-

cordance with the additional boundary conditions

t=t1aty=0
and

at

a—}-,——Oaty-b

.yieids the following expresSion for t.

where



and

With this we can now evaluate the bulk temperature, which is defined as

b
N =f(-)tvdy

b.vab

(16)

Substituting Equation (15) into (16), and simplifying, gives -

2
4 v.b
t o=t 117 a.gt_

b-"17315 o dx (17)

The Nusselt number can be written as

| dt
) hD, aDg  VaCpPP g De
[NuL = = ~ = ~
o KK Ttk

(18)

Finally substitﬁting' Equation (17) into (18), and solving, gives

630 . :
[NuL]pp =117 - 5.38 ) (19)

for laminar flow of any fluid through infinite parallel plates under condi-
L)

tions of fully-established flow, uniform heat flux, and heat transfer from

one wall only.



Equations (6), (9), (11), and (19) all give consistent results as

shown by the curves in Figure 1.

SLUG FLOW

For slug floﬁ, fhe equations giving the Nusselt number for the
cases of heat transfer from the inner wall only, and from the outer wall
only, are given in reference (1). For comparison with the laminér-flow
results, .calculated slug Nusselt numbers are shown in Table I

MOLECﬁLAR—CONDUCTION HEAT TRANSFER
WITH TURBULENT FLOW

The author (3) has previously pointed out that, in the case of 4liquid
métais, it is possible to have convective heat transfer under turbulént-flov?
cdnditio_ns with only the mechaﬁism of molecular conduction operating.
This happens at the low end of ‘the tui;bulent flow regiiﬁe, wﬁe re the eddy
currents are presumably not strong enough to transport a siénificant amount
of heat. In other words, they do not move sufficiently fast to brevent losing
essentially all of their heat while in transit. As the flow rate is increased,
in a given case, a point is reached where eddy transport begins to assert
itself as a contributing mechanism in the tbtal heat tranAsfer process. The

higher the thermal conductivity of the liguid metal, the higher the Reynolds
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number at which this occurs. In the case of flow through annulj, it is
estimated (§_) that, at a Prandtl nurqber of 0.01, the critical Peclet num-
bér is about 300, i.e., the Reynolds ﬁumber has to rise to Aabout 30,000
before eddy transport bééomes significant. |

Thus, it is seen that molecular-conduction Nusselt numbers are of :
considerable practical .importance.

Equations (1) and (2) have been solved for the condition that eddy
conduction is zero. The results are shown in 'i‘able II. They are well

represented by the equation

[Num =4.98 + 0.662y (20)

c.]l
and

0.54

)0'64(1og1'0 Re - 3.70) (21)

[Nu

m.c.]2 = 560 + 0.1l95(y-1

It is interesting to note that [Num.c.]l depends only on y, whe reas
[Num.c_jz is a function of both y and Re, albeit the effect of Re is slight.
This result is a bit surprising. One would expect that both Nusselt num-
bers would have a slight dependence on the Reynolds number, owing to
the-increasing steepness of the velocity profile curves, near each wall,
as the Reynolds number is increased. - From Table II, it is seen that, for

an annulus with a y value of 2, [Num increases only 3.5% as the

c.]2

-10 -



. Reynolds number increases 100 fold, from 104 to 106. The variation

of [Num with Reynolds number is shown graphically in Figure 2.

c.]2 ‘
Theoretically, both Equations (20) and (21) should give the same

result at y = 1. The former gives a value of 5.64, the latter, 5.60. This-

difference is within the precision of the method of calculation. It is esti-

mated that Equation (20) represents the calculated results to within £0.2%

and Equation (21) to within + 1.0%.

COMPARISON O.F_' NON-EDDY TYPES OF HEAT TRANSFER

’Figure 3 shows a gomparison of laminar-flow, slug-flow, and mole-
cular-conduction turbulent-flow Nusselt numbers for flow of fluids throdgh
annuli, with heat transfer from the inner wall only. The surprising thing
about this graph is the relationship between the three curves. At a y value
of 2.68, the three types of Nusselt numbers haw}e identical valﬁes. Below
thié, the laminar, molecular-cénductién, and slug values fall in the ex-
pected order, i.e., laminar flow gives the lowest Nusselt numbers and slug
flow, the highest. Above y = 2.68, they fall unexpectedly in thé reverse
order. The question is: is this real or apparent. The answer is: jt is real.

The magnitude of ‘any one of the three types of Nusselt numbérs def

pends on the relative magnitudes of the temperature and velocity profiles
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across the flow channel. It is therefore éonceivable'that at the larger
values of y the higher velocities in the central portion of the channel
for laminar flow cause the Nusselt nﬁmber to exceed that for slﬁg flow.

Referring ‘to Figure 3 again, the fact that the molecular-conduction
curve always falls between the léminar‘and slug curves tends to corrobor-
ate the correctness of the relative positions of the latter curves. In other
words, beyond a y value of 2.68, not only did the slug Nusselt numbers
fall below the laminar Nusselt nunibers, but thé molécular-conduction ones
did also. |

It will be noticed also that at the limiting condition of y = 1, which
is the case of parallel plates, the three curves show the correct Nusselt
numbers.

Figure 4 shows a comparison of the Nusselt numbers for the three
types of non-eddy heat transfer conditions, for the case of heat transfer
from the ogter wall only. At the limits of y = 0 (round pipes), andy=1
(parallel plates), all curves show the correct Nuséelt 4val’ues.

Of all six Nusselt numbers, »[NuL]1’ [Nus]l’ [Num.c.]l’ [NuL]z’ [Nus]z’

and [Nu the only one that is a function of the Reynolds number is the

m.c.]2’
last, and then only slightly. All are functions of y; and none, of course,

is a function of the Prandtl number.
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TURBULENT-FLOW HEAT TRANSFER WITH
BOTH MOLECULAR AND EDDY CONDUCTION

In reference (2), equations were given for estimating Nusselt num-

bers for liguid metals flowing through annuli, under conditions of uniform

heat flux and fully-established flow. Those equations were based upon
graphical solutions of Equations (1) and (2). Recently, the solutions of

Equations (1) and (2) were obtained with the aid of a IBM 709 compdter,

i.e., the successive intégrations were don.e by-machir'le rather than graphi-

cally. The new results are represented by the following equations:

Y
[Nug], = a; + 8,FPe)

where

a,= 4.58 + 0.742y

Bl = 0.0290 - 0.00414y + 0.000364y2
v, = 0.725y0'091
and
- Yz
[NuT]2 =a,+ Bz(zp Pe)
Where
az = 5.24 + 0.0800y
32 = 0.0262 - 0.000953y + 0.0000453y2
Vg = 0.725y0'045

-13 -
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For the special case of y = 1 (parallel plates), Equaﬁons (22) and (23)

reduce to the equation

] =5.32+ 0.0253(5 pe) - 72

Nu
[ T pp

(24)

These three equations for [NuT]l, [Nu and [Nu

are more accurate -

T]2’ T]pp

than their counterparts in reference (2), although the difference between
the two sets is, in most cases, very slight. The greatest‘difference - of
the order of 5 to 10% - occurs for y values less than. 2 at very high Peclet
numbers (around 104) for both N'u1 and Nuz. 'fhe constants in Equations
(22) and (23) were evaluated over the JPe range 50 to 104 and Prandtl
number range 6.005 to 0.05. These two equations are not valid at the
limit where JPe = 0. For this condition, the Nusselt numbers must be
evaluated by Equations (20) and (2‘1).‘.

It is not strictly true to say thét, in sem.i-empiricé.l eqﬁations of
the'type (22) and (23), the o terms répresent the molecular-conduction

contribution to heat transfer and the B(JPe)Y terms the eddy-conduction

contribution. It is an approximation only.

WALL AND BULK TEMPERATURE RELATIONSHIPS
For the case of heat transfer from one wall of an annulus through -

which a liquid metal is flowing, it may be of practical importance to
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determine, not iny the temperature drob from heat‘ed wall to thé bulk
fluid, but the difference between the two wall temperatures. The first

of these temperature differences can be easily obtained from a know-
ledge of the heat flux and the heat trgmsfer coefficient. The second re- -
quires a special calculation. Let us fifst considef the case of heat trans-
fer from the inner wall only.

The temperature drop between ry to r2 is given by'

t -t,=- [ ?-t;dr ' - (25)

The radial heat transfer rate at any fadiusﬁ", must equal the he'at trans-
port rate between r and ro. This can be expressed mathemat'ically as

)

= 2mpCy &= ) vrdr N (26)

at

-Zwrkeﬁ P

assufning a uniform heat flux and physical properties .iﬁdependent of tem-
perature.

Combining Equations (25) and (26), gives

rz
Ty f vrdr
t,-t, = pC dt ’ dr (27)
1 2 p dx rk
T . - Teff :

"1
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For correlation purposes, it is convenient to work with the ratio

(tl-tb)/ (tl-tz). The numerator in this ratio is given by the equation

dt
vapCp I T, (y-1)(y2-D)

t -t = 28
1 tb : k[NuT]l | (28)

Dividing Equation (27) by (28), and then substituting Equation (1) into

the result, finally gives

f vrdr |
dr | vrdr

d) e Pr)

t -t ‘
1 b, » : (29)
t, -t r
12 r fzvrdr

r2 , 2 r

f vrdr : dr

ry . < Y Pr €M )

_ ‘ 1 r{l+ —

The corresponding equation for the case of heat transfer from the outer

wall only is , L
f f f vrdr
( ‘P € Pr)dr vrdr
t2-tb 1%

T : . (30)
1 r
1y "2 )y, vrdr
1
f vrdr dr
“r ry Y €, Pr
1 r|l+ ”
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These two equations were used to calculé.fe the respective dimension-

- less temperature ratios, using an IBM computer, for conditions of con-
stant heat flux and fully-established turbulent flow. The smoothed re-
sults are shown in Tables III and IV. Typical sets of curves for (tl—tb)/'
(t1‘t2) and (tz-tb)/(tz-tl) are shown 'in-Figures 5 and 6, respectively, for
the case of y = 2.0.

Since values of (tl-tb) and (tz—tb) are easily obtained from a know-
ledge of the heat flux and Nusselt number, values of (tl-tz) and (tz—tl)
are readily obtained from Tablgs IIT and IV or from plots suﬁh as Fig;
ures 5 and 6.

The dimensionless temperature ratios are functions of y, Reynolds
number, and Prandtl number, with the exception of (tl—tb)/(tl-tz) for the
case of Pr = 0. In that case, it is independent. of Reynolds number.

For the case of slug flow, Equations (29) and (30) can be integrated,

and then simplified, to give

yimy sy L1
t, -t 8 3 |
17 _2(y%-1) (31)
t -
1 t2 y2 Iny yz—l
v ) 4

and
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b . ye-1 : (32)

respectively.

For the case of laminar flow, Equations (29) and (30) can be inte-
grated, using Equation (5) to express v as a function of r. This was done
with the aid of the IBM 709 computer, and the results, along with those
for slug flow by Equations (31) and (32), are given in 'fable V.

The calculation of the values in this table for the cases of round

pipes and parallel plates are summarized in the Appendix.
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Table I

Calculated Nusselt Numbers for Flow Through Annuli

ry, r,, Laminar Flow - Slug Flow

y inches inches [NuL]l [NuL]Z [Nus]l [N“s]z
1 (parallel plates) 5.38 5.38 6.00 6.00
1.250 0.500 0.625 5.60 5.26 6.08  6.07
1.500 0.500 0.750 . 5.78  5.15 6.16 6.14
2.000 0.500 1.000 6.17 5.03 6.36 6.24
2.000 1.000 2.000 6.17 5.03 6.36 6.24
2.000 5.000 10.000 6.17  5.03 6.36 6.24
4.000 0.500 2.000 17.78 4,92 7.57 6.73
6.000 0.500 3.000 9.22 4.875 8.83 17.03
8.000 0.500 4.000 10.57 4.844 10.10 17.21
10.000 0.500 5.000 11.90 4.832 11.29 7.35
« (round pipes) o 4.364 o 8.00
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Table IT

Calculated Molecular-Conduétion Nusselt Numbers

for Turbulent Flow of Liquid Metals Through Annuli

[Num.c.]z
y [Num_.c.]l Re = 10%. Re = 10° Re =108
1.0 (5.64) (5.60) (5.60)  (5.60)
2.0 6.30 5.70 5.81 5.90
3.0  6.96 5.77 5.98 6.09
4.0  7.62 5.82 610  6.22
5.0 8.29 5.86 6.20 6.33

6.0 8.95 5.90 6.29 6.42
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Table III
- Values of (tl-tb)/(tl-‘tz) for Case of Constant Heat Flux, Heat

Transfer from the Inner Wall Only, and Fully-Established Flow

' /Ty pr Re=2x 10* Re=10% Re=5x 105 Re=2x 106
0:150 0.000 0.850 0.850 0.850 0.850
.005 - .852 .854 .857 .861
.010 .854 .858 .862 .869
.02 .857 .863 .870 .879
.03 .859 .867 .875 .887
.05 .863 .872 .884 .897
0.250 0.000 0.817 0.817 0.817 ©0.817
.005 .818 ..819 .822 .827
.01 .818 822 .827 .834
.02 .819 . .825 .833 .843
.03 .819 .827 .837 .849
.05 820 .829 .841 .856
0.400 0.000 0.778 0.778 ~0.778 0.778
.005 ° .779 .781 .783 .786
.01 .780 . ."784 .788 .792
.02 .782 .788 794 .801
.03 183 L7190 .798 .807
4 .05 .785 .793 .804 .816
0.550 0.000 - 0.745 0.745 0.745 0.745
.005 748 .750 7152 .756
.01 .750 754 - Rk .64
.02 154 .759 - .765 774
.03 57 .763 770 .781
.05 61 .768 17 .791
0.700 0.000 0.721 0.721 0.721 0.721
.005 .126 127 729 133
.01 .730 .732 .735 .742
.02 136 .740 .145 .754
.03 .740 .745 .752 .762
.05 .46 152 762 175
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Table IV
Values of (tz-tb)/(tz—tl) for Case of Constant Heat Flux, Heat

Transfer from the Outer Wall Only, and Fully-Established Flow

'y/Ty  Pr Re=2x 10 Re=10° Re=5x 105 Re=2x 106

0.150 0.000 0.571 0.560 0.554  0.552
.005 ° .572 566 572 .583

.010 574 570 .580 .593

.02 5717 5717 .589 .607

.03 579 580 . .504 .618

.05 581 .584 .601 .640

0.250 0.000 0.590 0.581 0:576 0.575
.005 .592 .585 .589 .601

.01 .593 589 - 597 . .612

.02 597 .594 606 .625

.03 .599 ©.600 614 6317

.05 .603 607 .625 .658

0.400 0.000 0.617 0.610 0.606 | 0.606
| .005 .619 612 619 .629
.01 - .621 .616 .625 ~.638

.02 .624 622 633 . .652

.03 .628 .628 .642 .664

.05 632 . .636 .654 .683

0.550 0.000 0.641 0.636° 0.634 0.634
| 005 644 .638 .644 .652
.01 .646 .642 .651 .663

.02 650 .648 - .661 .6176

.03 .653 .653 668  .685

.05 .658 .663 .679 .700

0.700 0.000 0.661 0.658 0.657 0.657
.005 .665 .662 .665 .672

.01 669 .685 - .673 .685

.02 ©.873 671 .682 .701

.03 6717 .676 .690 .709

.05 .682 .682 .700 716

-99 -



Table V

Wall and Bulk Temperature Relationships for

Laminar Flow and Slug Flow Through Annuli

Laminar Flow_ Slug Flow

ry, Ty, % 8% 4% BT

y inches inches Atl_tz t2_t1 t1_t2 t2_t1
1 (parallel plates) " 0.743 0.743 2/3  2/3
1.250 0.500 0.625 0.755 0.725 0.691 0.641
1.500 0.500 0.750 0.771 0.716 0.7(2 0.623
2,000 0.500 1.000 0.790 0.699 0.745 0.596
2.000 1.000 2.000 0.790 0.699 0.745 0.596
2.000 5.000 10.000 0.790 0.699 0.745 0.596
4.000 0.500 2.000 0.834 0.666 0.811 0.547
6.000 0.500 3.000 0.856 0.652 0.843 0.529
8.000 0.500 4.000 0.870 0.645 0.860 0.519
10.000 0.500  5.000 '0.879 0.640 0.873 0.514
1'1/18 1.000 1/2

o (round pipes) 1.000
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APPENDIX

When the value of 1/y for annuli is reduced to the lower limit of

zero, we have the case of a circular pipe; when it is increased to the

upper limit of unity'., we have the case of parallel plates.
The ratio (.tz'tb)/(tz-tl) becomes for a pipe (tR-tb) /(tR—tO). The

latter ratio for the case of laminar flow is derived as follows:

DRVapC dt ‘
'R = %: k[I?Sj 1.~ 2k[Nug] (33)
R : _
ot
tpto = J oo (34)
S
Now, writing an equation for pipes, similar to Equation (26) for annuli,
gives us
R
21rrk—— 27 pCp — f vrdr (35)
Combining Eguations (34) and (35), gives
r
. pC dt fvrdr
‘ - 36
tR 0= { dr (36)
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The velocity distribution across the pipe radius is given by
the equation

v =2v[1 —(r/R)Z] o ’ (37)

Finally, substituting this equation into (36), then dividing (33) by (36),

and then integrating and simplifymg; gives the simple result

R 11

_u (38)
t_-t
R i

ol Lo

For the case of slug flow, dividing Equation (33) by (36), integrating, and

simplifying, gives

I
SN
w
L

S,p

The ratio (tl-tb) /(t1 -tz) for the case of laminar flow between parallel

plates is derived as follows:

p) dt
20°C p — v
tl-tb = %: k[ll?\liq ] = 'k[le:lp ?X 2 (40)
. L'pp L'pp
b .
tl-tz = fo —(8t/8y)dy ' (41)

Now, writing an equation for parallel plates, similar to Equation (35) for

pipes, gives
-95.



ot dt b
k& = [ vd (42)
kay pCpdx ov y : : .

which, when combined with Equation (41), gives
. _pdx | |
t, -t - = f [ vdy | dy (43)

The velocity distribution across the channel, for laminar flow, is given by

the equation

b 2
3v, ('2' -y
, vV = —2— 1- (2)2 (44)
2°
Finally, substituting Equation (44) into (43), then dividing (43) into (40),
integrating, and simplifying, gives another simple result, i.e.,
t, -t ' : _ .
1D 4 4
— = = = 0.743 (45)
t -t [NuL]pp 5.38

L,pp
For the case of slug flow, dividing Equation (40) by (43),.integrating, and

simplifying, leads finally to the equ

. 4t

tl-t2

winN

(46)

S,Pp
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NOMENCLATURE
guantity defined in Equation (15), °F/ft3
distance between parailel plaf_es, ft
q,uantity defined in Equation (15), °F/ft4
specific heat, Btu/(lbm)(“’F)

inside diameter of pipe, ft

. ) 4(cross-sectional area)
equivalent diameter = - :
4 wetted perimeter

, ft
conversion factor, | (lbm)(ft)/( lbf) (hr) 2

molecular thermal conductivity, Btu/(hr)(ft)(°F)

eddy thermal conductivity, Btu/(hr)(ft)(°F)

k + ke = effective thermal conductivity, Btu/(hr)(ft)(°F)
length of annular channel, ft

Nusseit number; hDe/k, /dimensionless

Nusselt number for any type of flow through an annulus, with

heat transfer from inner wall only, dimensionless
Same as [Nu]l, except with heat transfer from outer wall only

Nusselt number for turbulent flow of a liquid metal through an
annulus, with both molecular and eddy conduction opei'ating,

and with heat transfer from the inner wall only, dimensionless

Same as [Nug]., except with heat transfer from the outer

1
wall only
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[NuL] 1 = Nusselt number for laminar flow of fluid through an annulus,
with heat transfer from inner wall only, dimensionless

[NuL]2 = Same as [NuL]1’ except with heat transfer from outer wall only

[NuL]p = Nusselt-number for laminar flow through a pipe, dimensionless

[NuL]pp = Nusselt number for laminar flow through parallel plates, with '
heat transfer from one plate only, dimensionless

[Num . ]1 ='Nusselt number for turbulent flow through an annulus, with
‘molecular conduction only, and with heat transfer from inner
wall only, dimensionless

[Num o ]2 = Same as [Num c ]1, except with heat transfer from the outer
wall only '

[Nus] 1 = Nusselt number for slug flow of fluid through an annulus, with
heat transfer from inner wall only, dimensionless

[Nus] 5 = Same as [Nus]l, except with heat transfer from outer wall only

'[NuS] = Nusselt number for slug flow through a pipe, dimensionless

[Nus]pp = Nusselt number for slug flow between parallel plates, with
‘heat transfer from one plate only, dimensionless

.[NuT]p = Nusselt number for turbulent flow through a pipe, with both

' molecular and eddy conduction operating, dimensionless

[NuT]pp = Same as [N“T]p’ except for flow through parallel plates, with
heat transfer from one plate only

Ap = pressure drop over distance L, lbf/ft2
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63

®

Pe

Pr

<

_ Devar®p

K = Peclet number, dimensionless

= Cpu/k = Prandtl number, dimensionless

heat flux, Btu/(hr)(ft)z

radiai distance, ft

inner radius of annulus, ft

outer radius of annulus, ft

inside radius of pipe, ft
Devgp

= = Reynolds number, dimensionless
= temperature at any value of r or y, °F

= temperature at inner wall of annulus, or at left-hand plate

of parallel plates, °F

= temperature at outer wall of annulus, or at right-hand plate

of parallel plates, °F
= bulk fluid temperature, °F
= temperature at inner wall of circular pipe, °F

= temperature (of fluid flowing in a pipe) at r = 0, °F

local linear velocity at radius r, or distance ¢, ft/hr

éverage linear velocity across flow channel, ft/hr

axial distance along flow channcl, ft
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e

= radius ratio for annuli, r2/r1, dimensionless; also perpen-
dicular distance from one plate toward the second, in the

case of parallel plates, ft

= function of r, defined by Equation (8), ft2

Greek Letters

0]

az’Bz’Yz

= b—(l;_ = molecular diffusivity of heat, ftz/hr
p

constants defined by Equation (22)

= constants defined by Equation‘(23')

= ke/pcp = eddy diffﬁsivity of heat traﬂsfer, ftz/hr

= ue/p = eddy diffuéivity of morﬂentum transfer, ftz/-hr
= molecular dynamic viscosity, lbm/(ft)(hr)

= eddy dynamic visco'sAity, lbl;]/ (ft) (hr)

= u/p = kinematic viscosity, ftz/h;'

- liquid density, b /i3

= eH/ ey dimensionless

= average value of ¥ for use in Equations such as (1) and (22)

function of r defined by Equation (7), ft8

= function of r defined by Equation (10), £t8
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Subscripts
L,p refers to laminar flow in a pipe
s,p refers to slug flow in a pipe

L,pp refers to laminar flow between parallel plates

s,pp refers to slug flow between parallel plates
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Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

" Figure 6

FIGURE CAPTIONS

Heat transfer rates to fluids flowing through annuli under con-

ditions of uniform heat flux and fully-established laminar flow.

Molecular -conduction Nusselt numbers for fluids flowing through
annuli under conditions of uniform heat flux, fully-established

flow, and heat transfer from the outer Wall only.

Heat transfer to fluids flowing in annuli under conditions of uni-

form heat flux, fully-established flow, heat transfer from the

inner wall only, and absence of edd‘y conduction.

Heat transfer to fluids flowing in annuli under conditions of uni-

form heat flux, fully-established flow, heat transfer from the

outer wall only, and absence of eddy conductioﬁ.

Wall- and bulk-temperature relationships for heat transfer to
liguid metals flowing through an annulus under conditions of uni-
form heat flux, fully-established turbulent flow, and heat trans-

fer from the inner wall only.

Wall- and bulk-temperathre relationships for heat transfer to.
liguid inetals flowing through an annulus under conditions of uni-

form heat flux, fully-established turbulent flow, and heat transfer

from the outer wall only.
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