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ABSTRACT 

Nusselt numbers have been calculated for heat transfer to fluids 

flowing through annuli under conditions of uniform heat flux and fully- 

established velocity and temperature profiles. The following cases 

were considered: (a) laminar flow, (b) slug flow, (c) turbulent flow with 

molecular conduction only, and (d) turbulent flow with both molecular 

and eddy conduction. These Nusselt numbers .were determined for two 

conditions: heat transfer from the inner wall only and heat transfer from 

the outer wall only. The results were correlated by semi-empirical equa- 

tions. 

The final results obtained on cases (a), (b), and (c) a r e  applicable 

to any fluid, whereas those obtained on (d) a re  for liquid metals only. . .: 

Wall- and bulk-temperature relationships for the above four cases 

were also determined. These relation'ships were treated as dimension- 

less temperature ratios. 

Both the Nusselt numbers and temperature ratios were evaluated 

over the r /r range, zero to unity; the former being the case of the cir-  1 2  

cular pipe, and the latter, the case of infinite parallel plates. 



INTRODUCTION 

This paper is the third in a series,  originating at the Brookhaven 

National' Laboratory, on the general subject of heat transfer to  liquid 

metals flowing through annuli. The first (1) - was entitled "Unilateral 

Heat Transfer to Liquid Metals Flowing in Annuli" and the second (2), - 

"Equations for Bilateral Heat Transfer to a Fluid Flowing in a Concen- 

tr ic Annulus. " 

The one geometrical variable correlating convective heat transfer 

and flow behavior in annuli is the radius ratio, r /r In the present 
1 2' 

study, this ratio was varied from zero to unity, the former being the case 

of a circular pipe, and the latter, that of infinite parallel plates. Thus, 

whereas the main emphasis of this paper is on heat transfer to fluids 

flowing in annuli, results on both pipes and parallel plates were also col- 

lected. 

The present paper deals with a number of miscellaneous topics, 

all for the case of uniform heat flux with fully-established velocity and 

temperature profiles. Nusselt numbers a r e  presented in tabular, graphi- 

cal, and equation form for the following flow conditions: (a) laminar flow, 

(b) slug flow, ( c )  turbulent flow with molecular conduction only, and (d) 

turbulent flow with both. molecular conduction and eddy conduction. Also, 



relationships a re  given for obtaining the difference between wall tem- 

peratures, with heat transfer from either the inner or outer wall. 

In the case of turbulent-flow heat transfer, with both molecular 

and eddy conduction operating, the results are correlated by use of the 

term 3, which is the average value of the ratio of the eddy diffusivity 

of heat transfer to that of mass transfer. It is recommended that 5 

be evaluated by the recent correlation of Dwyer (3). - 

The work summarized in this paper was undertaken with special 

reference to liquid metals. It happens ,. however, that several of the 

mathematical relationships, which were developed, a r e  valid for.any - 

fluid. For this reason, the term 'liquid metals" was not used in the title. 

BASIC HEAT TRANSFER EQUATIONS 
. . 

The Nusselt number for the case of heat.transfer to a fluid flow- 

ing through a concentric annulus, under conditions' of fully-established 

flow, uniform heat flux, and heat transfer from the inner wal l  only, is 

given (2) - by the expression 



The only simplifying assumption made in the  derivation of this equa- 

tion is that the physical properties were assumed to be independent of 

temperature - an assumption which is usually quite acceptable for 

liquid metals. The .above equation is valid for either laminar, turbu- 

lent, or  slug flow. The corresponding quation for the case of heat 

transfer from the inner wall only is 
. . 

LAMINAR FLOW 

In this case, the variation of linear velocity with radius is given 

by Lamb's (4) - equation, 

It can easily be shown that 

r 
In-  

r 
1 



Combining Eq,uat'ions (3) and (4) then gives the equation 

which, for a given annulus, gives v as a fundion of va and r, only. Now, 

combining Equations (1) and (5), remembering that for laminar flow 

($ EM ~ r ) / v  = 0, gives 
2 

Y -1 ]2 r18 (Y-l)(y2-1)2[Y2 + 1 - - 
In Y 

[NuLI1 = 8F1 . (6) 

where 

and 

J zrdr  
r I Jr, 

d r  1 zrdr  
r 

2 .  2 r - r  
2 2 2  1 .  r z = r - r  - +  

1 
In - r 2 :  r 

In- 1 

From these three equations, it is obvious that [Nu L] 1 is independent of 

velocity and therefore. independent of both Reynolds and Prandtl numbers. 

It turns out that [NuLI1 depends only on the geometrical variable y. 

Equation (6) was solved, with the aid of an IBM 7090 computer, for .  

different values of rl  and y. The results a re  shown in Table I and Figure 1. 



L N u ~ 1  is almost a linear function of y. 

The equation for [Nu , corresponding to Equation (6), is 
J2 

1 2 2  y2-112 8 1 - ( y  -1) [y2 + 1 - - 
Y l n y .  1 

[NULI~  = - ? t2  

where 

.and where z is defined by Equation (a), as before. Equation (9) was also 

solved on the computer, and the' results a r e  also shown in Table I and 

Figure 1. 

The limiting case of a concentric annulus as l /y  approaches zero 

is that of a circular pipe, for which the well-known equation for  the Nusselt 

number is 

[NuLIp = 48/11 (11) 

The limiting case, as l /y approaches unity, is that of infinite paral- 

lel plates. The Nusselt number for this case will now be derived. 

The partial differential equation giving the temperature distribution 

for a. fluid flowing between parallel plates under steady -state conditions is 



The linear velocity distribution is given by the equation 

Substituting Equation (13) into (12) gives 

The terms inside the parentheses a re  all constant for a particular case, 

the constancy of the ratio dt/dx being a consequence of the boundary con- 

dition that the heat flux is uniform. Integration of Equation (14) in ac- 

cordance with the additional boundary conditions 

and 

yields the following expression for t. 

where 



and 

With this we can now evaluate the bulk 'temperature, which is defined as 

Substituting Equation (15) into (16), and simplifying, gives 

The Nusselt number can be written as 

Finally substituting Equation (17) into (18), and solving, gives 

for laminar flow of any fluid through inf inite parallel plates under condi- 
s 

tions of fully-established flow, uniform heat flux, and heat transfer from 

one wall only. 



Equations (6), (9), (ll), and (19) all give consistent results as 

shown by the curves in Figure 1. 

SLUG FLOW 

For  slug flow, the equations giving the Nusselt number for the 

cases  of heat transfer  from the inner wall only, and from the outer wall 

only, a r e  given in reference (1). - For comparison with the laminar-flow 

results,  calculated slug Nusselt numbers a r e  shown in Table I. 

MOLECULAR-CONDUCTION HEAT TRANSFER 

WITH TURBULENT FLOW 

The author (3) - has previously pointed out that, in the case  of liquid 

metals, i t  is possible to have convective heat transfer  under turbulent-flow 

conditions with only the mechanism of molecular conduction operating. 

This happens a t  the low end of the turbulent flow regime, where the eddy 

currents a r e  presumably not strong enough to transport a significant amount 

of heat. In other words, they do not move sufficiently East to prevent loslng 

essentially all of their heat while in transit.  As the flow ra te  is increased, 

in a given case, a point is reached where eddy transport begins to asser t  

itself as a contributing mechanism in the total heat t ransfer  process. The 

higher the thermal conductivity of the liquid metal, the higher the Reynolds 



number at which this occurs. In the case of flow through annuli, it is 

estimated (3) that, a t  a Prandtl number of 0.01, the critical Peclet num- - 
ber is about 300, i.e., the Reynolds number has to r ise  to about 30,000 

bef ore eddy transport becomes significant. 

Thus, it is seen that molecular-conduction Nusselt numbers a re  of 

considerable practical importance. 

Equations (1) and (2) have been solved for the condition that eddy 

conduction is zero. The results a re  shown in Table 11. They a r e  well 

represented by the .equation 

and 

It is interesting to note that [Nu ] depends only on y, whereas m.c. 1 

LNum.c.]a 
is a function of both y and Re, albeit the effect of Re is slight. 

This result ' is a bit surprising. One would eipect that both Nusselt num- 

bers would have a slight dependence on the Reynolds number, owing to 

the increasing steepness of the velocity profile curves, near each wall, 

a s  the Reynolds number is increased. . From Table XI, it is seen that, for 

an annulus with a y value of 2, [Nu ] increases only 3.5% as the m.c. 2 



4 6 
Reynolds number increases 100 fold, from 10 to 10 . The variation 

of [Nu ] with Reynolds number is shown graphically in Figure 2. m.c. 2 

Theoretically, both Equations (20) and (21) should give the same 

result at y = 1.   he former gives a value of 5.64, the latter, 5.60. This 

difference is within the precision of the method of calculation. It is esti- 

mated that Equation (20) represents the calculated results to within *O.2% 

and Equation (21) to within * 1.0%. 

COMPARISON OF NON-EDDY TYPES OF HEAT TRANSFER 

Figure 3 shows a comparison of laminar-flow, slug-flow, ahd mole- 

cular-conduction turbulent-flow Nusselt numbers for flow of fluids through 

annuli, with heat transfer from the inner wall only. The surprising thing 

about this graph is the relationship between the three curves. At a y value 

of 2.68, the three types of Nusselt numbers have identical values. Below 

this, the laminar, molecular-conduction, and slug values fall in the ex- 

pected order, i.e., laminar flow gives the lowest Nusselt . numbers . and slug 

flow, the highest. Above y = 2.68, they fall unexpectedly the reverse 

order. The question is: is this real o r  apparent. The answer is: it is real. 

The magnitude of any one of the three types of Nusselt numbers de- 

pends on the relative magnitudes of the temperature and velocity profiles 



across  the flow channel. It is therefore conceivable that at the larger 

values of y the higher velocities in the central portion of the channel 

for laminar flow cause the Nusselt number to exceed that for slug flow. 

Referring to Figure 3 again, the fact that the molecular-conduction 

curve always falls between the laminar and slug curves tends to corrobor - 

ate the correctness of the relative positions of the latter curves. In other 

words, beyond a y value of 2.68, not only did the slug Nusselt numbers 

fall below the laminar Nusselt nun?bers, but the molecular-conduction ones 

did also. 

It wi l l  be noticed also that at  the limiting condition of y = 1, which 

is the case of parallel plates, t h e  three curves show the correct Nusselt 

numbers. 

Figure 4 shows a comparison of the Nusselt numbers for the three 

types of non-eddy heat transfer conditions, for the case of heat transfer 

from the outer wall only. At the limits of y = 0 (round pipes), and y = 1 

(parallel plates), all curves show the correct Nusselt values. 

Of all six Nusselt numbers, [NuLI1, [ Nu 1 7 L N u  1 9 [NuLl2, m.c. 1 

and [Nu ] , the only one that is a function of the Reynolds number is the 
m.c.- 3 

last, and then only slightly. All are  functions of y; and none, of course, 

is a function of the Prandtl number. 



TURBULENT-FLOW HEAT TRANSFER WITH 

BOTH MOLECULAR AND EDDY CONDUCTION 

In reference (2), equations were given for estimating Nusselt num- - 

bers for liauid metals flowing through annuli, under conditions of uniform 

heat flux and fully-established flow. ,   hose equations were based upon 

graphical solutions of Equations (1) and (2). Recently, the solution's of 

Equations (1) and (2) were obtained with the aid of a IBM 709 computer, 

i.e., the successive integrations were done by machine rather than graphi- 

cally. .The new results a re  represented by the following equations: 

where 

and 

whe re 



For the special case of y = 1 (parallel plates), Equations (22) and (23) 

reduce to the equation 

These three equations for [Nu ] , [Nu ] , and [Nu ] a r e  more accurate 
T 1 T 2 T PP 

than the'ir counterparts in reference (2), - although the difference between 

the two sets ' is ,  in most cases, very slight. The greatest difference - of 

the order of 5 to 10% - occurs for y values less than 2 at very high Peclet 

4 
numbers (around 10 ) for both Nu and Nu The constants in Equations 

1 2' 
4 

(22) and (23) were evaluated over the $Pe range 50 to 10 and Prandtl 

number range 0.005 to 0.05. These two equations a re  .not valid a t  the 

limit where FPe = 0. For this condition, the Nusselt numbers must be 

evaluated by Equations (20) and (21). . 

It is not, strictly true to say that, in semi-empirical equations of 

the type (22) and (23), the 'a! terms represent the' molecular-conduction 

contribution to  heat transfer and the p ( $ ~ e ) ~  terms the eddy-conduction 

contribution. It is an approximation only. 
.. 

WALL AND BULK TEMPERATURE RE LATIONSHIPS 

For the case of heat transfer from one wall of an annulus through 

whic'h a liquid metal is flowing, it may be of practical importance to 



determine, not only the temperature drop from heated wall to the bulk 

fluid, but the difference between the two wall temperatures. The first 

of these temperature differences cah be easily obtained from a know- 

ledge of the heat flux and the heat transfer coefficient. The second re-  

quires a special calculation. Let u s  first consider the case of heat trans- 

fer from the inner wall only. 

The temperature drop between r to r is given by 1 2 

The radial heat transfer rate at any radius;':r, must equal the heat trans- 

port rate between r and r2. This can be expressed mathemat ' i~a l l~  as 

assuming a uniform heat flux and physical properties independent of tem- 

perature. . .  , 
. . 

Combining Equations (25) and (26), gives 



For  correlation purposes, it is convenient to  work with the ratio 

(t -t )/(t -t ). The numerator in this ratio is given by the equation 
1 b  1 2  

Dividing Equation (27) by (28), and then substituting Equation (1) into 

the result, finally gives 

r 2 
v r d r  

rl 

The corresponding equation for the case of heat transfer from the outer 

wall only is t 

Sf, i r i r  [i2 1 d r  1 v r d r  
r (1 + 'rPr) 



These two equations were used to calculate the respective dimension- 

less temperature ratios, using an IBM computer, for conditions of con- 

stant heat flux and fully-established'turbulent flow. The smoothed re- 

sults a re  shown in Tables lII and IV. Typical sets of curves for (tl-tb)/ 

(tl-t2) and (t2-tb)/(t2-tl) are shown i n  Figures 5 and 6, respectively, for 

the .case of y = 2.0. 

Since values of (tl -tb) and (t2-tb) a r e  easilyobtained from a know- 

ledge of the heat flux and Nusselt number, values of (tl-t2) and (t2-tl) 

a re  readily obtained from Tables 111 and N or from plots such a s  Fig- 

ures 5 and 6. 

The dimensionless temperature ratios a re  functions of y, Reynolds 

number, and Prandtl number, with the exception of (tletb)/(tl-t2) for the 

case of P r  = 0. In that case, it is independent of Reynolds number. 

For the case of slug flow, Equations (29) and (30) can be integrated, 

and then simplified, to give 

and 



2 2 y - 1  y + 1  l n y  - - -  
2 4 

+ -  
t -t 
2 b v2 - 1 

respectively. 

For the case of laminar flow, Equations (29) and (30) can be .inte- 

grated, using Equation (5) to express v. as a function of r. This was done 

with the aid of the IBM 709 computer, and the results, along with those 

for slug flow by Equations (31) and (32), a re  ghen  in Table V. 

The calculation of the values in this table for the cases of round 

pipes and parallel plates a re  summarized in' the Appendix. 



Table I 

Calculated Nusselt Numbers for Flow Through Annuli 

.Laminar Flow Slug Flow 
=-.I, r n ,  
1 6 

Y inches inches P U L ]  LNuLI2 Pus] LNus1 
1 (parallel plates) 5.38 5.38 6.00 6.00 

2.000 1.000 2.000 6.17 5.03 6.36 6.24 

2.000 5.000 10.000 6.17. 5.03 6.36 6.24 

4.000 0.500 2.000 7.78 4.92 7.57 6.73 

6.000 0.500 3.000 9.22 4.875 8.83 7.03 

8.000 0.500 4.000 10.57 4.844 10.10 7.21 

10.000 0.500 5.000 11.90 4.832 11.29 7.35 

= (round pipes) 00 4.364 OC, 8.00 



Table II 

Calculated Molecular-Conduction Nusselt Numbers 

for Turbulent Flow of Liquid Metals Through Annuli 



Table 111 

Values of (t -t )/(t -t ) for Case of Constant Heat F l w ,  Heat 
1 b  1 2  

~ r a n s f e r  from the Inner Wall 0nlv; and Fullv-Established Flow 



Table N 

Values of ( t  -t )/(t -t ) for Case of Constant Heat Flux, Heat 
2 . b  2 1  

Transfer from the Outer Wall Only; and Fully-Established Flow 



Table V 

Wall and .Bulk Temperature Relationshi~s for 

Laminar Flow and Slug Flow Through Annuli 

Laminar Flow Slug Flow 

t -t t -t t -t t -t 
r l y  r27 

1 b  2 b  1 b  2 b  ---- 
t -t t -t t -t t -t 

Y inchesinches ---- 1 2  2 1 1 2  2 1 

1 (parallel plates) 0.743 0.743 2/3 2/3 

.o (round pipes) 1.000 11/18 1.000 1/2 



APPENDIX 

When the value of l /y  for annuli is reduced to the lower limit .of 

zero, we have the case of a circular'pipe; when it is increased to  the 

upper limit of unity, we have the case of parallel plates. 
. . 

. , 

The ratio ( t  -t )/(t -t ) becomes for a pipe (t -t )/(tR-to) The 
. 2 b  2 1  R b 

latter ratio for the case of laminar flow is derived as follows: 

Now, writing an equation for pipes, similar to Equation (26) for annuli, 

gives u s  

at dt 
R 

2nrk - ar = 2npC - I vrdr 
P d x  r 

Combining Equations (34) and (35), gives 
r 

dt vrdr  

t -t = 
pcp z 

R 0 k ? O r  dr  
0 



The velocity distribution across the pipe radius is given by 

the equation 

Finally, substituting this equation into (36), then dividing (33) by (36), 

and then integrating and simplifying, gives the simple result 

For the - case of slug flow, dividing Equation (33) by (36), integrating, and 

simplifying, gives 

The ratio (t -t )/(t -t ) for the case of laminar flow between parallel 
1 b  1 2  

plates is derived as  follows: 

Now, writing an equation for parallel plates, similar to Equation (35) for 

pipes, gives 

- 25 - 



which, when combined with Equation (4 I), gives 

The velocity distribution across  the channel, for laminar flow, is given by 

the equation 

Finally, substituting Equation (44) into. (43), then dividing (43) into (40), 

integrating, and simplifying, gives another simple result, i.e., 

For  the case of slug flow, dividing Equation (40) by (431,. integrating, and 

simplifying, leads finally to the equ 



NOMENCLATURE 

= quantity defined in Equation (15), O~/ f t  
3 

= distance between parallel plat.es, ft 

= defined in Equation (15), OF/ft 4 

= specific heat, Btu/(lbm) (OF) 

= inside diameter of pipe, ft 

4(cross -sectional area) 
= equivalent diameter = 

wetted perimeter , f t  

= conversion factor, (lbm)(ft)/(lbf) (hr) 2 

= molecular thermal conductivity, Btu/(hr)(ft)(OF) 

= eddy ther ma1 conductivity, ~ t u / ( h r )  (ft)(OF) 

= k + ke = effective thermal conductivity, Btu/(hr)(ft)(OF) 

= length of annular channel, ft 

= Nusselt number, hD,/k, /dimensionless 

= Nusselt number for any type of flow through an annulus, with 

heat transfer from inner wall only, dimensionless 

= Same as [Nu] except with heat transfer from outer wall only 
1' 

= Nusselt number for turbulent flow of a liquid metal through an 

annulus, with both molecular and eddy conduction ope rating, 

and with heat transfer from the inner wall only, dimensionless 

= same as  [Nu , except with heat transfer from the outer TI 1 
wall only 



L N u  J1 = Nusselt number for laminar flow of fluid through an annulus, 

with heat transter from inner wall only, dimensionless 

l N u ~ 1  2 = Same as  [Nu L1 1 , except with heat transfer from outer wall only 

L N u ~ I p  = Nusselt.number for laminar flow through a pipe, dimensionless 

r N u ~ I p p  = Nusselt number for laminar flow through parallel plates, with 

heat transfer from one plate only, dimensionless 

[Nu ] ='Nusselt number for turbulent flow through an annulus, with 
m.c. 1 

,molecular conduction only, and with heat transfer from inner 

wall only, dimensionless 

] = Same as  [Nu ] except with heat transfer from the outer 
INUm.c. 2 m.c. 1' 

wal l  only 

Pus 1 = Nusselt number for slug flow of fluid through an annulus, with 

heat transfer from inner wall only, dimensionless 

fNus 1 = Same as [Nu S ] 1' except. with heat transfer from outer wall only 

[Nus]P = Nusselt number for slug flow through a pipe, dimensionless 
. . 

I 

[NUslpp = Nusselt number for slug flow between parallel plates, with 

'heat transfer from one plate only, dimensionless 

L N u ~ I p  = Nusselt number for' turbulent flow through a pipe, with both 

molecular and eddy conduction operating, dimensionless 

[ N ~ ] p p  = Same as [Nu+] except for flow through parallel plates, with 
P ' 

heat transfer from one plate only 

Ap = pressure drop over distance L, lbf/ft 2 



D v  C - - = Peclet number, dimensio~less 
k 

= C p/k = Prandtl number, dimensionless 
P 

= heat flux, Btu/(hr)(ft) 2 

= radial distance, ft 

= inner radius of annulus, ft 

= outer radius of annulus, ft 

= inside radius of pipe, ft 

Devap - -- = Reynolds number, dimensionless 
lu 

= temperature at any value of r or  y, OF 

= temperature at inner wall of annulus, o r  at left-hand plate 

of parallel plates, OF 

= temperature at  outer wall of annulus, o r  at  right-hand plate 

of parallel plates, OF 
. . 

= bulk fluid temperature, OF 

= temperature at inner wall of circular pipe, OF 

= temperature (of fluid flowing in a pipe) at r = 0, OF. 

= local linear velocity at  radius r, or distance 8 ,  ft/hr 

= average linear velocity across flow channel, ft/hr 

= axial distance along flow channcl, ft 



= radius ratio for annuli, r2/r1, dimensionless; also perpen- 

dicular distance from one plate toward, the second, in the 

case of parallel plates, ft 

= function of r ,  defined by Equation (8), ft 
2 

z 

Greek Letters 

- k - -  2 = molecular diffusivity of heat, ft /hr 
PCP ) 

al,81,~l = constants defined by Equation (22) 

, 
a 2 , P 2 , ~ 2  = constants defined ,by ~quat ion ' (23)  

2 
E 
H 

= k,/pC = eddy diffusivity of heat transfer, ft /hr 
P 

E M = pe/p = eddy diffusivity of momentum transfer, ft2/hr 

P = molecular dynamic viscosity, lbm/(ft)(hr) 

I I '  

IJ.e = eddy dynamic viscosity, lbm/(ft) (hr) 

v 
2 

= p/p = kinematic viscosity, ft /hr  

= liquid density, lbm/ft 3 P 

$ = E .  / F  dimensionless H -M' 
- 
$ = average value of $ for use in Equations such as (1) and (22) 

. . 

= function of r defined by Equation (7), ft 8 
1 

= function of r defined by Equation ( lo) ,  ft 8 
2 



Subscripts 

L,p refers  to laminar flow in a pipe 
. 

s,p refers to slug flow in a pipe 

L,pp refers  to laminar flow between parallel plates 

s,pp refers to  slug flow between parallel plates 
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FIGURE CAPTIONS' 

Figure 1 Heat transfer rates to fluids flowing'through annuli under con- 

ditions of uniform heat flux and fully-established laminar flow. 

Figure 2 Molecular-conduction Nusselt numbers for fluids flowing through 

annuli under conditions of uniform heat flux, fully -established 

flow, and heat transfer from the - .  outer wall  only. 

Figure 3 Heat transfer to fluids flowing in annuli under conditions of uni- 

form heat flux, fully -established flow, heat transfer from the 

inner wall only, and absence of eddy conduction. - 
Figure 4 Heat transfer to fluids flowing in annuli under conditions of uni- 

form heat flux, fully-established' flow, heat .transfer from the 

outer wal l  only, and absence of eddy conduction. 

Figure 5 Wall- and bulk-temperature relationships for heat transfer to 

liquid metals flowing through an annulus under conditions of uni- 

form heat flux, fully-established turbulent flow, and heat trans - 
fer from the inner wall "only. 

Figure 6 Wall- and bulk-temperature relationships for heat transfer to. 

liquid rnetals flowing through an annulus under conditions of uni- 

form heat flux, fully-established turbulent flow, and heat transfer 

from the outer wall only. - 
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