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DRAG COEFFICIENTS AND HEATING RATIOS FOR RIGHT CIRCULAR CYLINDERS
IN FREE-MOLECULAR AND CONTINUUM FLOW FROM MACH 10 TO 30

Introduction

Recently it has become necessary to study the effects of re-entry heating on
aerospace nuclear power supplies. Basically these power supplies are irregular in
shape and do not lend themselves to purely analytical analysis, but several parts of
the generators, such as fuel rods and core vessels, are cylindrical in shape. The
cylindrical parts can be handled analytically when detached from the generators or
when they are in areas where flow is independent of the rest of the generator. Much
of the theory as applied to cylinders has been verified by experiment. However,
there is some dispersion in the experimental data. Because of this scatter, the
methods presented here should be considered only as approximations. When more accu-
racy is required, experimental studies duplicating flight conditions, L/D ratios,
and angles of attack may be necessary.

The model shown in Figure 1 will be used throughout this report.

Velocity
Vector

Velocity vector in AOB plane \[

« measures radial angle with respect to the
velocity vector (not applicable when 8 = 0 or 180°)

¢ measures the angle between the center line of the
cylinder and the velocity vector

Figure 1. Cylinder showing angle of attack (8) and radial angle (a)
with respect to the free-stream velocity vector



Drag Coefficients

The projected area of a cylinder in cross flow (LD) will be used as the refer-
ence area for all the cases presented. A standard reference area is more convenient
for comparison and is necessary for calculating drag coefficients of tumbling bodies.

Free-Molecular Flow

Henryl estimates the average velocity of air molecules at high altitudes to be
4900 ft/sec. This is less than one-fifth the velocity of a satellite entering from
a circular orbit. Assuming the air molecules striking the vehicle lose all of their
kinetic energy to the vehicle and are reflected at roughly the same temperature as
the vehicle, the reflected particles should have velocities in the neighborhood of
3000 to 4000 ft/sec. Since the speed of the air molecules before and after their
collision with the vehicle is much less than that of the vehicle, it can be concluded
that the molecules' incident relative velocity is approximately equal to the vehicle's
velocity, and they rebound with a zero relative velocity. The change in momentum of
all the air molecules striking the vehicle per unit time is PAVE, (see p. 35 for a
listing of the symbols used in this report), which is the drag on the vehicle. Since
Cp is defined as (drag)/(dynamic pressure x area), Cp for free-molecular flow is 2,
based on the projected frontal area of the vehicle. This figure was derived assuming
diffuse reflection and an accommodation coefficient of one. Since diffuse reflection
is more probable than spectral reflection, and accommodation coefficients for most
materials vary from 0.87 to 0.98, these assumptions do not introduce significant
error.

Side-On -- When a cylinder enters stably at § = 90°, C, is equal to 2, since
the reference area chosen (LD) equals the projected area of Ehe cylinder. This case
also represents a cylinder tumbling in a plane perpendicular to the trajectory path.

End-On -- CpA for a stable cylinder with 6 = 0° is equal to 27R? Converting
the drag coefficient to a reference area of LD,

2
CD = 2%%— ; (L)
hence,

Cy =157 2. (2)

End-Over-End Tumbling -- The average drag coefficient Cp will be developed
assuming the cylinder is tumbling at a constant angular velocity which is negligible
compared to re-entry velocity but sufficient to permit using an average drag coeffi-
cient in trajectory calculations.

A, = the area of an end (7R®) and Az = the projected side area (LD).
Referring to Figure 2, the projected area as a function of ¢ is

Ag =Ayicosf + Az sing (3)

and the average CpA product would be

A s 4)
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Figure 2. End-over-end tumbling

Substituting Equation 3 into Equation 4 and integrating,

TpA = 1¢4wD + m?) . (5)
Then for AR = LD,
Cpy=1.2713+ 2. (6)
Random Tumbling -- For this case, it is assumed the cylinder has an equal

probability of being aligned in any direction relative to the flight path and chang-
ing direction rapidly enough so that an average value of Cp can be used. Using the
same nomenclature as for the end-over-end tumbling case, tBe projected area is again

Ag =Ajcos g+ A sing . 7)

Referring to Figure 3, the CpA product can be seen to be

T
i
/ (CDA9)21T sin 6 d@
=, _ Jo
Cppr = T
LZ 27 sin ¢ d6

. (8)



—
ON is a unit vector parallel
to the centerline of the cylinder

X
hemisphere - 2nsin g de
Ahemisphere =2n
— Z
Voo/
Figure 3. Random tumbling
Substituting Equation 7 into Equation 8 and simplifying,
r
_ 2
CDA = 2 (A2 sin® ¢ + A, sin ¢ cos §)dg . 9)
o
Carrying out the integration,
T
- 1, 1. 1 2
TA = Z[Ag(-z-e - Lsin20) + A, & sin? e)] (10)
o
= » - wLD,_ wD?
CDA = —7—+ A (11)

Then for AR = LD,

= D
Cp=1.57 + 0.785 . (12)



Continuum Flow

In Reference 2, Randall developed a method for predicting the drag coefficients
of end-on, side-on, and end-over-end tumbling cylinders. _A summary of his work will
be presented here, along with a procedure for predicting CD for a randomly tumbling
cylinder.

For the purpose of this study, it is assumed that there is a modified Newtonian
pressure distribution such that the local pressure is given by

P = Py +(B,, - P,) cos® ¢ . (13)

The continuity and momentum equations across a normal shock are
PV = P2V, (14)
Po+ P Vo = P, + P.VE . (15)

Since incompressible flow relations closely approximate actual conditions in the
stagnation region behind the shock wave, Bernoulli's equation may be used. Hence,

_ 1 2
POZ = P2 + -szvz . (16)
Combining equations 13, 14, 15, and 16,
poo
P="Py+ qyu (2 - 3;) cos? ¢ . a7

For Newtonian flow, the drag coefficient is given by

- JP_cos ¢ da
cp - gt (18)

which is integrated over the surface of the body exposed to the free stream. Com-
bining Equations 17 and 18 and making the substitution K = (Py)/(Py),

P
= ——-—w 2 ~ K 3
= 3 fcos ¢ an+ I fcos b dA (19)

which is the general form of the drag coefficient equation in Newtonian flow.

Side-On -- For this case, dA = L (D/2)d¢ and Ap = LD. Substituting into
Equation 19 and integrating,

P
-2

C
D 9

+22 -1 . (20)



For Mach numbers greater than 10 and altitudes from 70,000 feet to 250,000 feet,
(Pw) /(dy) is less than 0.012 times the (2/3)(2 - K) term. Therefore the (Py)/(qq)
term can be neglected, simplifying Equation 20 to

Cp = %(2 -K) . (21)

End-On -- According to Newtonian theory, there would be a uniform pressure Py,
over the face of the cylinder. However, Stoney and Swanson® found that the average
pressure on the face of a cylinder is 0.909 times stagnation pressure. Using this
value in Equation 18 and integrating,

Pco
Cp = 0‘909[€;+ (2 - K)] , (22)

where the reference area is TR2. Converting to the standard reference area of LD
and neglecting the (P,)/(q,) term,

- -l Dia -
Cp = 0.909(2 - K)z 7= 0.7147(2 - K) . (23)

End-Over-End Tumbling -~ The same assumptions and nomenclature will be used
here as for free-molecular, end-over-end tumbling. In addition, it is assumed that
when the cylinder is at an angle of attack, the total drag force is the vector sum
of the axial and transverse components. Referring to Figures 2 and 4,

Drag = Dy sin 6 + D, cos 6 , (24)
or
CDquAR = CDTqTAR sin 9 + CDAqAAR cos 6 . (25)
Total Drag
Figure 4. Velocity and drag components
But

4y %PwV; =q_ sin® ) (26)



and
_ 1 2 _ 2
qy = prVA =q,cos 6§ . (27)
Substituting Equations 26 and 27 into 25,
CDO = CDT sin® @ + CDA cos® ¢ . (28)
Taking Cpr and Cpp from Equations 21 and 23 respectively,
c = [2(7 - K)] sin® g + |0 7142(2 - K)| cos? ¢ (29)
pe ~ L3\ 6 I8 .

The average drag coefficient for end-over-end tumbling can then be found by

7
T
¢, = T T Cpgd 0
Jo o
or
T
2
T =2 [52 - ©] sin® 6+ [0.726202 - ©)] cos® oas 61)
DI 3 . I cos® ¢ .
Integrating,
Cp = (0.283 + 0.303R)(2 - ®) . (32)
Random Tumbling -- Referring again to Figure 3, the average drag coefficient
can be seen to be
7
f Cpg(2m sin 9)d6 Z
T =Z° _ 1 CDG(ZW sin g)dé . (33)
D % 2r o
j; 2 sin 6 d6
Substituting Equation 29 into Equation 33,
T
_ Z 42 D
CD = 3[§(2 - K)] sin% 6 + [O.714E(2 - K)] sin 9 cos? ¢;d@ . (34)
o

11
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Integrating,

m
7
o =[ - ) (fo - a2ty st o) 1 (0,004 Bre - w)(- =52 ] s

(o]

Ol

Ol

= (0.393 + o.178.LI2)(2 -X) . (36)

Heating Ratios

Trajectory computer programs such as the TTA program? are capable of calcu-
lating continuum~flow heatlng rates to the stagnatlon p01nt of a sphere (q SJﬁ)
entering on the same traJectory as the vehicle in question. Because of the relative
ease of obtaining dggVR, it is desirable to find a relation between local heating
rates and {ggYR. For equilibrium continuum laminar flow and velocities below
25,000 ft/sec, the ratios of local to stagnation heating remain fairly constant.
This ratio, which will be used for continuum flow, is defined as

F = local heating rate

q stagnation heating to a l1-ft-radius sphere (dimensionless).

A similar situation exists for free-molecular flow. It is convenient to cal-
culate free-molecular heating to a flat plate perpendicular to flow and to use these
heating rates as a reference. Then local or average heating rates can be found by
ratioing them to this reference. For most shapes, this ratio remains almost constant
for Mach numbers greater than 10. One notable exception is heating to surfaces par-
allel to flow, where the heating ratio is strongly dependent on Mach number. The
free-molecular heating ratios used in this report are defined as:

F local heating rate

M heatlng rate to flat plate perpendicular to flow (dimensionless).

Free~-Molecular Flow

A good approximation of free-molecular heating to a flat plate perpendicular
to flow can be found by using the product of the accommodation coefficient, the
stagnation enthalpy, and the mass-flow rate. In equation form,

q, = al_(PV,)
o = ap Vv _ aP Vof/ BTU (38)
4 J 155 ft? sec
The accommodation coefficient is defined by
E, - E
a=g—3 > (39)
i \



where

E; = energy brought to the wall by incident molecules
Er = energy carried away by re-emitted molecules
Ey = energy that would be carried away if the re-emitted

air were at wall temperature

Typical values of accommodation coefficients are given in Table I, which is taken
from Reference 5.

TABLE 1

Accommodation Coefficients

Surface a
Aluminum, machined 0.95 - 0.97
Aluminum, polished 0.87 - 0.95
Cast iron, machined 0.87 - 0.88
Cast iron, polished 0.87 - 0.93
Bronze, machined 0.89 - 0.93
Bronze, polished 0.91 - 0.94
Flat black lacquer 0.88 - 0.89

Oppenheim® developed a more versatile method of calculating free-molecular
heating, using kinetic theory. Oppenheim's final form of the heat-transfer equation
is

q = StCp P gV, (T, - T.)) » (40)

where the Stanton number and recovery factor are solved for as a function of Mach
number, specific heat ratio, accommodation coefficient, and configuration.

This equation will now be solved for the case of a flat plate perpendicular
to flow, for use as a reference heating rate. It will be assumed that the specific
heat ratio is 1.4, since most of the free-molecular heating during re-entry takes
place at altitudes where most air molecules are diatomic. Referring to the perpen-
dicular flat plate equations for Stanton number and recovery factor in Reference 6,
and defining the molecular speed ratio as

s =M}, (41)
1Y .1 -g*
3 yF ISt = el [e + vis (1 + erfs)] . (42)

For Mach numbers greater than 2, Equation 42 is equal to a constant value of
0.500, so the Stanton number is

St = 0.856a , 43)

and

-1
Y+ 1 _ 2se’® + (25® + 1)VF(1 + erfs)

. (44)
Y s[e-s + Vs (1l + erfs)}

13
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For Mach numbers greater than 10, Equation 44 is equal to a constant value
of 2.00, so the recovery factor is

r=1.167 . (45)

Equations 43 and 45 are now substituted into Equation 40 along with the appro-
priate equation for adiabatic wall temperature. The wall temperature is negligible
compared to Tow for most cases and will be omitted:

4, =0.856aC p gV T (1+ 0.233 MD) , (46)

but

O|<
8

(47)

and the speed of sound is

C = 49.1,/i°0 s (48)
so that
. ( Ve )
q_L = 0.856anwP°°ng T, *+ m— . 49

Since T, is much smaller than (V2)/(10,330) for re-entry velocities, T, can be
neglected in Equation 49, so that

aC_ p gV2 _aC_p V°
© po ®© = goo 00 00 BTU
4 12,070 (,ft2 sec) ‘ G0

For a specific heat of 0.241, which corresponds to a free-stream temperature of
190°F, Equation 50 is identical to Equation 38, so that for cool-walled vehicles
at Mach numbers greater than 10, the simpler equation may be used.

Next, Fmy ratios will be developed for several basic shapes needed to calcu-
late heating g¥ a cylinder for the various modes of stable and tumbling re-entry.

For the sides of a rotating, side-on cylinder,

S
3
Lydrse = SRt () + s [1(F) + 1, ()]} (1)



and

ey 27+ N1 (55) + 2s® + D1 (F) | 52

(sz+1)1(2)+sl( )

Solv1ng Equation 40 using these two equations for Mach numbers from 5 to 40 and
ratioing the results to ¢4, for the same Mach numbers generated the curve of Frm
versus Mach number shown in Figure 5.

For surfaces parallel to flow,

1 Y _ 1
2 7T IS5t < LFs (53)
and
%l‘r=2. (54)

Substituting these values into Equation 40 for Mach numbers from 3 to 40 and again
ratioing the results to Equation 50 gives the Fpy curve shown in Figure 6.

For free-molecular flow on the back side of cylinders in cross flow, at Mach
numbers greater than 5, the F ratio was calculated to be less than 0.003, and the
Fpy ratio for the back side OEMa flat plate is less than 0.0002. Therefore, all
backside heating can be considered zero compared to heating of flow-impinging
surfaces.

Oppenheim states that free-molecular heating to flat plates at angles of attack

can be computed using the equations

Sty = (sin g)St, (n) (55)

and

Yo = JF T cos? g + (sinz G)IL(U) , (56)
where St, (1) and r, (1) are computed replacing s with 4 = s sin 6.
This can be a laborious process, and for Mach numbers greater than 10 the re-

sults of Oppenheim's method can be approximated to within 0.5 percent by the
equation

qe = ﬁL(sin ¢ + 0.0113 cos g) for 0L 9 < % R 7

and

q, =0 for -5 <a<0. (58)

15
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Figure 6. Free-molecular flow ratios of heating on surfaces
parallel to flow to heating on surfaces perpen-
dicular to flow

Equations 50, 57, and 58, and Figures 5 and 6 are all that will be necessary
to compute the average free-molecular heating ratios for cylinders. To simplify
the forthcoming equations, the Fpy of cross-flow cylinders (Figure 5) will be de-
fined as Y and the Fpy for paralEeI flow (Figure 6§ will be defined as Z.

Side-On_and Spinning ~- The average heating ratio to the side of the spinning
cylinder has already been computed, and the values (Y) are given in Figure 5. The
ends of the cylinder are parallel to flow, and the heating ratios (Z) are given in
Figure 6.

End-On -- The sides of an end-on cylinder are parallel to flow and the heating
ratios are Z (Figure 6). The front end of the cylinder is perpendicular to flow, so
the heating ratio is 1. The heating ratio of the aft end is zero.

End-Over-End Tumbling and Spinning -- Free-molecular heating is a linear sin
and cos function of angle of attack, as can be seen from Equation 57. Therefore,
the heating ratio for the sides of a cylinder as a function of angle of attack (see
Figure 2) is

F =Y sin 9§ + Z cos ¢ , (59)

FM6
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and the average heating ratio to the sides is given by

s
2
3 j; FFMOdO
Fpy = 5 (60)
f Z 46
o
) T
= _2 ]2 s
FFM = L (Y sin @ + Z cos g)deg (61)
Feyp = 0.637 (Y + 2) (62)
For each end, the average ratio can be found using Equations 57 and 58:
7
f (sin 6 + 0.0113 cos 6)dg
= _Jo
Fpy = - (63)
f de
o
Performing the integrationm,
Fem = 0.322 . (64)
Random Tumbling and Spinning -- For the sides of the cylinder, the heating
ratio as a function of angle of attack is again given by Equation 59. Referring
to Figure 3, the average ratio can be seen to be
7
_ fo 2r sin 9 (Y sin 6 + Z cos ¢)d6
= 65)
™ T - (
f7 2 sin ¢ do
o
Integrating,
T
Fop = |30 - % '2)+z(1'2)7 6
™ 5 7 sin 2 ¢ -z-s:LnOo (66)
FFM = 0,785Y + 0.500Z . 67)




For each end during random tumbling,

T
_ f7 2r sin g (cos 9 + 0.0113 sin ¢)de
F, == (68)

M T
f 2r sin 9 d@
o
or
T
- 1 z
Fom = 7 o (sin 6 cos ¢ + 0.0113 sin® ¢)dg ; (69)
hence,
Fpy = 0-255 . (70)

Continuum Flow

Convective heating rates to the stagnation point of a sphere can be found by”

P 05 v 3.1 6
4 = 12,600 (_2 (_2) BTU ) . 71)
8 VR Ps Ve ft? sec

Equation 71, using a l-foot nose radius, will be used as a reference heating rate
for all heating ratios in this section.

It will now be necessary to determine the heating ratios ((E)/(q S)) for the
sides and ends of a cylinder versus angle of attack in order to computg average
heating ratios for tumbling, spinning cylinders.

The distribution of heat transfer as a function of ¢ around a cylinder in
cross flow (6 = 90°) is shown in Figure 7. The curve represents the ratio of local to
stagnation-line heating. This is the distribution derived for a hemisphere by
Kemp, Rose, and Detra®, based on Lee's theory® for non-Newtonian pressure distribu-
tions. The curve has been extrapolated between a = 90° and 180°. Although this
distribution is for a hemisphere, Zakkay and Visich®© show that there is very little
d}fferencgogetween the heat~transfer distribution around a sphere and a cylinder for
0° < a < .

As shown by Lin!?!, the ratio of convective heating at the stagnation line of
a cylinder in cross flow to the convective heating at the stagnation point of a
sphere of the same radius and wall temperature and under jidentical free-stream flow
conditions is 0.747. Hence, the average heating ratio ((q)/(q )) to the side of a
cylinder in cross flow can be found by ss

(72)
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Figure 7. Ratio of local to stagnation-line heating on a
cylinder in cross flow (6 = 90°)

Integrating the curve in Figure 7 numerically yields

- =0.269 . (73)
dss

Figure 8 shows the ratio of the local heating to the side of an end-on cylinder
(6 = 0°) to the stagnation-point heating. This curve is a compilation of data from
various test series. The ratio of stagnation-point heating to an end-on cylinder to
the stagnation-point heating of a sphere of the same radius is 0.5, so local heating
ratios along the side of the cylinder can be obtained by dividing the values given
in Figure 8 by 2. Integrating the curve in Figure 8 for L/D ratios up to 20 and
dividing by the period of integration and by 2 gives the average heating ratios
((4)/(4g¢)) for the sides of an end-on cylinder. The value of the curve in Figure 9,
which shows (ﬁ)/(qss) as a function of the fineness ratio (L/D), will be referred to
in future discussions as B for simplicity.

The heating distribution across the leading face of an end-on cylinder
(8 = 0°) has been determined experimentally numerous times (References 3, 8, and
12). A distribution which approximates the average of the available data is illus-
trated in Figure 10. This curve can be expressed mathematically as

C.IL _ X\33
a—s-;— 1.0 + 0'6(R) . (74)



X/R

Figure 8. Ratio of local heating on the sides of an end-on
cylinder to the stagnation-point heating (6 = 0°)

Integrating Equation 74 over the end of the cylinder and dividing by the surface
area yields the average heating ratio to the end of the cylinder:

R e 343
- f [1.0 + O.6(§-) 2rxdx
o]

- = =1.226 . (75)
dsp 7R?
Recall that
dg
22 = 0.5 . (76)
clSS

The average heating ratio (E)/(dss) for the leading end of a cylinder at ¢ = 0° is

+4 = 0,5 x 1.226 = 0.613 . an
qSS

Weisblatt!® reports on shock-tube and shock-tunnel tests conducted for the
purpose of determining the average heating ratios on discs (analogous to the end
of a cylinder) at angles of attack (0) from 0° to 60°. The results of hot-shot
tunnel tests at Mach numbers from 9.4 to 19.0 (Reference 12) and angles of attack
from 0° to 30° agree with the data given in Reference 13. The test data were ex-
trapolated past 9 = 60° by calculating heating rates at 6= 90°, using laminar
flat~plate theory and using a heating rate at 6= 180° which was 0.05 times the
heating rate at § = 0°.1%>15 These data are presented in Figure 11, which shows
the ratio of the average heating to the end of a cylinder at angles of attack from
0° to 180° to the average heating at 0° angle of attack. Multiplying the values
from Figure 11 by 0.613 (Equation 77) gives the (§)/({gg) ratios for the ends of
cylinders at any angle of attack.
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on the front end of an end-on cylinder (6 = 0°)

20

N

0 50 100 150 180
Angle of attack 6 {°)

Figure 11. Ratio of heat transfer to a disc at angles of attack
to heat transfer at 0° angle of attack



24

With the information from Equations 71, 73, and 77 and Figures 9 and 11, it
is now possible to compute F_ ratios for the ends and sides of tumbling and stable
cylinders. From Equation 71*and the definition of Fq, it is obvious that all F
ratios will include the term (R)~¥Z as well as a shape factor. q

Side-On and Spinning =-- For the sides of a spinning cylinder at 6 = 90°, fé
is found using Equation 73:

F =L
Fq = 75(0-269) . (78)

The heating ratio for the ends of the cylinder can be found by multiplying
the value from Figure 11 at 6 = 90° by 0.613 (Equation 77):

oy

=1 =1
= 77 (0.613)(0.24) V§(0.147) . (79)

End-On -- The average heating ratio to the sides of an end-on cylinder
(6=0 is given in Figure 9 as a function of L/D so that

F =L
Fy V§(B) (80)

The average heating ratio to the front end of the cylinder has been given in
equation 77:

= 1
= —=(0.613) .
Fq R( 613) (81)

The average heating ratio to the aft end can be found by multiplying Equation
81 by the value shown in Figure 11 for 6 = 180°. Therefore,

= 1
F = -—=(0.0307) . 82
q = 72(0-0307) (82)

End-Over-End Tumbling and Spinning -- To date there is very little knowledge

about heat transfer to yawed cylinders. Several tests have been performed to study
the effects of angle of attack on aero heating along the stagnation line of cylin-
ders.!®817 Reference 16 indicates that for supersonic flow the stagnation-line
heating varies as sin #, whereas Reference 17 suggests that for hypersonic flow the
stagnation-line heating curve would have a lower value varying as sin®? ¢. The data
presented in Reference 13 for the sides of a yawed cylinder (Mach 11.5 and angles of
attack from 30° to 90°), along with heating ratios for 0° angle of attack taken from
Figure 9, can best be fitted by the following curve.

g

ag— = (average heating ratio at 0° angle of attack) (cos2? §) (83)
ss + (average heating ratio at 90° angle of attack)(sin?® §)

The distribution for heating to the sides of a cylinder given in Equation 83 will
be used for the remainder of this report.



Referring to Figure 2, Equations 73 and 83 and Figure 9, the average heating
ratio (F,) to the sides of an end-over-end tumbling and spinning cylinder can be

seen to DBe

ia
—1[7 (0.269 sin® g + B cos? §)d6
- VR J,
F = (84)
q T
f’z
dé
O
Performing the integration,
™
7
= _ 2 1,_ 1 . 1,,1 .
Fq-v—\/i[o.zw(zo 2;81n26>+B<26+2;51n26)] (85)
[o]
= 1
F = ——(0.134 + 0.500B) . 86
q \/§( ) (86)

The average heating ratio to the ends of an end-over-end tumbling cylinder
can be found by numerically integrating the curve in Figure 11 and dividing by the
period of integration, then multiplying the result by 1/VR and 0.613 (Equation 77).
Hence,

= 1 1
F_ = ——(0.538)(0.613) = ~=0.329 , (87)
4 VR VR
Random Tumbling and Spinning -- Using a method similar to that used for end-
over-end tumbling but referring to Figure 3, the average heating ratio (Fq) for the
sides of a randomly tumbling and spinning cylinder can be found by the fo%lowing
equation:
T
\/—% /-2- (0.269 sin® ¢ + B cos? ¢) (27 sin ¢)dé
F_ = 2 (88)
q T
z
2r sin 4 dé
o
7
F oo 1 _1 R | _ cog?6
Fq ¢§[?.269( 3 cos § sin? ¢ 3 cos 6) + B( ——3——)]0 (89)
= 1
F = —(0.179 + 0,333B) . 90
.~ ) (90)
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The curve in Figure 11 for the average heating ratio to the end of a cylinder
versus angle of attack can be approximated by the following equations:

-

==10, 020<7%; (91a)
99=0
G L .4 4 Bty T<gc<l (91b)
T : T 6 = L >
8=0
- 4
A—-33-%%, T<o<T; (91¢)
99=0
;§L—- =01, ZT<pg<vm. (91d)
4,

Using Equations 77 and 91, the average heating ratio (fq) for the end of a
randomly tumbling cylinder can be found by

i
Z f(Zw‘ sin 9)(7—q——>d0
Fo0.613 i=o Ji d9=0

(92)
9 VR fv 2r sin 6§ dé@
o
Substituting for =,
g0
3 Z
= 0.306 f . 8.4 .
= sin g dé +f <— 0.4 + ——6)3111 6 do +
q VR o T T
6
T
2 6.4 T
(3.3 - ——'—9> sin g d6 + 0.1 sin 6 do ] . (93)
T K T
A 7
Integrating,
T o= —2(0.323) . (94)
9 VR



Transition from Free-Molecular to Continuum Flow

Flow in the various transition regimes between free-molecular and continuum
is extremely complicated, and no satisfactory theoretical solution has yet been
offered. Therefore, no detailed development of drag coefficients or heating rates
will be presented in this report for transition flow. However, several methods will
be presented for calculating the limits of free-molecular and continuum flows and
for extrapolating drag coefficients and heating rates between these two relatively
well-defined regimes.

Tsien'®:*® defined the limits of the transition regimes by using a Knudsen

number based on free-stream mean free path ()\,) and boundary-layer thickness (§).
The following relation for mean free path was derived by kinetic theory:

Moo

Ao = 1.255'p°°Tw . (95)
Defining Knudsen number as
Al)!)
Kn =3 (96)
Combining Equations 95 and 96,
MOO
K = 1.255/Z;§€g . (97)
Expressing Reynolds number in terms of characteristic body length,
K =1 255/—ML L (98)
n : waeL 5

For extremely low Reynolds numbers corresponding to near free-molecular tran-
sition flow,

L o
5 =1, (99)
so that
Mw
Kn = 1.255/)'(”@ . (100)

Taking Ky to be approximately 10 between free-molecular and transition flow, free-
molecular flow exists when

M
-]
Rey > 10 . (101)
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For larger Reynolds numbers and continuum flow,

L

for laminar flow and

|-
[l

2.66ReL°’2 (103)

for turbulent flow. Substituting Equations 102 and 103 into 98,

M
_ w0
KnLam = 0.27/)’00/R_eL (104)
and
Mw
KnTurb = 3.33/Yw;;—sfg . (105)

L

For a limiting Knudsen number of 0.003, laminar continuum flow would exist when

M

2]

/ReL

<0.01 . (106)

If conditions exist such that transition would be to turbulent flow, continuum flow
would exist when

M
< 0.0008 . (107)

ReL° 8

The realms of flow defined by Equations 101, 106, and 107 are shown on a Mach-
Reynolds number field in Figure 12.
Whereas the preceding discussion based Knudsen number on free-stream mean

free path, Probstein®°® offered an alternate method using the mean free path at the
wall of the vehicle. With the coordinate system fixed in the vehicle,

B 4 0.5 )\Oo
- ) (62) new

in the free-molecular regime.
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Figure 12. Flow regimes in Mach-Reynolds field

Using body radius as the critical dimension in Knudsen number, the limiting
Kp for free-molecular flow was calculated to be 10, so the vehicle is in free-
molecular flow when

)‘oo

T 0.5
=2 5 4.43 /7 —;> M, .
R °°<TW ©

(109)

The limit of continuum flow for the nose regions of blunt bodies was found
using the relationship

A
-E? <«<1l ,

(110)
where

mean free path behind the shock
shock stand-off distance.

o
nn
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From Equation 110 the criterion for continuum flow was computed to be

A
ﬁﬂ <0.1K , (111)

K being the density ratio across the shock wave (P,/P3).

With the limits of the transition regimes defined, it is now necessary to
find a way to extrapolate drag coefficients and heating rates between free-molecular
and continuum flow. Experiments conducted in a hot-shot tunnel on spheres, blunt
. . . 21
cones, sharp cones, normal discs, and inverted hemispheres showed that drag co-
efficients are an exponential function of Knudsen number in transition flow:

CD « In(K,) , (112)

but
re &, (113)

sO
Cp «1n 3 (114)

Density is proportional to e"N.  Therefore Cp varies approximately linearly with
altitude between the free-molecular and continuum flow regimes.

Heating ratios in the transition region are not as easily defined as drag co-
efficients. Except for areas near the stagnation point, a good approximation to
transition heating can be obtained for leading surfaces by extending free-molecular
and continuum heating curves to their intersection, as shown in Figure 13, curve
ABD, Since most of the heating to a tumbling vehicle takes place on the areas which
are instantaneously facing forward, this method may also be used for tumbling cylin-
ders. The results of this method are not only quite close to the various theories
for transition heating®®>?2,23 and low-density wind-tunnel tests®¥>%%,:%*%  bput also
agree with flight-test data from Sandia's Re-entry Flight Demonstration Number 2

(RFD-2).

Near the stagnation point, heating rates are up to 30-percent higher than those
predicted by continuum theory during the vorticity interaction and viscous layer flow
regimes of the transition region. This increase occurs when the boundary layer thick-
ness is of the same order as the shock layer thickness. Vorticity interaction becomes
important when the vorticity in the inviscid layer due to the shock wave approaches
the value of the vorticity in the boundary layer due to shear stresses. By comparison
to theories and tunnel tests?0s2 123,24 the actual heating curve near the stagnation
point can best be matched by following the free-molecular heating curve to a point
where it intersects a curve 1.3 times the value of continuum heating. TFrom this
point the vorticity effects decay as a power function (straight line on log-log
paper) over two increasing orders of magnitude of Reynoles number to the value given
by continuum theory. An example of this method for the stagnation point of a 1l-foot-
radius sphere is shown in Figure 13, curve ACD. This vorticity effect is noticeable
only near the stagnation point. As shown in Reference 22, vorticity effects drop off
rapidly, and at 60° from the stagnation point of a sphere the effects are negligible.
This increase in heating was also noted at the stagnation point of the RFD-2 re-entry
system.

As proof that using the intersection of the free-molecular and continuum heat-
ing curves as the transition point is independent of vehicle diameter, it will be
postulated that continuum heating is proportional to free-molecular heating at tran-
sition.
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Since

0.5
continuum heating o (%) (115)

and
free-molecular heating « P , (116)

then at transition

O-5
LEZQ%___ = constant

Simplifying,
L~ constant
PD
But A « 1/p during the altitude range in which transition usually takes place, so

= constant ,

o>

or Ky equals a constant at transition, proving free-molecular heating remains pro-
portional to continuum heating at transition, regardless of body diameter.

Summary

Drag coefficients and heating ratios were calculated for stable and unstable
cylinders in free-molecular and continuum flow. The results are shown in Tables
I1 and ITII.

TABLE II

CD Based on AR = LD

Flow Regime

Case Free Molecular Laminar Continuum

Side-on 2.0 0.667(2 - K)

End-on 1.572 0.7142(2 - K)
End-over-end tumbling 1.273 + -% (0.283 + 0.3032) 2 - )
Random tumbling 1.57 + 0.7852 (0.393 + 0.178D) (2 - K)

where

AR = Reference area (ft?)

D = Cylinder diameter (ft)

L = Cylinder length (ft)

K = Density ratio across a normal shock (P,/Pz)




TABLE TII

Average Heating Ratios Fpy and Fq

Flow Regime

Case Location Free Molecular, FFM Laminar Continuum, F9
Side-on and ends Z 7;(0.147)
spinning R
sides Y f—é(o.zsg)
End-on front end 1 —L(O.613)
VR
aft end 0 —L(0.0307)
VR
sides Z —L(B)
VR
End-over- ends 0.322 —2(0.329)
end tumbling VR
and spinning 1
sides 0.637(Y + 7) —(0.134 + 0.500B)
VR
Random end 0.255 —L(0.323)
tumbling and VR
spinning 1
sides 0.785Y + 0,500z —=(0.179 + 0.333B)
R
where
F _ Average free-molecular heating rate

FM Free-molecular heating rate to a plate perpendicular to flow

= _ Average laminar continuum heating rate
q Stagnation-point heating rate to a l-foot-radius sphere

y = Average free-molecular heating to a cylinder in cross flow (Figure 5)

Free-molecular heating to a plate perpendicular to flow

Free-molecular heating to a plate parallel to flow

Z = Free-molecular heating to a plate perpendicular to flow (Figure 6)
B = Average laminar continuum heating along the sides of an end-on cylinder
Stagnation-point heating to a sphere of the same radius
(Figure 9)
R = Cylinder radius (ft)

The reference free-molecular heating rates can be found using

3
Q- ap_v> ( BTU )
1~ 1556 £t sec




34

and the reference continuum heating rate may be obtained using

) INIEAARS BTU
q.. = 17,600{== —> <——> .
s ps Vc fe? sec

Two methods of determining the limits of free-molecular and continuum flow
were presented, and appear in Table TIV.

TABLE IV

Limits of Free-Molecular and
Laminar Continuum Flow Regimes

Method Free Molecular Continuum

MOO Mac

1 'R?' > 10 < 0.01

L N ReL
0.5

A T A
o0 et 0

2 w2 b4 /Z<Tw-> M, 72 < 0.1K

Through the various transition regimes, drag coefficient can be extrapolated
linearly with altitude between the two appropriate values from Table II.

A good approximation to heating rates in the transition regimes may be com-
puted for tumbling cylinders and for flow-impinging surfaces of stable cylinders by
extending free-molecular and continuum equations to their intersection. However,
near the stagnation point of the vehicle, heating rates will be up to 30-percent
higher than the computed values at this intersection, because of vorticity inter-
action. This increase decays over two increasing orders of magnitude of Reynolds
number to the value given by continuum theory, as shown in Figure 13.
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NOMENCLATURE

Area (ft?)

Reference area (ft?)

Accommodation coefficient

Value of curve in Figure 9

Drag coefficient

Average drag coefficient

Speed of sound (ft/sec)

Specific heat at constant pressure (BTU/1b °R)
Diameter (ft)

Error function

Ratio of average free-molecular heating to heating of a plate
perpendicular to flow

Ratio of average laminar continuum heating to stagnation heating of a one-
foor-radius sphere

32.2 (ft/sec®)

Enthalpy (BTU/1b)

Altitude (ft)

Bessel function of the first kind and zeroth order
Bessel function of the first kind and first order
Mechanical equivalent of heat, 778 (ft-1b/BTU)
Density ratio across a normal shock, (P,/P2) (see Reference 25)
Knudsen number

Length (ft)

Mach number

Pressure (1b/ft®)

Dynamic pressure, 1/2 pV2(1lb/ft?)

Heating rate (BTU/ft®*sec)

Average heating rate (BTU/ft®sec)

Local heating rate (BTU/ft?sec)

Stagnation-line heating rate (BTU/ft®sec)
Stagnation-point heating rate (BTU/ftZ®sec)
Stagnation-point heating rate on a sphere (BTU/ft®sec)
Radius (ft)

Reynolds number

35



56

<o <y <

N

aw

Recovery factor

Stanton number

Molecular speed ratio, M¢[§
Temperature (°R)

Circular orbital velocity (gravitational acceleration x radius to
center of earth)¥Y2(ft/sec)

Free-stream velocity vector (ft/sec)
Distance along the surface of a cylinder
Value of curve in Figure 5

Value of curve in Figure 6

Radial angle with respect to the velocity vector (°)
Specific-heat ratio

Shock stand-off distance (ft)
Boundary-layer thickness (ft)

S sin 6

Angle of attack (°)

Mean free path of air molecules (ft)
Viscosity (slug/ft-sec)

Air density (slug/ft?3)

Air density at sea level (slug/ft?3)

Angle between a normal to the surface and the velocity vector (°)

Subscripts

Axial (end-on)

Adiabatic wall

Based on characteristic length
Stagnation

Transverse (side-on)

Wall conditions

Based on boundary-layer thickness
As a function of angle of attack
Free stream

Perpendicular to flow

Downstream of a normal shock
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